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Abstract

In this paper, we introduce and develop the method of certifying polynomials for proving
AC0[⊕] circuit lower bounds.

We use this method to show that Approximate Majority cannot be computed by AC0[⊕]
circuits of size n1+o(1). This implies a separation between the power of AC0[⊕] circuits of
near-linear size and uniform AC0[⊕] (and even AC0) circuits of polynomial size. This also
implies a separation between randomized AC0[⊕] circuits of linear size and deterministic
AC0[⊕] circuits of near-linear size.

Our proof using certifying polynomials extends the deterministic restrictions technique
of Chaudhuri and Radhakrishnan, who showed that Approximate Majority cannot be com-
puted by AC0 circuits of size n1+o(1). At the technical level, we show that for every AC0[⊕]
circuit C of near-linear size, there is a low degree variety V over F2 such that the restriction
of C to V is constant.

We also prove other results exploring various aspects of the power of certifying polyno-

mials. In the process, we show an essentially optimal lower bound of Ω
(

logΘ(d) s · log 1
ε

)
on

the degree of ε-approximating polynomials for AC0[⊕] circuits of size s.

1 Introduction

In this paper, we introduce and develop the method of certifying polynomials for proving circuit
lower bounds. We begin by describing the motivation for the main new circuit lower bound
that we show, after which we will elaborate on the the method itself, and finally we describe
some other results exploring the power and limitations of this method.

1.1 The Size Hierarchy Problem for AC0[⊕]

Our main result fits in the general theme of studying the relative power of constant depth
circuit classes. We show a near-tight circuit lower-bound for computing Approximate Majority
with AND, OR, PARITY and NOT gates. This is a first step in the direction of a uniform
size-hierarchy theorem for such circuits, which is a basic open question about this well-studied
class of circuits.

We first fix some notation and conventions regarding circuits for the rest of this paper. AC0

denotes the class of bounded depth circuits with unbounded fan-in AND, OR and NOT gates.
AC0[⊕] denotes the class of bounded depth circuits with unbounded fan-in AND, OR, PARITY
and NOT gates. We measure the size of a circuit by the number of gates. We use n to denote
the number of input bits to a circuit.

There is a well-developed theory giving superpolynomial and even subexponential lower
bounds for AC0 and AC0[⊕] circuits [6, 1, 15, 7, 9, 12]. Our focus in this paper is on complexity
theory within these classes.
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An influential paper of Ragde and Wigderson [8] asked if uniform AC0 circuits of linear size
are strictly weaker as uniform AC0 circuits of polynomial size. This was answered by Chaudhuri
and Radhakrishnan [5], who showed that Approximate Majority functions do not have AC0

circuits of near-linear size O(n1+εd) (where εd > 0). An Approximate Majority function is any
function which maps strings of Hamming weight < n/4 to 0 and strings of Hamming weight
> 3n/4 to 1. Such functions were first considered in the context of AC0 for the purpose of
error-reduction for AC0 circuits. Ajtai and Ben-Or [2] showed that Approximate Majority can
be computed by polynomial-size AC0 circuits, and later results of Ajtai [1] and Viola [14] showed
that this can even be done by uniform polynomial-size AC0 circuits of depth 3 and above (In
fact these circuits can be made to have depth d and size O(n1+εd), where εd → 0 as d → ∞
[5]). This combined with the lower-bound of [5] showed the conjectured separation of Ragde
and Wigderson.

The method of proof of [5] is especially interesting to us, and we will discuss their method
and our extension of it in the next subsection.

A beautiful recent result of Rossman [11] showed a size-hierarchy for AC0: for every k > 0,
uniform AC0 circuits of size O(nk) are more powerful than non-uniform AC0 circuits of size
O(nk/4). A striking follow-up result of Amano [3] in fact shows that depth-2 size O(nk) uniform
AC0 circuits can be more powerful than size O(nk−ε) AC0 circuits.

In this work we study the analogous questions for uniform AC0[⊕]. Our main result is that
Approximate Majority cannot be computed by AC0[⊕] circuits of near-linear size. In particular
this means that polynomial size uniform AC0[⊕] circuits (and even polynomial size uniform
AC0 circuits) can be more powerful than near-linear size AC0[⊕] circuits. Thus we make a first
step towards a size-hierarchy theorem for AC0[⊕] circuits, analogous to the result of Chaudhuri
and Radhakrishnan for AC0. Our result also shows that randomized AC0[⊕] circuits of linear
size can be more powerful than deterministic AC0[⊕] circuits of near-linear size.

Showing the full size-hierarchy for uniform AC0[⊕] is still open and would be very interesting.
Even the question of whether there exists a function that has uniform AC0[⊕] circuits of size
nlogn but no polynomial-sized AC0[⊕] circuits (of possibly larger, but constant, depth) remains
unanswered.

1.2 Certifying Polynomials for AC0[⊕]

The main component of the [5] lower bound for Approximate Majority is a structure theorem
for AC0 circuits of near-linear size. It states that for every AC0 circuit C of near-linear size,
there is a collection of o(n) variables and a fixing of them that simplifies the circuit C to a
constant. Equivalently, there is a large axis-parallel subcube of {0, 1}n on which C restricts
to a constant. This structure theorem immediately implies the lower bound on Approximate
Majority.

The proof of this structure theorem is by “deterministic restrictions”. Going through the
circuit in a bottom up fashion, one first finds a fixing of a small number of variables that
simplifies the circuit into one where all the gates have small fan-in. The basic observation is
that if one considers the gates at height 1 that have large fan-in, then we can set a large number
of them to constants by setting a few input variables; continuing in this way, we eventually
remove all large fan-in gates of height 1 (there can’t be too many of them, since C is of near-
linear size), setting only a few variables in doing so. We then move on to higher levels and
repeat the process, which now becomes feasible since setting gates of small fan-in to a constant
reduces to setting only a few variables to constants. Once all the gates have small fan-in, the
entire circuit is a function of only a few variables and hence, there is a fixing of small number
of the remaining variables so that the circuit simplifies to a constant.
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The main component of our lower bound is an analogous structure theorem for AC0[⊕].
Clearly, the structure theorem for AC0 is false for even a single parity gate and hence for
AC0[⊕]. However, here we can show that for for any AC0[⊕] circuit C of near-linear size,
there is a polynomial of degree o(n) such that C restricts to a constant on the zero-set of that
polynomial. We call such a polynomial a certifying polynomial for the circuit C. The proof
of this structure theorem again proceeds in a bottom up fashion, but this time finds fixings of
systems of low-degree polynomials in order to simplify the circuit to one where all the AND and
OR gates have small fan-in. Again, once all the AND and OR gates have small fan-in, it is easy
to see that the circuit just computes a low-degree polynomial, and thus fixing this low-degree
polynomial simplifies the circuit to a constant.

Given this structure theorem, it remains to see that no Approximate Majority function
has this structure. This turns out to be a consequence of the general fact that a nonzero
polynomial of degree d cannot vanish at every point of a Hamming ball of radius d (this follows
from the fact that Hamming balls are interpolating sets for polynomials). In fact, it is even
true that polynomials of degree o(d) cannot vanish on all but an exponentially small fraction
of a Hamming ball of radius d (this is a consequence of the p-biased version of the standard
bound on the number of zeroes of a nonzero polynomial). We conclude that an Approximate
Majority function cannot be constant on the zero set of a nonzero polynomial of degree < n/4.
Combined with the structure theorem, this completes the proof of the lower bound for the
AC0[⊕] complexity of Approximate Majority.

Having proved the lower bound, we then take a step back to re-examine the technique of
proving lower bounds via certifying polynomials. On the face of it, it seems like this method
is somewhat distinct from the Razborov-Smolensky method [9, 13] used to prove lower bounds
for general AC0[⊕] circuits, which uses polynomial approximations to circuits. The Razborov-
Smolensky method gives global, approximate structure: it shows that for any AC0[⊕] circuit C
of size M , there is a polynomial of degree poly(log(M)) which agrees with C on most points
of {0, 1}n. Our structure theorem, which only applies to circuits of near-linear size, gives local,
exact structure: we get a perfect description of the values taken by an AC0[⊕] circuit on a small
but structured subset of {0, 1}n.

As it turns out, however, the framework of certifying polynomials is quite robust: we demon-
strate a connection between polynomial approximations and certifying polynomials for circuits.
We then use this connection along with Razborov’s approximating polynomials to construct
certifying polynomials for general AC0[⊕] circuits. These polynomials have degree much larger
than that obtained in our structure theorem, but nevertheless, their degree is small enough to
be able to recover the exponential lower bound obtained by Razborov [9] for AC0[⊕] circuits
computing the Majority function. We stress that most of the ideas of this lower bound proof
are already present in [9, 13], and the main aim of this exercise is to show that the use of cer-
tifying polynomials is a unified framework that “explains” all previous lower bound approaches
for AC0[⊕]. In the course of the above proof, we also construct improved approximations to
AC0[⊕] circuits in the small error regime; to the best of our knowledge, such approximations
were not known before, and may be of independent interest.

Finally, we exploit the connection between certifying polynomials and polynomial approxi-
mations in the reverse direction to prove limits on the power of polynomial approximations. We
show that the low-error approximations we construct for AC0[⊕] are close to the best possible
for all depths d ≥ 3. Once again, this demonstrates the flexibility of the certifying polynomials
framework.
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2 Results

We begin by formally defining certifying polynomials. Throughout the paper, we identify {0, 1}
with F2.

Definition 1 (Certifying polynomial). A polynomial P (X1, . . . , Xn) ∈ F2[X1, . . . , Xn] is a
certifying polynomial for a function f : {0, 1}n → {0, 1} if:

• the set S = {x ∈ Fn2 | P (x) = 0} is nonempty,

• f is constant on S.

We now define Approximate Majority.

Definition 2 (Approximate Majority). An (a, n−a) Approximate Majority is a boolean function
f : {0, 1}n → {0, 1} such that:

• f(x) = 0 for every x of Hamming weight at most a.

• f(x) = 1 for every x of Hamming weight at least n− a.

If we omit the (a, n− a), we assume a = n/4.

Ajtai and Ben-Or [2] showed that for a ≤ n/2 − n/(log n)O(1), there exists an (a, n − a)
Approximate Majority computable in AC0. We will use a uniform and more general version of
this result, due to Ajtai [1].

Theorem 3 (Ajtai [1]). For any n ∈ N, δ ∈ (0, 1/2) and depth d ≥ 3, there exist ((1/2 −
δ)n, (1/2+δ)n) Approximate Majorities computable by uniform AC0 circuits of size 2(1/δ)O(1/d) ·
nO(1) and depth d.

Our main result is:

Theorem 4. For every constant d ∈ N, there is an εd > 0 such that any depth d AC0[⊕] circuit
that computes an Approximate Majority must have size Ω(n1+εd).

By Theorem 3, this implies that uniform AC0 circuits of polynomial size are more powerful
than linear-sized non-uniform AC0[⊕] circuits.

The proof of Theorem 4 follows from two lemmas. The first states that every function with
a near-linear AC0[⊕] circuit has a certifying polynomial of low degree, The next states that an
Approximate Majority cannot have this property. We now state these lemmas formally (the
proofs appear in Section 3).

Lemma 5 (Linear-size AC0[⊕] circuits have low degree certifying polynomials). For every
constant d ∈ N, there is an εd > 0 such that for every depth-d AC0[⊕] circuit C of size s ≤ n1+εd,
C has a certifying polynomial of degree o(n).

Lemma 6 (Approximate Majority does not have any low degree certifying polynomials). For
every (a, n− a) Approximate Majority f , there do not exist any certifying polynomials for f of
degree ≤ a.

Next we state our results on certifying polynomials for general AC0[⊕] circuits. This result
should be contrasted with the fact that every function has a certifying polynomial of degree at
most n/2.
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Theorem 7. For every s > 0 and constant d > 0, every AC0[⊕] circuit C of size s and depth
d has a certifying polynomial of degree at most n/2− n/(log s)Θ(d).

We also show that this is essentially tight.

Lemma 8. For every s > nΩ(1), there exist AC0[⊕] circuits C on n input bits with size s, such
that every certifying polynomial for C has degree at least n/2− n/(log s)Θ(d).

These results are proved in Section 4. The proof of Theorem 7 uses the well-studied notion
of approximating polynomials.

Definition 9 (ε-approximating polynomial). An ε-approximating polynomial for a function f
is a polynomial P such that Prx∈{0,1}n [f(x) = P (x)] ≥ 1− ε.

The main ingredient in the proof of Theorem 7 is the following strengthening of Razborov’s
original theorem on approximating polynomials. (See Section 4 for the definition of ε-error
probabilistic polynomials.)

Lemma 10. For any ε ∈ (0, 1/2), any AC0[⊕] circuit C of size s and depth d has an ε-error
probabilistic polynomial of degree at most (c log s)d−1 · (log(1/ε)) for some absolute constant c >
0. In particular, C has an ε-approximating polynomial of degree at most (c log s)d−1 · (log(1/ε)).

We also show in Section 4 how Theorem 7 gives an alternate proof of Razborov’s fundamental
result that Majority does not have subexponential size AC0[⊕] circuits.

Finally, we state our lower bounds for the degree of approximating polynomials for AC0[⊕]
circuits, showing the near-tightness of Lemma 10.

Theorem 11. For every s, ε > 0, and every constant d ≥ 3, there exist AC0[⊕] circuits C of
size s and depth d such that for every polynomial P which is an ε-approximating polynomial for
C, we have

deg(P ) ≥
(

log s−O(log log
1

ε
)

)Θ(d)

· log
1

ε
.

The proof appears in Section 5.

3 Superlinear AC0[⊕] lower bounds for computing Approximate
Majority

In this section, we prove Lemma 5 and Lemma 6, thus completing the proof of Theorem 4.

3.1 Linear-size AC0[⊕] circuits have low degree certifying polynomials

We now prove Lemma 5.
It will be more convenient to work with a certifying system of polynomials as opposed to a

single certifying polynomial. Given a feasible system of polynomial equations over n variables
x1, x2, . . . , xn, say

p1(x) = 0

p2(x) = 0

...

pt(x) = 0
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we define the degree of the system to be
∑t

i=1 deg(pi). Clearly, the set of solutions to the
above system is exactly the set of roots of 1−

∏t
i=1(1− pi), which is a polynomial of degree at

most
∑t

i=1 deg(pi).
Given a feasible system of polynomial equations P, we denote by Sol(P) the non-empty set

of solutions of P; when P sets just a single polynomial p, we denote use Sol(p) instead of Sol(P).
By a restriction, we will mean simply a feasible system of polynomial equations.

Given a restriction P and a boolean circuit C, we will denote by C|P the circuit C restricted
to inputs from Sol(P). We say a gate g of the circuit C is live under the restriction given by
P if g takes values 0 as well as 1 under inputs from Sol(P). Note that if a gate g is not live
under a restriction, we can simplify the circuit C to a smaller circuit C ′ which computes the
same function on the restricted inputs.

We say that a circuit C is live under the restriction P if every gate of C is live under P.
The above implies that, given any circuit C and restriction P, there exists a live circuit C ′ of
size at most the size of C that computes the same function as C on inputs from Sol(P).

Proof of Lemma 5. The proof will proceed as follows: after restricting the given circuit C to the
roots of a well-chosen low-degree polynomial restriction P, we will obtain an equivalent circuit
C ′ that has the property that each of the AND and OR gates of C ′ have very small fan-in (say
nε for ε � 1/d). At this point, the entire circuit C ′ computes a low-degree polynomial p and
by fixing p to a feasible value, we finish the proof of the lemma.

Say we have an increasing sequence of numbers 1 < D1 < . . . < Dd (we will fix the exact
values of Di (i ≥ 1) later). We wish to obtain a restriction P under which C is equivalent to a
circuit C ′ which has the property that every AND and OR gate at height i has fan-in at most
Di. It is easy to see that this implies that the function computed by C ′ is a polynomial of
degree at most D1D2 · · ·Dd.

We proceed to construct a suitable restriction P in d steps. After the ith step, we obtain
a restriction Pi under which there is a circuit Ci of size at most s for which the above fan-in
bound holds for all heights j ≤ i. Assuming that the (i − 1)th step has been completed, we
describe how Step i is performed for i ≥ 1. (Note that nothing needs to be done for height 0.)

We assume that Ci is live. Otherwise, we can obtain and work with an equivalent circuit
that is of at most the size of Ci and satisfies the same fan-in restrictions as Ci. Let Bi denote
the “bad” gates at height i: that is, the AND and OR gates at height i that have fan-in at
least Di. We use a basic subroutine Fix(i, Ci) that simplifies the circuit Ci by augmenting the
restriction Pi as follows:

Fix(i, Ci): Since there are at least |Bi|Di wires between gates in Bi and lower levels (which
contain at most s gates), there is some gate g at height less than i that is adjacent to |Bi|Di/s
gates. By the fan-in restrictions on Ci, this gate computes a polynomial pg of degree at most
D1 · · ·Di−1 (the empty product in the case i = 1 is assumed to be 1). Moreover, since the
circuit Ci is live, this gate can be set to both 0 and 1. We wish to add the restriction pg = 0 or
pg − 1 = 0 to Pi corresponding to setting the gate to 0 or 1 respectively. Setting the gate g to
1 sets all the OR gates that g feeds into to 1 and setting g to 0 sets all the AND gates that g
feeds into to 0. Hence, there is some setting that sets at least |Bi|Di/2s many gates in Bi to
constant. We set the gate g to this boolean value.

Note that Fix(i, Ci) reduces the number of live bad gates by a factor of at most (1−Di/2s).
We are now ready to describe Step i. Until the set of bad nodes Bi is empty, we repeatedly call
the subroutine, Fix(i, C ′i) where C ′i represents the circuit we currently have. After an application
of the subroutine Fix(i, C ′i) adds another equation to our current restriction P ′i, we fix the non-
live nodes and simplify the circuit until it becomes live again (this process, of course, does not
increase the fan-in of any node). Note that since we are only fixing live nodes, the system of
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polynomial equations P ′i we maintain is feasible. Moreover, since the size of Bi is falling by a
factor of at most (1−Di/2s) after each application of Fix(i, C ′i) and |Bi| ≤ s ≤ nO(1), we need

to apply Fix(i, C ′i) at most 2|Bi| log |Bi|
Di

= O(s log n/Di) times to reduce Bi to the empty set.
Let us analyze the total degree of the equations added to the restriction during the ith step.

Each equation added is a polynomial of degree at most D1D2 · · ·Di−1. Hence, the total degree
of the added equations is O(s log nD1D2 · · ·Di−1/Di).

At the end of Step d, we have a circuit Cd computing a polynomial of degree at most
D′ = D1D2 · · ·Dd that agrees with the original circuit C on a restriction of degree at most

D′′ = O(s log n)

(
1

D1
+
D1

D2
+
D1D2

D3
+ · · ·+ D1D2 · · ·Dd−1

Dd

)
We would like to set D1, · · · , Dd such that both D′ and D′′ to be o(n). We will choose

K and the Dis such that D1D2 · · ·Di−1/Di = K for each i. This implies that Di = K2i−1
.

Furthermore, we have D′ ≤ K2d and D′′ ≤ O(s log n/K).

Setting K = n1/(2d+1) and εd = 1
2d+1 , we get D′ as well as D′′ are o(n) as long as s ≤ n1+εd .

Thus, by setting the polynomial p computed by the circuit Cd to some feasible value, we obtain
a restriction of degree D′ +D′′ = o(n) under which the circuit C becomes constant.

As mentioned above, this implies that there is a certifying polynomial for C of degree
o(n).

3.2 Approximate Majority does not have any low degree certifying polyno-
mials

We now prove Lemma 6.

Proof of Lemma 6. Let p be any polynomial of degree d ≤ a that takes the value 0 at some
point of Fn2 . We will show that it cannot be that f is constant on Sol(p).

Our intermediate claim is that Sol(p) intersects every Hamming ball of radius a. By trans-
lating p if necessary, we may assume that the Hamming ball is centered at the origin, and thus
we seek to prove that there is a point of Hamming weight at most a where p vanishes.

Given the intermediate claim, it follows that there exist x0, x1 ∈ Fn2 with p(x0) = p(x1) = 0
such that the Hamming weight of x0 is at most a, and the Hamming weight of x1 is at least
n− a. Thus f cannot be constant on Sol(p).

Now we prove the claim. Let p̃ denote the unique multilinear polynomial which agrees with
p on Fn2 . Since deg(p) ≤ a, we have deg(p̃) ≤ a. Now let q be the polynomial 1− p̃. Notice that
q is multilinear and has degree at most a. Since Sol(p) is nonempty, we see that q is non-zero.
Consider the monomials of q. Since q 6= 0, there must be a minimal S ⊆ [n] (possibly empty)
such that the monomial

∏
i∈S Xi appears in q (i.e., has a non-zero coefficient) but no monomial∏

i∈T Xi for T ( S appears in q. Let x ∈ Fn2 be the input that takes value 1 at exactly the
indices in S. It is easy to see that q(x) = 1 and hence p̃(x) = p(x) = 0. Moreover, the Hamming
weight of x is equal to the size of S which is at most deg(q) ≤ a. Hence, we see that Sol(p) does
intersect the Hamming ball of radius a. This completes the proof of the claim, and hence the
proof of Lemma 6.

4 Certifying polynomials for general AC0[⊕] circuits
Given the results of the previous section, it makes sense to ask what are the lowest degree
certifying polynomials we can obtain for general (i.e. significantly larger than linear-sized)
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AC0[⊕] circuits. Using an easy linear algebraic argument, it can be shown that every function,
irrespective of its complexity, has a certifying polynomial of degree at most n/2 (and in this
generality, it cannot be improved). In this section, we use Razborov’s approximations for
AC0[⊕] circuits by probabilistic polynomials to derive somewhat better certifying polynomials
for functions with small AC0[⊕] circuits. In particular, we show that polynomial-sized AC0[⊕]
circuits have certifying polynomials of degree n/2− n/(log n)O(1).

Though the improvement over the trivial n/2 bound above might seem small, the existence
of such certifying polynomials is quite powerful: we demonstrate this by showing how this fact,
along with Lemma 6, can be used to give a (slightly) conceptually different proof of Razborov’s
result that Majority does not have subexponential size AC0[⊕] circuits. We note that the proof
is essentially unchanged at a technical level from the proofs of [9, 13], but the higher-order
concepts involved seem curiously different. More specifically, this seems to provide a different
‘constructive’ (in the sense of Razborov and Rudich [10]) lower bound criterion for lower bounds
against AC0[⊕] which is reminiscent of the work of Aspnes et al. [4].

The main theorem of this section is the following.

Theorem 7 (Restated from Section 2). For every s > 0 and constant d > 0, every AC0[⊕]
circuit C of size s and depth d has a certifying polynomial of degree at most n/2−n/(log s)Θ(d).

The above theorem shows that functions computed by small subexponential size AC0[⊕]
circuits have nontrivial certifying polynomials.

We will need to use probabilistic polynomials in the proof.

Definition 12 (Probabilistic polynomials). An ε-error probabilistic polynomial of degree D for
a function f : {0, 1}n → {0, 1} is a random polynomial P of degree at most D (chosen according
to some distribution over polynomials of degree at most D) such that for any x ∈ {0, 1}n, we
have PrP[f(x) = P(x)] ≥ 1− ε.

Clearly, if a function f has an ε-error probabilistic polynomial P of degree D, then by
averaging, it has an ε-approximating polynomial P of degree D as well.

We need the following well-known theorem, due to Razborov, on the existence of ε-error
probabilistic polynomials for AC0[⊕].

Theorem 13 (Razborov [9]). For any ε ∈ (0, 1/2), any AC0[⊕] circuit C of size s and depth
d has an ε-error probabilistic polynomial of degree at most (log(s/ε))d. In particular, C has an
ε-approximating polynomial of degree at most (log(s/ε))d.

Using Theorem 13 directly in our arguments would only give us a version of Theorem 7
with weaker parameters. To obtain the parameters mentioned above, we need a strengthening
of Theorem 13 that does better for small ε. The proof follows quite simply from Razborov’s
theorem above, though to the best of our knowledge, this has not been observed in the literature.

Lemma 10 (Restated from Section 2). For any ε ∈ (0, 1/2), any AC0[⊕] circuit C of size s
and depth d has an ε-error probabilistic polynomial of degree at most (c log s)d−1 · (log(1/ε)) for
some absolute constant c > 0. In particular, C has an ε-approximating polynomial of degree at
most (c log s)d−1 · (log(1/ε)).

Proof. Let C be an AC0[⊕] circuit of size s and depth d. Let g be the output gate of the circuit
and let C1, . . . , Ck (k ≤ s) be the depth d− 1 subcircuits of C feeding into g. By Theorem 13,
we know that each Ci (i ∈ [k]) has a (1/10s)-approximating polynomial Pi of degree at most
(O(log s))d−1. Also by Theorem 13, we know that the function computed by g has a (1/10)-
approximating polynomial P of degree O(1). The probabilistic polynomial P′ := P(P1, . . . ,Pk)
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is a 1/5-error probabilistic polynomial for C, since for any x ∈ {0, 1}n,

Pr
P′

[C(x) 6= P′(x)] ≤ Pr
P1,...,Pk

[∃i ∈ [k] : Ci(x) 6= Pi(x)] + Pr
P

[g(C1(x), . . . , Ck(x)) 6= P(C1(x), . . . , Ck(x))]

≤
∑
i∈[k]

Pr
Pi

[Ci(x) 6= Pi(x)] + Pr
P

[g(C1(x), . . . , Ck(x)) 6= P(C1(x), . . . , Ck(x))]

≤ k/10s+ 1/10 ≤ 1/10 + 1/10 = 1/5

Note that P′ has degree at most (O(log s))d−1. Let ` = c′ log(1/ε) for a constant c′ that
we will choose later in the proof. Let P′1, . . . ,P

′
` be ` independent copies of the probabilistic

polynomial P′. Let Q denote the probabilistic polynomial Maj(P′1, . . . ,P
′
`), where Maj is just

the polynomial of degree at most ` that computes the majority of ` bits. Clearly, Q is of degree
at most (O(log s))d−1 · ` = (O(log s))d−1 · log(1/ε). We claim that Q is an ε-error probabilistic
polynomial for C, which will finish the proof of the corollary.

For any input x ∈ {0, 1}n, each P′j(x) predicts the value of C(x) correctly with probability
4/5. Now, for Q(x) to predict C(x) incorrectly, a majority of the P′j (j ∈ [`]) must predict
the value of C(x) incorrectly and by a Chernoff bound, the probability of this is bounded by
exp{−Ω(`)}, which is at most ε for a large enough constant c′ > 0.

The next lemma shows that functions with low-degree ε-approximating polynomials also
have low-degree certifying polynomials.

Lemma 14. Suppose f : {0, 1}n → {0, 1} has a degree D ε-approximating polynomial. Then

f has a certifying polynomial of degree at most n
2 − c1

√
n log 1

ε + D, where c1 is an absolute
constant.

Proof. Let P be the given ε-approximating polynomial. Let S be the set of points where P
differs from f . We have |S| ≤ ε · 2n.

Let D0 be the smallest integer such that(
n

0

)
+

(
n

1

)
+ . . .+

(
n

D0

)
> |S|.

By linear algebra, there is a non-zero polynomial Q of degree at most D0 that vanishes on S.
Note that one of Q · P and Q · (1− P ) is a non-zero polynomial. Moreover, for any input x s.t.
Q(x) = 1, P (x) = f(x).

Thus, it follows that one of 1−Q ·P or 1−Q · (1−P ) is a certifying polynomial for f with
degree at most D0 + D (provided D0 + D < n; if not then the result is vacuously true). To

finish the proof, we note that D0 ≤ n
2 − c1

√
n log 1

ε .

Proof of Theorem 7. Combining Lemma 10 and Lemma 14, we conclude that for every ε > 0.
C has a certifying polynomial of degree at most

n

2
− c1

√
n · log

1

ε
+ (c2 log s)d−1 · log(1/ε),

where c1, c2 > 0 are absolute constants. In particular, setting ε = exp{−n/(log s)Θ(d)} above,
we get that C has a certifying polynomial of degree at most n/2− n/(log s)Θ(d).

Combining Theorem 7 with Lemma 6 (and using the fact that Majority is an (n/2−1, n/2+1)
Approximate Majority), we get an alternate proof of the fact that Majority cannot be computed
by AC0[⊕] circuits of size smaller than exp(nΩ(1/d)).

Finally, we show that the bound of Theorem 7 is essentially tight.
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Lemma 15 (Restated from Section 2). For every s > nΩ(1), there exist AC0[⊕] circuits C
on n input bits with size s, such that every certifying polynomial for C has degree at least
n/2− n/(log s)Θ(d).

Proof. Let δ be a parameter to be specified later. Let C be the AC0[⊕] circuit for ((1/2 −
δ)n, (1/2+δ)n) Approximate Majority given by Theorem 3. Then we have |C| = 2(1/δ)O( 1

d
)

·nO(1).
We choose δ so that |C| = s; this gives δ = 1

(log s−c logn)Ω(d) .

By Lemma 6, any certifying polynomial for C has degree at least n·(1
2−δ) = n

2−
n

(log s)Θ(d) .

5 Lower bounds for approximating polynomials

We now use the tools of the previous two sections to show near-optimal lower bounds on
the degree of approximating polynomials for AC0[⊕] circuits. It is a folklore fact that ε-
approximations for AC0[⊕] circuits of size s and depth d are required to have degree at least
max{(log s)Ω(d), log(1/ε)}. In this section, we show a stronger lower bound of Θ((log s)Ω(d) ·
log(1/ε)), which essentially matches the upper bound obtained in Lemma 10. Our lower bound
example is just a suitable Approximate Majority and thus holds even for AC0 circuits.

We prove the lower bound by exploiting Lemma 14 in the contrapositive. Since there are
Approximate Majorities that are efficiently computable in AC0, by Lemma 6, we know that
AC0 circuits can compute functions that do not have efficient certifying polynomials. We can
then use Lemma 14 to infer a lower bound on the degree of ε-approximations to AC0 circuits.

Theorem 11 (Restated from Section 2). For every s, ε > 0, and every constant d ≥ 3, there
exist AC0[⊕] circuits C of size s and depth d such that for every polynomial P which is an
ε-approximating polynomial for C, we have

deg(P ) ≥
(

log s−O(log log
1

ε
)

)Θ(d)

· log
1

ε
.

Proof. Let δ and m be parameters (to be specified later). Let C be an AC0[⊕] circuit on m
inputs which computes a ((1

2 − δ)m, (
1
2 + δ)m)-approximate majority. By Theorem 3, such an

AC0 circuit can be taken to have depth d and size at most 2(1/δ)O( 1
d

)

·mO(1). We will choose m
and δ so that this size equals s.

Suppose P is an ε-approximating polynomial for C with degree D. By Lemma 14, there is

a degree m
2 − c1

√
m log 1

ε +D polynomial Q which is a certifying polynomial for C.

But since C is a ((1
2 − δ)m, (

1
2 + δ)m) Approximate Majority, Lemma 6 tells us that that

deg(Q) ≥ (1
2 − δ) ·m.

Putting this together, we get that D ≥ c1

√
m log 1

ε − δ ·m.

We now choose m, δ so that c1

√
m log 1

ε = 2δ ·m and s = 2(1/δ)O( 1
d

)

·mO(1). Thus:

m =

(
log s−O(log log

1

ε
)

)Θ(d)

· log
1

ε
.

We therefore get

D ≥
(

log s−O(log log
1

ε
)

)Θ(d)

· log
1

ε
,

as desired.
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6 Discussion and Open Questions

We have seen that certifying polynomials are a natural and useful notion in the context of lower
bounds for AC0[⊕] circuits. We also saw that they have a rather interesting interaction with
the well-studied notion of approximating polynomials for AC0[⊕] circuits.

The fundamental question we would like to answer is whether we can prove a size-hierarchy
theorem for AC0[⊕] analogous to the results of Rossman [11] and Amano [3] for AC0. It would
even be interesting to obtain the weaker separation of uniform AC0[⊕] circuits of size nlogn from
polynomial-sized AC0[⊕] circuits? Good candidates for proving these separations seem to be
the parity of the number of k-cliques in a graph for the former, and the elementary symmetric
polynomial of degree log n for the latter. We have taken the first step in this direction by
demonstrating a function that has polynomial-sized uniform AC0 circuits but not near-linear
sized AC0[⊕] circuits.

Another question that we leave open is to prove lower bounds on the degree for ε-approximating
polynomials for depth 2 AC0[⊕] circuits. Our lower bound utilized small AC0[⊕] circuits for
Approximate Majority, which only exist for depth 3 and higher.

It would be interesting to see whether certifying objects (analogous to the certifying poly-
nomials studied here) exist for other, more powerful, circuit classes, and if they can be used to
prove new circuit lower bounds.
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