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Abstrat: The thesis summarizes known results in the �eld of NP searh problems.We disuss the omplexity of integer fatoring in detail, and we propose new resultswhih plae the problem in known lasses and aim to separate it from PLS in somesense. Furthermore, we de�ne several new searh problems.Keywords: Computational omplexity, TFNP, integer fatorization.
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Chapter I
Prefae
In this thesis we study a spei� part of omplexity theory whih onerns with timeonsummation of the most optimal algorithms for solving problems.It has always been a kind of hallenge to ompute fast and smartly. This e�ort hasled people to reate e�etive algorithms and triky methods. Unfortunately, severalproblems have resisted thousands of mathematiians who have not found any reipeto solve them in feasible time. And these are preisely the question we study in thefollowing hapters.Chapter II is dediated to introdution of the reader into omplexity theory ingeneral, and presents seminal results about our main topi, NP-searh problems. Wede�ne a few sublasses of these problems, and show a way how they are onneted.Then we fous on an important question of modern omputer siene: Is integerfatorization really so hard as we expet?Chapters III and IV partially respond to that question, although they do notpresent any shoking new theorems. In the third hapter we show an upper boundon its omplexity whih would mean a negative answer, however the next hapterontains a new approah to estimating a lower bound of the omplexity of integerfatorization.In Chapter V we introdue new related questions whih an be a subjet of furtherresearh as well as the list of open problems in Chapter VI.Within the thesis we use standard notation. Natural numbers are denoted by N,whereas the �nite set of integers from 0 up to n� 1 is referred as [n℄. Generally, a setS has ardinality #S, sine we use jxj for the bit length of the number x. We alsoutilize a symbol GFq to denote the �nite �eld of size q.Without explanation we use the big-oh notation whih is a standard in the branh.Shortly say that O(1) stands for a positive onstant, or O(n) means a linear funtion,4



nO(1) a polynomial et. Likewise, the reader should be familiar with some basi fatson graph theory, algebra and number theory.
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Chapter II
Complexity TheoryPreliminaries
In omputational omplexity theory we investigate algorithms for solving problemswhih are in some sense optimal. There are usually two ways how to express this:the running time of the algorithm is minimal in omparison to any other algorithmwhih solves the problem, or it requires the least amount of memory. In many asesthese two onditions are not both ompatible. Fast algorithms frequently need largememory and vie versa.However, we do not need to know the best algorithm for some problem. A typialexample is a problem alled Integer-Fatoring when we are given a positive integerand we are asked to �nd its prime fators (or some non-trivial fator). There are alot of algorithms whih an solve this task, but we do not know if some of them isthe best one.In this setion we onsider only deision problems. These are questions of the form:is a word x member of a set L alled language? Obviously, we have three possibleanswers: yes, no, and do not know. From the knowledge of running time or neededmemory spae of the optimal algorithm in the worst ase we lassify the problems insome realm. The most famous lasses are P and NP.The omplexity lass P ontains all deision problems whih are solvable in poly-nomial time (sometimes abbreviated p-time) with respet to the length of input.First, we should explain what a deterministi Turing mahine is. It is an abstratomputational model. We an imagine it as a program working on an in�nite tapedivided in the squares where an be written letters by a read-write head. For a formalde�nition we need three non-empty �nite sets: the set of symbols A alled alphabet6



(typially we have only two { 0 and 1 { and an empty symbol b), a set of states Q,and a transition funtion Æ : Q�A! Q� A� fL;Rgwhere the symbols R and L determine if the head should move to the right or to theleft on the tape. In eah step it an move by only one square. The total number ofmoves during the whole omputation is the running time, and the number of visitedsquares on the tape an be viewed as the required memory spae. The set of states,Q, also ontains an initial state q0 and two �nal states { one for aepting state, andone for rejeting state.Now for the formal de�nition of P let us have a subset of all binary strings of arbit-rary �nite length, L � f0; 1g�. Then for some binary word x of length n, x 2 f0; 1gn,we want to deide whether x is in L. If this task an be answered by deterministiTuring mahine in time t(n) = O(nk) for all n and for all x of length n, and some�xed k > 0, then L 2 P.In a similar way we may de�ne also other lasses by replaing the time funtiont(n). Usual hoies are exp(nO(1)), exp(logO(1)(n)) et.A weaker onept than deision mahine is an aepting mahine. Its omputationis nearly the same, but it terminates only if x 2 L. In the opposite ase we will not getany answer. This notion is losely onneted to the nondeterministi omputation.Nondeterministi Turing mahine has in its set of states a nondeterministi state q?in whih it has more options what to do next. Well, it is possible that its deisionwould be wrong, and so it would get \no". We an imagine the set of all omputationsas a tree. If the input x really lies in the set L, then some of the leaves are labeled by\yes". Due to some bad deisions we ould miss them. So we say that the nondeter-ministi Turing mahine aepts the input x if and only if there exists an aeptingomputation. And the length of the shortest path leading to an aepting state is therunning time. If suh omputation does not exist, then the running time is set to bein�nite, t(x) =1.Now we are able to formulate the de�nition of the lass NP. Let L � f0; 1g� isa language. We say that L 2 NP i� there exists a nondeterministi Turing mahineN whih aepts L and for all x 2 L of arbitrary length n the running time is t(x) == O(nk) for some �xed k > 0.The most important question in the �eld is whether P = NP? Obviously the lassP is ontained in NP, but the opposite impliation is an open problem.Now we shall introdue a way of reduing a problem to another one. Suppose wehave two languages, i.e. two subsets L1 and L2 of f0; 1g�, and also two mahines7



M1 and M2 for deiding whether x 2 L1, or x 2 L2 respetively. We say that L1 ispolynomial time reduible to L2 (and write L1 �p L2) if and only if there exists ap-time funtion f suh that for all x it holds x 2 L1 , f(x) 2 L2.In addition, if we have two p-time funtions whih an be used for two-waytranslation of inputs of the problems, then these problems are polynomial time equi-valent.We will see a generalisation of the p-time reduibility in the setion about searhproblems. But the main idea is always the same.When there is a problem in the lass NP suh that any other problem in NPis polynomial time reduible to the �rst one, we all it NP-omplete. The set ofNP-omplete problems onsists of hard problems whih have a polynomial witness.Complete problems have a speial importane, beause in some sense they mirrorthe whole lass. Thus when a new lass is introdued there is an e�ort to �nd someomplete problem for the lass.For more information on the basis of omplexity theory reader should onsult,for example, Papadimitriou's book [P93℄ or Kraj���ek's one [K95℄.
II.1 Searh ProblemsIn many situations the onept of deision problems is weak or unnatural. Forexample we may want to ompute the sum of two numbers. In fat it is possible toask for eah bit of the result using \yes-no" questions (Is the i-th bit equal to 1? ) butthis is time-onsuming. Let us ask for the result diretly. Suh omputation needsmore time than the previous one, but it suÆes to do it only one.In this ase we have seen that the time omplexity of one omputation has inre-ased. But that is not a rule.Usually, when we proeed from a deision to a searh problem, we reeive moreinformation in the solution. Consider the most famous problem SAT whih is NP-omplete [C71℄. It is given a Boolean formula ' and we want to deide whether it issatis�able. But in the searh analogy we need to �nd some satisfying assignment orsay that suh assignment does not exist. Having solved the searh problem we alsohave the answer to the deision one.It should be mentioned that this reduibility is not automati. Later, we will seeseveral searh problems whih are not equivalent to any deision problem modulosome onditions. 8



The thesis is dediated to the lass of NP-searh problems whih is the moststudied set of searh problems. This lass is frequently denoted by FNP where theletter F stands for funtional.Let us have a P-prediate  (x; y). For any x of length n = jxj we must be ableto �nd y of length polynomial in n, i.e. jyj = nO(1), or say that no suh y an exist.Moreover the prediate  must be deidable in polynomial time in the length of itsparameters, and hene in n. Then �nding y for an instane x is anNP-searh problem.In a similar way, the lass FP of all polynomial-time solvable searh problems isde�ned.A simple example is: For given x �nd y suh that  (x; y) � x = 2y holds. Thatis a linear equation and there should be no problem with �nding onvenient y if itexists.But in the input x there an be enoded a Boolean formula and  an require yto be a satisfying assignment for that formula. It is obvious that a solution may notexist, and if we were able to solve this problem, then we ould solve SAT too.In some ases we know that the solution to the problem must exist, beause itfollows from an existential theorem. This is a very useful information, beause itmotivates us for solving the problem. These searh problems are alled \total" andin the ase of NP-searh problems we denote them intuitively TFNP.This lass is not very nie. There are a lot of di�erent reasons for being a memberof TFNP starting with ombinatorial lemmas, followed by number theoreti resultsand ending with geometri or optimisation problems. Shortly, nearly any existentialtheorem with easily veri�able solution from all of mathematis an be translated intoa searh problem.This was a motivation to de�ne speial \syntati" sublasses of TFNP, whereall problems an be presented in a �xed format.Before de�ning some of these lasses we generalize the de�nition of polynomial-time reduibility for searh problems and introdue type 2 problems and orales.De�nition. [BCEIP97℄ Type 2 searh problem Q is a funtion that assoiateswith eah string funtion � : f0; 1g� ! f0; 1g� and eah string x a set Q(�; x) ofstrings that are allowable answers to the problem on input �; x. Suh a problem Qis in FNP2 if Q is p-time veri�able in the following sense: y 2 Q(�; x) is a type 2p-time omputable prediate, and all elements of Q(�; x) are of length polynomiallybounded by jxjO(1).Previously de�ned searh problems (without funtional input) are also alledtype 1 problems. 9



By an orale 
 we mean a set of strings. It an be helpful during the omputationof a Turing mahine M . The mahine M may use sub-routines in its omputation,but their running time must be ounted in the total running time. When using oraleswe omit their running time and alulate only the duration of reating questions andproessing answers by M .The orale 
 an be viewed as a harateristi funtion:
(x) = � 1 if x 2 
 ,0 if x 62 
 .De�ne TFNP
 to be a set of all searh problems Q(
; �) where Q is total type 2searh problem, Q 2 TFNP2.De�nition. [BCEIP97℄ Suppose we have two type 2 problems, namely Q1 andQ2. (See the �gure 1.) We say that Q1 is many-one reduible to Q2 (Q1 �m Q2), ifthere exist type 2 p-time funtions f , g, and h, suh that h(�; x; y) is a solution toQ1 on input (�; x) for y, whih is a solution to Q2 on input (g(�; x); f(�; x)). Theoutput of g must be again a funtion.

x�
g(�; x) f(�; x)z�

y 2 Q2(g(�; x); f(�; x))

h(�; x; y) Q1(�; x)M1

M2

Fig. 1. Many-one reduibility10



We an also apply this de�nition to the ase of type 1 problems (or only Q1 oftype 1) by ignoring the funtional part of the input.If both problems are many-one reduible to eah other, then we say that they aremany-one equivalent.Here we de�ne the most important onept for the rest of our work. The relativizedlass (CQ)
 is a sublass of TFNP
 onsisting of all problems Q0(
; �), where Q0is any problem in TFNP2 many-one-
 reduible to Q. The suÆx 
 means that theredution is allowed to query the orale. Formally, replae � by 
 in the sheme ofthe redution. Notie that (CQ)
 = CQ, if 
 2 P.Theorem 1. [CIY97℄ Let Q1; Q2 2 TFNP2. The following statements are equi-valent:a) Q1 is many-one reduible to Q2;b) for all orales 
, (CQ1)
 � (CQ2)
;) there exists a generi orale1 � suh that (CQ1)� � (CQ2)�.The proof an be found in Cook, Impagliazzo and Yamakami [CIY97℄.More general type of redution between two total problems is the so alled Turingreduibility. We say that Q1 is polynomial-time Turing reduible to Q2, if there existsa polynomial-time mahine M that on input (�; x) and an orale for solutions ofQ2-problems outputs some solution to Q1, i.e. y 2 Q1(�; x). We also shortly say thatQ1 is reduible to Q2 and write Q1 �T Q2.Whenever M wants to make a query to the orale for Q2 it must prepare a pair(�; z), where � is a string funtion. In the ase that M is a polynomial-time mahinethe funtion � must also be p-time omputable and it an use the input parameters� and x, and all the questions whih have been answered so far. The task of M is toprodue a orret answer y for all possible omputations and answers from Q2.A simple observation is that Q1 �m Q2 i� Q1 �T Q2 andM asks the orale for Q2only one.We enlose this setion with an easy lemma, whih gives us a basi onnetionbetween searh and deision problems.Lemma 2. P = NP if and only if FP = FNP.
1) We will not need the notion of the generi orale in this work; for its de�nition see[CIY97℄. 11



II.2 Loal SearhAn introdutory paper to the omplexity of loal searh was written by Johnson,Papadimitriou and Yannakakis in 1988 [JPY88℄. We will expose their work in thishapter.In optimisation there is an easy approah to �nding solutions. We start in someinitial position and seek for a better one. This is being done until we move to a plaewhere no better neighbour exists.From the idea one should dedue that an initial position and some neighbourhoodstruture will be needed. For example onsider the famous Travelling-Salesperson-Problem. Suppose we are in some state of �nding optimal path (we have a tour whihis not the best one). A lassial neighbourhood is the one that assigns to this tour aset of tours whih di�er from it in just two edges (so alled 2-hange neighbourhood).Moreover, we need a fast algorithm whih evaluates the states.De�nition. [JPY88℄ We de�ne a lass PLS of all polynomial-time loal searhproblems. Suh a problem L is spei�ed as follows:a) L has a set DL of instanes, whih is a subset of all �nite strings f0; 1g�.b) For eah instane x there is a �nite set FL(x) of solutions. The terminology hereis little onfusing, better would be saying for example andidates. Without loss ofgenerality all of them have the same polynomially bounded length p(jxj), heneFL(x) � f0; 1gp(jxj).) For eah andidate s 2 FL(x) there is a nonnegative integer ost L(x; s) and asubset n(x; s) of FL(x) alled the neighbourhood of s. The goal is to �nd somey 2 FL(x) with loally minimal (or maximal) ost. No point from its neighbour-hood an have smaller (or higher) ost.d) There exists three polynomial-time algorithms IL, CL, and NL. The �rst one givenx 2 DL produes an initial solution (start point) from FL(x). The algorithm CLon input x and s omputes the ost (x; s), if s 2 FL(x). Finally, NL has twotypes of output. If there is some solution s0 2 n(x; s) with better ost than s, itreturns s0. Otherwise NL returns s, and hene it is loally optimal.There is a simple and straightforward algorithm for solving PLS problems. Justtake the initial andidate s and repeat until loally optimal solution is found: ApplyNL to s and if it yields a better-ost neighbour s0, then set s = s0. This algorithmwill be alled \standard". We know that the set of andidates is �nite. Thus thealgorithm must halt and at least one loal optimum must exist. How long does theomputation take? Sine FL � f0; 1gp(jxj), enumeration of all the elements takes atmost exponential amount of time, namely 2p(jxj).12



However, one might hope to obtain the result more quikly by other means. Thisevokes the following standard algorithm problem: Given x, �nd the loal optimum sthat would be output by the standard algorithm for L on input x.Johnson et al. proved an easy, but interesting lemma.Lemma 3. [JPY88℄ There is aPLS problem L whose standard algorithm problemis NP-hard.It should be said that if �nding the spei� loal optimum by the standard al-gorithm is hard, it does not mean that �nding some loal optimum is hard as well.So the most important problem is to evaluate the omplexity of �nding some loaloptimum.Sine any problem in FP an be solved by a polynomial-time algorithm, we anuse it as the initial algorithm IL in the de�nition of PLS. This gives FP � PLSOn the other hand, any PLS problem an be solved in a way that the loaloptimum is guessed, and then using the algorithm NL the solution is validated inpolynomial time. Thus PLS � FNP.De�nition. [JPY88℄ A problem P 2 PLS is p-reduible to another problemQ 2 PLS, if there are polynomial-time omputable funtions ' and  suh thata) ' maps instanes x of P to instanes '(x) of Q,b)  maps solutions of '(x) to solutions of x, and) for all instanes x of P , if s is a loally optimal solution to the instane '(x) ofQ, then  (x; s) is a loally optimal solution to the instane x of P .This is an intuitive generalization to the polynomial reduibility as it was de�nedin the preeding setion.As we mentioned in the introdution, a very important task is to show that thereis a omplete problem in the lass. Johnson et al. in their paper proposed one problemwhih is PLS-omplete.It is a iruit omputation problem: We have some Boolean iruit C with minputs and n outputs. We need to look up for a string a 2 f0; 1gm suh that theoutput of C on it has the minimal ost. The ost of a solution is simply the outputC(s) viewed as an integer. If (y1; : : : ; yn) = C(s), then (C; s) =Pnj=1 2jyj .Formally, the set of andidates FL(C) = f0; 1gm, neighbourhood of a strings 2 FL(C) is any vetor in m oordinates whih di�ers from s in only one oor-dinate, i.e. they have Hamming distane one. To omplete the de�nition, the initialalgorithm always returns the vetor of ones, and we want to �nd a solution withloally minimal (or maximal) ost. 13



Suh a problem is alled Flip, sine the moves from one andidate to another onein the neighbourhood struture evoke ipping.Theorem 4. [JPY88℄ Flip is PLS-omplete.Corollary.a) The standard algorithm problem for Flip is NP-hard.b) There are instanes of Flip for whih the standard algorithm requires exponentialtime.The proofs of both these laims an be found in [JPY88℄.It was also observed that the relationship of PLS to the traditional lasses P andNP is very unlear and diÆult to resolve. On one side, a problem in PLS annotbe NP-hard, unless NP = oNP. On the other side, if all problems in PLS weresolvable in polynomial time, then showing this would require disovering of a general-purpose algorithm for �nding loally optimal solutions that should be at least assophistiated as the ellipsoid algorithm or Karmarkar's algorithm [JPY88℄.Another remarkable problem in PLS is Max-Cut . Suppose an undireted �nitegraph G = (V; E) with weighted edges w : E ! N. For suh graph a ut is a partitionof V into two disjoint sets V1 and V2. The weight of a ut (V1; V2) is the sum of theweights of the edges onneting nodes between V1 and V2. Computing the maximalut is one of the most famous problem in theoretial omputer siene and it is alsoNP-omplete on graphs of degree at most three [GJ79℄.To use the problem in the world of PLS, we need to de�ne a neighbourhoodstruture. Sh�a�er and Yannakakis proposed the simplest one: Two partitions areneighbours if one an be obtained from the other by swapping two verties (they allit \swap neighbourhood"), and showed PLS-ompleteness of �nding a loal optimumfor the Max-Cut problem with swap neighbourhood [SY91℄.More preisely, we present the result by Els�asser and Tsheushner [ET10℄.Theorem 5. [ET10℄ The problem of omputing a loal optimum of the Max-Cutproblem on graphs with maximum degree �ve is PLS-omplete.In 2009 Pudl�ak and Thapen extended the de�nition of PLS to generalized po-lynomial searh [PT09℄. Their lass is alled GPLSk and we an imagine it as ksubsequent iterations of a PLS omputation.De�nition. [PT09℄ A GPLSk problem is de�ned by polynomial time funtionsv depending on k + 1 variables and h1; : : : ; hk depending on 2; 3; : : : ; k + 1 variables14



resp., where the �rst variable is a parameter. An instane of the problem is given by anumber x (value of the parameter). The goal is to �nd numbers b1; 2; b3; 4; : : : < x,suh thatv(x; b1; h2(x; b1; 2); b3; : : :) � v(x; h1(x; b1); 2; h3(x; b1; 2; b3); : : :) :The de�nition is inspired by a game in whih two players A and B alternate inhoosing values. After k steps the game ends, and A loses v(x; b1; : : :), whereas B winsthe same amount of money. Clearly, A tries to minimize the payo�, while B wantsto enlarge it. The funtion v represents a value (or ost) funtion, and h1; : : : ; hk arealgorithms of both players (for the �rst one with even indies, for the seond one withodd ones).Partiularly, if k = 1, then there is an obvious analogy to PLS: v is the ostfuntion, h1 the neighbourhood funtion, and the set of all x1 < x is the set of andi-dates. For given x we are asked to �nd a feasible solution b1, suh that the neighbour-hood funtion h1 annot derease the ost, i.e. the inequality v(x; b1) � v(x; h1(x; b1))holds.
II.3 Parity Lemma Based Searh ProblemsWhereas the inspiration for the de�nition of polynomial loal searh had omefrom mathematial logi, in this setion we will present two ombinatorial lasses.They both were developed by Christos Papadimitriou in 1994. In this setion we willfrequently referene to his artile \On the Complexity of the Parity Argument andOther IneÆient Proofs of Existene" [P94℄.For this moment, the lass TFNP will be the largest domain in the sense thatall problems will be total. To prove their totality we need some existential theorems.These an be from any part of mathematis, namely ombinatoris, algebra, numbertheory but also alulus or optimisation.In his paper, Papadimitriou onsiders espeially ombinatorial problems whih aremotivated by basi graph properties. For example, if we have a �nite graph, then ithas an even number of odd-degree verties. This is usually alled the parity argument.A more ompliated laim based on the parity lemma, Smith's theorem, statesthat any graph with only odd degree nodes has an even number of Hamilton ylesthrough the edge xy for any verties x and y. Thus when one has some Hamiltonpath going through the edge xy, then there must exist another (at least) one. So15



the existene of a solution is guaranteed by this theorem, and we an formulate aproblem Smith: Given an undireted �nite graph G = (V;E) with odd degrees, anda Hamilton yle, �nd another one.The input to the problem is a vetor of v = #V di�erent omponents, eah oflength at most jvj, oding the given Hamilton path. Hene the length of input isO(v log v), whereas the number of all possible Hamilton yles might be up to(v � 1)!2 � p2�(v � 1)2 �v � 1e �v�1 :Relations between nodes are given by a polynomial-time funtione(x; y) = � 1 if (x; y) 2 E ,0 otherwise .Sine the funtion e is omputable in polynomial time with respet to the lengths ofx and y, we speak about polynomial parity argument.When we �nd a di�erent Hamilton yle, we will be able to hek orretness ofthis solution easily. But there are many possible andidates to be a solution. It is notknown, whether the problem Smith is polynomial-time solvable, but as we have seenit is a total NP-searh problem.In Papadimitriou's paper it was a speimen for the lass PPA (from polynomialparity argument mentioned two paragraphs before). Now we are going to de�ne thislass formally.De�nition. [P94℄ Suppose we have a deterministi polynomial-time Turing ma-hine M . For any input x of length n, the on�guration spae C(x) = f0; 1gn servesas a set of graph verties. It must hold:(i) For u 2 C(x), M(x; u) returns a list of neighbours of u as a tuple (v; w), (v), or(), where v < w, and v;w 2 C(x) n fug.(ii) For u; v 2 C(x), v 2M(x; u) whenever u 2M(x; v).(iii) 0 2 C(x) has only one neighbour, M(x; 0) = (a) for some a 2 C(x).Sine the node 0 has only one neighbour, we all it standard leaf and it providesus a \witness" for the parity lemma. It ould be the given Hamilton yle from Smithor simply a leaf in the graph G. Then the task is to �nd another leaf.In the de�nition the mahine M represents the funtion e from the text before,and in addition it is able to ompute the opposite endpoint of an edge in the graph.Papadimitriou also desribed a lot of other problems lying in the lass PPA. LetG be an undireted graph and let �G denotes its omplement in some �nite domain.16



Let H(G), and H( �G) is a number of Hamilton paths in G, and �G respetively. Lov�aszhas proved that H(G) + H( �G) is even under these onditions. We de�ne Another-Hamilton-Path as the following problem: Given a �nite undireted graph G and someHamilton path in it, �nd another Hamilton path in G or in its omplement �G.Next example uses the parity lemma again. Let us have a funtion f withDom(f) = Rng(f) of even size, and onsider a sentene[f(0) = 0 ^ (8x)x = f(f(x))℄) [(9x)x 6= 0 ^ x = f(x)℄ :Here the funtion f should have been a bijetion de�ning a pairing on its domain.The standard node 0 is lonely meaning that it is paired with itself. Due to the parityargument there must be one more lonely element x, suh that x = f(x), or somenon-standard node has to be mapped to 0.In the problem alled Lonely the funtion f is polynomial-time omputable, thedomain onsists of all zero-one strings of length n, and the task is to �nd a lonelynode di�erent from 0, or some x, suh that f(x) = 0.A similar problem is Leaf . In a graph G, a leaf is a node of degree one. Like inthe de�nition of Smith we have the funtion u de�ning edges in the �nite graph G ofdegree at most two, and the standard leaf 0 having only one neighbour. The searhproblem Leaf is: Given the funtion u and an instane x oding the size of G, �nd aleaf in G other than the standard one.Papadimitriou proposed also a problem inspired by number theory. Suppose asystem of polynomial equations in n variables in the �nite �eld GFp for a prime p.Ch�evalley's theorem states that if the sum of the degrees of the polynomials is lessthen n, then the number of roots of the system is divisible by p. If we knew somesolution to the system, then there should exist at least one more root, sine the leastprime number is 2.The omputational problem Ch�evalley-mod-p thus is: Given suh a system anda root, �nd another. In a speial ase p = 2, Papadimitriou proved that Ch�evalley-mod-2 is in PPA. However for p > 2 the problem fails to be in PPA. The lass mightbe alled PPA-p and the parity argument should be generalized to the form: If in abipartite graph a node has degree not a multiple of p, then there is at least anothersuh node.Then Ch�evalley-mod-p is in PPA-p [P94℄.In our expositions we have been onsidering only undireted graphs. Let us usethe direted ones for a moment.We de�ne PPAD by modifying the previous version for undireted graphs. Sup-pose a �nite direted graph G = (V; E) on the words of length n (V = f0; 1gn) whih17



has in-degree and out-degree at most one. Sine it is direted, the mahine M shouldreturn an ordered pair on input s 2 V , namelyM(x; s) = (s; s0) where x is an instaneode, jxj = n, and s0 is the suessor of s. In other words, there is an edge from s to s0.We use the standard node 0 as a witness anew. It has only one edge going out, butno one oming in. We are asking for another vertex whose in-degree plus out-degreeequals to one. Suh a node is alled a sink, or a soure respetively.The lassPPAD is the largest set of problems of the type desribed in the previousparagraph, whih is losed under redutions.An easy observation is formulated in the following theorem.Theorem 6. [P94℄ For the funtional lasses it holdsFP � PPAD � PPA � FNP :PPAD is under PPA, sine we an forget the diretion of the edges in the de-�nition of a \direted problem" and we obtain a similar undireted version. As wehave mentioned it is not know whether these inlusions are proper, or if there areequalities. Both are possible, but it is believed the �rst one is proper.Sperner's lemma is a well-known laim speaking about olouring of a triangulation.In two dimensions it states that any admissible olouring of any triangulation of theunit triangle ontains a trihromati triangle. Suppose we have three olours, 0, 1,and 2, and divide the triangle 012 into approximately n2=2 smaller triangles. Everyvertex reeives a olour. The olouring is admissible, if eah vertex of the big triangleobtains its own name, and no vertex on the edge ij of the original triangle reeivesolour 3� i� j. Then a trihromati triangle other than the outer one an be found.The outer trihromati triangle will represent the standard soure in the followingomputational problem 2D-Sperner : Given an integer n and an algorithm M assig-ning to eah point p = (i1; i2; i3), with i1; i2; i3 � 0 and i1 + i2 + i3 = n a olourM(p) 2 f0; 1; 2g, suh that ij = 0 implies M(p) 6= j; �nd three points p1, p2 and p3,suh that their pairwise distanes are one, and fM(p1);M(p2);M(p3)g = f0; 1; 2g.Although the generalization of the problem in higher dimensions does not seemobvious, the Sperner's lemma is valid in any dimension and the orresponding om-putational problem is in PPAD.For example in three-dimensional spae, the problem 3D-Sperner asks as follows:Given an integer n an a polynomial-time algorithm omputing for a point of then�n�n subdivision of the ube an admissible olour, �nd a tetrahromati ubelet.Theorem 7. [P94℄ For any k � 2, kD-Sperner is in PPAD.18



We should also mention the omputational problem inspired by the Brouwer'stheorem: Any ontinuous funtion f from the unit simplex to itself has a �xpoint,i.e. there exists a point x suh that f(x) = x. Sine the proof is based on Sperner'slemma, the orresponding problem is in PPAD too.But we need to represent a ontinuous funtion by a Turing mahine. This isprobably impossible, and so a simpli�ation is used. For a given natural number n,and a point x in the unit ube with oordinates multiples of 1=n mahine M returnsin polynomial time a vetor �(x) suh that j�(x)j � 1=n2 and f(x) = x+ �(x) lies inthe unit ube. Thus the funtion f an be extended to a pieewise linear map usingthe interpolation. In the problem Brouwer we are seeking for a point x satisfyingf(x) = x.The problem Brouwer is in PPAD.Finally, we onsider the Nash's theorem. He has found that there always existsan equilibrium in the following game. There are given two m� n matries A and B,onsisting of numbers aij , whih is the payo� of player A when A plays strategy iand B plays strategy j; bij is the payo� of player B. The game is not zero sum, soA+ B 6= 0. A Nash equilibrium is a pair of strategies i for A and j for B, suh thatneither A nor B have an inentive to hange strategy (for all k it holds akj � aij , andbil � bij for all l).For a onvex spae of strategies, Nash has shown that an equilibrium exists, butin our situation the spae is disrete. Papadimitriou solved this problem using aprobabilisti distribution over the rows and olumns of the matries. A row m-vetorx = (x1; : : : ; xm) is a mixed strategy of A, if for all i it holds xi � 0, and Pxi = 1;and analogially for a olumn vetor y for the player B. These two strategies are inequilibrium if x0Ay � xAy for all mixed strategies x0, and xBy0 � xBy for all y0.Suh an equilibrium always exists. The problem Nash is de�ned in this way: Giventwo integer matries A and B, �nd a mixed strategy equilibrium. It is not known,whether there is a p-time algorithm for this fundamental problem.However, we know that Nash is in PPAD.We have already explained the importane of omplete problems for the lasses.Papadimitriou in his seminal paper showed some PPAD-omplete problems, but noone PPA-omplete.Theorem 8. [P94℄ 3D-Sperner is PPAD-omplete.The proof is desribed in [P94℄. It is based on onstrution of multioloured tubesleading from the standard leaf to a solution throughout the ube.Also Brouwer is PPAD-omplete. 19



In 2001, M. Grigni generalized the result by Papadimitriou and showed for somegeneralization of Sperner problem to be PPA-omplete [G01℄. The most importantdi�erene is in onsidering non-orientable faets in the de�nition of the problem.Grigni used a d-manifold, whih is a topologial spae overed by open neighbour-hoods homeomorphi to the Eulidean spae Rd . In an Eulidean spae, a d-simplexis the onvex losure of d+1 aÆnely independent points, and a fae of a d-simplex isthe onvex losure of its orner points. A fae with d orners is alled a faet.For a given d-manifold, a d-triangulation is a �nite olletion of d-simplexes o-vering the manifold, suh that eah pair of simplexes is either disjoint or intersetingon a ommon fae. Eah faet is shared by at most two d-simplexes. If it is only one,then the faet is situated in the boundary of the manifold. Having a d-triangulation,we may olour its points with the olours from the set f0; 1; : : : ; dg. A simplex, whihontains all d+ 1 olours in its points is alled full-olour; similarly for a faet.Suppose it is given a d-triangulation, a olouring with no full-olour boundaryfaet, and a full-olour simplex. Sperner's lemma states that there exists anotherfull-olour simplex.Corresponding omputational problem G-Sperner has an input x of length n = jxj,suh that 2p(n) is the number of triangulation points in one diretion for a polynomialp, and uses a polynomial time Turing mahine M desribing a 4-olouring of theverties of the triangulation: For eah i; j; k 2 f0; : : : ; Ng the olour of the point atoordinates (i=N; j=N; k=N) is equal to M(x; i; j; k) 2 f0; 1; 2; 3g with the restritionthat S(x; 0; j; k) = S(x;N;N � j; k).Theorem 9. [G01℄ G-Sperner is PPA-omplete.Grigni's proof is similar to Papadimitriou's one, but it employs more sophistiatednotions from topology. Reader should onsult [G01℄.The lass PPADS is a variant of PPA; in [P94℄ it was alled PSK. A naturalomplete problem for PPADS is Positive Sperner's Lemma for dimensions threeand above, whih is exatly like Sperner's Lemma exept that only a panhromatisimplex that is positively oriented is allowed to be a solution [BCEIP97℄.The orresponding problem is alled Sink : For a given direted graph on f0; 1gnwith in-degree and out-degree at most one in whih 0 has in-degree zero and out-degree one (it is alled a soure), �nd a vertex with in-degree one and out-degree zero(sink).
20



II.4 Pigeonhole PrinipleThe pigeonhole priniple is another ombinatorial lemma whih states that theremust exist elements of some properties. Suppose f : f0; 1; 2; : : : ; Ng ! f1; 2; : : : ; Ngis a polynomial time funtion. Suh a funtion annot be injetive, sine the size ofits domain is stritly larger than the size of the range and both are �nite.The point is that we are given a big N whih is represented by n bits, and it islaimed that the funtion is injetive. Beause that is impossible, there must exist aounterexample; i.e. an element x 2 f0; : : : ; Ng suh that f(x) 62 f1; : : : ; Ng, or twodi�erent elements x; y 2 f0; : : : ; Ng whih satisfy f(x) = f(y). The omputationalproblem Pigeon is: With a given number N and an aess to a funtion f �nd aounterexample.It is again a type 2 problem whih is in TFNP, beause having a solution weneed only at most two queries to f (hene only onstantly many) to verify the result.All the problems whih are polynomial time reduible to Pigeon reate the lassPPP (polynomial pigeonhole priniple). Thus the problem Pigeon is a natural om-plete problem for PPP. The lass was independently invented by Papadimitriou andCook [P94℄.There are many natural problems whih an be solved easily using the Pigeonorale. This means that we redue a problem to an instane of Pigeon in polynomialtime and ask the orale for a solution. Having that solution to the Pigeon instane itis easy to reonstrut a solution to the given task (again in polynomial time).For example the famous Disrete-Logarithm problem is desribed by two numbersp (prime number) and � (usually a generator of the multipliative group Z�p). Thenfor an instane y 2 Z�p the question is: What is a value x for whih the equality�x � ymod p holds?We show a simple onstrution. For all t 2 f0; : : : ; p� 1g de�ne a funtionf(t) = 8<:�t if �t 6= y ,0 if �t = y ,y if t = 0 .It is known that this funtion is polynomial time omputable. Now use the Pigeonorale. Sine exponentiation on the invertible subset of a �nite �eld is injetive, theonly ollision with the pigeonhole priniple is for t suh that �t = 0. This is thesolution.If we ould solve this instane of Pigeon e�etively, then we would be able toompute the solution to any instane of Disrete-Logarithm problem.21



In general, the Pigeon orale is apable to invert any permutation. Let � be apolynomial-time omputable permutation of a �nite set S whih does not ontain 0.Suppose that we want to know a preimage of some y 2 S in the permutation �. It issuÆient to onstrut a new \permutation" of S [ f0g. De�ne�(x) = � �(x) if x 2 S ,y if x = 0 .It is easy to see that � de�nes an injetive map from S [f0g to S with only one errorwhih is in y.Sine all the enryption funtions are polynomial-time pseudorandom permutati-ons in fat, none of them is resistant against the \pigeon orale attak" desribedabove. The same holds for hash funtions.
II.5 Separation of the ClassesReall that a relativized problem is de�ned using an orale whose omputationtime is onsidered to be a onstant. For instane, let us in the last problem Pigeonreplae the polynomial-time funtion f by an orale. The obvious advantage is thatwe do not have to wait for its response, but on the other hand, we annot verify itsanswer. In other words we have to believe to the orale.A simple example shows that relativized Pigeon is not solvable in polynomialtime. We prove an easy lemma, beause we want to explain the diagonal methodwhih we will use in the following hapters.Lemma 10. There does not exist polynomial time orale mahine M
 that solvesPigeon
 for all orales 
.Proof. Suppose the ontrary. Let x be an n-bit input de�ning the domain [2n℄ == f0; : : : ; 2n�1g on whih an injetive mapping u into [2n�1℄ is laimed to exist. Themapping u is omputed by an orale 
. We have a polynomial time Turing mahineM with an aess to the orale 
 whih an �nd a ontradition with the injetivityof u. The orale responds questions of the form \what is an image of t?" After atmost nk steps (for some k > 0 �xed) we have to stop the omputation and give aresult.But during the run of the program the mahine M has visited only at mostnk values of u, and for suÆiently large n it holds nk < 2n. Thus the orale 
22



has an important advantage. It an hoose values u(t) independently with only tworestritions: Di�erent questions must be answered di�erently, repeated questions mustbe answered always with the same value.The mahine M annot �nd a ontradition in polynomial time, if the oralebehaves in the desribed manner. Sine M must output a solution, it hooses a pairof non-visited points (y; y0) 2 [2n℄, but after asking orale, the veri�er will disoverthat 
(y) 6= 
(y0).This method of separating hard problems from some smaller lass has ome frommathematial logi and it was used, for example, by Beame, Cook, Edmonds, Impag-liazzo and Pitassi [BCEIP97℄ in our ontext. In the following paragraphs we are goingto list known results in this e�ort. These are done in a similar way as it was in ourlemma, and sine the lasses are de�ned using a few \speimen" searh problems weobtain separation of lasses as orollaries.Theorem 11. [BCEIP97℄ Lonely is not reduible to Pigeon.Here mentioned problem Lonely is based on parity lemma and thus it is in PPA.The task is for a given pairing of even number of verties and a standard lonely nodeof degree zero, loate another lonely node.The proof of the theorem is by ontradition. It is supposed that we an solve anyinstane of Lonely using a Pigoen orale. What is hard is to onstrut answers of theorale in a way suh that the mahine solving Lonely is not able to unover a lonelynode.Beause Pigeon is a natural PPP-omplete problem, any searh problem in thelass must be reduible to it.Corollary. There exists an orale � suh that PPA� 6� PPP�.It is not hard to see that Sink is many-one reduible to Pigoen: Construt theinput for Pigeon as a funtion f , whih returns 0 on a sink, and for other verties u,if there is an edge from u to v, f(u) = v.Theorem 12. [BCEIP97℄ Sink is not reduible to Lonely .Sine we know that Sink 2 PPP\PPADS, we an establish the following theo-rem.Corollary. There exist orales � and � suh thata) PPADS� 6� PPA�; 23



b) PPP� 6� PPA�.Some more results are by T. Morioka [M01℄, who separated lasses PPP and PPAfrom PLS .Theorem 13. [M01℄ There exist orales � and � suh thata) PPA� 6� PLS�;b) PPP� 6� PLS�.And �nally, in [BM04℄, J. Buresh-Oppenheim and T. Morioka partially answeredthe opposite.Theorem 14. [BM04℄ There exists an orale � suh that the separationPLS� 6� PPA� holds.We have desribed a omprehensive list of separation results in the relativizedworld of NP-searh problems. Whether PLS� � PPP� or not, it is not known tous. As we promised in the seond part, some of the searh problems are not equivalentto any deision problem.Theorem 15. [BCEIP97℄ None of the problems Sink , Leaf , or Pigeon ispolynomial-time Turing equivalent to any deision problem.
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Chapter III
An Upper Bound forInteger Fatoring
We have already mentioned the importane of the problem alled Integer-Fatoring .It is believed that there are instanes of it whih are hard to solve, and this fat isutilised in many ryptographi protools like RSA. But nobody an prove that, andhene the belief is based only on our experienes with di�erent algorithms whih solvethe problem. These are numerous; for example naive division, Pollard's rho method,and quadrati or number theoreti sieves.Let us formalize the problem Integer-Fatoring . Its input is a omposite integer Nof length n, and the task is to �nd a whole number d suh that d divides N and1 < d < N .In average ase the problem is relatively easy to solve. Consider a random integer;with the probability 1=2 it is divisible by two, with the probability 1=3 it is divisibleby three et. If we had a list of all prime numbers less than 100, then the probabilitythat a random number would have a divisor among these primes is safely more than75%.That is why in ryptographi appliations there are implemented sophistiatedmethods of �nding seure pair of large prime numbers. These are then multiplied andthe result is being used and onsidered impossible to be fatorized bak.Hene we will study the ase N = pq for two di�erent prime numbers p and q.Moreover, these primes are usually of roughly the same bit length, but this assumptionis not very important in our ase.In this hapter we are going to present some results whih reate an upper boundfor the omplexity of the Integer-Fatoring problem. On the other hand, in the next25



hapter we desribe a method of estimating a lower bound for the same. Shortly,our aim is to insert the problem to a sublass of TFNP, but preferably far frompolynomial-time solvable problems.Let us de�ne a speial ase of the Integer-Fatoring problem. Suppose thatN � 1mod 4 (i.e. the remainder after the division of N by 4 is equal to one), and �1is not a square modulo N . The last ondition says that there does not exist x < Nsuh that x2 � �1modN .2 Numbers satisfying these two onditions will be alled\good".Intuitively, the Good-Integer-Fatoring problem is: Given a good integer �nd itsnontrivial divisor.Proposition 16. Good-Integer-Fatoring is in the lass PPA.We have proved this independently with Joshua Buresh-Oppenheim, whose proofis a little di�erent from our argument; see [B10℄.Proof. Consider a good integer N = pq. Then h = (N � 1)=2 is even. We onstruta graph on v = 2dlog he verties from the set f1; : : : ; vg in several steps (onsult the�gure 2 bellow).a) Identify numbers x < N with their opposites �x modulo N , i.e. x and N � x areboth represented by only one node. (In the piture this is shown by the equivalenesymbol � .)b) Every vertex reeives a unique name { an integer between 1 and v.) For eah i 2 f1; : : : ; h=2g reate an edge between 2i and 2i� 1.d) For eah i 2 fh+ 1; : : : ; v � 1g add an edge between i and i+ 1.e) For eah i 2 f1; : : : ; hg reate an edge between i and i�1modN , if the inverseexists. If i�1 > h, use �i�1modN instead.f) Add an edge fh+ 1; vg.We laim that this is a valid instane of Leaf with a standard leaf 1. Sine�1modN is not a quadrati residuum, the equation x�1 = �x does not have asolution, and hene in the �fth step we always join two di�erent nodes.When the inverse element of i�1 is greater than h, the inverse of �i�1modN mustbe smaller than h, and vie versa. Thus there annot be three di�erent neighbours ofthe element i or �i, and so there is no problem in our onstrution, step e.2) This really is possible: 82 = 64 � �1mod65 where 65 = 5 � 13, and 65 � 1mod4.26



1 � N � 12 � N � 23 � N � 34 � N � 4... h� 1 � N � h+ 1h = 12 (N � 1) � 12 (N + 1)h+ 1h+ 2h+ 3
elementsoff1;:::;N�1g

v � 1v...

2�1modN3�1modN4�1modN(h� 1)�1modNh�1modN

Fig. 2. Constrution of the graphThe verties whih do not have two edges, are only the noninvertible integersmodulo N , and the standard leaf, of ourse. So if we ould solve the Leaf probleme�etively, we would be able to �nd a non-trivial fator of a good integer, beause thenoninvertible elements of ZN are preisely those numbers whih do have a nontrivialgreatest ommon divisor with N . But suh an integer an be only a multiple of p orq. Note that the Eulid's algorithm may be used to quikly ompute the GCD.Although the proposition holds only for good integers, it has a large impat. Thisis due to the ryptographi importane of the so-alled Blum numbers. These arenumbers of the form N = pq where p and q are Gaussian prime numbers with noimaginary part. For us, the most signi�ant fat is that all these numbers are equalto one modulo four. Also the seond ondition that �1 is not a square modulo Nis sometimes useful in appliations; see for example Feige-Fiat-Shamir Identi�ationSheme whih is desribed in [K10℄.An interesting thing is that the onstrution of an PPA instane is relatively easyfor N � 1mod 4, but it seems unable to make it for the numbers equal to 3 modulo 4.We leave this problem open. 27



On the other hand, again J. Buresh-Oppenheim proved [B10℄ that the general aseof the Integer-Fatoring problem is a member of randomized PPP lass. That meansthat there exists a redution to a Pigeon instane whih is able to �nd a fator inzero-error probabilisti polynomial time; that is a searh variant of the famous ZPPlass.Proposition 17. [B10℄ Integer-Fatoring is in FZPPPPP.Sine this result is losely related to the main topi of this thesis, we inlude asketh of the proof.Proof. First, we test if the given N is not a multiple of 2 or a prime power.Otherwise, onstrut a random instane of Pigeon on strings of length jN j. Cho-ose two random integers a; b < N . If one of them is noninvertible, then return itsgreatest ommon divisor with N . This happens with probability 1� �2 where � is afration of units in ZN .Suppose that both these numbers are quadrati non-residues. This ours withprobability 34 � 34 = 916 , sine N is divisible by at least two odd primes, and there isat most a half of quadrati residues modulo a prime.Construt a mapping on ZN :0 7! a ;x 7! 8<:x2 if x is a unit and x � 12 (N � 1),bx2 if x is a unit and x � 12 (N + 1),0 if x is a non-unit and x 6= 0.Finally, map eah string with value at least N to itself.If the Pigeon orale returns an element whih is mapped to 0, then ompute itsgreatest ommon divisor with N , and return it. If it returns two di�erent elementsx; y with the same non-zero image, then neither x nor y is 0. Beause b was supposedto be a non-residuum and invertible, both these numbers are mapped in the sameway, hene we have x2 � y2modN , or bx2 � by2modN . From these equations onean obtain a fatorization (x+ y)(x� y) � 0modN .Reall, that with probability 1 � �2 either a or b is non-invertible. This leadsto a solution. Otherwise, at most one quarter of elements of [N � 1℄ are quadratiresidues. Both these numbers are non-residues with probability at least 9=16. Sineevery quadrati residue has two square roots whih are greater than N=2, and onlya half of them is of the form bx2 for some x > N=2. The onditions on a and b are28



all satis�ed in at minimum 9=16 � 1=4 ases, and thus the algorithm sueeds withprobability at least 1� �2 + �2� 916 � 14� = 1� 1116�2 � 516 :It would be nie to derandomize this result. Though it follows from the ExtendedRiemann Hypothesis, whih guarantees the existene of a non-residuum in the range[1; O(log2N)℄ as Eri Bah showed in 1990 [B90℄. Even in 1975 Gary L. Miller provedsome other interesting theorems based on the assumption that ERH is true.Theorem 18. [M75℄ Let N = pv11 : : : pvmm is an integer. If Extended RiemannHypothesis is valid, then the following funtions are polynomial-time equivalent:a) prime fatorization N 7! ((p1; v1); : : : ; (pm; vm));b) Euler funtion '(N) = pv1�11 (p1 � 1) : : : pvm�1m (pm � 1) ;) Carmihael �-funtion�(N) = lm �pv1�11 (p1 � 1); : : : ; pvm�1m (pm � 1)� ;d) �0(N) = lm (p1 � 1; : : : ; pm � 1).Nevertheless the Buresh-Oppenheim's result establishes the question of some re-lationship between probabilisti versions of PPA and PPP, or their onnetion tothe lass FZPP.Also note, that there is a diret relation between some ryptographi primitives(e.g. hash funtions or modular exponentiation) and the lass PPP or even a lassWPPP orresponding to the weak pigeonhole priniple [CK98℄. That is a similarstatement to the pigeonhole priniple with the only one di�erene: The size of thedomain is twie larger than the ardinality of the range.
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Chapter IV
A Lower Bound forInteger Fatoring
In this hapter we are aiming to establish a lower bound of sorts to the omplexityof the Integer-Fatoring problem. We are going to onstrut a struture with a bi-nary operation �. That model will represent the struture of whole numbers withmultipliation. Adding more and more axioms we will be getting loser to the naturalpattern. We want to show that even with a lot of axioms for multipliation supposedon � there is still not an orale p-time mahine M fatoring suessfully for all suh�'s.Let N be a omposite integer. The whole omputation of an orale p-time mahineM takes a plae on the domain of all strings of polynomial length with respet ton = jN j. Call it D = f0; 1gnd for a onstant d > 0. Obviously, we have the binaryrepresentation of N in D. We want to �nd some \fator" of N with respet to anarbitrary binary operation � de�ned by an orale.3The orale has the following advantage. Whenever it is asked for some result�(x; y), x; y 2 D, it an response any element from D.When there are not any further onditions on orale's answers it should be learthat we annot guess the \fator" of N in polynomial time with respet to n. If wehad one (all it r), the orale would rede�ne � in a way that r would not \divide" N .Now we are going to restrit the spae of all possible �'s on D �D. This will bedone by adding more axioms about �. For example, by requiring the ommutativity3) Here we use the words fator and divide in quotas whih means that we do not meantheir proper meaning, but the modi�ed one.30



of � we redue the number of queries to a half. Now we do not need to ask orale for�(x; y) and �(y; x). It suÆes to ask only for one of these values.But there is still exponentially (in n) huge spae of possible answers. Thus theorale is able to de�ne � in a way that in polynomial time in n it is impossible to �ndsome \fator".We an use this method of diagonalising also for the axioms of �eld. So requiringfor example assoiativity of � does not help us. Details are desribed in the proof ofthe Field problem lemma in the following hapter.The struture of natural numbers with multipliation has, in fat, many otherproperties. Let us �x some positive integer x. Then the funtion fx(y) = x � y ismonotone in its variable y. It is even linear, but we have only one binary funtion inour model, so the linearity would be hardly de�nable. For monotoniity we need onlysome ordering < on the underlying set D.The ordering is provided by another orale, and thus we annot ompute thesuessor number for a given one et. The only admissible type of query is to omparetwo elements of D, i.e. whih one is smaller, or greater than the seond one.Now the task is to de�ne orale's behaviour when it is asked for values of monotonefuntions �(x; �) for all x 2 D. We need to avoid leaking information about the\divisors" of N during the polynomial-time omputation of Turing mahine M .Suppose that M 's run takes nk steps for a �xed k > 0. Sine the spae of allpossible answers is of size 2nd , the orale an onstrut its answers this way:a) Let a is the minimal element in D with respet to <.b) For any x de�ne �(a; x) small enough.) For arbitrary �xed x and any  > b > a de�ne �(; x) > �(b; x) suh that the gapbetween these two values is large enough.Now we are expeted to make preise what the word \enough" in fat means.Reall that the mahine M an ask for at most nk funtion values, but there are 2ndpossible answers. If the distribution were uniform, then there would be approximately2ndn�k di�erent elements from D between two without delay onseutive values of�(x; �). This number is still exponentially big in n. And so the mahine M annot gothroughout the whole interval (b; ) and loate a ontradition with some axiom, ora \divisor" of N .Lemma 19. Let k � 1 be �xed. There exists N0 2 N suh that for any N > N0onsider its length of binary notation n, and denote D = f0; 1gnO(1) . Let (D;�) is astruture with the underlying set D with a linear ordering <, and a binary operation�. Let �(x; �) is monotone with respet to the ordering < for all x 2 D. Then, in time31



nk, it is impossible to �nd a pair (x; y) 2 D � D suh that �(x; y) = N , even if wehave orale aesses to � and <.Proof. For any x; y 2 D the orale does not say that �(x; y) = N . This is possiblethanks to the argumentation above in the asymptoti ase for N large enough.Contemporary algorithms for integer fatorisation are based on one idea: �nd anumber t, 1 < t < N , whih is not relatively prime to N . Then their great ommondivisor produes a fator of N .Consider the typial RSA ase when N = pq for some prime numbers p andq. These numbers are usually of similar lengths. This is the hardest situation forfatoring algorithms, beause the set of all t's satisfying the ondition of the previousparagraph is tiny. Its size is preisely p+ q � 1.Sine the interesting instanes are for N very large, we ompute a ratiolimp;q!1 jft j 1 < t < N; gd(t; N) > 1gjN = limp;q!1 p+ q � 1pq == limp;q!1 1 + qp � 1pq = limp;q!1�1q + 1p � 1pq� = 0 :Hene the probability of �nding the solution at random is negligible. Furthermorethere would be no problem when we added an orale for the greatest ommon \divisor" into our model. For a \luky" input it returns immediately a pair of elements (d1; d2)suh that �(d1; d2) = N . On the rest of the set D it returns the greatest ommon\divisor" of the given numbers with respet to �. Note that the \luky" domain of is very limited. Its size is roughly pN � 2n=2.We laim that after the omputation of M we are able to de�ne a set of \non-touhed" elements of size pN .4 It suÆes to have n suh that nk < 2n=2 or equiva-lently k < n=2 logn. Sine k is a onstant, suh n must exist.The onstrution is now easy. Choose the least element r and the seond least sfor whih the mahine M has not asked yet. De�ne r's \multiples" as every odd on-sequent number; for s take the even ones. Here by odd and even we mean their orderwith respet to the ordering <. Repeat this by we have pN non-touhed elements.Having these two sets of the same size pN=2 we an de�ne �(i;�i) = N wheresymbol i means the i-th least r's \multiple" and �i represents the i-th largest s'es\multiple".4) Consider the even number losest to pN .32



Notie, that for some ith multiple of r there exist two elements v, w, suh thatv < ir < w and there is not any other element among them. Suppose the mahineM has asked for values �(v; x) and �(w; x) for some x 2 D. Then, by monotoniity,it must hold �(v; x) < �(ir; x) < �(w; x). Its existene after our onstrution followsfrom the large gap between any pair of onseutive values.Lemma 20. For any k � 1 it an be found an integer N0 suh that for any N > N0,n = jN j, there exists a set D of size 2nO(1) with a linear ordering <, and two funtions� and  on D. The funtion � is ommutative, assoiative and bilinear. The funtion on input (a; b) returns the largest element  2 D suh that �(; A) = a and �(;B) = bfor some A;B 2 D, or it returns 1, if suh element does not exist. Then, onsideringfuntions �, , and < as orales, in time nk it is impossible to �nd a pair (x; y) 2 D�Dsuh that �(x; y) = N .Proof. It follows diretly from the onstrution disussed before the lemma.We an also generalize the orale � in the following manner. Suppose we allowquestions to � in the form \�(x; ?) = y". In other words, this asks for the \ratio"y=x. It is obvious that due to this generalization we get loser to the model of naturalnumbers, sine we an divide integers as well. However, not every ombination ofdividend and divisor is allowed. Hene the orale must have ompetene to refuse theinput, and say these numbers are not divisible.Let us summarize the possible queries to � for arbitrary x; y < N .\�(x; y) = ?" : : : return z,\�(x; ?) = y" : : : � return z 2 D, if \�(x; z) = ?" has answer y,or return NO.Proposition 21. For any k � 1, there is an N0 suh that for all N > N0 thefollowing holds. Let us denote n = jN j and D of size 2nO(1) the underlying set. Thereare two orales � and  whih an answer questions as above for any x; y < N , anda linear ordering < orale to ompare elements from D. The funtion de�ned by � isbilinear, assoiative and ommutative, the funtion de�ned by  is ommutative. Intime nk it is impossible to �nd a pair (x; y) 2 D �D suh that �(x; y) = N .Proof. We should only explain how to de�ne the \quotients", beause the rest islear from the two lemmas before. 33



The �rst obvious rule is very simple. For any x the queries �(x; ?) = N must beanswered NO. Of ourse, there exists an element y suh that �(x; y) = N , but thereare exponentially many (in n) numbers in D, whereas we the mahine M has onlypolynomial amount of time. Thus the mahine seeking for y must always overpass it.Other results of the form �(a; b) =  6= N are useless to M , sine there is nometris to measure distane between two elements. It is irrelevant if the relation wasobtained as a \produt" or \quotient". The orale � should situate its answers farbetween as it was desribed earlier.
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Chapter V
Further RelatedProblems
Every �nite �eld is of size N = pr for some prime number p and a positive integer r.We will use the set f0; 1; : : : ; N � 1g as a universe of the �eld. This an be identi�edwith N . Then there exist two binary funtions s, t (addition and multipliation), twounary funtions u, v (additive and multipliative inverses), and two onstants 0; 1 inthe �eld. These funtions must satisfy the following axioms:a) (8x)(8y) s(x; y) < N ,b) (8x)(8y) t(x; y) < N ,) (8x) u(x) < N ,d) (8x) x = 0 _ 0 < v(x) < N ,e) (8x)(8y)(8z) s(x; s(y; z)) = s(s(x; y); z),f) (8x)(8y)(8z) t(x; t(y; z)) = t(t(x; y); z),g) (8x) s(x; 0) = s(0; x) = x,h) (8x) t(x; 1) = t(1; x) = x,i) (8x) s(x; u(x)) = s(u(x); x) = 0,j) (8x) x = 0 _ t(x; v(x)) = t(v(x); x) = 1,k) (8x)(8y)(8z) t(x; s(y; z)) = s(t(x; y); t(x; z)),l) (8x)(8y)(8z) t(s(x; y); z) = s(t(x; z); t(y; z)).Clearly, all of these quanti�ers are bounded by N .Suppose we are given an integer N whih is not of the form pr. Then no �nite�eld of ardinality N an exist. Thus it is possible to �nd elements whih violate oneof the axioms above. Preisely, we look for a four-tuple (i; b; ; d) where i stands forthe index of axiom whih is not satis�ed, and b,  and d are the witnesses. When for35



example axiom  is violated, only the seond parameter is used and the rest is anempty word �.Obviously this is an orale-NP-searh problem, sine the length of the tuple is atmost O(1)+3 logN . Its input is an integer N not of the form pr (this an be witnessedby its two di�erent divisors and veri�ed in polynomial time as well as it is possibleto verify the result in polynomial time), and an aess to an orale � whih de�nesthe funtions s, t, u and v. We may onsider that onstants 0 and 1 are interpretedas usual. The task is to �nd a ounterexample to the laim that the orale de�nes a�eld. Call this problem simply Field .We shall prove that Field is not solvable by a p-time mahine whih has an aessto a PLS-orale. The proof is based on a similar result of Chiari and Kraj���ek of 1998who showed that the weak pigeonhole priniple is not solvable in PLS [CK98℄.Proposition 22. There is not an orale PLS problem L� suh that for any orale� de�ning a Field problem every loal optimum of L� ontains a solution to �.Proof. Suppose the ontrary. Let L be a PLS�-problem suh that for every �eldfuntions s, t, u and v of F it gives us a solution to the problem Field . WheneverS = (x; y; z) is a projetion of some loally optimal solution for the instane N of theproblem L(s; t; u; v), then one of the following holds:a) s(x; y) � N ,b) t(x; y) � N ,) u(x) � N ,d) x 6= 0 ^ 0 = v(x) or x 6= 0 ^ v(x) � N ,e) s(x; s(y; z)) 6= s(s(x; y); z),f) t(x; t(y; z)) 6= t(t(x; y); z),g) s(x; 0) 6= s(0; x) or s(x; 0) 6= x or s(0; x) 6= x,h) t(x; 1) 6= t(1; x) or s(x; 1) 6= x or s(1; x) 6= x,i) s(x; u(x)) 6= s(u(x); x) or s(x; u(x)) 6= 0 or s(u(x); x) 6= 0,j) x 6= 0 ^ t(x; v(x)) 6= t(v(x); x) or x 6= 0 ^ t(x; v(x)) 6= 1or x 6= 0 ^ t(v(x); x) 6= 1,k) t(x; s(y; z)) 6= s(t(x; y); t(x; z)),l) t(s(x; y); z) 6= s(t(x; z); t(y; z)).We laim that no suh problem L an exist. We will ontinue in this manner: Fixan arbitrary L and �nd some N and suitable funtions s, t, u and v suh that noneof the onditions above is satis�ed for all loally optimal solutions.Consider the ost funtion L and the neighbourhood funtion nL assoiated to L.We identify these funtions with the orale p-time Turing mahines omputing them.36



The mahine omputing L asks for values of the �eld funtions. These funtions haveto be de�ned in suh manner that the returned values do not ontradit with theaxioms of the �eld. This is done by progressive de�nition by the �eld orale �.This orale uses some in�nite �eld K and de�nes a partial isomorphism � betweenit and the hypothetial one with universe f0; : : : ; N � 1g denoted F ,� : F ! K :When it is asked for value of a term on some elements, it represents these elementsas members of the in�nite �eld, alulate the term, and �nally it translates the resultbak to the original �eld.Note that the partial isomorphism de�nes also several values whih have not beenasked during the omputation, beause of the axioms. Suppose that the mahine hasalready known values s(a; b) = d, s(; d) = e, and s(b; ) = f . Then it must holds(a; f) = e, sine s(a; f) = s(s(a; b); ) = s(; d) = e, and a di�erent result wouldwitness the violation of the axiom e.Let 0 be the minimal possible ost for all possible omputations of mahine Lwhere the orale alls are answered as it was just explained. Fix some omputationleading to the solution of ost 0.After at mostm = (logN)O(1) steps the omputation must halt and the mahine Loutputs a loally optimal solution. Sine the orale � answers all the queries in a waypreserving the isomorphism �, the mahine L annot know any witness for Field . Itould have asked for at most m funtion values. These were de�ned as images of � inin�nite �eld K, and thus they do not violate any axiom of �elds. If there is an elementb in L's result suh that �(b) was not de�ned during the omputation, de�ne its imageunder � in order that no axiom of �elds is violated. Sine these elements an be atmost three, this an be done if m+ 3 < N . Beause there exists N suÆiently largerthan m, there must exist instanes of the problem Field , whih annot be solved by L.Now it is lear that the L's answer (i; b; ; d) is always wrong beause we are ableto de�ne funtion values in i-th axiom how we want, and there is not any violene ofthe �eld axioms among the previously answered values.All what we need is to hoose suÆiently large N . That is a number for whihthere is an exponential gap betweenm andN itself. Sine we have onsidered arbitraryPLS-orale L we are done.It would be nie to establish a relationship between previously de�ned Field pro-blem and ommonly known Integer-Fatoring problem. Reall that this stands forthe question of �nding some non-trivial fator of a given integer. However, we do notknow suh a formal relationship. 37



Now we shall onsider another problem whih is in some sense similar to the Fieldproblem, and thus it is expeted that they will have analogous properties.From the theory of �nite �elds it is known that the only sub�elds of GFpr are �nite�elds of ardinalities ps where sjr. This struture is well-studied, hene no surprisean be hidden there. To prove that some struture A is a substruture of a larger oneB, we need to verify two things:a) All funtions de�ned on B are extensions of those de�ned on A.b) Every funtion in A is losed in A, i.e. given arguments from A the funtion hasvalue still in A.Suppose for a while that we are given two �nite �elds of di�erent sizes. Let usdenote them F1, F2, and their ardinalities N1, N2, respetively. Without loss ofgenerality we may suppose that N2 > N1. Sine both strutures form a �nite �eld, wededue that N1 = ps, and N2 = qr for some prime numbers p; q and natural numberss; r. If p = q, we require s 6 j r in addition.It is laimed that F1 is a sub�eld of F2. From the text above we know that this isimpossible, and thus we should be able to �nd a witness suh that F1 or F2 is not a�eld, or F1 is not a sub�eld of F2 (and hene one of the onditions above is violated).Let us de�ne a new NP-searh problem Sub�eld : Given two integers N1, N2 asabove, and aesses to orales �1 and �2 de�ning F1 and F2, �nd a witness that oneof F1, F2 is not a �eld, or that F1 does not form a sub�eld of F2.Like in the �rst ase we prove that this problem is not solvable easily.Proposition 23. There is not an orale PLS problem L�1;�2 suh that for anyorales �1, �2 de�ning a Sub�eld problem every loal optimum of L�1;�2 ontains asolution to Sub�eld (�1;�2).Proof. Similarly, in the �rst proof of this hapter we show that it is possible tode�ne the orale answers in a way that no ontradition an be found in polynomialtime with respet to the length of input. Here we onsider as the input the sizes ofboth �elds. Sine F2 is supposed to be larger, it is suÆient to ompute only withlogN2 as the length of input.The proof is very similar to the previous one. First, we should list all the possibleinonsistenies with the assumptions. These are nearly the same as before; replae Nby N2, the ardinality of the largest �eld, and add some more shemes for the smaller�eld F1 whose funtions are denoted with bar.a) x; y < N1 ^ (�s(x; y) 6= s(x; y) _ �t(x; y) 6= t(x; y)),b) x < N1 ^ (�u(x) 6= u(x) _ �v(x) 6= v(x)),) x; y < N1 ^ (�s(x; y) � N1 _ �t(x; y) � N1),38



d) x < N1 ^ (�u(x) � N1 _ �v(x) � N1).Suppose there is a PLS�1;�2 -problem L suh that for any de�nition of the �eldfuntions s; t; u; v;�s;�t; �u; �v it is able to �nd a solution to the Sub�eld problem. IfS = (x; y; z) is a projetion of a loally optimal point for the instane (N1; N2), thenone of the onditions desribed above must arise.Fix an arbitrary ost funtion L, and a neighbourhood funtion nL of L. Thesefuntions are omputed by polynomial time Turing mahines CL andNL. The mahineomputing L has an aess to both these algorithms as well as to the orales �1 and�2 omputing the values of the �eld funtions.Now we desribe a way how to onstrut their responses. The proedure is a simplegeneralization of the method used in the �rst proposition.Fix two arbitrary in�nite �elds K and T suh that T is a proper sub�eld of K,denoted by T < K. Then de�ne partial isomorphisms� : F1 ! T ;� : F2 ! K :The isomorphism � extends �. During the omputation the orales �1 and �2 are askedfor values of the form �s(a; b), s(a; b) et. The questions may repeat, in whih ase theymust be responded always in the same way. If a new element h is mentioned in thequery to �1, the orale de�nes its image under the partial isomorphism �(h) 2 T ,and evaluates the funtion in the �eld T . The isomorphism � is reated by �2 in thesame manner.For instane, the mahine wants to know a sum of a; b 2 F1, i.e. �s(a; b). It usesthe orale �1 whih �rst looks in its database of questions responded so far. If thereis some question on a or b, it uses the value �(a) or �(b) from the database. On theother hand, if suh a question has not been put, it hooses elements �; � 2 T , andmap �(a) = �, �(b) = �. Then it alulates � + � in T . Say it is . If  is in thedatabase, the orale uses its preimage from the database, in other ase it an de�neit arbitrarily ��1() = , and return bak .Denote the minimal possible ost of all feasible omputations of L by 0 and �xa path leading to that ost. Beause L must halt after at most m = (logN2)O(1)steps, it annot ask for all possible ombinations of funtions and elements. In fat,it is allowed to ask for only negligible fration of these values when N2 is suÆientlylarge.Sine the �eld funtions are de�ned as partial opies of some in�nite �elds, all theresponses of the orales are valid, and thus there annot be found any ontraditionwith the axioms of �elds or sub�elds. 39



Again, sine the fat that the problem Sub�eld is well-de�ned strongly dependson divisibility of integers, there might be a relationship with the Integer-Fatoringproblem. It is surely possible to de�ne more problems like these two examples, beausethe realm of �nite algebrai strutures is signi�antly larger than only theory of �nite�elds.
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Chapter VI
Conluding Remarks andOpen Problems
We have presented several results that do in a sense estimate the omplexity of in-teger fatorization whih is one of the most important problems in ontemporarytheoretial ryptography. Even though our bounds are not very tight, and work onlyin the relativized world of NP-searh problems, they seem to be of interest. To ourknowledge these are the �rst results of their kind.In partiular, the method of Chapter IV might be an inspiration for further re-searh. There are many axioms whih should be added to our hypothetial struture.First, in the domain of whole numbers we have another binary operation { addition,and also its inverse. Due to this we are able to de�ne a distane measure and a prede-essor and suessor funtions as well. These properties of the ring of integers shouldbe added, and then one should verify, if the proof still works.Note that there is a property whih makes multipliation of naturals interesting. Ithas not any inverse funtion in fat, beause in general a quotient of two integers is afration, and so not an integer. This is not true about addition of integers. But onsiderthe addition of prime numbers. Aording to the famous Goldbah's onjeture everyeven integer greater than 2 an be written as a sum of two prime numbers. This hasnot been proved, but some weaker results have. Suppose for a moment it were true,then we ould de�ne a new omputational problem. Call it Goldbah: Given an evenpositive integer N > 2, �nd two prime numbers p and q suh that p+ q = N .41



As well as the Integer-Fatoring problem, Goldbah has not a unique solution5,and no e�etive algorithm is known to us. The third parallel is in the non-existeneof an inverse funtion (division of naturals, di�erene of an integer and a prime mustnot be a prime, respetively).Another question we have left open asks whether the general ase of Integer-Fatoring is in some of the lasses de�ned under TFNP. We have seen a speial aseis in PPA and also a randomized version in PPP, and we believe that these resultsan be improved.For the sake of ompleteness of this text we only remark that the best known algo-rithm to Integer-Fatoring is based on general number �eld sieve and its omplexityis exp� 3qn log2 n�where n is the length of the number to be fatored and  > 0 is a onstant [Po96℄.On the other hand, in the world of quantum algorithms, the problem of fatoringan integer is surprisingly easy. Shor's algorithm takes only O(n3) steps [S94℄.There are also many related strutural questions whih have not been suessfullysolved yet. For instane, as we have mentioned, whether PLS� � PPP� is not known.Also a relationship between the randomized lass FZPPPPP and some other sublassof TFNP (for example PPA) is not lear.Reader should look into [P94℄ to see some more open problems.

5) For example 20 = 3 + 17 = 7 + 13, and 20 = 2 � 10 = 4 � 5 et.42
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