Electronic Colloquium on Computational Complexity, Report No. 100 (2012)

Charles University in Prague

Faculty of Mathematics and Physics

NP Search Problems

Master Thesis

Author: Tomas Jirotka

Supervisor: Jan Krajicek

Prague, May 2011.

ISSN 1433-8092

Abstract: The thesis summarizes known results in the field of NP search problems.
We discuss the complexity of integer factoring in detail, and we propose new results
which place the problem in known classes and aim to separate it from PLS in some
sense. Furthermore, we define several new search problems.

Keywords: Computational complexity, TFNP, integer factorization.

Contents

I. Preface 4
II. Complexity Theory Preliminaries 6
IT1.1 Search Problems e e et 8
I1.2 Local Searcho 12
I1.3 Parity Lemma Based Search Problems.................................. 15
I1.4 Pigeonhole Principle ... e e e 21
I1.5 Separation of the Classes. ...t 22
ITI. An Upper Bound for Integer Factoring 25
IV. A Lower Bound for Integer Factoring 30
V. Further Related Problems 35
VI. Concluding Remarks and Open Problems 41
References 43

Chapter 1

Preface

In this thesis we study a specific part of complexity theory which concerns with time
consummation of the most optimal algorithms for solving problems.

It has always been a kind of challenge to compute fast and smartly. This effort has
led people to create effective algorithms and tricky methods. Unfortunately, several
problems have resisted thousands of mathematicians who have not found any recipe
to solve them in feasible time. And these are precisely the question we study in the
following chapters.

Chapter II is dedicated to introduction of the reader into complexity theory in
general, and presents seminal results about our main topic, NP-search problems. We
define a few subclasses of these problems, and show a way how they are connected.

Then we focus on an important question of modern computer science: Is integer
factorization really so hard as we expect?

Chapters III and IV partially respond to that question, although they do not
present any shocking new theorems. In the third chapter we show an upper bound
on its complexity which would mean a negative answer, however the next chapter
contains a new approach to estimating a lower bound of the complexity of integer
factorization.

In Chapter V we introduce new related questions which can be a subject of further
research as well as the list of open problems in Chapter VI.

Within the thesis we use standard notation. Natural numbers are denoted by N,
whereas the finite set of integers from 0 up to n — 1 is referred as [n]. Generally, a set
S has cardinality #5, since we use |z| for the bit length of the number z. We also
utilize a symbol GF4 to denote the finite field of size g.

Without explanation we use the big-oh notation which is a standard in the branch.
Shortly say that O(1) stands for a positive constant, or O(n) means a linear function,

4

nP® 4 polynomial etc. Likewise, the reader should be familiar with some basic facts
on graph theory, algebra and number theory.

Chapter 11

Complexity Theory
Preliminaries

In computational complexity theory we investigate algorithms for solving problems
which are in some sense optimal. There are usually two ways how to express this:
the running time of the algorithm is minimal in comparison to any other algorithm
which solves the problem, or it requires the least amount of memory. In many cases
these two conditions are not both compatible. Fast algorithms frequently need large
memory and vice versa.

However, we do not need to know the best algorithm for some problem. A typical
example is a problem called Integer-Factoring when we are given a positive integer
and we are asked to find its prime factors (or some non-trivial factor). There are a
lot of algorithms which can solve this task, but we do not know if some of them is
the best one.

In this section we consider only decision problems. These are questions of the form:
is a word x member of a set L called language?” Obviously, we have three possible
answers: yes, no, and do not know. From the knowledge of running time or needed
memory space of the optimal algorithm in the worst case we classify the problems in
some realm. The most famous classes are P and NP.

The complexity class P contains all decision problems which are solvable in poly-
nomial time (sometimes abbreviated p-time) with respect to the length of input.

First, we should explain what a deterministic Turing machine is. It is an abstract
computational model. We can imagine it as a program working on an infinite tape
divided in the squares where can be written letters by a read-write head. For a formal
definition we need three non-empty finite sets: the set of symbols A called alphabet

6

(typically we have only two — 0 and 1 — and an empty symbol b), a set of states @,
and a transition function

d:QxA—QxAx{L,R}

where the symbols R and L determine if the head should move to the right or to the
left on the tape. In each step it can move by only one square. The total number of
moves during the whole computation is the running time, and the number of visited
squares on the tape can be viewed as the required memory space. The set of states,
Q, also contains an initial state go and two final states — one for accepting state, and
one for rejecting state.

Now for the formal definition of P let us have a subset of all binary strings of arbit-
rary finite length, L C {0,1}*. Then for some binary word x of length n, z € {0,1}",
we want to decide whether x is in L. If this task can be answered by deterministic
Turing machine in time t(n) = O(n*) for all n and for all z of length n, and some
fixed k£ > 0, then L € P.

In a similar way we may define also other classes by replacing the time function
t(n). Usual choices are exp(n®®), exp(log®® (n)) etc.

A weaker concept than decision machine is an accepting machine. Its computation
is nearly the same, but it terminates only if x € L. In the opposite case we will not get
any answer. This notion is closely connected to the nondeterministic computation.
Nondeterministic Turing machine has in its set of states a nondeterministic state g-
in which it has more options what to do next. Well, it is possible that its decision
would be wrong, and so it would get “no”. We can imagine the set of all computations
as a tree. If the input x really lies in the set L, then some of the leaves are labeled by
“yes”. Due to some bad decisions we could miss them. So we say that the nondeter-
ministic Turing machine accepts the input x if and only if there exists an accepting
computation. And the length of the shortest path leading to an accepting state is the
running time. If such computation does not exist, then the running time is set to be
infinite, t(z) = oo.

Now we are able to formulate the definition of the class NP. Let L C {0,1}" is
a language. We say that L € NP iff there exists a nondeterministic Turing machine
N which accepts L and for all z € L of arbitrary length n the running time is t(z) =
= O(nF) for some fixed k > 0.

The most important question in the field is whether P = NP? Obviously the class
P is contained in NP, but the opposite implication is an open problem.

Now we shall introduce a way of reducing a problem to another one. Suppose we
have two languages, i.e. two subsets L; and L2 of {0,1}*, and also two machines

7

M, and My for deciding whether x € Li, or © € Lo respectively. We say that L; is
polynomial time reducible to Ly (and write L; <, L2) if and only if there exists a
p-time function f such that for all it holds z € L1 < f(z) € Lo.

In addition, if we have two p-time functions which can be used for two-way
translation of inputs of the problems, then these problems are polynomial time equi-
valent.

We will see a generalisation of the p-time reducibility in the section about search
problems. But the main idea is always the same.

When there is a problem in the class NP such that any other problem in NP
is polynomial time reducible to the first one, we call it NP-complete. The set of
NP-complete problems consists of hard problems which have a polynomial witness.

Complete problems have a special importance, because in some sense they mirror
the whole class. Thus when a new class is introduced there is an effort to find some
complete problem for the class.

For more information on the basics of complexity theory reader should consult,
for example, Papadimitriou’s book [P93] or Krajicek’s one [K95].

II.1 Search Problems

In many situations the concept of decision problems is weak or unnatural. For
example we may want to compute the sum of two numbers. In fact it is possible to
ask for each bit of the result using “yes-no” questions (Is the i-th bit equal to 1?) but
this is time-consuming. Let us ask for the result directly. Such computation needs
more time than the previous one, but it suffices to do it only once.

In this case we have seen that the time complexity of one computation has incre-
ased. But that is not a rule.

Usually, when we proceed from a decision to a search problem, we receive more
information in the solution. Consider the most famous problem SAT which is NP-
complete [C71]. It is given a Boolean formula ¢ and we want to decide whether it is
satisfiable. But in the search analogy we need to find some satisfying assignment or
say that such assignment does not exist. Having solved the search problem we also
have the answer to the decision one.

It should be mentioned that this reducibility is not automatic. Later, we will see
several search problems which are not equivalent to any decision problem modulo
some conditions.

The thesis is dedicated to the class of NP-search problems which is the most
studied set of search problems. This class is frequently denoted by FINP where the
letter F' stands for functional.

Let us have a P-predicate ¢ (z,y). For any z of length n = |z| we must be able
to find y of length polynomial in n, i.e. |y| = n°®) or say that no such y can exist.
Moreover the predicate ¥ must be decidable in polynomial time in the length of its
parameters, and hence in n. Then finding y for an instance x is an NP-search problem.

In a similar way, the class FP of all polynomial-time solvable search problems is
defined.

A simple example is: For given x find y such that ¢(x,y) = ¢ = 2y holds. That
is a linear equation and there should be no problem with finding convenient y if it
exists.

But in the input x there can be encoded a Boolean formula and v can require y
to be a satisfying assignment for that formula. It is obvious that a solution may not
exist, and if we were able to solve this problem, then we could solve SAT too.

In some cases we know that the solution to the problem must exist, because it
follows from an existential theorem. This is a very useful information, because it
motivates us for solving the problem. These search problems are called “total” and
in the case of NP-search problems we denote them intuitively TFNP.

This class is not very nice. There are a lot of different reasons for being a member
of TFNP starting with combinatorial lemmas, followed by number theoretic results
and ending with geometric or optimisation problems. Shortly, nearly any existential
theorem with easily verifiable solution from all of mathematics can be translated into
a search problem.

This was a motivation to define special “syntactic” subclasses of TFNP, where
all problems can be presented in a fixed format.

Before defining some of these classes we generalize the definition of polynomial-
time reducibility for search problems and introduce type 2 problems and oracles.

Definition. [BCEIP97] Type 2 search problem @ is a function that associates
with each string function « : {0,1}* — {0,1}" and each string = a set Q(«,z) of
strings that are allowable answers to the problem on input «,z. Such a problem @
is in FNP? if Q is p-time verifiable in the following sense: y € Q(a,x) is a type 2
p-time computable predicate, and all elements of Q(«, z) are of length polynomially
bounded by |z|°M).

Previously defined search problems (without functional input) are also called
type 1 problems.

By an oracle {2 we mean a set of strings. It can be helpful during the computation
of a Turing machine M. The machine M may use sub-routines in its computation,
but their running time must be counted in the total running time. When using oracles
we omit their running time and calculate only the duration of creating questions and
processing answers by M.

The oracle €2 can be viewed as a characteristic function:

1 ifxeQ,
Q(x)_{o if o g Q.

Define TFNP® to be a set of all search problems Q(€,*) where @ is total type 2
search problem, Q € TFNP?.

Definition. [BCEIP97] Suppose we have two type 2 problems, namely (; and
Q2. (See the figure 1.) We say that @1 is many-one reducible to Q2 (Q1 <m Q2), if
there exist type 2 p-time functions f, g, and h, such that h(a,z,y) is a solution to
@1 on input (o, x) for y, which is a solution to Q2 on input (g(a,x), f(a,x)). The
output of g must be again a function.

Mo —> Y C Q2(g(a’x)af(aax))

h(aaxay) %Ql(O&,QE)

g(o, x)
(:)ﬁ o v

Fig. 1. Many-one reducibility

10

We can also apply this definition to the case of type 1 problems (or only @1 of
type 1) by ignoring the functional part of the input.

If both problems are many-one reducible to each other, then we say that they are
many-one equivalent.

Here we define the most important concept for the rest of our work. The relativized
class (CQ) is a subclass of TFNP* consisting of all problems Q'(£, x), where Q’
is any problem in TFNP? many-one-Q reducible to Q. The suffix Q means that the
reduction is allowed to query the oracle. Formally, replace a by €2 in the scheme of
the reduction. Notice that (CQ)* = CQ, if Q € P.

Theorem 1. [CIY97] Let Qi,Q2> € TFNP?. The following statements are equi-
valent:

a) Q1 is many-one reducible to Q2;
b) for all oracles ©, (CQ1)? C (CQ2)%;
c) there exists a generic oracle’ T such that (CQ;)" C (CQ2)".

The proof can be found in Cook, Impagliazzo and Yamakami [CIY97].

More general type of reduction between two total problems is the so called Turing
reducibility. We say that ()1 is polynomial-time Turing reducible to ()2, if there exists
a polynomial-time machine M that on input (o, z) and an oracle for solutions of
(Q2-problems outputs some solution to Q1, i.e. y € Q1(c, x). We also shortly say that
Q1 is reducible to Q)2 and write Q1 <1 Q2.

Whenever M wants to make a query to the oracle for ()2 it must prepare a pair
(8, z), where (8 is a string function. In the case that M is a polynomial-time machine
the function 8 must also be p-time computable and it can use the input parameters
a and x, and all the questions which have been answered so far. The task of M is to
produce a correct answer y for all possible computations and answers from @)».

A simple observation is that Q1 <, Q2 iff Q1 <1 Q2 and M asks the oracle for Q)2
only once.

We enclose this section with an easy lemma, which gives us a basic connection
between search and decision problems.

Lemma 2. P = NP if and only if FP = FNP.

1) We will not need the notion of the generic oracle in this work; for its definition see
[CIY97].

11

I1.2 Local Search

An introductory paper to the complexity of local search was written by Johnson,
Papadimitriou and Yannakakis in 1988 [JPY88]. We will expose their work in this
chapter.

In optimisation there is an easy approach to finding solutions. We start in some
initial position and seek for a better one. This is being done until we move to a place
where no better neighbour exists.

From the idea one should deduce that an initial position and some neighbourhood
structure will be needed. For example consider the famous Travelling-Salesperson-
Problem. Suppose we are in some state of finding optimal path (we have a tour which
is not the best one). A classical neighbourhood is the one that assigns to this tour a
set of tours which differ from it in just two edges (so called 2-change neighbourhood).
Moreover, we need a fast algorithm which evaluates the states.

Definition. [JPY88] We define a class PLS of all polynomial-time local search
problems. Such a problem L is specified as follows:

a) L has a set Dy, of instances, which is a subset of all finite strings {0,1}".

b) For each instance z there is a finite set Fr,(x) of solutions. The terminology here
is little confusing, better would be saying for example candidates. Without loss of
generality all of them have the same polynomially bounded length p(|x|), hence
Fi(z) C {0, 110D,

c) For each candidate s € Ff(z) there is a nonnegative integer cost cr(z,s) and a
subset n(z,s) of Fr(x) called the neighbourhood of s. The goal is to find some
y € Fr(x) with locally minimal (or maximal) cost. No point from its neighbour-
hood can have smaller (or higher) cost.

d) There exists three polynomial-time algorithms I, Cr, and Nr. The first one given
x € Dy, produces an initial solution (start point) from Fp(z). The algorithm Cf,
on input = and s computes the cost c(x,s), if s € Fr(z). Finally, N has two
types of output. If there is some solution s’ € n(x,s) with better cost than s, it
returns s’. Otherwise N, returns s, and hence it is locally optimal.

There is a simple and straightforward algorithm for solving PLS problems. Just
take the initial candidate s and repeat until locally optimal solution is found: Apply
N1 to s and if it yields a better-cost neighbour s’, then set s = s’. This algorithm
will be called “standard”. We know that the set of candidates is finite. Thus the
algorithm must halt and at least one local optimum must exist. How long does the
computation take? Since F, C {0,1}?U*D enumeration of all the elements takes at
most exponential amount of time, namely 2P{=D.

12

However, one might hope to obtain the result more quickly by other means. This
evokes the following standard algorithm problem: Given z, find the local optimum s
that would be output by the standard algorithm for L on input x.

Johnson et al. proved an easy, but interesting lemma.

Lemma 3. [JPY88] ThereisaPLS problem L whose standard algorithm problem
is NP-hard.

It should be said that if finding the specific local optimum by the standard al-
gorithm is hard, it does not mean that finding some local optimum is hard as well.
So the most important problem is to evaluate the complexity of finding some local
optimum.

Since any problem in FP can be solved by a polynomial-time algorithm, we can
use it as the initial algorithm I, in the definition of PLS. This gives FP C PLS

On the other hand, any PLS problem can be solved in a way that the local
optimum is guessed, and then using the algorithm Np, the solution is validated in
polynomial time. Thus PLS C FNP.

Definition. [JPY88] A problem P € PLS is p-reducible to another problem
Q@ € PLS, if there are polynomial-time computable functions ¢ and ¢ such that

a) ¢ maps instances x of P to instances ¢(x) of @,

b) ¢ maps solutions of ¢(z) to solutions of x, and

c) for all instances x of P, if s is a locally optimal solution to the instance ¢(x) of
Q, then ¢ (z,s) is a locally optimal solution to the instance x of P.

This is an intuitive generalization to the polynomial reducibility as it was defined
in the preceding section.

As we mentioned in the introduction, a very important task is to show that there
is a complete problem in the class. Johnson et al. in their paper proposed one problem
which is PLS-complete.

It is a circuit computation problem: We have some Boolean circuit C' with m
inputs and n outputs. We need to look up for a string a € {0,1}™ such that the
output of C' on it has the minimal cost. The cost of a solution is simply the output
C(s) viewed as an integer. If (y1,...,yn) = C(s), then c(C,s) =37 27 y;.

Formally, the set of candidates Fr(C) = {0,1}™, neighbourhood of a string
s € Fr(C) is any vector in m coordinates which differs from s in only one coor-
dinate, i.e. they have Hamming distance one. To complete the definition, the initial
algorithm always returns the vector of ones, and we want to find a solution with
locally minimal (or maximal) cost.

13

Such a problem is called Flip, since the moves from one candidate to another one
in the neighbourhood structure evoke flipping.

Theorem 4. [JPY88] Flip is PLS-complete.

Corollary.

a) The standard algorithm problem for Flip is NP-hard.
b) There are instances of Flip for which the standard algorithm requires exponential
time.

The proofs of both these claims can be found in [JPY8§|.

It was also observed that the relationship of PLS to the traditional classes P and
NP is very unclear and difficult to resolve. On one side, a problem in PLS cannot
be NP-hard, unless NP = coNP. On the other side, if all problems in PLS were
solvable in polynomial time, then showing this would require discovering of a general-
purpose algorithm for finding locally optimal solutions that should be at least as
sophisticated as the ellipsoid algorithm or Karmarkar’s algorithm [JPY88].

Another remarkable problem in PLS is Max-Cut. Suppose an undirected finite
graph G = (V, E) with weighted edges w : E — N. For such graph a cut is a partition
of V' into two disjoint sets V7 and V2. The weight of a cut (Vi, V2) is the sum of the
weights of the edges connecting nodes between V; and V>. Computing the maximal
cut is one of the most famous problem in theoretical computer science and it is also
NP-complete on graphs of degree at most three [GJ79].

To use the problem in the world of PLS, we need to define a neighbourhood
structure. Schaffer and Yannakakis proposed the simplest one: Two partitions are
neighbours if one can be obtained from the other by swapping two vertices (they call
it “swap neighbourhood”), and showed PLS-completeness of finding a local optimum
for the Max-Cut problem with swap neighbourhood [SY91].

More precisely, we present the result by Elsdsser and Tscheuschner [ET10)].

Theorem 5. [ET10] The problem of computing a local optimum of the Max-Cut
problem on graphs with maximum degree five is PLS-complete.

In 2009 Pudlak and Thapen extended the definition of PLS to generalized po-
lynomial search [PT09]. Their class is called GPLS; and we can imagine it as k
subsequent iterations of a PLS computation.

Definition. [PT09] A GPLS; problem is defined by polynomial time functions
v depending on k + 1 variables and hi,...,hr depending on 2,3,...,k + 1 variables

14

resp., where the first variable is a parameter. An instance of the problem is given by a
number z (value of the parameter). The goal is to find numbers by, cz, b3, ca,... < x,
such that

v(x,bl, hz(x, b1,02), b3, ..) S ’U(:U, hl(x,bl),02, h3(x,b1, 02,b3), ..) .

The definition is inspired by a game in which two players A and B alternate in
choosing values. After k steps the game ends, and A loses v(z, b1, . ..), whereas B wins
the same amount of money. Clearly, A tries to minimize the payoff, while B wants

to enlarge it. The function v represents a value (or cost) function, and hq, ..., h are
algorithms of both players (for the first one with even indices, for the second one with
odd ones).

Particularly, if £ = 1, then there is an obvious analogy to PLS: v is the cost
function, h; the neighbourhood function, and the set of all x; < «x is the set of candi-
dates. For given x we are asked to find a feasible solution b;, such that the neighbour-
hood function h; cannot decrease the cost, i.e. the inequality v(z,b1) < v(z,hi(z,b1))
holds.

I1.3 Parity Lemma Based Search Problems

Whereas the inspiration for the definition of polynomial local search had come
from mathematical logic, in this section we will present two combinatorial classes.
They both were developed by Christos Papadimitriou in 1994. In this section we will
frequently reference to his article “On the Complexity of the Parity Argument and
Other Inefficient Proofs of Existence” [P94].

For this moment, the class TFNP will be the largest domain in the sense that
all problems will be total. To prove their totality we need some existential theorems.
These can be from any part of mathematics, namely combinatorics, algebra, number
theory but also calculus or optimisation.

In his paper, Papadimitriou considers especially combinatorial problems which are
motivated by basic graph properties. For example, if we have a finite graph, then it
has an even number of odd-degree vertices. This is usually called the parity argument.

A more complicated claim based on the parity lemma, Smith’s theorem, states
that any graph with only odd degree nodes has an even number of Hamilton cycles
through the edge xy for any vertices z and y. Thus when one has some Hamilton
path going through the edge xy, then there must exist another (at least) one. So

15

the existence of a solution is guaranteed by this theorem, and we can formulate a
problem Smith: Given an undirected finite graph G = (V| E) with odd degrees, and
a Hamilton cycle, find another one.

The input to the problem is a vector of v = #V different components, each of
length at most |v|, coding the given Hamilton path. Hence the length of input is
O(vlogwv), whereas the number of all possible Hamilton cycles might be up to

(v—1)! 2m(v-1) <U_ 1)1}—1 |

2 2 e

Relations between nodes are given by a polynomial-time function

1 if(z,y) € E,
0 otherwise.

e(z,y) = {

Since the function e is computable in polynomial time with respect to the lengths of
x and y, we speak about polynomial parity argument.

When we find a different Hamilton cycle, we will be able to check correctness of
this solution easily. But there are many possible candidates to be a solution. It is not
known, whether the problem Smith is polynomial-time solvable, but as we have seen
it is a total NP-search problem.

In Papadimitriou’s paper it was a specimen for the class PPA (from polynomial
parity argument mentioned two paragraphs before). Now we are going to define this
class formally.

Definition. [P94] Suppose we have a deterministic polynomial-time Turing ma-
chine M. For any input z of length n, the configuration space C'(x) = {0,1}" serves
as a set of graph vertices. It must hold:
(i) For v € C(x), M(x,u) returns a list of neighbours of u as a tuple (v,w), (v), or
(), where v < w, and v,w € C(x) \ {u}.
(ii) For u,v € C(x), v € M(x,u) whenever u € M(x,v).
(iii) 0 € C(z) has only one neighbour, M (z,0) = (a) for some a € C(x).

Since the node 0 has only one neighbour, we call it standard leaf and it provides
us a “witness” for the parity lemma. It could be the given Hamilton cycle from Smith
or simply a leaf in the graph G. Then the task is to find another leaf.

In the definition the machine M represents the function e from the text before,
and in addition it is able to compute the opposite endpoint of an edge in the graph.

Papadimitriou also described a lot of other problems lying in the class PPA. Let
G be an undirected graph and let G denotes its complement in some finite domain.

16

Let H(G), and H(G) is a number of Hamilton paths in G, and G respectively. Lovész
has proved that H(G) + H(G) is even under these conditions. We define Another-
Hamilton-Path as the following problem: Given a finite undirected graph G and some

Hamilton path in it, find another Hamilton path in G or in its complement G.

Next example uses the parity lemma again. Let us have a function f with
Dom(f) = Rng(f) of even size, and consider a sentence

[f(0) = 0N (Vo)z = f(f(2)] = [(Fz)r # 0Nz = f(z)].

Here the function f should have been a bijection defining a pairing on its domain.
The standard node O is lonely meaning that it is paired with itself. Due to the parity
argument there must be one more lonely element z, such that z = f(z), or some
non-standard node has to be mapped to 0.

In the problem called Lonely the function f is polynomial-time computable, the
domain consists of all zero-one strings of length n, and the task is to find a lonely
node different from 0, or some z, such that f(x) = 0.

A similar problem is Leaf. In a graph G, a leaf is a node of degree one. Like in
the definition of Smith we have the function u defining edges in the finite graph G of
degree at most two, and the standard leaf 0 having only one neighbour. The search
problem Leaf is: Given the function u and an instance x coding the size of G, find a
leaf in G other than the standard one.

Papadimitriou proposed also a problem inspired by number theory. Suppose a
system of polynomial equations in n variables in the finite field GF, for a prime p.
Chévalley’s theorem states that if the sum of the degrees of the polynomials is less
then n, then the number of roots of the system is divisible by p. If we knew some
solution to the system, then there should exist at least one more root, since the least
prime number is 2.

The computational problem Chévalley-mod-p thus is: Given such a system and
a root, find another. In a special case p = 2, Papadimitriou proved that Chévalley-
mod-2 is in PPA. However for p > 2 the problem fails to be in PPA. The class might
be called PPA-p and the parity argument should be generalized to the form: If in a
bipartite graph a node has degree not a multiple of p, then there is at least another
such node.

Then Chévalley-mod-p is in PPA-p [P94].

In our expositions we have been considering only undirected graphs. Let us use
the directed ones for a moment.

We define PPAD by modifying the previous version for undirected graphs. Sup-
pose a finite directed graph G = (V, E) on the words of length n (V' = {0,1}") which

17

has in-degree and out-degree at most one. Since it is directed, the machine M should
return an ordered pair on input s € V, namely M (z, s) = (s, s') where z is an instance
code, |z| = n, and s’ is the successor of s. In other words, there is an edge from s to s’.
We use the standard node 0 as a witness anew. It has only one edge going out, but
no one coming in. We are asking for another vertex whose in-degree plus out-degree
equals to one. Such a node is called a sink, or a source respectively.

The class PPAD is the largest set of problems of the type described in the previous
paragraph, which is closed under reductions.

An easy observation is formulated in the following theorem.

Theorem 6. [P94] For the functional classes it holds

FP C PPAD C PPA C FNP.

PPAD is under PPA, since we can forget the direction of the edges in the de-
finition of a “directed problem” and we obtain a similar undirected version. As we
have mentioned it is not know whether these inclusions are proper, or if there are
equalities. Both are possible, but it is believed the first one is proper.

Sperner’s lemma is a well-known claim speaking about colouring of a triangulation.
In two dimensions it states that any admissible colouring of any triangulation of the
unit triangle contains a trichromatic triangle. Suppose we have three colours, 0, 1,
and 2, and divide the triangle 012 into approximately n?/2 smaller triangles. Every
vertex receives a colour. The colouring is admissible, if each vertex of the big triangle
obtains its own name, and no vertex on the edge 5 of the original triangle receives
colour 3 —¢ — 5. Then a trichromatic triangle other than the outer one can be found.

The outer trichromatic triangle will represent the standard source in the following
computational problem 2D-Sperner: Given an integer n and an algorithm M assig-
ning to each point p = (i1,42,43), with 41,423,493 > 0 and i1 + i2 + i3 = n a colour
M(p) € {0,1,2}, such that i; = 0 implies M (p) # j; find three points p1, p2 and ps,
such that their pairwise distances are one, and {M (p1), M (p2), M(ps)} = {0, 1, 2}.

Although the generalization of the problem in higher dimensions does not seem
obvious, the Sperner’s lemma is valid in any dimension and the corresponding com-
putational problem is in PPAD.

For example in three-dimensional space, the problem 3D-Sperner asks as follows:
Given an integer n an a polynomial-time algorithm computing for a point of the
n X n X n subdivision of the cube an admissible colour, find a tetrachromatic cubelet.

Theorem 7. [P94] For any k > 2, kD-Sperner is in PPAD.

18

We should also mention the computational problem inspired by the Brouwer’s
theorem: Any continuous function f from the unit simplex to itself has a fixpoint,
i.e. there exists a point z such that f(x) = x. Since the proof is based on Sperner’s
lemma, the corresponding problem is in PPAD too.

But we need to represent a continuous function by a Turing machine. This is
probably impossible, and so a simplification is used. For a given natural number n,
and a point x in the unit cube with coordinates multiples of 1/n machine M returns
in polynomial time a vector u(z) such that |u(z)| < 1/n® and f(z) = x + p(z) lies in
the unit cube. Thus the function f can be extended to a piecewise linear map using
the interpolation. In the problem Brouwer we are seeking for a point x satisfying
f(x) = =x.

The problem Brouwer is in PPAD.

Finally, we consider the Nash’s theorem. He has found that there always exists
an equilibrium in the following game. There are given two m X n matrices A and B,
consisting of numbers a;;, which is the payoft of player A when A plays strategy ¢
and B plays strategy j; b;; is the payoff of player B. The game is not zero sum, so
A+ B # 0. A Nash equilibrium is a pair of strategies ¢ for A and j for B, such that
neither A nor B have an incentive to change strategy (for all k it holds ax; < ai;, and
bil S bij fOI‘ all l).

For a convex space of strategies, Nash has shown that an equilibrium exists, but
in our situation the space is discrete. Papadimitriou solved this problem using a
probabilistic distribution over the rows and columns of the matrices. A row m-vector
x = (x1,...,Tm) is a mixed strategy of A, if for all ¢ it holds z; > 0, and > x; = 1;
and analogically for a column vector y for the player B. These two strategies are in
equilibrium if 2’Ay < xAy for all mixed strategies z’, and xBy' < zBy for all y'.
Such an equilibrium always exists. The problem Nash is defined in this way: Given
two integer matrices A and B, find a mixed strategy equilibrium. It is not known,
whether there is a p-time algorithm for this fundamental problem.

However, we know that Nash is in PPAD.

We have already explained the importance of complete problems for the classes.
Papadimitriou in his seminal paper showed some PPAD-complete problems, but no
one PPA-complete.

Theorem 8. [P94] 3D-Sperner is PPAD-complete.

The proof is described in [P94]. It is based on construction of multicoloured tubes
leading from the standard leaf to a solution throughout the cube.
Also Brouwer is PPAD-complete.

19

In 2001, M. Grigni generalized the result by Papadimitriou and showed for some
generalization of Sperner problem to be PPA-complete [GO1]. The most important
difference is in considering non-orientable facets in the definition of the problem.

Grigni used a d-manifold, which is a topological space covered by open neighbour-
hoods homeomorphic to the Euclidean space R%. In an Euclidean space, a d-simplex
is the convex closure of d + 1 affinely independent points, and a face of a d-simplex is
the convex closure of its corner points. A face with d corners is called a facet.

For a given d-manifold, a d-triangulation is a finite collection of d-simplexes co-
vering the manifold, such that each pair of simplexes is either disjoint or intersecting
on a common face. Each facet is shared by at most two d-simplexes. If it is only one,
then the facet is situated in the boundary of the manifold. Having a d-triangulation,
we may colour its points with the colours from the set {0,1,...,d}. A simplex, which
contains all d + 1 colours in its points is called full-colour; similarly for a facet.

Suppose it is given a d-triangulation, a colouring with no full-colour boundary
facet, and a full-colour simplex. Sperner’s lemma states that there exists another
full-colour simplex.

Corresponding computational problem G-Sperner has an input x of length n = ||,
such that 2P(™ is the number of triangulation points in one direction for a polynomial
p, and uses a polynomial time Turing machine M describing a 4-colouring of the
vertices of the triangulation: For each ¢,j,k € {0,..., N} the colour of the point at
coordinates (i/N,j/N,k/N) is equal to M (z,i,j,k) € {0,1,2,3} with the restriction
that S(z,0,j,k) = S(z, N,N — j, k).

Theorem 9. [GO0l] G-Sperner is PPA-complete.

Grigni’s proof is similar to Papadimitriou’s one, but it employs more sophisticated
notions from topology. Reader should consult [GO1].

The class PPADS is a variant of PPA; in [P94] it was called PSK. A natural
complete problem for PPADS is Positive Sperner’s Lemma for dimensions three
and above, which is exactly like Sperner’s Lemma except that only a panchromatic
simplex that is positively oriented is allowed to be a solution [BCEIP97].

The corresponding problem is called Sink: For a given directed graph on {0,1}"
with in-degree and out-degree at most one in which 0 has in-degree zero and out-

degree one (it is called a source), find a vertex with in-degree one and out-degree zero
(sink).

20

I1.4 Pigeonhole Principle

The pigeonhole principle is another combinatorial lemma which states that there
must exist elements of some properties. Suppose f :{0,1,2,...,N} — {1,2,...,N}
is a polynomial time function. Such a function cannot be injective, since the size of
its domain is strictly larger than the size of the range and both are finite.

The point is that we are given a big N which is represented by n bits, and it is
claimed that the function is injective. Because that is impossible, there must exist a
counterexample; i.e. an element = € {0,..., N} such that f(z) € {1,...,N}, or two
different elements z,y € {0,..., N} which satisfy f(x) = f(y). The computational
problem Pigeon is: With a given number N and an access to a function f find a
counterexample.

It is again a type 2 problem which is in TFNP, because having a solution we
need only at most two queries to f (hence only constantly many) to verify the result.

All the problems which are polynomial time reducible to Pigeon create the class
PPP (polynomial pigeonhole principle). Thus the problem Pigeon is a natural com-
plete problem for PPP. The class was independently invented by Papadimitriou and
Cook [P94].

There are many natural problems which can be solved easily using the Pigeon
oracle. This means that we reduce a problem to an instance of Pigeon in polynomial
time and ask the oracle for a solution. Having that solution to the Pigeon instance it
is easy to reconstruct a solution to the given task (again in polynomial time).

For example the famous Discrete-Logarithm problem is described by two numbers
p (prime number) and «a (usually a generator of the multiplicative group Z;). Then
for an instance y € Z; the question is: What is a value x for which the equality
a” = ymod p holds?

We show a simple construction. For all ¢t € {0,...,p — 1} define a function
ot ifat £y,
f)=40 ifa’ =y,
y ift=0.

It is known that this function is polynomial time computable. Now use the Pigeon
oracle. Since exponentiation on the invertible subset of a finite field is injective, the
only collision with the pigeonhole principle is for ¢ such that o' = 0. This is the
solution.

If we could solve this instance of Pigeon effectively, then we would be able to
compute the solution to any instance of Discrete-Logarithm problem.

21

In general, the Pigeon oracle is capable to invert any permutation. Let m be a
polynomial-time computable permutation of a finite set S which does not contain 0.
Suppose that we want to know a preimage of some y € S in the permutation 7. It is
sufficient to construct a new “permutation” of S U {0}. Define

[7(z) fzeS,
cr(ac)—{y ifx=0.

It is easy to see that o defines an injective map from SU{0} to S with only one error
which is in y.

Since all the encryption functions are polynomial-time pseudorandom permutati-
ons in fact, none of them is resistant against the “pigeon oracle attack” described
above. The same holds for hash functions.

I1.5 Separation of the Classes

Recall that a relativized problem is defined using an oracle whose computation
time is considered to be a constant. For instance, let us in the last problem Pigeon
replace the polynomial-time function f by an oracle. The obvious advantage is that
we do not have to wait for its response, but on the other hand, we cannot verify its
answer. In other words we have to believe to the oracle.

A simple example shows that relativized Pigeon is not solvable in polynomial
time. We prove an easy lemma, because we want to explain the diagonal method
which we will use in the following chapters.

Lemma 10. There does not exist polynomial time oracle machine M that solves
Pigeon®’ for all oracles Q.

Proof. Suppose the contrary. Let be an n-bit input defining the domain [2"] =
= {0,...,2" —1} on which an injective mapping u into [2" —1] is claimed to exist. The
mapping u is computed by an oracle (). We have a polynomial time Turing machine
M with an access to the oracle 2 which can find a contradiction with the injectivity
of u. The oracle responds questions of the form “what is an image of ¢7” After at
most n® steps (for some k > 0 fixed) we have to stop the computation and give a
result.

But during the run of the program the machine M has visited only at most

n® values of u, and for sufficiently large n it holds n* < 2". Thus the oracle

22

has an important advantage. It can choose values u(t) independently with only two
restrictions: Different questions must be answered differently, repeated questions must
be answered always with the same value.

The machine M cannot find a contradiction in polynomial time, if the oracle
behaves in the described manner. Since M must output a solution, it chooses a pair

of non-visited points (y,y’) € [2"], but after asking oracle, the verifier will discover
that Q(y) # Q(y'). |

This method of separating hard problems from some smaller class has come from
mathematical logic and it was used, for example, by Beame, Cook, Edmonds, Impag-
liazzo and Pitassi [BCEIP97] in our context. In the following paragraphs we are going
to list known results in this effort. These are done in a similar way as it was in our
lemma, and since the classes are defined using a few “specimen” search problems we
obtain separation of classes as corollaries.

Theorem 11. [BCEIP97] Lonely is not reducible to Pigeon.

Here mentioned problem Lonely is based on parity lemma and thus it is in PPA.
The task is for a given pairing of even number of vertices and a standard lonely node
of degree zero, locate another lonely node.

The proof of the theorem is by contradiction. It is supposed that we can solve any
instance of Lonely using a Pigoen oracle. What is hard is to construct answers of the
oracle in a way such that the machine solving Lonely is not able to uncover a lonely
node.

Because Pigeon is a natural PPP-complete problem, any search problem in the
class must be reducible to it.

Corollary. There exists an oracle I' such that PPA" ¢ PPP".

It is not hard to see that Sink is many-one reducible to Pigoen: Construct the
input for Pigeon as a function f, which returns 0 on a sink, and for other vertices wu,
if there is an edge from u to v, f(u) = v.

Theorem 12. [BCEIP97] Sink is not reducible to Lonely.

Since we know that Sink € PPP N PPADS, we can establish the following theo-
rem.

Corollary. There exist oracles I' and A such that
a) PPADS" ¢ PPA';

23

b) PPP> ¢ PPA~.

Some more results are by T. Morioka [MO01], who separated classes PPP and PPA
from PLS.

Theorem 13. [MO1] There exist oracles I' and A such that
a) PPAY ¢ PLS';
b) PPP* ¢ PLS*.

And finally, in [BMO04], J. Buresh-Oppenheim and T. Morioka partially answered
the opposite.
Theorem 14. [BMO04] There exists an oracle I' such that the separation
PLS" ¢ PPA" holds.

We have described a comprehensive list of separation results in the relativized
world of NP-search problems. Whether PLS" C PPP' or not, it is not known to
us.

As we promised in the second part, some of the search problems are not equivalent
to any decision problem.

Theorem 15. [BCEIP97] None of the problems Sink, Leaf, or Pigeon is
polynomial-time Turing equivalent to any decision problem.

24

Chapter III

An Upper Bound for
Integer Factoring

We have already mentioned the importance of the problem called Integer-Factoring .
It is believed that there are instances of it which are hard to solve, and this fact is
utilised in many cryptographic protocols like RSA. But nobody can prove that, and
hence the belief is based only on our experiences with different algorithms which solve
the problem. These are numerous; for example naive division, Pollard’s rho method,
and quadratic or number theoretic sieves.

Let us formalize the problem Integer-Factoring. 1ts input is a composite integer N
of length n, and the task is to find a whole number d such that d divides N and
1<d<N.

In average case the problem is relatively easy to solve. Consider a random integer;
with the probability 1/2 it is divisible by two, with the probability 1/3 it is divisible
by three etc. If we had a list of all prime numbers less than 100, then the probability
that a random number would have a divisor among these primes is safely more than
75 %.

That is why in cryptographic applications there are implemented sophisticated
methods of finding secure pair of large prime numbers. These are then multiplied and
the result is being used and considered impossible to be factorized back.

Hence we will study the case N = pq for two different prime numbers p and gq.
Moreover, these primes are usually of roughly the same bit length, but this assumption
is not very important in our case.

In this chapter we are going to present some results which create an upper bound
for the complexity of the Integer-Factoring problem. On the other hand, in the next

25

chapter we describe a method of estimating a lower bound for the same. Shortly,
our aim is to insert the problem to a subclass of TFNP, but preferably far from
polynomial-time solvable problems.

Let us define a special case of the Integer-Factoring problem. Suppose that
N = 1mod4 (i.e. the remainder after the division of N by 4 is equal to one), and —1
is not a square modulo N. The last condition says that there does not exist © < N
such that > = —1 mod N.? Numbers satisfying these two conditions will be called
“good”.

Intuitively, the Good-Integer-Factoring problem is: Given a good integer find its
nontrivial divisor.

Proposition 16. Good-Integer-Factoring is in the class PPA.

We have proved this independently with Joshua Buresh-Oppenheim, whose proof
is a little different from our argument; see [B10].

Proof. Consider a good integer N = pq. Then h = (N —1)/2 is even. We construct
a graph on v = 2/'°8 "1 vertices from the set {1,...,v} in several steps (consult the
figure 2 bellow).

a) Identify numbers x < N with their opposites —z modulo N, i.e. x and N — x are
both represented by only one node. (In the picture this is shown by the equivalence
symbol ~ .)

b) Every vertex receives a unique name — an integer between 1 and v.

c) For each ¢ € {1,...,h/2} create an edge between 2¢ and 27 — 1.

d) For eachi € {h+1,...,v — 1} add an edge between 7 and ¢ + 1.

e) For each i € {1,...,h} create an edge between i and i ' mod N, if the inverse
exists. If i™* > h, use —i~ ! mod N instead.

f) Add an edge {h + 1,v}.

We claim that this is a valid instance of Leaf with a standard leaf 1. Since
—1mod N is not a quadratic residuum, the equation z=' = —z does not have a

solution, and hence in the fifth step we always join two different nodes.

When the inverse element of ;! is greater than h, the inverse of —i~! mod N must

be smaller than h, and vice versa. Thus there cannot be three different neighbours of
the element ¢ or —¢, and so there is no problem in our construction, step e.

2) This really is possible: 82 = 64 = —1 mod 65 where 65 = 5 - 13, and 65 = 1 mod 4.

26

v—1

oh 43

h+ 2

h+1
h=2(N-1)~i(N+1) .
hlmodN//lh—le—h+1 o
(h—1)"'modN =1
o
4 'modN =
3~ mod N Q4~N—4
27 'modN 3~N-3 =
\I ’
1o N—1 -

Fig. 2. Construction of the graph

The vertices which do not have two edges, are only the noninvertible integers
modulo N, and the standard leaf, of course. So if we could solve the Leaf problem
effectively, we would be able to find a non-trivial factor of a good integer, because the
noninvertible elements of Zxy are precisely those numbers which do have a nontrivial
greatest common divisor with N. But such an integer can be only a multiple of p or
q- Note that the Euclid’s algorithm may be used to quickly compute the GCD. O

Although the proposition holds only for good integers, it has a large impact. This
is due to the cryptographic importance of the so-called Blum numbers. These are
numbers of the form N = pg where p and ¢ are Gaussian prime numbers with no
imaginary part. For us, the most significant fact is that all these numbers are equal
to one modulo four. Also the second condition that —1 is not a square modulo N
is sometimes useful in applications; see for example Feige-Fiat-Shamir Identification
Scheme which is described in [K10].

An interesting thing is that the construction of an PPA instance is relatively easy
for N = 1mod 4, but it seems unable to make it for the numbers equal to 3 modulo 4.
We leave this problem open.

27

On the other hand, again J. Buresh-Oppenheim proved [B10] that the general case
of the Integer-Factoring problem is a member of randomized PPP class. That means
that there exists a reduction to a Pigeon instance which is able to find a factor in
zero-error probabilistic polynomial time; that is a search variant of the famous ZPP
class.

Proposition 17. [B10] Integer-Factoring is in FZPPYFF

Since this result is closely related to the main topic of this thesis, we include a
sketch of the proof.

Proof. First, we test if the given N is not a multiple of 2 or a prime power.
Otherwise, construct a random instance of Pigeon on strings of length |N|. Cho-
ose two random integers a,b < N. If one of them is noninvertible, then return its
greatest common divisor with N. This happens with probability 1 — a® where « is a
fraction of units in Zy.

Suppose that both these numbers are quadratic non-residues. This occurs with
probability % . % = %, since N is divisible by at least two odd primes, and there is
at most a half of quadratic residues modulo a prime.

Construct a mapping on Zn:

0—a,
z? if z is a unit and z < (N — 1),
z+— ¢ br® if z is a unit and z > (N + 1),
0 if x is a non-unit and x # 0.

Finally, map each string with value at least NV to itself.

If the Pigeon oracle returns an element which is mapped to 0, then compute its
greatest common divisor with N, and return it. If it returns two different elements
x,y with the same non-zero image, then neither nor y is 0. Because b was supposed
to be a non-residuum and invertible, both these numbers are mapped in the same
way, hence we have 2 = y?> mod N, or bz? = by? mod N. From these equations one
can obtain a factorization (z 4+ y)(z — y) = O mod N.

Recall, that with probability 1 — a? either a or b is non-invertible. This leads
to a solution. Otherwise, at most one quarter of elements of [N — 1] are quadratic
residues. Both these numbers are non-residues with probability at least 9/16. Since
every quadratic residue has two square roots which are greater than N/2, and only
a half of them is of the form bz? for some = > N/2. The conditions on a and b are

28

all satisfied in at minimum 9/16 — 1/4 cases, and thus the algorithm succeeds with
probability at least

1—a2+a2<%—%):1—2a2>i.

-

It would be nice to derandomize this result. Though it follows from the Extended
Riemann Hypothesis, which guarantees the existence of a non-residuum in the range
[1,0(log® N)] as Eric Bach showed in 1990 [B90]. Even in 1975 Gary L. Miller proved
some other interesting theorems based on the assumption that ERH is true.

Theorem 18. [M75] Let N = pi'...py is an integer. If Extended Riemann
Hypothesis is valid, then the following functions are polynomial-time equivalent:

a) prime factorization N — ((p1,v1),...,(Pm,vm));
b) Euler function

e(N) =py Hpr — 1) . copir ™ (pm — 1)

c) Carmichael A-function

AN) =lem (py" " (pr = 1), 05 (pm = 1)) ;
d) N(N)=lem(p1 — 1,...,pm — 1).

Nevertheless the Buresh-Oppenheim’s result establishes the question of some re-
lationship between probabilistic versions of PPA and PPP, or their connection to
the class FZPP.

Also note, that there is a direct relation between some cryptographic primitives
(e.g. hash functions or modular exponentiation) and the class PPP or even a class
WPPP corresponding to the weak pigeonhole principle [CK98|. That is a similar
statement to the pigeonhole principle with the only one difference: The size of the
domain is twice larger than the cardinality of the range.

29

Chapter IV

A Lower Bound for
Integer Factoring

In this chapter we are aiming to establish a lower bound of sorts to the complexity
of the Integer-Factoring problem. We are going to construct a structure with a bi-
nary operation (. That model will represent the structure of whole numbers with
multiplication. Adding more and more axioms we will be getting closer to the natural
pattern. We want to show that even with a lot of axioms for multiplication supposed
on (there is still not an oracle p-time machine M factoring successfully for all such
B’s.

Let N be a composite integer. The whole computation of an oracle p-time machine
M takes a place on the domain of all strings of polynomial length with respect to
n = |N|. Call it D = {0, 1}”d for a constant d > 0. Obviously, we have the binary
representation of N in D. We want to find some “factor” of N with respect to an
arbitrary binary operation /3 defined by an oracle.?

The oracle has the following advantage. Whenever it is asked for some result
B(z,y), z,y € D, it can response any element from D.

When there are not any further conditions on oracle’s answers it should be clear
that we cannot guess the “factor” of N in polynomial time with respect to n. If we
had one (call it), the oracle would redefine 8 in a way that r would not “divide” N.

Now we are going to restrict the space of all possible 8’s on D x D. This will be
done by adding more axioms about (3. For example, by requiring the commutativity

3) Here we use the words factor and divide in quotas which means that we do not mean
their proper meaning, but the modified one.

30

of B we reduce the number of queries to a half. Now we do not need to ask oracle for
B(z,y) and B(y,z). It suffices to ask only for one of these values.

But there is still exponentially (in n) huge space of possible answers. Thus the
oracle is able to define 8 in a way that in polynomial time in n it is impossible to find
some “factor”.

We can use this method of diagonalising also for the axioms of field. So requiring
for example associativity of 3 does not help us. Details are described in the proof of
the Field problem lemma in the following chapter.

The structure of natural numbers with multiplication has, in fact, many other
properties. Let us fix some positive integer . Then the function f.(y) = = -y is
monotone in its variable y. It is even linear, but we have only one binary function in
our model, so the linearity would be hardly definable. For monotonicity we need only
some ordering < on the underlying set D.

The ordering is provided by another oracle, and thus we cannot compute the
successor number for a given one etc. The only admissible type of query is to compare
two elements of D, i.e. which one is smaller, or greater than the second one.

Now the task is to define oracle’s behaviour when it is asked for values of monotone
functions fB(z,-) for all x € D. We need to avoid leaking information about the
“divisors” of N during the polynomial-time computation of Turing machine M.

Suppose that M’s run takes n* steps for a fixed k& > 0. Since the space of all
possible answers is of size 2"d, the oracle can construct its answers this way:

a) Let a is the minimal element in D with respect to <.
b) For any x define (a,z) small enough.

c) For arbitrary fixed and any ¢ > b > a define S(c,x) > B(b,) such that the gap
between these two values is large enough.

Now we are expected to make precise what the word “enough” in fact means.
Recall that the machine M can ask for at most n* function values, but there are on
possible answers. If the distribution were uniform, then there would be approximately
27“n~F different elements from D between two without delay consecutive values of
B(z,-). This number is still exponentially big in n. And so the machine M cannot go
throughout the whole interval (b,c) and locate a contradiction with some axiom, or
a “divisor” of N.

Lemma 19. Let kK > 1 be fixed. There exists No € N such that for any N > N
consider its length of binary notation n, and denote D = {0, 1}"0(1). Let (D,p) is a
structure with the underlying set D with a linear ordering <, and a binary operation
B. Let B(x,-) is monotone with respect to the ordering < for all x € D. Then, in time

31

n®, it is impossible to find a pair (z,y) € D x D such that §(z,y) = N, even if we
have oracle accesses to 8 and <.

Proof. For any x,y € D the oracle does not say that B(z,y) = N. This is possible
thanks to the argumentation above in the asymptotic case for N large enough. [

Contemporary algorithms for integer factorisation are based on one idea: find a
number £, 1 < t < N, which is not relatively prime to IN. Then their great common
divisor produces a factor of N.

Consider the typical RSA case when N = pq for some prime numbers p and
q. These numbers are usually of similar lengths. This is the hardest situation for
factoring algorithms, because the set of all ¢’s satisfying the condition of the previous
paragraph is tiny. Its size is precisely p + q — 1.

Since the interesting instances are for IV very large, we compute a ratio

lim {t11<t<N,ged(t, N) > 1} ptqg—1 _
P,q— 00 N p,q—00 pq

1+4-1 1 1 1
— lim —P P — Jim <—+———> —
D,g— 00 q P,q—00 \ (p bq

Hence the probability of finding the solution at random is negligible. Furthermore
there would be no problem when we added an oracle for the greatest common “divisor”
~ into our model. For a “lucky” input it returns immediately a pair of elements (d1, d2)
such that £(di,d2) = N. On the rest of the set D it returns the greatest common
“divisor” of the given numbers with respect to 8. Note that the “lucky” domain of v
is very limited. Its size is roughly v N ~ 2"/2

We claim that after the computation of M we are able to define a set of “non-
touched” elements of size v/ N.* It suffices to have n such that n® < 2"/2 or equiva-
lently k < n/2logn. Since k is a constant, such n must exist.

The construction is now easy. Choose the least element r and the second least s
for which the machine M has not asked yet. Define r’s “multiples” as every odd con-
sequent number; for s take the even ones. Here by odd and even we mean their order
with respect to the ordering <. Repeat this by we have v'N non-touched elements.

Having these two sets of the same size v/ N /2 we can define 3(i, —i) = N where
symbol ¢ means the i-th least r’s “multiple” and —: represents the i-th largest s’es
“multiple”.

4) Consider the even number closest to v N.

32

Notice, that for some ith multiple of r there exist two elements v, w, such that
v < ir < w and there is not any other element among them. Suppose the machine
M has asked for values B(v,z) and B(w,x) for some x € D. Then, by monotonicity,
it must hold B(v,z) < B(ir,x) < B(w,x). Its existence after our construction follows
from the large gap between any pair of consecutive values.

Lemma 20. For any k > 1 it can be found an integer Ny such that for any N > N,
n = |N|, there exists a set D of size 2"°" with a linear ordering <, and two functions
B and v on D. The function [is commutative, associative and bilinear. The function ~
on input (a, b) returns the largest element ¢ € D such that $(c, A) = a and B(c,B) = b
for some A, B € D, or it returns 1, if such element does not exist. Then, considering
functions B, v, and < as oracles, in time n" it is impossible to find a pair (x,y) € Dx D
such that B(z,y) = N.

Proof. It follows directly from the construction discussed before the lemma. -

We can also generalize the oracle 8 in the following manner. Suppose we allow
questions to 8 in the form “B(x,?) = y”. In other words, this asks for the “ratio”
y/x. It is obvious that due to this generalization we get closer to the model of natural
numbers, since we can divide integers as well. However, not every combination of
dividend and divisor is allowed. Hence the oracle must have competence to refuse the
input, and say these numbers are not divisible.

Let us summarize the possible queries to 8 for arbitrary =,y < N.

“B(z,y) =77 ... return z,

“B(IL’, ?) — yv o {return z € D, if “6(.%',2) — 27 has answer v,

or return NO.

Proposition 21. For any k > 1, there is an Ny such that for all N > Ny the
following holds. Let us denote n = |N| and D of size 27" the underlying set. There
are two oracles 8 and v which can answer questions as above for any =,y < N, and
a linear ordering < oracle to compare elements from D. The function defined by (is
bilinear, associative and commutative, the function defined by ~ is commutative. In
time n” it is impossible to find a pair (x,y) € D x D such that 3(z,y) = N.

Proof. We should only explain how to define the “quotients”, because the rest is
clear from the two lemmas before.

33

The first obvious rule is very simple. For any x the queries 8(z,7) = N must be
answered NO. Of course, there exists an element y such that 5(x,y) = N, but there
are exponentially many (in n) numbers in D, whereas we the machine M has only
polynomial amount of time. Thus the machine seeking for y must always overpass it.

Other results of the form SB(a,b) = ¢ # N are useless to M, since there is no
metrics to measure distance between two elements. It is irrelevant if the relation was
obtained as a “product” or “quotient”. The oracle 8 should situate its answers far
between as it was described earlier. -

34

Chapter V

Further Related
Problems

Every finite field is of size N = p" for some prime number p and a positive integer r.
We will use the set {0,1,..., N — 1} as a universe of the field. This can be identified
with N. Then there exist two binary functions s, ¢ (addition and multiplication), two
unary functions u, v (additive and multiplicative inverses), and two constants 0,1 in
the field. These functions must satisfy the following axioms:

a) (Vz)(Vy) s(z,y) <N,
b) (Vz)(Vy) t(z,y) < N,
c) (Vo) u(z) < N,
d) (Vz) z=0VO0<wv(z) <N,
e) (Vz)(Vy)(Vz) s(z, s(y,2)) = s(s(z,y), 2),
f) (Vo) (Vy)(Vz) t(z, iy, 2)) = t(t(z,y), 2),
) (V:U) S(CL’,O) = S(O,CL’) =,
(Vo) t(z,1) = t(1,z) = z,

Clearly, all of these quantifiers are bounded by N.

Suppose we are given an integer N which is not of the form p”. Then no finite
field of cardinality N can exist. Thus it is possible to find elements which violate one
of the axioms above. Precisely, we look for a four-tuple (i,b, ¢, d) where ¢ stands for
the index of axiom which is not satisfied, and b, ¢ and d are the witnesses. When for

35

example axiom c is violated, only the second parameter is used and the rest is an
empty word A.

Obviously this is an oracle-NP-search problem, since the length of the tuple is at
most O(1)+3log N. Its input is an integer N not of the form p” (this can be witnessed
by its two different divisors and verified in polynomial time as well as it is possible
to verify the result in polynomial time), and an access to an oracle ® which defines
the functions s, ¢, v and v. We may consider that constants 0 and 1 are interpreted
as usual. The task is to find a counterexample to the claim that the oracle defines a
field. Call this problem simply Field.

We shall prove that Field is not solvable by a p-time machine which has an access
to a PLS-oracle. The proof is based on a similar result of Chiari and Krajicek of 1998
who showed that the weak pigeonhole principle is not solvable in PLS [CK98].

Proposition 22. There is not an oracle PLS problem L% such that for any oracle
® defining a Field problem every local optimum of L® contains a solution to ®.

Proof. Suppose the contrary. Let L be a PLS®-problem such that for every field
functions s, ¢, v and v of F' it gives us a solution to the problem Field. Whenever
S = (x,y, z) is a projection of some locally optimal solution for the instance N of the
problem L(s,t,u,v), then one of the following holds:

a) s(z,y) > N,

b) t(z,y) > N,

c) u(z) > N,

d)z#A#0AN0=wv(z)orx Z0Av(z) > N,

e) s(z,s(y,2)) # s(s(z,y), 2),

f) t(z,t(y, 2)) # t(t(z,y), 2),

g) s(z,)758(0 x) ors(x 0) # x or s(0,z) # =,

h) t(z,1) # t(1,x) or s(x,1) # z or s(1,z) # «x,

i) s(z,u(z)) # s(u(z),z) or s(z,u(x)) # 0 or s(u(z),z) # 0,

j) 7é 0N t(z,v(z)) # t(v(z),z) or # 0N t(z,v(z)) #1
orx #0At(v(x),z) # 1,

k) t(z,s(y, 2)) # s(t(z,y), t(z, 2)),

D) t(s(z,y),2) # s(t(z, 2),t(y, 2)).

We claim that no such problem L can exist. We will continue in this manner: Fix
an arbitrary L and find some N and suitable functions s, ¢, v and v such that none
of the conditions above is satisfied for all locally optimal solutions.

Consider the cost function ¢z, and the neighbourhood function ny, associated to L.
We identify these functions with the oracle p-time Turing machines computing them.

»

36

The machine computing L asks for values of the field functions. These functions have
to be defined in such manner that the returned values do not contradict with the
axioms of the field. This is done by progressive definition by the field oracle .

This oracle uses some infinite field K and defines a partial isomorphism ¢ between
it and the hypothetical one with universe {0,..., N — 1} denoted F,

v F— K.

When it is asked for value of a term on some elements, it represents these elements
as members of the infinite field, calculate the term, and finally it translates the result
back to the original field.

Note that the partial isomorphism defines also several values which have not been
asked during the computation, because of the axioms. Suppose that the machine has
already known values s(a,b) = d, s(c,d) = e, and s(b,¢) = f. Then it must hold
s(a, f) = e, since s(a, f) = s(s(a,b),c) = s(c,d) = e, and a different result would
witness the violation of the axiom e.

Let ¢o be the minimal possible cost for all possible computations of machine cr,
where the oracle calls are answered as it was just explained. Fix some computation
leading to the solution of cost co.

After at most m = (log N)O(l) steps the computation must halt and the machine L
outputs a locally optimal solution. Since the oracle ® answers all the queries in a way
preserving the isomorphism ¢, the machine L cannot know any witness for Field. It
could have asked for at most m function values. These were defined as images of ¢ in
infinite field K, and thus they do not violate any axiom of fields. If there is an element
b in L’s result such that ¢(b) was not defined during the computation, define its image
under ¢ in order that no axiom of fields is violated. Since these elements can be at
most three, this can be done if m + 3 < N. Because there exists N sufficiently larger
than m, there must exist instances of the problem Field, which cannot be solved by L.

Now it is clear that the L’s answer (i, b, ¢, d) is always wrong because we are able
to define function values in ¢-th axiom how we want, and there is not any violence of
the field axioms among the previously answered values.

All what we need is to choose sufficiently large N. That is a number for which

there is an exponential gap between m and N itself. Since we have considered arbitrary
PLS-oracle L we are done. -

It would be nice to establish a relationship between previously defined Field pro-
blem and commonly known Integer-Factoring problem. Recall that this stands for
the question of finding some non-trivial factor of a given integer. However, we do not
know such a formal relationship.

37

Now we shall consider another problem which is in some sense similar to the Field
problem, and thus it is expected that they will have analogous properties.

From the theory of finite fields it is known that the only subfields of GF,: are finite
fields of cardinalities p® where s|r. This structure is well-studied, hence no surprise
can be hidden there. To prove that some structure A is a substructure of a larger one
B, we need to verify two things:

a) All functions defined on B are extensions of those defined on A.
b) Every function in A is closed in A, i.e. given arguments from A the function has
value still in A.

Suppose for a while that we are given two finite fields of different sizes. Let us
denote them Fi, F>, and their cardinalities Ni, N2, respectively. Without loss of
generality we may suppose that No > N;. Since both structures form a finite field, we
deduce that N1 = p®, and N2 = ¢" for some prime numbers p, ¢ and natural numbers
s,r. If p = q, we require s [r in addition.

It is claimed that F} is a subfield of F5. From the text above we know that this is
impossible, and thus we should be able to find a witness such that F} or Fs is not a
field, or F} is not a subfield of F» (and hence one of the conditions above is violated).

Let us define a new NP-search problem Subfield: Given two integers N1, N3 as
above, and accesses to oracles ®; and P2 defining F; and F&, find a witness that one
of Fi, F> is not a field, or that F} does not form a subfield of Fb.

Like in the first case we prove that this problem is not solvable easily.

Proposition 23. There is not an oracle PLS problem L**'®* such that for any
oracles ®1, ® defining a Subfield problem every local optimum of L®®z
solution to Subfield (®.,®2).

contains a

Proof. Similarly, in the first proof of this chapter we show that it is possible to
define the oracle answers in a way that no contradiction can be found in polynomial
time with respect to the length of input. Here we consider as the input the sizes of
both fields. Since F» is supposed to be larger, it is sufficient to compute only with
log N> as the length of input.

The proof is very similar to the previous one. First, we should list all the possible
inconsistencies with the assumptions. These are nearly the same as before; replace N
by N2, the cardinality of the largest field, and add some more schemes for the smaller
field F; whose functions are denoted with bar.

a) ,y < N1 A (3(z,y) # s(z,y) VH(z,y) # t(z,y)),
b) x < N1 A (u(z) # u(z) vV o(z) # v(z)),
c) z,y < N1 A(S5(xz,y) > N1 Vi(x,y) > Ni),

38

d) x < N1 A (u(z) > N1 Vo(z) > Np).

Suppose there is a PLS®"®2_problem L such that for any definition of the field
functions s,t,u,v,5,t,%,v it is able to find a solution to the Subfield problem. If
S = (x,y, z) is a projection of a locally optimal point for the instance (N1, N2), then
one of the conditions described above must arise.

Fix an arbitrary cost function cr, and a neighbourhood function nz of L. These
functions are computed by polynomial time Turing machines C';, and Ny,. The machine
computing L has an access to both these algorithms as well as to the oracles ®; and
®, computing the values of the field functions.

Now we describe a way how to construct their responses. The procedure is a simple
generalization of the method used in the first proposition.

Fix two arbitrary infinite fields K and T such that 7" is a proper subfield of K,
denoted by T' < K. Then define partial isomorphisms

n:Fl—)T,
v Fy - K.

The isomorphism ¢ extends 1. During the computation the oracles ®; and ®, are asked
for values of the form 3(a, b), s(a, b) etc. The questions may repeat, in which case they
must be responded always in the same way. If a new element h is mentioned in the
query to ®1, the oracle defines its image under the partial isomorphism n(h) € T,
and evaluates the function in the field 7'. The isomorphism ¢ is created by ®2 in the
same manner.

For instance, the machine wants to know a sum of a,b € Fi, i.e. 5(a,b). It uses
the oracle ®; which first looks in its database of questions responded so far. If there
is some question on a or b, it uses the value 7(a) or n(b) from the database. On the
other hand, if such a question has not been put, it chooses elements o, 8 € T, and
map n(a) = «, n(b) = B. Then it calculates a + 8 in T'. Say it is . If is in the
database, the oracle uses its preimage from the database, in other case it can define
it arbitrarily n~'(y) = ¢, and return back c.

Denote the minimal possible cost of all feasible computations of L by ¢y and fix
a path leading to that cost. Because L must halt after at most m = (log Ny)°®W
steps, it cannot ask for all possible combinations of functions and elements. In fact,
it is allowed to ask for only negligible fraction of these values when N» is sufficiently
large.

Since the field functions are defined as partial copies of some infinite fields, all the
responses of the oracles are valid, and thus there cannot be found any contradiction
with the axioms of fields or subfields. -

39

Again, since the fact that the problem Subfield is well-defined strongly depends
on divisibility of integers, there might be a relationship with the Integer-Factoring
problem. It is surely possible to define more problems like these two examples, because

the realm of finite algebraic structures is significantly larger than only theory of finite
fields.

40

Chapter VI

Concluding Remarks and
Open Problems

We have presented several results that do in a sense estimate the complexity of in-
teger factorization which is one of the most important problems in contemporary
theoretical cryptography. Even though our bounds are not very tight, and work only
in the relativized world of NP-search problems, they seem to be of interest. To our
knowledge these are the first results of their kind.

In particular, the method of Chapter IV might be an inspiration for further re-
search. There are many axioms which should be added to our hypothetical structure.
First, in the domain of whole numbers we have another binary operation — addition,
and also its inverse. Due to this we are able to define a distance measure and a prede-
cessor and successor functions as well. These properties of the ring of integers should
be added, and then one should verify, if the proof still works.

Note that there is a property which makes multiplication of naturals interesting. It
has not any inverse function in fact, because in general a quotient of two integers is a
fraction, and so not an integer. This is not true about addition of integers. But consider
the addition of prime numbers. According to the famous Goldbach’s conjecture every
even integer greater than 2 can be written as a sum of two prime numbers. This has
not been proved, but some weaker results have. Suppose for a moment it were true,
then we could define a new computational problem. Call it Goldbach: Given an even
positive integer N > 2, find two prime numbers p and ¢ such that p+ g = N.

41

As well as the Integer-Factoring problem, Goldbach has not a unique solution®,
and no effective algorithm is known to us. The third parallel is in the non-existence
of an inverse function (division of naturals, difference of an integer and a prime must
not be a prime, respectively).

Another question we have left open asks whether the general case of Integer-
Factoring is in some of the classes defined under TFINP. We have seen a special case
is in PPA and also a randomized version in PPP, and we believe that these results
can be improved.

For the sake of completeness of this text we only remark that the best known algo-
rithm to Integer-Factoring is based on general number field sieve and its complexity

is
exp (0\3/ n log? n)

where n is the length of the number to be factored and ¢ > 0 is a constant [Po96].
On the other hand, in the world of quantum algorithms, the problem of factoring
an integer is surprisingly easy. Shor’s algorithm takes only O(n®) steps [S94].

There are also many related structural questions which have not been successfully
solved yet. For instance, as we have mentioned, whether PLS" C PPP' is not known.
Also a relationship between the randomized class FZPPFFP and some other subclass

of TFNP (for example PPA) is not clear.
Reader should look into [P94] to see some more open problems.

5) For example 20 =3 + 17 =7+ 13, and 20 =2-10 = 4 - 5 etc.

42

References

[B10] Josh BURESH-OPPENHEIM, On the TFNP Complezity of Factoring, preprint,
2006, updated 2010.

[B90] Eric BACH, Ezplicit Bounds for Primality Testing and Related Problems,
Mathematics of Computation, Vol. 55(191), pp. 353-380, 1990.

[BCEIP97] Paul BEAME, Stephen COOK, Jeff EDMONDS, Russell IMPAGLIAZZO,
Toniann PITASSI, The Relative Complexity of NP Search Problems, Journal of Com-
puter and System Sciences, Vol. 57(1), pp. 3-19, 1998.

[BM04] Josh BURESH-OPPENHEIM, Tsuyoshi MORIOKA, Relativized NP Search
Problems and Propositional Proof Systems, IEEE Conference on Computational Com-
plexity 2004: 54—67, 2004.

[C71] Stephen COOK, The Complezity of Theorem Proving Procedures, Proceedings
of the Third Annual ACM Symposium on Theory of Computing, pp. 151-158, 1971.

[CIY97] Stephen COOK, Russell IMPAGLIAZZO, Tomoyuki YAMAKAMI, A Tight
Relationship between Generic Oracles and Type-2 Complexity Theory, Information
and Computation, Vol. 137, pp. 159-170, 1997.

[CK98| Mario CHIARI, Jan KRAJICEK, Witnessing Functions in Bounded Arithme-
tic and Search Problems, Journal of Symbolic Logic, Vol. 63(3), 1095-1115, 1998.

[ET10] Robert ELSASSER, Tobias TSCHEUSCHNER, Settling the Complezity of
Local Maz-cut (almost) Completely, arXiv:1004.5329v2 [cs.CC], 2010.

[GO1] Michelangelo GRIGNI, A Sperner Lemma Complete for PPA, Information Pro-
cessing Letters 77: 255-259, 2001.

[GJ79] Michael GAREY, David JOHNSON, Computers and Intractability — A Guide
to the Theory of NP-completeness, Freeman, New York, 1979.

[JPY88| David JOHNSON, Christos PAPADIMITRIOU, Mihalis YANNAKAKIAS,
How FEasy Is Local Search?, Journal of Computer and System Sciences, vol. 37, no.
1, pp. 79-100, 1988.

[K10] Joseph KIZZA, Fiege-Fiat-Shamir Revisited, Journal of Computing and ICT
Research, Vol. 4, No. 1, pp. 9-19, 2010.

43

[K95] Jan KRAJfCEK, Bounded Arithmetic, Propositional Logic, and Complezity
Theory, Cambridge University Press, 1995.

[MO01] Tsuyoshi MORIOKA, Classification of Search Problems and Their Definability
in Bounded Arithmetic, Master’s thesis, University of Toronto, 2001.

[M75] Gary MILLER, Riemann’s Hypothesis and Tests for Primality, STOC ’75 Pro-
ceedings of seventh annual ACM symposium on Theory of computing, 1975.

[P93] Christos PAPADIMITRIOU, Computational Complezity, Addison Wesley, 1993.

[P94] Christos PAPADIMITRIOU, On the Complexity of the Parity Argument and
Other Inefficient Proofs of Existence, Journal of Computer and System Sciences,
1994.

[P0o96] Carl POMERANCE, A Tale of Two Sieves, Notices of the AMS 43 (12): pp.
1473-1485, 1996.

[PT09] Pavel PUDLAK, Neil THAPEN, Alternating Minima and Mazima, Nash Equi-
libria and Bounded Arithmetic, preprint, 2009.

[S94] Peter SHOR, Algorithms for Quantum Computation: Discrete Logarithms and
Factoring, 1994 Symposium on Foundations of Computer Science, 1994.

[SY91] Alejandro SCHAFFER, Mihalis YANNAKAKIS, Simple Local Search Pro-
blems That are Hard to Solve, SIAM Journal on Computing, Vol.20(1), pp.56-87,
1991.

44

ECCC ISSN 1433-8092
http://eccc.hpi-web.de

