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Abstra
t: The thesis summarizes known results in the �eld of NP sear
h problems.We dis
uss the 
omplexity of integer fa
toring in detail, and we propose new resultswhi
h pla
e the problem in known 
lasses and aim to separate it from PLS in somesense. Furthermore, we de�ne several new sear
h problems.Keywords: Computational 
omplexity, TFNP, integer fa
torization.
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Chapter I
Prefa
e
In this thesis we study a spe
i�
 part of 
omplexity theory whi
h 
on
erns with time
onsummation of the most optimal algorithms for solving problems.It has always been a kind of 
hallenge to 
ompute fast and smartly. This e�ort hasled people to 
reate e�e
tive algorithms and tri
ky methods. Unfortunately, severalproblems have resisted thousands of mathemati
ians who have not found any re
ipeto solve them in feasible time. And these are pre
isely the question we study in thefollowing 
hapters.Chapter II is dedi
ated to introdu
tion of the reader into 
omplexity theory ingeneral, and presents seminal results about our main topi
, NP-sear
h problems. Wede�ne a few sub
lasses of these problems, and show a way how they are 
onne
ted.Then we fo
us on an important question of modern 
omputer s
ien
e: Is integerfa
torization really so hard as we expe
t?Chapters III and IV partially respond to that question, although they do notpresent any sho
king new theorems. In the third 
hapter we show an upper boundon its 
omplexity whi
h would mean a negative answer, however the next 
hapter
ontains a new approa
h to estimating a lower bound of the 
omplexity of integerfa
torization.In Chapter V we introdu
e new related questions whi
h 
an be a subje
t of furtherresear
h as well as the list of open problems in Chapter VI.Within the thesis we use standard notation. Natural numbers are denoted by N,whereas the �nite set of integers from 0 up to n� 1 is referred as [n℄. Generally, a setS has 
ardinality #S, sin
e we use jxj for the bit length of the number x. We alsoutilize a symbol GFq to denote the �nite �eld of size q.Without explanation we use the big-oh notation whi
h is a standard in the bran
h.Shortly say that O(1) stands for a positive 
onstant, or O(n) means a linear fun
tion,4



nO(1) a polynomial et
. Likewise, the reader should be familiar with some basi
 fa
tson graph theory, algebra and number theory.
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Chapter II
Complexity TheoryPreliminaries
In 
omputational 
omplexity theory we investigate algorithms for solving problemswhi
h are in some sense optimal. There are usually two ways how to express this:the running time of the algorithm is minimal in 
omparison to any other algorithmwhi
h solves the problem, or it requires the least amount of memory. In many 
asesthese two 
onditions are not both 
ompatible. Fast algorithms frequently need largememory and vi
e versa.However, we do not need to know the best algorithm for some problem. A typi
alexample is a problem 
alled Integer-Fa
toring when we are given a positive integerand we are asked to �nd its prime fa
tors (or some non-trivial fa
tor). There are alot of algorithms whi
h 
an solve this task, but we do not know if some of them isthe best one.In this se
tion we 
onsider only de
ision problems. These are questions of the form:is a word x member of a set L 
alled language? Obviously, we have three possibleanswers: yes, no, and do not know. From the knowledge of running time or neededmemory spa
e of the optimal algorithm in the worst 
ase we 
lassify the problems insome realm. The most famous 
lasses are P and NP.The 
omplexity 
lass P 
ontains all de
ision problems whi
h are solvable in poly-nomial time (sometimes abbreviated p-time) with respe
t to the length of input.First, we should explain what a deterministi
 Turing ma
hine is. It is an abstra
t
omputational model. We 
an imagine it as a program working on an in�nite tapedivided in the squares where 
an be written letters by a read-write head. For a formalde�nition we need three non-empty �nite sets: the set of symbols A 
alled alphabet6



(typi
ally we have only two { 0 and 1 { and an empty symbol b), a set of states Q,and a transition fun
tion Æ : Q�A! Q� A� fL;Rgwhere the symbols R and L determine if the head should move to the right or to theleft on the tape. In ea
h step it 
an move by only one square. The total number ofmoves during the whole 
omputation is the running time, and the number of visitedsquares on the tape 
an be viewed as the required memory spa
e. The set of states,Q, also 
ontains an initial state q0 and two �nal states { one for a

epting state, andone for reje
ting state.Now for the formal de�nition of P let us have a subset of all binary strings of arbit-rary �nite length, L � f0; 1g�. Then for some binary word x of length n, x 2 f0; 1gn,we want to de
ide whether x is in L. If this task 
an be answered by deterministi
Turing ma
hine in time t(n) = O(nk) for all n and for all x of length n, and some�xed k > 0, then L 2 P.In a similar way we may de�ne also other 
lasses by repla
ing the time fun
tiont(n). Usual 
hoi
es are exp(nO(1)), exp(logO(1)(n)) et
.A weaker 
on
ept than de
ision ma
hine is an a

epting ma
hine. Its 
omputationis nearly the same, but it terminates only if x 2 L. In the opposite 
ase we will not getany answer. This notion is 
losely 
onne
ted to the nondeterministi
 
omputation.Nondeterministi
 Turing ma
hine has in its set of states a nondeterministi
 state q?in whi
h it has more options what to do next. Well, it is possible that its de
isionwould be wrong, and so it would get \no". We 
an imagine the set of all 
omputationsas a tree. If the input x really lies in the set L, then some of the leaves are labeled by\yes". Due to some bad de
isions we 
ould miss them. So we say that the nondeter-ministi
 Turing ma
hine a

epts the input x if and only if there exists an a

epting
omputation. And the length of the shortest path leading to an a

epting state is therunning time. If su
h 
omputation does not exist, then the running time is set to bein�nite, t(x) =1.Now we are able to formulate the de�nition of the 
lass NP. Let L � f0; 1g� isa language. We say that L 2 NP i� there exists a nondeterministi
 Turing ma
hineN whi
h a

epts L and for all x 2 L of arbitrary length n the running time is t(x) == O(nk) for some �xed k > 0.The most important question in the �eld is whether P = NP? Obviously the 
lassP is 
ontained in NP, but the opposite impli
ation is an open problem.Now we shall introdu
e a way of redu
ing a problem to another one. Suppose wehave two languages, i.e. two subsets L1 and L2 of f0; 1g�, and also two ma
hines7



M1 and M2 for de
iding whether x 2 L1, or x 2 L2 respe
tively. We say that L1 ispolynomial time redu
ible to L2 (and write L1 �p L2) if and only if there exists ap-time fun
tion f su
h that for all x it holds x 2 L1 , f(x) 2 L2.In addition, if we have two p-time fun
tions whi
h 
an be used for two-waytranslation of inputs of the problems, then these problems are polynomial time equi-valent.We will see a generalisation of the p-time redu
ibility in the se
tion about sear
hproblems. But the main idea is always the same.When there is a problem in the 
lass NP su
h that any other problem in NPis polynomial time redu
ible to the �rst one, we 
all it NP-
omplete. The set ofNP-
omplete problems 
onsists of hard problems whi
h have a polynomial witness.Complete problems have a spe
ial importan
e, be
ause in some sense they mirrorthe whole 
lass. Thus when a new 
lass is introdu
ed there is an e�ort to �nd some
omplete problem for the 
lass.For more information on the basi
s of 
omplexity theory reader should 
onsult,for example, Papadimitriou's book [P93℄ or Kraj���
ek's one [K95℄.
II.1 Sear
h ProblemsIn many situations the 
on
ept of de
ision problems is weak or unnatural. Forexample we may want to 
ompute the sum of two numbers. In fa
t it is possible toask for ea
h bit of the result using \yes-no" questions (Is the i-th bit equal to 1? ) butthis is time-
onsuming. Let us ask for the result dire
tly. Su
h 
omputation needsmore time than the previous one, but it suÆ
es to do it only on
e.In this 
ase we have seen that the time 
omplexity of one 
omputation has in
re-ased. But that is not a rule.Usually, when we pro
eed from a de
ision to a sear
h problem, we re
eive moreinformation in the solution. Consider the most famous problem SAT whi
h is NP-
omplete [C71℄. It is given a Boolean formula ' and we want to de
ide whether it issatis�able. But in the sear
h analogy we need to �nd some satisfying assignment orsay that su
h assignment does not exist. Having solved the sear
h problem we alsohave the answer to the de
ision one.It should be mentioned that this redu
ibility is not automati
. Later, we will seeseveral sear
h problems whi
h are not equivalent to any de
ision problem modulosome 
onditions. 8



The thesis is dedi
ated to the 
lass of NP-sear
h problems whi
h is the moststudied set of sear
h problems. This 
lass is frequently denoted by FNP where theletter F stands for fun
tional.Let us have a P-predi
ate  (x; y). For any x of length n = jxj we must be ableto �nd y of length polynomial in n, i.e. jyj = nO(1), or say that no su
h y 
an exist.Moreover the predi
ate  must be de
idable in polynomial time in the length of itsparameters, and hen
e in n. Then �nding y for an instan
e x is anNP-sear
h problem.In a similar way, the 
lass FP of all polynomial-time solvable sear
h problems isde�ned.A simple example is: For given x �nd y su
h that  (x; y) � x = 2y holds. Thatis a linear equation and there should be no problem with �nding 
onvenient y if itexists.But in the input x there 
an be en
oded a Boolean formula and  
an require yto be a satisfying assignment for that formula. It is obvious that a solution may notexist, and if we were able to solve this problem, then we 
ould solve SAT too.In some 
ases we know that the solution to the problem must exist, be
ause itfollows from an existential theorem. This is a very useful information, be
ause itmotivates us for solving the problem. These sear
h problems are 
alled \total" andin the 
ase of NP-sear
h problems we denote them intuitively TFNP.This 
lass is not very ni
e. There are a lot of di�erent reasons for being a memberof TFNP starting with 
ombinatorial lemmas, followed by number theoreti
 resultsand ending with geometri
 or optimisation problems. Shortly, nearly any existentialtheorem with easily veri�able solution from all of mathemati
s 
an be translated intoa sear
h problem.This was a motivation to de�ne spe
ial \synta
ti
" sub
lasses of TFNP, whereall problems 
an be presented in a �xed format.Before de�ning some of these 
lasses we generalize the de�nition of polynomial-time redu
ibility for sear
h problems and introdu
e type 2 problems and ora
les.De�nition. [BCEIP97℄ Type 2 sear
h problem Q is a fun
tion that asso
iateswith ea
h string fun
tion � : f0; 1g� ! f0; 1g� and ea
h string x a set Q(�; x) ofstrings that are allowable answers to the problem on input �; x. Su
h a problem Qis in FNP2 if Q is p-time veri�able in the following sense: y 2 Q(�; x) is a type 2p-time 
omputable predi
ate, and all elements of Q(�; x) are of length polynomiallybounded by jxjO(1).Previously de�ned sear
h problems (without fun
tional input) are also 
alledtype 1 problems. 9



By an ora
le 
 we mean a set of strings. It 
an be helpful during the 
omputationof a Turing ma
hine M . The ma
hine M may use sub-routines in its 
omputation,but their running time must be 
ounted in the total running time. When using ora
leswe omit their running time and 
al
ulate only the duration of 
reating questions andpro
essing answers by M .The ora
le 
 
an be viewed as a 
hara
teristi
 fun
tion:
(x) = � 1 if x 2 
 ,0 if x 62 
 .De�ne TFNP
 to be a set of all sear
h problems Q(
; �) where Q is total type 2sear
h problem, Q 2 TFNP2.De�nition. [BCEIP97℄ Suppose we have two type 2 problems, namely Q1 andQ2. (See the �gure 1.) We say that Q1 is many-one redu
ible to Q2 (Q1 �m Q2), ifthere exist type 2 p-time fun
tions f , g, and h, su
h that h(�; x; y) is a solution toQ1 on input (�; x) for y, whi
h is a solution to Q2 on input (g(�; x); f(�; x)). Theoutput of g must be again a fun
tion.

x�
g(�; x) f(�; x)z�

y 2 Q2(g(�; x); f(�; x))

h(�; x; y) Q1(�; x)M1

M2

Fig. 1. Many-one redu
ibility10



We 
an also apply this de�nition to the 
ase of type 1 problems (or only Q1 oftype 1) by ignoring the fun
tional part of the input.If both problems are many-one redu
ible to ea
h other, then we say that they aremany-one equivalent.Here we de�ne the most important 
on
ept for the rest of our work. The relativized
lass (CQ)
 is a sub
lass of TFNP
 
onsisting of all problems Q0(
; �), where Q0is any problem in TFNP2 many-one-
 redu
ible to Q. The suÆx 
 means that theredu
tion is allowed to query the ora
le. Formally, repla
e � by 
 in the s
heme ofthe redu
tion. Noti
e that (CQ)
 = CQ, if 
 2 P.Theorem 1. [CIY97℄ Let Q1; Q2 2 TFNP2. The following statements are equi-valent:a) Q1 is many-one redu
ible to Q2;b) for all ora
les 
, (CQ1)
 � (CQ2)
;
) there exists a generi
 ora
le1 � su
h that (CQ1)� � (CQ2)�.The proof 
an be found in Cook, Impagliazzo and Yamakami [CIY97℄.More general type of redu
tion between two total problems is the so 
alled Turingredu
ibility. We say that Q1 is polynomial-time Turing redu
ible to Q2, if there existsa polynomial-time ma
hine M that on input (�; x) and an ora
le for solutions ofQ2-problems outputs some solution to Q1, i.e. y 2 Q1(�; x). We also shortly say thatQ1 is redu
ible to Q2 and write Q1 �T Q2.Whenever M wants to make a query to the ora
le for Q2 it must prepare a pair(�; z), where � is a string fun
tion. In the 
ase that M is a polynomial-time ma
hinethe fun
tion � must also be p-time 
omputable and it 
an use the input parameters� and x, and all the questions whi
h have been answered so far. The task of M is toprodu
e a 
orre
t answer y for all possible 
omputations and answers from Q2.A simple observation is that Q1 �m Q2 i� Q1 �T Q2 andM asks the ora
le for Q2only on
e.We en
lose this se
tion with an easy lemma, whi
h gives us a basi
 
onne
tionbetween sear
h and de
ision problems.Lemma 2. P = NP if and only if FP = FNP.
1) We will not need the notion of the generi
 ora
le in this work; for its de�nition see[CIY97℄. 11



II.2 Lo
al Sear
hAn introdu
tory paper to the 
omplexity of lo
al sear
h was written by Johnson,Papadimitriou and Yannakakis in 1988 [JPY88℄. We will expose their work in this
hapter.In optimisation there is an easy approa
h to �nding solutions. We start in someinitial position and seek for a better one. This is being done until we move to a pla
ewhere no better neighbour exists.From the idea one should dedu
e that an initial position and some neighbourhoodstru
ture will be needed. For example 
onsider the famous Travelling-Salesperson-Problem. Suppose we are in some state of �nding optimal path (we have a tour whi
his not the best one). A 
lassi
al neighbourhood is the one that assigns to this tour aset of tours whi
h di�er from it in just two edges (so 
alled 2-
hange neighbourhood).Moreover, we need a fast algorithm whi
h evaluates the states.De�nition. [JPY88℄ We de�ne a 
lass PLS of all polynomial-time lo
al sear
hproblems. Su
h a problem L is spe
i�ed as follows:a) L has a set DL of instan
es, whi
h is a subset of all �nite strings f0; 1g�.b) For ea
h instan
e x there is a �nite set FL(x) of solutions. The terminology hereis little 
onfusing, better would be saying for example 
andidates. Without loss ofgenerality all of them have the same polynomially bounded length p(jxj), hen
eFL(x) � f0; 1gp(jxj).
) For ea
h 
andidate s 2 FL(x) there is a nonnegative integer 
ost 
L(x; s) and asubset n(x; s) of FL(x) 
alled the neighbourhood of s. The goal is to �nd somey 2 FL(x) with lo
ally minimal (or maximal) 
ost. No point from its neighbour-hood 
an have smaller (or higher) 
ost.d) There exists three polynomial-time algorithms IL, CL, and NL. The �rst one givenx 2 DL produ
es an initial solution (start point) from FL(x). The algorithm CLon input x and s 
omputes the 
ost 
(x; s), if s 2 FL(x). Finally, NL has twotypes of output. If there is some solution s0 2 n(x; s) with better 
ost than s, itreturns s0. Otherwise NL returns s, and hen
e it is lo
ally optimal.There is a simple and straightforward algorithm for solving PLS problems. Justtake the initial 
andidate s and repeat until lo
ally optimal solution is found: ApplyNL to s and if it yields a better-
ost neighbour s0, then set s = s0. This algorithmwill be 
alled \standard". We know that the set of 
andidates is �nite. Thus thealgorithm must halt and at least one lo
al optimum must exist. How long does the
omputation take? Sin
e FL � f0; 1gp(jxj), enumeration of all the elements takes atmost exponential amount of time, namely 2p(jxj).12



However, one might hope to obtain the result more qui
kly by other means. Thisevokes the following standard algorithm problem: Given x, �nd the lo
al optimum sthat would be output by the standard algorithm for L on input x.Johnson et al. proved an easy, but interesting lemma.Lemma 3. [JPY88℄ There is aPLS problem L whose standard algorithm problemis NP-hard.It should be said that if �nding the spe
i�
 lo
al optimum by the standard al-gorithm is hard, it does not mean that �nding some lo
al optimum is hard as well.So the most important problem is to evaluate the 
omplexity of �nding some lo
aloptimum.Sin
e any problem in FP 
an be solved by a polynomial-time algorithm, we 
anuse it as the initial algorithm IL in the de�nition of PLS. This gives FP � PLSOn the other hand, any PLS problem 
an be solved in a way that the lo
aloptimum is guessed, and then using the algorithm NL the solution is validated inpolynomial time. Thus PLS � FNP.De�nition. [JPY88℄ A problem P 2 PLS is p-redu
ible to another problemQ 2 PLS, if there are polynomial-time 
omputable fun
tions ' and  su
h thata) ' maps instan
es x of P to instan
es '(x) of Q,b)  maps solutions of '(x) to solutions of x, and
) for all instan
es x of P , if s is a lo
ally optimal solution to the instan
e '(x) ofQ, then  (x; s) is a lo
ally optimal solution to the instan
e x of P .This is an intuitive generalization to the polynomial redu
ibility as it was de�nedin the pre
eding se
tion.As we mentioned in the introdu
tion, a very important task is to show that thereis a 
omplete problem in the 
lass. Johnson et al. in their paper proposed one problemwhi
h is PLS-
omplete.It is a 
ir
uit 
omputation problem: We have some Boolean 
ir
uit C with minputs and n outputs. We need to look up for a string a 2 f0; 1gm su
h that theoutput of C on it has the minimal 
ost. The 
ost of a solution is simply the outputC(s) viewed as an integer. If (y1; : : : ; yn) = C(s), then 
(C; s) =Pnj=1 2jyj .Formally, the set of 
andidates FL(C) = f0; 1gm, neighbourhood of a strings 2 FL(C) is any ve
tor in m 
oordinates whi
h di�ers from s in only one 
oor-dinate, i.e. they have Hamming distan
e one. To 
omplete the de�nition, the initialalgorithm always returns the ve
tor of ones, and we want to �nd a solution withlo
ally minimal (or maximal) 
ost. 13



Su
h a problem is 
alled Flip, sin
e the moves from one 
andidate to another onein the neighbourhood stru
ture evoke 
ipping.Theorem 4. [JPY88℄ Flip is PLS-
omplete.Corollary.a) The standard algorithm problem for Flip is NP-hard.b) There are instan
es of Flip for whi
h the standard algorithm requires exponentialtime.The proofs of both these 
laims 
an be found in [JPY88℄.It was also observed that the relationship of PLS to the traditional 
lasses P andNP is very un
lear and diÆ
ult to resolve. On one side, a problem in PLS 
annotbe NP-hard, unless NP = 
oNP. On the other side, if all problems in PLS weresolvable in polynomial time, then showing this would require dis
overing of a general-purpose algorithm for �nding lo
ally optimal solutions that should be at least assophisti
ated as the ellipsoid algorithm or Karmarkar's algorithm [JPY88℄.Another remarkable problem in PLS is Max-Cut . Suppose an undire
ted �nitegraph G = (V; E) with weighted edges w : E ! N. For su
h graph a 
ut is a partitionof V into two disjoint sets V1 and V2. The weight of a 
ut (V1; V2) is the sum of theweights of the edges 
onne
ting nodes between V1 and V2. Computing the maximal
ut is one of the most famous problem in theoreti
al 
omputer s
ien
e and it is alsoNP-
omplete on graphs of degree at most three [GJ79℄.To use the problem in the world of PLS, we need to de�ne a neighbourhoodstru
ture. S
h�a�er and Yannakakis proposed the simplest one: Two partitions areneighbours if one 
an be obtained from the other by swapping two verti
es (they 
allit \swap neighbourhood"), and showed PLS-
ompleteness of �nding a lo
al optimumfor the Max-Cut problem with swap neighbourhood [SY91℄.More pre
isely, we present the result by Els�asser and Ts
heus
hner [ET10℄.Theorem 5. [ET10℄ The problem of 
omputing a lo
al optimum of the Max-Cutproblem on graphs with maximum degree �ve is PLS-
omplete.In 2009 Pudl�ak and Thapen extended the de�nition of PLS to generalized po-lynomial sear
h [PT09℄. Their 
lass is 
alled GPLSk and we 
an imagine it as ksubsequent iterations of a PLS 
omputation.De�nition. [PT09℄ A GPLSk problem is de�ned by polynomial time fun
tionsv depending on k + 1 variables and h1; : : : ; hk depending on 2; 3; : : : ; k + 1 variables14



resp., where the �rst variable is a parameter. An instan
e of the problem is given by anumber x (value of the parameter). The goal is to �nd numbers b1; 
2; b3; 
4; : : : < x,su
h thatv(x; b1; h2(x; b1; 
2); b3; : : :) � v(x; h1(x; b1); 
2; h3(x; b1; 
2; b3); : : :) :The de�nition is inspired by a game in whi
h two players A and B alternate in
hoosing values. After k steps the game ends, and A loses v(x; b1; : : :), whereas B winsthe same amount of money. Clearly, A tries to minimize the payo�, while B wantsto enlarge it. The fun
tion v represents a value (or 
ost) fun
tion, and h1; : : : ; hk arealgorithms of both players (for the �rst one with even indi
es, for the se
ond one withodd ones).Parti
ularly, if k = 1, then there is an obvious analogy to PLS: v is the 
ostfun
tion, h1 the neighbourhood fun
tion, and the set of all x1 < x is the set of 
andi-dates. For given x we are asked to �nd a feasible solution b1, su
h that the neighbour-hood fun
tion h1 
annot de
rease the 
ost, i.e. the inequality v(x; b1) � v(x; h1(x; b1))holds.
II.3 Parity Lemma Based Sear
h ProblemsWhereas the inspiration for the de�nition of polynomial lo
al sear
h had 
omefrom mathemati
al logi
, in this se
tion we will present two 
ombinatorial 
lasses.They both were developed by Christos Papadimitriou in 1994. In this se
tion we willfrequently referen
e to his arti
le \On the Complexity of the Parity Argument andOther IneÆ
ient Proofs of Existen
e" [P94℄.For this moment, the 
lass TFNP will be the largest domain in the sense thatall problems will be total. To prove their totality we need some existential theorems.These 
an be from any part of mathemati
s, namely 
ombinatori
s, algebra, numbertheory but also 
al
ulus or optimisation.In his paper, Papadimitriou 
onsiders espe
ially 
ombinatorial problems whi
h aremotivated by basi
 graph properties. For example, if we have a �nite graph, then ithas an even number of odd-degree verti
es. This is usually 
alled the parity argument.A more 
ompli
ated 
laim based on the parity lemma, Smith's theorem, statesthat any graph with only odd degree nodes has an even number of Hamilton 
y
lesthrough the edge xy for any verti
es x and y. Thus when one has some Hamiltonpath going through the edge xy, then there must exist another (at least) one. So15



the existen
e of a solution is guaranteed by this theorem, and we 
an formulate aproblem Smith: Given an undire
ted �nite graph G = (V;E) with odd degrees, anda Hamilton 
y
le, �nd another one.The input to the problem is a ve
tor of v = #V di�erent 
omponents, ea
h oflength at most jvj, 
oding the given Hamilton path. Hen
e the length of input isO(v log v), whereas the number of all possible Hamilton 
y
les might be up to(v � 1)!2 � p2�(v � 1)2 �v � 1e �v�1 :Relations between nodes are given by a polynomial-time fun
tione(x; y) = � 1 if (x; y) 2 E ,0 otherwise .Sin
e the fun
tion e is 
omputable in polynomial time with respe
t to the lengths ofx and y, we speak about polynomial parity argument.When we �nd a di�erent Hamilton 
y
le, we will be able to 
he
k 
orre
tness ofthis solution easily. But there are many possible 
andidates to be a solution. It is notknown, whether the problem Smith is polynomial-time solvable, but as we have seenit is a total NP-sear
h problem.In Papadimitriou's paper it was a spe
imen for the 
lass PPA (from polynomialparity argument mentioned two paragraphs before). Now we are going to de�ne this
lass formally.De�nition. [P94℄ Suppose we have a deterministi
 polynomial-time Turing ma-
hine M . For any input x of length n, the 
on�guration spa
e C(x) = f0; 1gn servesas a set of graph verti
es. It must hold:(i) For u 2 C(x), M(x; u) returns a list of neighbours of u as a tuple (v; w), (v), or(), where v < w, and v;w 2 C(x) n fug.(ii) For u; v 2 C(x), v 2M(x; u) whenever u 2M(x; v).(iii) 0 2 C(x) has only one neighbour, M(x; 0) = (a) for some a 2 C(x).Sin
e the node 0 has only one neighbour, we 
all it standard leaf and it providesus a \witness" for the parity lemma. It 
ould be the given Hamilton 
y
le from Smithor simply a leaf in the graph G. Then the task is to �nd another leaf.In the de�nition the ma
hine M represents the fun
tion e from the text before,and in addition it is able to 
ompute the opposite endpoint of an edge in the graph.Papadimitriou also des
ribed a lot of other problems lying in the 
lass PPA. LetG be an undire
ted graph and let �G denotes its 
omplement in some �nite domain.16



Let H(G), and H( �G) is a number of Hamilton paths in G, and �G respe
tively. Lov�aszhas proved that H(G) + H( �G) is even under these 
onditions. We de�ne Another-Hamilton-Path as the following problem: Given a �nite undire
ted graph G and someHamilton path in it, �nd another Hamilton path in G or in its 
omplement �G.Next example uses the parity lemma again. Let us have a fun
tion f withDom(f) = Rng(f) of even size, and 
onsider a senten
e[f(0) = 0 ^ (8x)x = f(f(x))℄) [(9x)x 6= 0 ^ x = f(x)℄ :Here the fun
tion f should have been a bije
tion de�ning a pairing on its domain.The standard node 0 is lonely meaning that it is paired with itself. Due to the parityargument there must be one more lonely element x, su
h that x = f(x), or somenon-standard node has to be mapped to 0.In the problem 
alled Lonely the fun
tion f is polynomial-time 
omputable, thedomain 
onsists of all zero-one strings of length n, and the task is to �nd a lonelynode di�erent from 0, or some x, su
h that f(x) = 0.A similar problem is Leaf . In a graph G, a leaf is a node of degree one. Like inthe de�nition of Smith we have the fun
tion u de�ning edges in the �nite graph G ofdegree at most two, and the standard leaf 0 having only one neighbour. The sear
hproblem Leaf is: Given the fun
tion u and an instan
e x 
oding the size of G, �nd aleaf in G other than the standard one.Papadimitriou proposed also a problem inspired by number theory. Suppose asystem of polynomial equations in n variables in the �nite �eld GFp for a prime p.Ch�evalley's theorem states that if the sum of the degrees of the polynomials is lessthen n, then the number of roots of the system is divisible by p. If we knew somesolution to the system, then there should exist at least one more root, sin
e the leastprime number is 2.The 
omputational problem Ch�evalley-mod-p thus is: Given su
h a system anda root, �nd another. In a spe
ial 
ase p = 2, Papadimitriou proved that Ch�evalley-mod-2 is in PPA. However for p > 2 the problem fails to be in PPA. The 
lass mightbe 
alled PPA-p and the parity argument should be generalized to the form: If in abipartite graph a node has degree not a multiple of p, then there is at least anothersu
h node.Then Ch�evalley-mod-p is in PPA-p [P94℄.In our expositions we have been 
onsidering only undire
ted graphs. Let us usethe dire
ted ones for a moment.We de�ne PPAD by modifying the previous version for undire
ted graphs. Sup-pose a �nite dire
ted graph G = (V; E) on the words of length n (V = f0; 1gn) whi
h17



has in-degree and out-degree at most one. Sin
e it is dire
ted, the ma
hine M shouldreturn an ordered pair on input s 2 V , namelyM(x; s) = (s; s0) where x is an instan
e
ode, jxj = n, and s0 is the su

essor of s. In other words, there is an edge from s to s0.We use the standard node 0 as a witness anew. It has only one edge going out, butno one 
oming in. We are asking for another vertex whose in-degree plus out-degreeequals to one. Su
h a node is 
alled a sink, or a sour
e respe
tively.The 
lassPPAD is the largest set of problems of the type des
ribed in the previousparagraph, whi
h is 
losed under redu
tions.An easy observation is formulated in the following theorem.Theorem 6. [P94℄ For the fun
tional 
lasses it holdsFP � PPAD � PPA � FNP :PPAD is under PPA, sin
e we 
an forget the dire
tion of the edges in the de-�nition of a \dire
ted problem" and we obtain a similar undire
ted version. As wehave mentioned it is not know whether these in
lusions are proper, or if there areequalities. Both are possible, but it is believed the �rst one is proper.Sperner's lemma is a well-known 
laim speaking about 
olouring of a triangulation.In two dimensions it states that any admissible 
olouring of any triangulation of theunit triangle 
ontains a tri
hromati
 triangle. Suppose we have three 
olours, 0, 1,and 2, and divide the triangle 012 into approximately n2=2 smaller triangles. Everyvertex re
eives a 
olour. The 
olouring is admissible, if ea
h vertex of the big triangleobtains its own name, and no vertex on the edge ij of the original triangle re
eives
olour 3� i� j. Then a tri
hromati
 triangle other than the outer one 
an be found.The outer tri
hromati
 triangle will represent the standard sour
e in the following
omputational problem 2D-Sperner : Given an integer n and an algorithm M assig-ning to ea
h point p = (i1; i2; i3), with i1; i2; i3 � 0 and i1 + i2 + i3 = n a 
olourM(p) 2 f0; 1; 2g, su
h that ij = 0 implies M(p) 6= j; �nd three points p1, p2 and p3,su
h that their pairwise distan
es are one, and fM(p1);M(p2);M(p3)g = f0; 1; 2g.Although the generalization of the problem in higher dimensions does not seemobvious, the Sperner's lemma is valid in any dimension and the 
orresponding 
om-putational problem is in PPAD.For example in three-dimensional spa
e, the problem 3D-Sperner asks as follows:Given an integer n an a polynomial-time algorithm 
omputing for a point of then�n�n subdivision of the 
ube an admissible 
olour, �nd a tetra
hromati
 
ubelet.Theorem 7. [P94℄ For any k � 2, kD-Sperner is in PPAD.18



We should also mention the 
omputational problem inspired by the Brouwer'stheorem: Any 
ontinuous fun
tion f from the unit simplex to itself has a �xpoint,i.e. there exists a point x su
h that f(x) = x. Sin
e the proof is based on Sperner'slemma, the 
orresponding problem is in PPAD too.But we need to represent a 
ontinuous fun
tion by a Turing ma
hine. This isprobably impossible, and so a simpli�
ation is used. For a given natural number n,and a point x in the unit 
ube with 
oordinates multiples of 1=n ma
hine M returnsin polynomial time a ve
tor �(x) su
h that j�(x)j � 1=n2 and f(x) = x+ �(x) lies inthe unit 
ube. Thus the fun
tion f 
an be extended to a pie
ewise linear map usingthe interpolation. In the problem Brouwer we are seeking for a point x satisfyingf(x) = x.The problem Brouwer is in PPAD.Finally, we 
onsider the Nash's theorem. He has found that there always existsan equilibrium in the following game. There are given two m� n matri
es A and B,
onsisting of numbers aij , whi
h is the payo� of player A when A plays strategy iand B plays strategy j; bij is the payo� of player B. The game is not zero sum, soA+ B 6= 0. A Nash equilibrium is a pair of strategies i for A and j for B, su
h thatneither A nor B have an in
entive to 
hange strategy (for all k it holds akj � aij , andbil � bij for all l).For a 
onvex spa
e of strategies, Nash has shown that an equilibrium exists, butin our situation the spa
e is dis
rete. Papadimitriou solved this problem using aprobabilisti
 distribution over the rows and 
olumns of the matri
es. A row m-ve
torx = (x1; : : : ; xm) is a mixed strategy of A, if for all i it holds xi � 0, and Pxi = 1;and analogi
ally for a 
olumn ve
tor y for the player B. These two strategies are inequilibrium if x0Ay � xAy for all mixed strategies x0, and xBy0 � xBy for all y0.Su
h an equilibrium always exists. The problem Nash is de�ned in this way: Giventwo integer matri
es A and B, �nd a mixed strategy equilibrium. It is not known,whether there is a p-time algorithm for this fundamental problem.However, we know that Nash is in PPAD.We have already explained the importan
e of 
omplete problems for the 
lasses.Papadimitriou in his seminal paper showed some PPAD-
omplete problems, but noone PPA-
omplete.Theorem 8. [P94℄ 3D-Sperner is PPAD-
omplete.The proof is des
ribed in [P94℄. It is based on 
onstru
tion of multi
oloured tubesleading from the standard leaf to a solution throughout the 
ube.Also Brouwer is PPAD-
omplete. 19



In 2001, M. Grigni generalized the result by Papadimitriou and showed for somegeneralization of Sperner problem to be PPA-
omplete [G01℄. The most importantdi�eren
e is in 
onsidering non-orientable fa
ets in the de�nition of the problem.Grigni used a d-manifold, whi
h is a topologi
al spa
e 
overed by open neighbour-hoods homeomorphi
 to the Eu
lidean spa
e Rd . In an Eu
lidean spa
e, a d-simplexis the 
onvex 
losure of d+1 aÆnely independent points, and a fa
e of a d-simplex isthe 
onvex 
losure of its 
orner points. A fa
e with d 
orners is 
alled a fa
et.For a given d-manifold, a d-triangulation is a �nite 
olle
tion of d-simplexes 
o-vering the manifold, su
h that ea
h pair of simplexes is either disjoint or interse
tingon a 
ommon fa
e. Ea
h fa
et is shared by at most two d-simplexes. If it is only one,then the fa
et is situated in the boundary of the manifold. Having a d-triangulation,we may 
olour its points with the 
olours from the set f0; 1; : : : ; dg. A simplex, whi
h
ontains all d+ 1 
olours in its points is 
alled full-
olour; similarly for a fa
et.Suppose it is given a d-triangulation, a 
olouring with no full-
olour boundaryfa
et, and a full-
olour simplex. Sperner's lemma states that there exists anotherfull-
olour simplex.Corresponding 
omputational problem G-Sperner has an input x of length n = jxj,su
h that 2p(n) is the number of triangulation points in one dire
tion for a polynomialp, and uses a polynomial time Turing ma
hine M des
ribing a 4-
olouring of theverti
es of the triangulation: For ea
h i; j; k 2 f0; : : : ; Ng the 
olour of the point at
oordinates (i=N; j=N; k=N) is equal to M(x; i; j; k) 2 f0; 1; 2; 3g with the restri
tionthat S(x; 0; j; k) = S(x;N;N � j; k).Theorem 9. [G01℄ G-Sperner is PPA-
omplete.Grigni's proof is similar to Papadimitriou's one, but it employs more sophisti
atednotions from topology. Reader should 
onsult [G01℄.The 
lass PPADS is a variant of PPA; in [P94℄ it was 
alled PSK. A natural
omplete problem for PPADS is Positive Sperner's Lemma for dimensions threeand above, whi
h is exa
tly like Sperner's Lemma ex
ept that only a pan
hromati
simplex that is positively oriented is allowed to be a solution [BCEIP97℄.The 
orresponding problem is 
alled Sink : For a given dire
ted graph on f0; 1gnwith in-degree and out-degree at most one in whi
h 0 has in-degree zero and out-degree one (it is 
alled a sour
e), �nd a vertex with in-degree one and out-degree zero(sink).
20



II.4 Pigeonhole Prin
ipleThe pigeonhole prin
iple is another 
ombinatorial lemma whi
h states that theremust exist elements of some properties. Suppose f : f0; 1; 2; : : : ; Ng ! f1; 2; : : : ; Ngis a polynomial time fun
tion. Su
h a fun
tion 
annot be inje
tive, sin
e the size ofits domain is stri
tly larger than the size of the range and both are �nite.The point is that we are given a big N whi
h is represented by n bits, and it is
laimed that the fun
tion is inje
tive. Be
ause that is impossible, there must exist a
ounterexample; i.e. an element x 2 f0; : : : ; Ng su
h that f(x) 62 f1; : : : ; Ng, or twodi�erent elements x; y 2 f0; : : : ; Ng whi
h satisfy f(x) = f(y). The 
omputationalproblem Pigeon is: With a given number N and an a

ess to a fun
tion f �nd a
ounterexample.It is again a type 2 problem whi
h is in TFNP, be
ause having a solution weneed only at most two queries to f (hen
e only 
onstantly many) to verify the result.All the problems whi
h are polynomial time redu
ible to Pigeon 
reate the 
lassPPP (polynomial pigeonhole prin
iple). Thus the problem Pigeon is a natural 
om-plete problem for PPP. The 
lass was independently invented by Papadimitriou andCook [P94℄.There are many natural problems whi
h 
an be solved easily using the Pigeonora
le. This means that we redu
e a problem to an instan
e of Pigeon in polynomialtime and ask the ora
le for a solution. Having that solution to the Pigeon instan
e itis easy to re
onstru
t a solution to the given task (again in polynomial time).For example the famous Dis
rete-Logarithm problem is des
ribed by two numbersp (prime number) and � (usually a generator of the multipli
ative group Z�p). Thenfor an instan
e y 2 Z�p the question is: What is a value x for whi
h the equality�x � ymod p holds?We show a simple 
onstru
tion. For all t 2 f0; : : : ; p� 1g de�ne a fun
tionf(t) = 8<:�t if �t 6= y ,0 if �t = y ,y if t = 0 .It is known that this fun
tion is polynomial time 
omputable. Now use the Pigeonora
le. Sin
e exponentiation on the invertible subset of a �nite �eld is inje
tive, theonly 
ollision with the pigeonhole prin
iple is for t su
h that �t = 0. This is thesolution.If we 
ould solve this instan
e of Pigeon e�e
tively, then we would be able to
ompute the solution to any instan
e of Dis
rete-Logarithm problem.21



In general, the Pigeon ora
le is 
apable to invert any permutation. Let � be apolynomial-time 
omputable permutation of a �nite set S whi
h does not 
ontain 0.Suppose that we want to know a preimage of some y 2 S in the permutation �. It issuÆ
ient to 
onstru
t a new \permutation" of S [ f0g. De�ne�(x) = � �(x) if x 2 S ,y if x = 0 .It is easy to see that � de�nes an inje
tive map from S [f0g to S with only one errorwhi
h is in y.Sin
e all the en
ryption fun
tions are polynomial-time pseudorandom permutati-ons in fa
t, none of them is resistant against the \pigeon ora
le atta
k" des
ribedabove. The same holds for hash fun
tions.
II.5 Separation of the ClassesRe
all that a relativized problem is de�ned using an ora
le whose 
omputationtime is 
onsidered to be a 
onstant. For instan
e, let us in the last problem Pigeonrepla
e the polynomial-time fun
tion f by an ora
le. The obvious advantage is thatwe do not have to wait for its response, but on the other hand, we 
annot verify itsanswer. In other words we have to believe to the ora
le.A simple example shows that relativized Pigeon is not solvable in polynomialtime. We prove an easy lemma, be
ause we want to explain the diagonal methodwhi
h we will use in the following 
hapters.Lemma 10. There does not exist polynomial time ora
le ma
hine M
 that solvesPigeon
 for all ora
les 
.Proof. Suppose the 
ontrary. Let x be an n-bit input de�ning the domain [2n℄ == f0; : : : ; 2n�1g on whi
h an inje
tive mapping u into [2n�1℄ is 
laimed to exist. Themapping u is 
omputed by an ora
le 
. We have a polynomial time Turing ma
hineM with an a

ess to the ora
le 
 whi
h 
an �nd a 
ontradi
tion with the inje
tivityof u. The ora
le responds questions of the form \what is an image of t?" After atmost nk steps (for some k > 0 �xed) we have to stop the 
omputation and give aresult.But during the run of the program the ma
hine M has visited only at mostnk values of u, and for suÆ
iently large n it holds nk < 2n. Thus the ora
le 
22



has an important advantage. It 
an 
hoose values u(t) independently with only tworestri
tions: Di�erent questions must be answered di�erently, repeated questions mustbe answered always with the same value.The ma
hine M 
annot �nd a 
ontradi
tion in polynomial time, if the ora
lebehaves in the des
ribed manner. Sin
e M must output a solution, it 
hooses a pairof non-visited points (y; y0) 2 [2n℄, but after asking ora
le, the veri�er will dis
overthat 
(y) 6= 
(y0).This method of separating hard problems from some smaller 
lass has 
ome frommathemati
al logi
 and it was used, for example, by Beame, Cook, Edmonds, Impag-liazzo and Pitassi [BCEIP97℄ in our 
ontext. In the following paragraphs we are goingto list known results in this e�ort. These are done in a similar way as it was in ourlemma, and sin
e the 
lasses are de�ned using a few \spe
imen" sear
h problems weobtain separation of 
lasses as 
orollaries.Theorem 11. [BCEIP97℄ Lonely is not redu
ible to Pigeon.Here mentioned problem Lonely is based on parity lemma and thus it is in PPA.The task is for a given pairing of even number of verti
es and a standard lonely nodeof degree zero, lo
ate another lonely node.The proof of the theorem is by 
ontradi
tion. It is supposed that we 
an solve anyinstan
e of Lonely using a Pigoen ora
le. What is hard is to 
onstru
t answers of theora
le in a way su
h that the ma
hine solving Lonely is not able to un
over a lonelynode.Be
ause Pigeon is a natural PPP-
omplete problem, any sear
h problem in the
lass must be redu
ible to it.Corollary. There exists an ora
le � su
h that PPA� 6� PPP�.It is not hard to see that Sink is many-one redu
ible to Pigoen: Constru
t theinput for Pigeon as a fun
tion f , whi
h returns 0 on a sink, and for other verti
es u,if there is an edge from u to v, f(u) = v.Theorem 12. [BCEIP97℄ Sink is not redu
ible to Lonely .Sin
e we know that Sink 2 PPP\PPADS, we 
an establish the following theo-rem.Corollary. There exist ora
les � and � su
h thata) PPADS� 6� PPA�; 23



b) PPP� 6� PPA�.Some more results are by T. Morioka [M01℄, who separated 
lasses PPP and PPAfrom PLS .Theorem 13. [M01℄ There exist ora
les � and � su
h thata) PPA� 6� PLS�;b) PPP� 6� PLS�.And �nally, in [BM04℄, J. Buresh-Oppenheim and T. Morioka partially answeredthe opposite.Theorem 14. [BM04℄ There exists an ora
le � su
h that the separationPLS� 6� PPA� holds.We have des
ribed a 
omprehensive list of separation results in the relativizedworld of NP-sear
h problems. Whether PLS� � PPP� or not, it is not known tous. As we promised in the se
ond part, some of the sear
h problems are not equivalentto any de
ision problem.Theorem 15. [BCEIP97℄ None of the problems Sink , Leaf , or Pigeon ispolynomial-time Turing equivalent to any de
ision problem.
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Chapter III
An Upper Bound forInteger Fa
toring
We have already mentioned the importan
e of the problem 
alled Integer-Fa
toring .It is believed that there are instan
es of it whi
h are hard to solve, and this fa
t isutilised in many 
ryptographi
 proto
ols like RSA. But nobody 
an prove that, andhen
e the belief is based only on our experien
es with di�erent algorithms whi
h solvethe problem. These are numerous; for example naive division, Pollard's rho method,and quadrati
 or number theoreti
 sieves.Let us formalize the problem Integer-Fa
toring . Its input is a 
omposite integer Nof length n, and the task is to �nd a whole number d su
h that d divides N and1 < d < N .In average 
ase the problem is relatively easy to solve. Consider a random integer;with the probability 1=2 it is divisible by two, with the probability 1=3 it is divisibleby three et
. If we had a list of all prime numbers less than 100, then the probabilitythat a random number would have a divisor among these primes is safely more than75%.That is why in 
ryptographi
 appli
ations there are implemented sophisti
atedmethods of �nding se
ure pair of large prime numbers. These are then multiplied andthe result is being used and 
onsidered impossible to be fa
torized ba
k.Hen
e we will study the 
ase N = pq for two di�erent prime numbers p and q.Moreover, these primes are usually of roughly the same bit length, but this assumptionis not very important in our 
ase.In this 
hapter we are going to present some results whi
h 
reate an upper boundfor the 
omplexity of the Integer-Fa
toring problem. On the other hand, in the next25




hapter we des
ribe a method of estimating a lower bound for the same. Shortly,our aim is to insert the problem to a sub
lass of TFNP, but preferably far frompolynomial-time solvable problems.Let us de�ne a spe
ial 
ase of the Integer-Fa
toring problem. Suppose thatN � 1mod 4 (i.e. the remainder after the division of N by 4 is equal to one), and �1is not a square modulo N . The last 
ondition says that there does not exist x < Nsu
h that x2 � �1modN .2 Numbers satisfying these two 
onditions will be 
alled\good".Intuitively, the Good-Integer-Fa
toring problem is: Given a good integer �nd itsnontrivial divisor.Proposition 16. Good-Integer-Fa
toring is in the 
lass PPA.We have proved this independently with Joshua Buresh-Oppenheim, whose proofis a little di�erent from our argument; see [B10℄.Proof. Consider a good integer N = pq. Then h = (N � 1)=2 is even. We 
onstru
ta graph on v = 2dlog he verti
es from the set f1; : : : ; vg in several steps (
onsult the�gure 2 bellow).a) Identify numbers x < N with their opposites �x modulo N , i.e. x and N � x areboth represented by only one node. (In the pi
ture this is shown by the equivalen
esymbol � .)b) Every vertex re
eives a unique name { an integer between 1 and v.
) For ea
h i 2 f1; : : : ; h=2g 
reate an edge between 2i and 2i� 1.d) For ea
h i 2 fh+ 1; : : : ; v � 1g add an edge between i and i+ 1.e) For ea
h i 2 f1; : : : ; hg 
reate an edge between i and i�1modN , if the inverseexists. If i�1 > h, use �i�1modN instead.f) Add an edge fh+ 1; vg.We 
laim that this is a valid instan
e of Leaf with a standard leaf 1. Sin
e�1modN is not a quadrati
 residuum, the equation x�1 = �x does not have asolution, and hen
e in the �fth step we always join two di�erent nodes.When the inverse element of i�1 is greater than h, the inverse of �i�1modN mustbe smaller than h, and vi
e versa. Thus there 
annot be three di�erent neighbours ofthe element i or �i, and so there is no problem in our 
onstru
tion, step e.2) This really is possible: 82 = 64 � �1mod65 where 65 = 5 � 13, and 65 � 1mod4.26



1 � N � 12 � N � 23 � N � 34 � N � 4... h� 1 � N � h+ 1h = 12 (N � 1) � 12 (N + 1)h+ 1h+ 2h+ 3
elementsoff1;:::;N�1g

v � 1v...

2�1modN3�1modN4�1modN(h� 1)�1modNh�1modN

Fig. 2. Constru
tion of the graphThe verti
es whi
h do not have two edges, are only the noninvertible integersmodulo N , and the standard leaf, of 
ourse. So if we 
ould solve the Leaf probleme�e
tively, we would be able to �nd a non-trivial fa
tor of a good integer, be
ause thenoninvertible elements of ZN are pre
isely those numbers whi
h do have a nontrivialgreatest 
ommon divisor with N . But su
h an integer 
an be only a multiple of p orq. Note that the Eu
lid's algorithm may be used to qui
kly 
ompute the GCD.Although the proposition holds only for good integers, it has a large impa
t. Thisis due to the 
ryptographi
 importan
e of the so-
alled Blum numbers. These arenumbers of the form N = pq where p and q are Gaussian prime numbers with noimaginary part. For us, the most signi�
ant fa
t is that all these numbers are equalto one modulo four. Also the se
ond 
ondition that �1 is not a square modulo Nis sometimes useful in appli
ations; see for example Feige-Fiat-Shamir Identi�
ationS
heme whi
h is des
ribed in [K10℄.An interesting thing is that the 
onstru
tion of an PPA instan
e is relatively easyfor N � 1mod 4, but it seems unable to make it for the numbers equal to 3 modulo 4.We leave this problem open. 27



On the other hand, again J. Buresh-Oppenheim proved [B10℄ that the general 
aseof the Integer-Fa
toring problem is a member of randomized PPP 
lass. That meansthat there exists a redu
tion to a Pigeon instan
e whi
h is able to �nd a fa
tor inzero-error probabilisti
 polynomial time; that is a sear
h variant of the famous ZPP
lass.Proposition 17. [B10℄ Integer-Fa
toring is in FZPPPPP.Sin
e this result is 
losely related to the main topi
 of this thesis, we in
lude asket
h of the proof.Proof. First, we test if the given N is not a multiple of 2 or a prime power.Otherwise, 
onstru
t a random instan
e of Pigeon on strings of length jN j. Cho-ose two random integers a; b < N . If one of them is noninvertible, then return itsgreatest 
ommon divisor with N . This happens with probability 1� �2 where � is afra
tion of units in ZN .Suppose that both these numbers are quadrati
 non-residues. This o

urs withprobability 34 � 34 = 916 , sin
e N is divisible by at least two odd primes, and there isat most a half of quadrati
 residues modulo a prime.Constru
t a mapping on ZN :0 7! a ;x 7! 8<:x2 if x is a unit and x � 12 (N � 1),bx2 if x is a unit and x � 12 (N + 1),0 if x is a non-unit and x 6= 0.Finally, map ea
h string with value at least N to itself.If the Pigeon ora
le returns an element whi
h is mapped to 0, then 
ompute itsgreatest 
ommon divisor with N , and return it. If it returns two di�erent elementsx; y with the same non-zero image, then neither x nor y is 0. Be
ause b was supposedto be a non-residuum and invertible, both these numbers are mapped in the sameway, hen
e we have x2 � y2modN , or bx2 � by2modN . From these equations one
an obtain a fa
torization (x+ y)(x� y) � 0modN .Re
all, that with probability 1 � �2 either a or b is non-invertible. This leadsto a solution. Otherwise, at most one quarter of elements of [N � 1℄ are quadrati
residues. Both these numbers are non-residues with probability at least 9=16. Sin
eevery quadrati
 residue has two square roots whi
h are greater than N=2, and onlya half of them is of the form bx2 for some x > N=2. The 
onditions on a and b are28



all satis�ed in at minimum 9=16 � 1=4 
ases, and thus the algorithm su

eeds withprobability at least 1� �2 + �2� 916 � 14� = 1� 1116�2 � 516 :It would be ni
e to derandomize this result. Though it follows from the ExtendedRiemann Hypothesis, whi
h guarantees the existen
e of a non-residuum in the range[1; O(log2N)℄ as Eri
 Ba
h showed in 1990 [B90℄. Even in 1975 Gary L. Miller provedsome other interesting theorems based on the assumption that ERH is true.Theorem 18. [M75℄ Let N = pv11 : : : pvmm is an integer. If Extended RiemannHypothesis is valid, then the following fun
tions are polynomial-time equivalent:a) prime fa
torization N 7! ((p1; v1); : : : ; (pm; vm));b) Euler fun
tion '(N) = pv1�11 (p1 � 1) : : : pvm�1m (pm � 1) ;
) Carmi
hael �-fun
tion�(N) = l
m �pv1�11 (p1 � 1); : : : ; pvm�1m (pm � 1)� ;d) �0(N) = l
m (p1 � 1; : : : ; pm � 1).Nevertheless the Buresh-Oppenheim's result establishes the question of some re-lationship between probabilisti
 versions of PPA and PPP, or their 
onne
tion tothe 
lass FZPP.Also note, that there is a dire
t relation between some 
ryptographi
 primitives(e.g. hash fun
tions or modular exponentiation) and the 
lass PPP or even a 
lassWPPP 
orresponding to the weak pigeonhole prin
iple [CK98℄. That is a similarstatement to the pigeonhole prin
iple with the only one di�eren
e: The size of thedomain is twi
e larger than the 
ardinality of the range.
29



Chapter IV
A Lower Bound forInteger Fa
toring
In this 
hapter we are aiming to establish a lower bound of sorts to the 
omplexityof the Integer-Fa
toring problem. We are going to 
onstru
t a stru
ture with a bi-nary operation �. That model will represent the stru
ture of whole numbers withmultipli
ation. Adding more and more axioms we will be getting 
loser to the naturalpattern. We want to show that even with a lot of axioms for multipli
ation supposedon � there is still not an ora
le p-time ma
hine M fa
toring su

essfully for all su
h�'s.Let N be a 
omposite integer. The whole 
omputation of an ora
le p-time ma
hineM takes a pla
e on the domain of all strings of polynomial length with respe
t ton = jN j. Call it D = f0; 1gnd for a 
onstant d > 0. Obviously, we have the binaryrepresentation of N in D. We want to �nd some \fa
tor" of N with respe
t to anarbitrary binary operation � de�ned by an ora
le.3The ora
le has the following advantage. Whenever it is asked for some result�(x; y), x; y 2 D, it 
an response any element from D.When there are not any further 
onditions on ora
le's answers it should be 
learthat we 
annot guess the \fa
tor" of N in polynomial time with respe
t to n. If wehad one (
all it r), the ora
le would rede�ne � in a way that r would not \divide" N .Now we are going to restri
t the spa
e of all possible �'s on D �D. This will bedone by adding more axioms about �. For example, by requiring the 
ommutativity3) Here we use the words fa
tor and divide in quotas whi
h means that we do not meantheir proper meaning, but the modi�ed one.30



of � we redu
e the number of queries to a half. Now we do not need to ask ora
le for�(x; y) and �(y; x). It suÆ
es to ask only for one of these values.But there is still exponentially (in n) huge spa
e of possible answers. Thus theora
le is able to de�ne � in a way that in polynomial time in n it is impossible to �ndsome \fa
tor".We 
an use this method of diagonalising also for the axioms of �eld. So requiringfor example asso
iativity of � does not help us. Details are des
ribed in the proof ofthe Field problem lemma in the following 
hapter.The stru
ture of natural numbers with multipli
ation has, in fa
t, many otherproperties. Let us �x some positive integer x. Then the fun
tion fx(y) = x � y ismonotone in its variable y. It is even linear, but we have only one binary fun
tion inour model, so the linearity would be hardly de�nable. For monotoni
ity we need onlysome ordering < on the underlying set D.The ordering is provided by another ora
le, and thus we 
annot 
ompute thesu

essor number for a given one et
. The only admissible type of query is to 
omparetwo elements of D, i.e. whi
h one is smaller, or greater than the se
ond one.Now the task is to de�ne ora
le's behaviour when it is asked for values of monotonefun
tions �(x; �) for all x 2 D. We need to avoid leaking information about the\divisors" of N during the polynomial-time 
omputation of Turing ma
hine M .Suppose that M 's run takes nk steps for a �xed k > 0. Sin
e the spa
e of allpossible answers is of size 2nd , the ora
le 
an 
onstru
t its answers this way:a) Let a is the minimal element in D with respe
t to <.b) For any x de�ne �(a; x) small enough.
) For arbitrary �xed x and any 
 > b > a de�ne �(
; x) > �(b; x) su
h that the gapbetween these two values is large enough.Now we are expe
ted to make pre
ise what the word \enough" in fa
t means.Re
all that the ma
hine M 
an ask for at most nk fun
tion values, but there are 2ndpossible answers. If the distribution were uniform, then there would be approximately2ndn�k di�erent elements from D between two without delay 
onse
utive values of�(x; �). This number is still exponentially big in n. And so the ma
hine M 
annot gothroughout the whole interval (b; 
) and lo
ate a 
ontradi
tion with some axiom, ora \divisor" of N .Lemma 19. Let k � 1 be �xed. There exists N0 2 N su
h that for any N > N0
onsider its length of binary notation n, and denote D = f0; 1gnO(1) . Let (D;�) is astru
ture with the underlying set D with a linear ordering <, and a binary operation�. Let �(x; �) is monotone with respe
t to the ordering < for all x 2 D. Then, in time31



nk, it is impossible to �nd a pair (x; y) 2 D � D su
h that �(x; y) = N , even if wehave ora
le a

esses to � and <.Proof. For any x; y 2 D the ora
le does not say that �(x; y) = N . This is possiblethanks to the argumentation above in the asymptoti
 
ase for N large enough.Contemporary algorithms for integer fa
torisation are based on one idea: �nd anumber t, 1 < t < N , whi
h is not relatively prime to N . Then their great 
ommondivisor produ
es a fa
tor of N .Consider the typi
al RSA 
ase when N = pq for some prime numbers p andq. These numbers are usually of similar lengths. This is the hardest situation forfa
toring algorithms, be
ause the set of all t's satisfying the 
ondition of the previousparagraph is tiny. Its size is pre
isely p+ q � 1.Sin
e the interesting instan
es are for N very large, we 
ompute a ratiolimp;q!1 jft j 1 < t < N; g
d(t; N) > 1gjN = limp;q!1 p+ q � 1pq == limp;q!1 1 + qp � 1pq = limp;q!1�1q + 1p � 1pq� = 0 :Hen
e the probability of �nding the solution at random is negligible. Furthermorethere would be no problem when we added an ora
le for the greatest 
ommon \divisor"
 into our model. For a \lu
ky" input it returns immediately a pair of elements (d1; d2)su
h that �(d1; d2) = N . On the rest of the set D it returns the greatest 
ommon\divisor" of the given numbers with respe
t to �. Note that the \lu
ky" domain of 
is very limited. Its size is roughly pN � 2n=2.We 
laim that after the 
omputation of M we are able to de�ne a set of \non-tou
hed" elements of size pN .4 It suÆ
es to have n su
h that nk < 2n=2 or equiva-lently k < n=2 logn. Sin
e k is a 
onstant, su
h n must exist.The 
onstru
tion is now easy. Choose the least element r and the se
ond least sfor whi
h the ma
hine M has not asked yet. De�ne r's \multiples" as every odd 
on-sequent number; for s take the even ones. Here by odd and even we mean their orderwith respe
t to the ordering <. Repeat this by we have pN non-tou
hed elements.Having these two sets of the same size pN=2 we 
an de�ne �(i;�i) = N wheresymbol i means the i-th least r's \multiple" and �i represents the i-th largest s'es\multiple".4) Consider the even number 
losest to pN .32



Noti
e, that for some ith multiple of r there exist two elements v, w, su
h thatv < ir < w and there is not any other element among them. Suppose the ma
hineM has asked for values �(v; x) and �(w; x) for some x 2 D. Then, by monotoni
ity,it must hold �(v; x) < �(ir; x) < �(w; x). Its existen
e after our 
onstru
tion followsfrom the large gap between any pair of 
onse
utive values.Lemma 20. For any k � 1 it 
an be found an integer N0 su
h that for any N > N0,n = jN j, there exists a set D of size 2nO(1) with a linear ordering <, and two fun
tions� and 
 on D. The fun
tion � is 
ommutative, asso
iative and bilinear. The fun
tion 
on input (a; b) returns the largest element 
 2 D su
h that �(
; A) = a and �(
;B) = bfor some A;B 2 D, or it returns 1, if su
h element does not exist. Then, 
onsideringfun
tions �, 
, and < as ora
les, in time nk it is impossible to �nd a pair (x; y) 2 D�Dsu
h that �(x; y) = N .Proof. It follows dire
tly from the 
onstru
tion dis
ussed before the lemma.We 
an also generalize the ora
le � in the following manner. Suppose we allowquestions to � in the form \�(x; ?) = y". In other words, this asks for the \ratio"y=x. It is obvious that due to this generalization we get 
loser to the model of naturalnumbers, sin
e we 
an divide integers as well. However, not every 
ombination ofdividend and divisor is allowed. Hen
e the ora
le must have 
ompeten
e to refuse theinput, and say these numbers are not divisible.Let us summarize the possible queries to � for arbitrary x; y < N .\�(x; y) = ?" : : : return z,\�(x; ?) = y" : : : � return z 2 D, if \�(x; z) = ?" has answer y,or return NO.Proposition 21. For any k � 1, there is an N0 su
h that for all N > N0 thefollowing holds. Let us denote n = jN j and D of size 2nO(1) the underlying set. Thereare two ora
les � and 
 whi
h 
an answer questions as above for any x; y < N , anda linear ordering < ora
le to 
ompare elements from D. The fun
tion de�ned by � isbilinear, asso
iative and 
ommutative, the fun
tion de�ned by 
 is 
ommutative. Intime nk it is impossible to �nd a pair (x; y) 2 D �D su
h that �(x; y) = N .Proof. We should only explain how to de�ne the \quotients", be
ause the rest is
lear from the two lemmas before. 33



The �rst obvious rule is very simple. For any x the queries �(x; ?) = N must beanswered NO. Of 
ourse, there exists an element y su
h that �(x; y) = N , but thereare exponentially many (in n) numbers in D, whereas we the ma
hine M has onlypolynomial amount of time. Thus the ma
hine seeking for y must always overpass it.Other results of the form �(a; b) = 
 6= N are useless to M , sin
e there is nometri
s to measure distan
e between two elements. It is irrelevant if the relation wasobtained as a \produ
t" or \quotient". The ora
le � should situate its answers farbetween as it was des
ribed earlier.
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Chapter V
Further RelatedProblems
Every �nite �eld is of size N = pr for some prime number p and a positive integer r.We will use the set f0; 1; : : : ; N � 1g as a universe of the �eld. This 
an be identi�edwith N . Then there exist two binary fun
tions s, t (addition and multipli
ation), twounary fun
tions u, v (additive and multipli
ative inverses), and two 
onstants 0; 1 inthe �eld. These fun
tions must satisfy the following axioms:a) (8x)(8y) s(x; y) < N ,b) (8x)(8y) t(x; y) < N ,
) (8x) u(x) < N ,d) (8x) x = 0 _ 0 < v(x) < N ,e) (8x)(8y)(8z) s(x; s(y; z)) = s(s(x; y); z),f) (8x)(8y)(8z) t(x; t(y; z)) = t(t(x; y); z),g) (8x) s(x; 0) = s(0; x) = x,h) (8x) t(x; 1) = t(1; x) = x,i) (8x) s(x; u(x)) = s(u(x); x) = 0,j) (8x) x = 0 _ t(x; v(x)) = t(v(x); x) = 1,k) (8x)(8y)(8z) t(x; s(y; z)) = s(t(x; y); t(x; z)),l) (8x)(8y)(8z) t(s(x; y); z) = s(t(x; z); t(y; z)).Clearly, all of these quanti�ers are bounded by N .Suppose we are given an integer N whi
h is not of the form pr. Then no �nite�eld of 
ardinality N 
an exist. Thus it is possible to �nd elements whi
h violate oneof the axioms above. Pre
isely, we look for a four-tuple (i; b; 
; d) where i stands forthe index of axiom whi
h is not satis�ed, and b, 
 and d are the witnesses. When for35



example axiom 
 is violated, only the se
ond parameter is used and the rest is anempty word �.Obviously this is an ora
le-NP-sear
h problem, sin
e the length of the tuple is atmost O(1)+3 logN . Its input is an integer N not of the form pr (this 
an be witnessedby its two di�erent divisors and veri�ed in polynomial time as well as it is possibleto verify the result in polynomial time), and an a

ess to an ora
le � whi
h de�nesthe fun
tions s, t, u and v. We may 
onsider that 
onstants 0 and 1 are interpretedas usual. The task is to �nd a 
ounterexample to the 
laim that the ora
le de�nes a�eld. Call this problem simply Field .We shall prove that Field is not solvable by a p-time ma
hine whi
h has an a

essto a PLS-ora
le. The proof is based on a similar result of Chiari and Kraj���
ek of 1998who showed that the weak pigeonhole prin
iple is not solvable in PLS [CK98℄.Proposition 22. There is not an ora
le PLS problem L� su
h that for any ora
le� de�ning a Field problem every lo
al optimum of L� 
ontains a solution to �.Proof. Suppose the 
ontrary. Let L be a PLS�-problem su
h that for every �eldfun
tions s, t, u and v of F it gives us a solution to the problem Field . WheneverS = (x; y; z) is a proje
tion of some lo
ally optimal solution for the instan
e N of theproblem L(s; t; u; v), then one of the following holds:a) s(x; y) � N ,b) t(x; y) � N ,
) u(x) � N ,d) x 6= 0 ^ 0 = v(x) or x 6= 0 ^ v(x) � N ,e) s(x; s(y; z)) 6= s(s(x; y); z),f) t(x; t(y; z)) 6= t(t(x; y); z),g) s(x; 0) 6= s(0; x) or s(x; 0) 6= x or s(0; x) 6= x,h) t(x; 1) 6= t(1; x) or s(x; 1) 6= x or s(1; x) 6= x,i) s(x; u(x)) 6= s(u(x); x) or s(x; u(x)) 6= 0 or s(u(x); x) 6= 0,j) x 6= 0 ^ t(x; v(x)) 6= t(v(x); x) or x 6= 0 ^ t(x; v(x)) 6= 1or x 6= 0 ^ t(v(x); x) 6= 1,k) t(x; s(y; z)) 6= s(t(x; y); t(x; z)),l) t(s(x; y); z) 6= s(t(x; z); t(y; z)).We 
laim that no su
h problem L 
an exist. We will 
ontinue in this manner: Fixan arbitrary L and �nd some N and suitable fun
tions s, t, u and v su
h that noneof the 
onditions above is satis�ed for all lo
ally optimal solutions.Consider the 
ost fun
tion 
L and the neighbourhood fun
tion nL asso
iated to L.We identify these fun
tions with the ora
le p-time Turing ma
hines 
omputing them.36



The ma
hine 
omputing L asks for values of the �eld fun
tions. These fun
tions haveto be de�ned in su
h manner that the returned values do not 
ontradi
t with theaxioms of the �eld. This is done by progressive de�nition by the �eld ora
le �.This ora
le uses some in�nite �eld K and de�nes a partial isomorphism � betweenit and the hypotheti
al one with universe f0; : : : ; N � 1g denoted F ,� : F ! K :When it is asked for value of a term on some elements, it represents these elementsas members of the in�nite �eld, 
al
ulate the term, and �nally it translates the resultba
k to the original �eld.Note that the partial isomorphism de�nes also several values whi
h have not beenasked during the 
omputation, be
ause of the axioms. Suppose that the ma
hine hasalready known values s(a; b) = d, s(
; d) = e, and s(b; 
) = f . Then it must holds(a; f) = e, sin
e s(a; f) = s(s(a; b); 
) = s(
; d) = e, and a di�erent result wouldwitness the violation of the axiom e.Let 
0 be the minimal possible 
ost for all possible 
omputations of ma
hine 
Lwhere the ora
le 
alls are answered as it was just explained. Fix some 
omputationleading to the solution of 
ost 
0.After at mostm = (logN)O(1) steps the 
omputation must halt and the ma
hine Loutputs a lo
ally optimal solution. Sin
e the ora
le � answers all the queries in a waypreserving the isomorphism �, the ma
hine L 
annot know any witness for Field . It
ould have asked for at most m fun
tion values. These were de�ned as images of � inin�nite �eld K, and thus they do not violate any axiom of �elds. If there is an elementb in L's result su
h that �(b) was not de�ned during the 
omputation, de�ne its imageunder � in order that no axiom of �elds is violated. Sin
e these elements 
an be atmost three, this 
an be done if m+ 3 < N . Be
ause there exists N suÆ
iently largerthan m, there must exist instan
es of the problem Field , whi
h 
annot be solved by L.Now it is 
lear that the L's answer (i; b; 
; d) is always wrong be
ause we are ableto de�ne fun
tion values in i-th axiom how we want, and there is not any violen
e ofthe �eld axioms among the previously answered values.All what we need is to 
hoose suÆ
iently large N . That is a number for whi
hthere is an exponential gap betweenm andN itself. Sin
e we have 
onsidered arbitraryPLS-ora
le L we are done.It would be ni
e to establish a relationship between previously de�ned Field pro-blem and 
ommonly known Integer-Fa
toring problem. Re
all that this stands forthe question of �nding some non-trivial fa
tor of a given integer. However, we do notknow su
h a formal relationship. 37



Now we shall 
onsider another problem whi
h is in some sense similar to the Fieldproblem, and thus it is expe
ted that they will have analogous properties.From the theory of �nite �elds it is known that the only sub�elds of GFpr are �nite�elds of 
ardinalities ps where sjr. This stru
ture is well-studied, hen
e no surprise
an be hidden there. To prove that some stru
ture A is a substru
ture of a larger oneB, we need to verify two things:a) All fun
tions de�ned on B are extensions of those de�ned on A.b) Every fun
tion in A is 
losed in A, i.e. given arguments from A the fun
tion hasvalue still in A.Suppose for a while that we are given two �nite �elds of di�erent sizes. Let usdenote them F1, F2, and their 
ardinalities N1, N2, respe
tively. Without loss ofgenerality we may suppose that N2 > N1. Sin
e both stru
tures form a �nite �eld, wededu
e that N1 = ps, and N2 = qr for some prime numbers p; q and natural numberss; r. If p = q, we require s 6 j r in addition.It is 
laimed that F1 is a sub�eld of F2. From the text above we know that this isimpossible, and thus we should be able to �nd a witness su
h that F1 or F2 is not a�eld, or F1 is not a sub�eld of F2 (and hen
e one of the 
onditions above is violated).Let us de�ne a new NP-sear
h problem Sub�eld : Given two integers N1, N2 asabove, and a

esses to ora
les �1 and �2 de�ning F1 and F2, �nd a witness that oneof F1, F2 is not a �eld, or that F1 does not form a sub�eld of F2.Like in the �rst 
ase we prove that this problem is not solvable easily.Proposition 23. There is not an ora
le PLS problem L�1;�2 su
h that for anyora
les �1, �2 de�ning a Sub�eld problem every lo
al optimum of L�1;�2 
ontains asolution to Sub�eld (�1;�2).Proof. Similarly, in the �rst proof of this 
hapter we show that it is possible tode�ne the ora
le answers in a way that no 
ontradi
tion 
an be found in polynomialtime with respe
t to the length of input. Here we 
onsider as the input the sizes ofboth �elds. Sin
e F2 is supposed to be larger, it is suÆ
ient to 
ompute only withlogN2 as the length of input.The proof is very similar to the previous one. First, we should list all the possiblein
onsisten
ies with the assumptions. These are nearly the same as before; repla
e Nby N2, the 
ardinality of the largest �eld, and add some more s
hemes for the smaller�eld F1 whose fun
tions are denoted with bar.a) x; y < N1 ^ (�s(x; y) 6= s(x; y) _ �t(x; y) 6= t(x; y)),b) x < N1 ^ (�u(x) 6= u(x) _ �v(x) 6= v(x)),
) x; y < N1 ^ (�s(x; y) � N1 _ �t(x; y) � N1),38



d) x < N1 ^ (�u(x) � N1 _ �v(x) � N1).Suppose there is a PLS�1;�2 -problem L su
h that for any de�nition of the �eldfun
tions s; t; u; v;�s;�t; �u; �v it is able to �nd a solution to the Sub�eld problem. IfS = (x; y; z) is a proje
tion of a lo
ally optimal point for the instan
e (N1; N2), thenone of the 
onditions des
ribed above must arise.Fix an arbitrary 
ost fun
tion 
L, and a neighbourhood fun
tion nL of L. Thesefun
tions are 
omputed by polynomial time Turing ma
hines CL andNL. The ma
hine
omputing L has an a

ess to both these algorithms as well as to the ora
les �1 and�2 
omputing the values of the �eld fun
tions.Now we des
ribe a way how to 
onstru
t their responses. The pro
edure is a simplegeneralization of the method used in the �rst proposition.Fix two arbitrary in�nite �elds K and T su
h that T is a proper sub�eld of K,denoted by T < K. Then de�ne partial isomorphisms� : F1 ! T ;� : F2 ! K :The isomorphism � extends �. During the 
omputation the ora
les �1 and �2 are askedfor values of the form �s(a; b), s(a; b) et
. The questions may repeat, in whi
h 
ase theymust be responded always in the same way. If a new element h is mentioned in thequery to �1, the ora
le de�nes its image under the partial isomorphism �(h) 2 T ,and evaluates the fun
tion in the �eld T . The isomorphism � is 
reated by �2 in thesame manner.For instan
e, the ma
hine wants to know a sum of a; b 2 F1, i.e. �s(a; b). It usesthe ora
le �1 whi
h �rst looks in its database of questions responded so far. If thereis some question on a or b, it uses the value �(a) or �(b) from the database. On theother hand, if su
h a question has not been put, it 
hooses elements �; � 2 T , andmap �(a) = �, �(b) = �. Then it 
al
ulates � + � in T . Say it is 
. If 
 is in thedatabase, the ora
le uses its preimage from the database, in other 
ase it 
an de�neit arbitrarily ��1(
) = 
, and return ba
k 
.Denote the minimal possible 
ost of all feasible 
omputations of L by 
0 and �xa path leading to that 
ost. Be
ause L must halt after at most m = (logN2)O(1)steps, it 
annot ask for all possible 
ombinations of fun
tions and elements. In fa
t,it is allowed to ask for only negligible fra
tion of these values when N2 is suÆ
ientlylarge.Sin
e the �eld fun
tions are de�ned as partial 
opies of some in�nite �elds, all theresponses of the ora
les are valid, and thus there 
annot be found any 
ontradi
tionwith the axioms of �elds or sub�elds. 39



Again, sin
e the fa
t that the problem Sub�eld is well-de�ned strongly dependson divisibility of integers, there might be a relationship with the Integer-Fa
toringproblem. It is surely possible to de�ne more problems like these two examples, be
ausethe realm of �nite algebrai
 stru
tures is signi�
antly larger than only theory of �nite�elds.

40



Chapter VI
Con
luding Remarks andOpen Problems
We have presented several results that do in a sense estimate the 
omplexity of in-teger fa
torization whi
h is one of the most important problems in 
ontemporarytheoreti
al 
ryptography. Even though our bounds are not very tight, and work onlyin the relativized world of NP-sear
h problems, they seem to be of interest. To ourknowledge these are the �rst results of their kind.In parti
ular, the method of Chapter IV might be an inspiration for further re-sear
h. There are many axioms whi
h should be added to our hypotheti
al stru
ture.First, in the domain of whole numbers we have another binary operation { addition,and also its inverse. Due to this we are able to de�ne a distan
e measure and a prede-
essor and su

essor fun
tions as well. These properties of the ring of integers shouldbe added, and then one should verify, if the proof still works.Note that there is a property whi
h makes multipli
ation of naturals interesting. Ithas not any inverse fun
tion in fa
t, be
ause in general a quotient of two integers is afra
tion, and so not an integer. This is not true about addition of integers. But 
onsiderthe addition of prime numbers. A

ording to the famous Goldba
h's 
onje
ture everyeven integer greater than 2 
an be written as a sum of two prime numbers. This hasnot been proved, but some weaker results have. Suppose for a moment it were true,then we 
ould de�ne a new 
omputational problem. Call it Goldba
h: Given an evenpositive integer N > 2, �nd two prime numbers p and q su
h that p+ q = N .41



As well as the Integer-Fa
toring problem, Goldba
h has not a unique solution5,and no e�e
tive algorithm is known to us. The third parallel is in the non-existen
eof an inverse fun
tion (division of naturals, di�eren
e of an integer and a prime mustnot be a prime, respe
tively).Another question we have left open asks whether the general 
ase of Integer-Fa
toring is in some of the 
lasses de�ned under TFNP. We have seen a spe
ial 
aseis in PPA and also a randomized version in PPP, and we believe that these results
an be improved.For the sake of 
ompleteness of this text we only remark that the best known algo-rithm to Integer-Fa
toring is based on general number �eld sieve and its 
omplexityis exp�
 3qn log2 n�where n is the length of the number to be fa
tored and 
 > 0 is a 
onstant [Po96℄.On the other hand, in the world of quantum algorithms, the problem of fa
toringan integer is surprisingly easy. Shor's algorithm takes only O(n3) steps [S94℄.There are also many related stru
tural questions whi
h have not been su

essfullysolved yet. For instan
e, as we have mentioned, whether PLS� � PPP� is not known.Also a relationship between the randomized 
lass FZPPPPP and some other sub
lassof TFNP (for example PPA) is not 
lear.Reader should look into [P94℄ to see some more open problems.

5) For example 20 = 3 + 17 = 7 + 13, and 20 = 2 � 10 = 4 � 5 et
.42
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