
Testing Assignments of Boolean CSPs

Arnab Bhattacharyya∗ Yuichi Yoshida†

Abstract

Given an instance I of a CSP, a tester for I distinguishes assignments satisfying I from
those which are far from any assignment satisfying I. The efficiency of a tester is measured
by its query complexity, the number of variable assignments queried by the algorithm. In this
paper, we characterize the hardness of testing Boolean CSPs according to the relations used
to form constraints. In terms of computational complexity, we show that if a Boolean CSP
is sublinear-query testable (resp., not sublinear-query testable), then the CSP is in NL (resp.,
P-complete, ⊕L-complete or NP-complete) and that if a sublinear-query testable Boolean CSP
is constant-query testable (resp., not constant-query testable), then counting the number of
solutions of the CSP is in P (resp., #P-complete). The classification is done by showing an Ω(n)
lower bound for testing Horn 3-SAT and investigating Post’s lattice, the inclusion structure of
Boolean algebras associated with CSPs.

1 Introduction

In property testing, we want to decide whether an instance satisfies some particular property or is
far from the property. More specifically, an algorithm is called an ε-tester for a property if, given
an instance, it accepts with probability at least 2/3 if the instance satisfies the property, and it
rejects with probability at least 2/3 if the instance is ε-far from the property. Here, an instance is
called ε-far from a property if we must modify an ε-fraction of the instance to make it satisfy the
property. The concept of property testing was introduced in [23] and extended to a combinatorial
setting in [14]. Since then, many problems have been revealed to be testable in constant time, that
is, independent of input size. See [13, 21, 22] for surveys to overview this area.

In constraint satisfaction problems (CSPs), we are given a set of variables and a set of constraints
imposed on variables. The objective is to find an assignment that satisfies all the constraints. De-
pending on the relations used to make constraints, CSPs coincide with many fundamental problems
such as SAT, graph coloring and linear equation systems. Of course, every Boolean property of
n-bit strings can be characterized as the property of satisfying some Boolean CSP on n variables.

In this paper, we are concerned with testing whether a given assignment satisfies a particular
CSP instance. That is, for a known instance I of a CSP, we want to distinguish assignments
which satisfy I from those which are ε-far from satisfying I. In this context, an assignment α
on n variables is said to be ε-far from satisfying I if α differs on at least εn variables from any
assignment that satisfies I.

The efficiency of a tester for CSP assignments is measured by its query complexity, that is,
the number of variable assignments queried by the testing algorithm. We investigate the following
question:

∗Princeton University & Center for Computational Intractability. Email: abhatt@mit.edu
†National Institute of Informatics and Preferred Infrastructure, Inc. Email: yyoshida@nii.ac.jp

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 103 (2012)

Is the query complexity of testing assignments characterized by the structure of the
constraints used to form the CSP instance?

In what follows, instead of saying testing assignments for a CSP instance I, we usually simply say
testing I. By query complexity of a class C of CSPs, we mean the worst case query complexity,
over all CSP instances I in C, of testing I.

Testing Boolean CSPs has been already studied. For example, in [2], it was shown that testing
3-LIN and 3-SAT require Ω(n) queries, where n is the number of variables. Note that although
3-LIN is in P while 3-SAT is a classic NP-complete problem, they behave similarly in terms of query
complexity. Using a universal algebraic argument, now a basic tool to study CSPs [5, 15], Yoshida
showed that testing any NP-complete Boolean1 CSP requires Ω(n) queries [25].

Due to the seminal result by Schaefer [24], the satisfiability of a Boolean CSP is polynomial-time
solvable if and only if it is (equivalent to) either one of a 0-valid CSP, a 1-valid CSP, 2-SAT, Horn
SAT, Dual Horn SAT, or system of linear equations (see Section 2 for definitions). Since testing any
NP-complete Boolean CSP requires Ω(n) queries by [25], it is natural to ask which polynomial-time
solvable CSPs are testable with a sublinear number of queries. The difficulty of testing a 0-valid or
1-valid CSP is determined by the CSP after making it non 0-valid and 1-valid somehow. Also, [12]
showed that monotonicity of a function over a poset is testable with O(

√
n) queries, and this result

implies that 2-SAT is testable with O(
√
n) queries. Thus, prior to this work, the only remaining

Boolean CSPs whose query complexity to test was unknown were Horn SAT and Dual Horn SAT.

Our Results. The first contribution of this paper is giving an Ω(n) lower bound for testing Horn
k-SAT for k ⩾ 3. Here, Horn k-SAT is a special case of Horn SAT, in which each constraint has
arity at most k. (If k = 2, then Horn k-SAT becomes testable with O(

√
n) queries since it becomes

a special case of 2-SAT.) The proof is via an interesting reduction from testing 3-LIN, which uses
the fact that the hard instances of 3-LIN in [2] have expanders as their underlying graph.

The second and main contribution of this paper is a classification of Boolean CSPs with respect
to their query complexity. Let A = ⟨A; Γ⟩ be a pair of a domain and a set of relations (called a
relational structure), and let CSP(A) denote the CSP that can use relations in Γ to make con-
straints. Then, for Boolean structures A, we give necessary and sufficient conditions on A for each
of the following three cases: (i) CSP(A) is constant-query testable, (ii) CSP(A) is sublinear-query
testable but not constant-query testable, and (iii) CSP(A) is not sublinear-query testable.

Let A′ = (A; Γ′), where Γ′ is any set of relations that can be made from Γ by using existen-
tial quantifiers, conjunctions and equality relations. It is known that CSP(A′) has a log-space
reduction [6, 15] to CSP(A) [5, 15]. Similarly, it is known that we can test CSP(A′) with query
complexity that almost matches the one for testing CSP(A) [25]. A useful tool to study CSP(A′)
for A′ made this way is universal algebra, and we can associate an “algebra” for each such A′

(see Section 4 for details). Algebras on Boolean domain are already completely identified, and its
inclusion structure is known as Post’s lattice [20] (see Figure 1 and Table B). Since the missing
piece in Boolean CSPs was Horn SAT and we now have a linear lower bound, we can investigate
each algebra in Post’s lattice and give a complete classification.

We can summarize our classification using its connection to computational complexity.

Theorem 1.1. If a Boolean CSP is sublinear-query testable (resp., not sublinear-query testable),
then the CSP is in NL (resp., P-complete, ⊕L-complete or NP-complete). If a sublinear-query
testable Boolean CSP is constant-query testable (resp., not constant-query testable), then counting
the number of solutions of the CSP is in P (resp., #P-complete).

1In fact, [25] also implies the same result for non-Boolean CSP’s if the Dichotomy Conjecture is true.

2

We actually give upper and lower bounds on the query complexity for each algebra in Post’s
lattice. The connection to computational complexity is coincidentally obtained by combining our
results and [1, 8], which studied computational complexities of algebras in Post’s lattice.

The work most relevant to this paper is [25], which studied the query complexity to test List H-
homomorphism. For two graphs G and H, a function f : V (G) → V (H) is called a homomorphism
from G to H if (f(u), f(v)) ∈ E(H) whenever (u, v) ∈ E(G). Testing List H-homomorphism is a
problem, in which given a graph G, a list constraint L : V (G) → 2V (H), and a function f , we want
to test whether f is a homomorphism from G to H and f(v) ∈ L(v) for each v ∈ V (G). Testing List
H-homomorphism is a special case of testing CSPs. Similarly to our classification, [25] showed the
following. List H-homomorphism is sublinear-query testable (resp., not testable) if it is in NL (resp.,
P-complete, ⊕L-complete, or NP-complete). If sublinear-query testable List H-homomorphism is
constant-query testable (resp., not testable), then counting the number of solutions is in P (resp.,
#P-complete).

Lower bounds in [25] are shown for the problem where ε-farness is measured with respect to an
arbitrary distribution of variables. Since our proof is based on [25], our lower bounds in Theorem 1.1
hold only when arbitrary distributions are allowed. However, we note that our linear lower bound
for Horn 3-SAT holds even if the distribution is uniform.

Though testing Horn k-SAT requires Ω(n) queries in general, it is interesting to see whether
we can break the barrier in a restricted setting. In this direction, we show that Horn k-SAT is
testable with O(

√
n/ε · (k + log n)) queries when all variables are assigned equal weight and the

underlying graph is a tree. That is, any variable can appear at most once as a positive literal (see
Section A for details). Our algorithm is obtained by extending the “pairing” argument used to
analyze monotonicity testing [9, 12, 17].

We remark that the problem of testing CSP assignments belongs to the massively parametrized
model (see, e.g., [7, 11, 18]), where the tester is given free access to part of the input and oracle
access to the rest. Here, a CSP instances I corresponds to the former one and an assignment f
corresponds to the latter one.

Organization. In Section 2, we introduce definitions used throughout the paper. Section 3 is
devoted to the linear lower bound for testing Horn k-SAT where k ⩾ 3. In Section 4, we classify
Boolean relational structures A with respect to the query complexity to test CSP(A). The proof
of Theorem 1.1 is in Section 4.4. The algorithm for uniformly weighted tree Horn k-SAT instances
with query complexity Õ(

√
n/ε · (k + log n)) appears in Appendix A.

2 Preliminaries

For an integer k ⩾ 1, a k-ary relation on a domain A is a subset of Ak. A constraint language on
a domain A is a finite set of relations on A. A (finite) relational structure, or simply a structure
A = ⟨A; Γ⟩ consists of a non-empty set A, called the domain, and a constraint language Γ on A.
For a structure A = ⟨A; Γ⟩, we define the problem CSP(A) as follows. An instance I = (V, C)
consists of a set of variables V and a set of constraints C. Here, each constraint C ∈ C is of the
form (v1, . . . , vk;R), where v1, . . . , vk ∈ V are variables, R is a relation in A and k is the arity of
R. Then, the objective is to find an assignment f : V → A that satisfies all the constraints, that
is (f(v1), . . . , f(vk)) ∈ R for every constraint C = (v1, . . . , vk;R) ∈ C. Throughout this paper, we
study Boolean CSPs, and so, A is fixed to be {0, 1}. So, we often write CSP(Γ) instead of CSP(A).

Let us formally define the CSPs that most concern us here.

3

– k-LIN corresponds to CSP(ΓLIN) where ΓLIN = {R0, R1}, R0 = {(x1, . . . , xk) | x1+· · ·+xk = 0
(mod 2)} and R1 = {(x1, . . . , xk) | x1 + · · ·+ xk = 1 (mod 2)}.

– k-SAT corresponds to CSP(ΓSAT) where ΓSAT = {Rϕ | ϕ ∈ {0, 1}k}, Rϕ = {0, 1}k \ {ϕ}.

– Horn k-SAT corresponds to CSP(ΓHorn) where ΓHorn = {U,R1k , R1k−10}, U = {1} and R1k ,
R1k−10 as above. Dual Horn k-SAT corresponds to CSP(ΓDualHorn) where ΓDualHorn = {Z, R0k ,
R0k−11}, Z = {0}, and R0k , R0k−11 as above.

– A CSP is said to be 0-valid if for every instance I of the CSP, the all-zero assignment satisfies
I. Similarly, a CSP is said to be 1-valid if the all-ones assignment satisfies every instance.

As we will describe in Section 4, there is an explicitly known collection P of CSPs, such that any
Boolean CSP(Γ) is log-space reducible to a CSP in P.

Let I = (V, C) be a CSP instance andw : V → R be a weight function satisfying
∑

v∈V w(v) = 1.
For two assignments f, f ′ : V → {0, 1}, we define distw(f, f ′) = Prv[f(v) ̸= f ′(v)], where v is chosen
according to the probability distribution given by w. We define distI,w(f) as the distance of f
from satisfying assignments, that is distI,w(f) = minf ′ distw(f, f

′), where f ′ is over satisfying
assignments of I. We say that f is ε-far from satisfying assignments if distI,w(f) ⩾ ε. If w is the
uniform distribution, then we often omit w in the notation.

An algorithm is called an (ε, η+, η−)-tester for a property P if it accepts an input with prob-
ability at least 1 − η+ when it satisfies P , and it rejects an input with probability at least 1 − η−
when it is ε-far from P . An (ε, 1/3, 1/3)-tester is simply referred to as an ε-tester. (As long as
η+, η− < 1

2 , an (ε, η+, η−)-tester can be converted into an ε-tester by repeating the original tester
a constant number of times and taking the majority decision.)

We always use the symbol n (resp., m) to denote the number of variables (resp., constraints) in
the instance we are concerned with. For a CSP instance I and weight function w, an algorithm is
called an ε-tester for I if, given an assignment f for I, it ε-tests whether f is a satisfying assignment
of I, where farness is measured using the distance function distI,w(·). Given a structure A, we say
that CSP(A) is testable with query complexity q(n,m, ε) if for every instance I in CSP(A) and for
every weight function w, there is an ε-tester for I making q(n,m, ε) queries.

3 Linear Lower Bound for Horn 3-SAT

In this section, we prove the following theorem.

Theorem 3.1. There exist constants ε, δ, η ∈ (0, 1) such that for all large enough n, there is a Horn
3-SAT formula IHorn on n variables and O(n) constraints such that any adaptive (ε, η+, η−)-test for
IHorn makes at least δn queries if η+ + η− < η.

Thus, we obtain a linear lower bound for ε-testers as well. Note that Theorem 3.1 also implies
a linear lower bound for ε-testing Dual Horn 3-SAT. We can simply negate each literal in the hard
Horn 3-SAT formula to obtain the hard Dual Horn 3-SAT formula.

The proof of Theorem 3.1 is by a reduction from 3-LIN which is known to require Ω(n) queries.
We first revisit the construction of the hard 3-LIN instance ILIN. Then, we show how to reduce to
Horn 3-SAT using the structure of ILIN.

4

3.1 Construction of hard 3-LIN instance

In [2], Ben-Sasson, Harsha and Raskhodnikova constructed a 3-LIN instance ILIN such that any
two-sided adaptive tester for ILIN requires Ω(n) queries. The construction proceeded in two steps.

The first step shows the existence of hard k-LIN formulae for sufficiently large k. Call a bipartite
multigraph G = (L,R,E) (c, k)-regular if the degree of every left vertex u ∈ L is c and the degree
of every right vertex v ∈ R is k. Every (c, k)-regular graph G describes a k-LIN formula ψ(G): for
every right vertex v ∈ R, ψ(G) contains a constraint

∑
u∈N(v) xu = 0 (mod 2) where N(v) is the

set of neighbors of v. A random (c, k)-regular LDPC code of length n is obtained by taking ψ(G)
for a random (c, k)-regular graph G with n left vertices. The following was shown in [2]:

Theorem 3.2 (Theorem 3.7 of [2]). For any odd integer c ⩾ 7 and for µ, ε, δ, k > 0 satisfying:

µ ⩽ 1

100c2
; δ < µc; k >

2µc2

(µc − δ)2
; ε ⩽ 1

100k2

and for sufficiently large n, it is the case that with high probability for a random (c, k)-regular
LDPC code ψ(G) of length n, every adaptive (ε, η+, η−)-test for ψ(G) makes at least δn queries, if
η+ + η− ⩽ 1− 2µ.

An important fact about random (c, k)-regular graphs that was used in the proof of Theorem
3.2 and will be useful to us is:

Lemma 3.3 (Lemma 6.3 of [2]). For all integers c ⩾ 7, k ⩾ 2, and sufficiently large n, a random
(c, k)-regular graph G = (L,R,E) with n left vertices has the following property with high probability:
for every nonempty subset S ⊆ L of left vertices such that |S| ⩽ n

100k2
, there exists a right vertex

v ∈ R such that v has exactly one neighbor in S.

In the second step, testing satisfiability of k-LIN instances is reduced to testing satisfiability of
3-LIN instances. This is done by repeating ⌈log(k−2)⌉ times a reduction R from k-LIN instances ψ
to (⌈k/2⌉+ 1)-LIN instancesR(ψ). If ψ is a k-LIN instance with n variables andm linear constraints
A1, . . . , Am, then R(ψ) is a (⌈k/2⌉+1)-LIN instance with n+m variables and 2m linear constraints
A′

1, A
′′
1, . . . , A

′
m, A

′′
m, where if the constraint Ai is x1+x2+· · ·+xk = 0 (mod 2), then the constraints

A′
i and A

′′
i are, respectively:

x1 + · · ·+ x⌈k/2⌉ + zi = 0 (mod 2) and x⌈k/2⌉+1 + · · ·+ xk + zi = 0 (mod 2)

with zi being a new variable.
The desired 3-LIN instance ILIN is constructed by applying the reduction R ⌈log(k − 2)⌉ many

times on a random (c, k)-regular LDPC code ψ(G) with the following parameters:

c = 7; k = 16c2(100c2)2c−1

If G has n0 left vertices and m0 right vertices, then ILIN has n ⩽ (2c+1)n0 variables and m ⩽ 2km0

constraints. The instance ILIN also has the following property, which is implicit in the proof of
Lemma 3.8 in [2] but which will be convenient for us to make explicit.

Lemma 3.4 (Unique neighbor property). Suppose ILIN, an instance of 3-LIN with n variables, is
constructed as described above. Then, with high probability, for every nonempty subset S of variables
such that |S| ⩽ n

300ck2
, there exists a constraint in ILIN which involves exactly one variable of S.

5

Proof. Suppose ψ is a linear formula with n′ variables x1, . . . , xn′ andm′ linear constraintsA1, . . . , Am′

such that for every subset S of variables such that |S| ⩽ εn′, there exists a constraint in ψ involving
exactly one variable of S. Then, we claim that also for R(ψ), a linear formula on n′ +m′ variables
x1, . . . , xn′ , z1, . . . , zm′ , it holds that for every nonempty subset T of variables such that |T | ⩽ εn′,
there exists a constraint in R(ψ) involving exactly one variable of T .

This claim is enough to prove the lemma, because ILIN is formed by composing R several times
on a random (c, k)-regular LDPC code ψ(G). If ILIN is on n variables, then ψ(G) is on at least

n
2c+1 ⩾ n

3c variables. For ψ(G), Lemma 3.3 shows that with high probability, if S is a subset of

variables of size at most n/3c
100k2

= n
300ck2

, then there is a constraint in ψ(G) which involves exactly
one variable of S. The lemma immediately follows from the claim.

It remains to prove the claim. Let T be a subset of the n′ +m′ variables of R(ψ) such that
|T | ⩽ εn′. Let T0 = T ∩{x1, . . . , xn′}, the subset of T which corresponds to variables in the original
formula ψ. Of course, |T0| ⩽ εn′, and so, there must exist a constraint Ai in ψ containing exactly
one variable from T0. In R(ψ), corresponding to Ai, there are two constraints A′

i and A′′
i . Call

A′
i the constraint which contains exactly one variable from T0. Then A′′

i does not involve any
variables from T0. Now, there are two cases. If T does not contain zi, then A

′
i contains exactly one

variable from T . Else, if T does contain zi, then A
′′
i contains exactly one variable from T , zi itself.

Therefore, in either case, our claim is proved. □

Ben-Sasson et al. [2] further showed that the reduction R preserves the query complexity of the
instances. Without elaborating on their proof, we state their main result.

Theorem 3.5 (Theorem 3.1 of [2]). Suppose ILIN, an instance of 3-LIN with n variables and Θ(n)
constraints, is constructed as described above. Then, there exist ε, δ, η ∈ (0, 1) such that with high
probability over the construction of ILIN, any adaptive (ε, η+, η−)-test for ILIN makes at least δn
queries, if η+ + η− ⩽ η. In particular, there exists a 3-LIN formula on n variables which requires
Ω(n) queries for testing satisfiability.

3.2 Reduction to Horn 3-SAT

Let ILIN on n variables be defined as above. We now construct an instance of Horn 3-SAT, IHorn,
in the following way. For each variable xi in ILIN, we have two variables vi and v′i in ILIN. For
each linear constraint xi + xj + xk = 0 (mod 2) in ILIN, we have 12 Horn constraints in IHorn:

vi ∧ vj → v′k vi ∧ vk → v′j vj ∧ vk → v′i

v′i ∧ vj → vk v′i ∧ vk → vj v′j ∧ vk → vi

vi ∧ v′j → vk vi ∧ v′k → vj vj ∧ v′k → vi

v′i ∧ v′j → v′k v′i ∧ v′k → v′j v′j ∧ v′k → v′i

Given an assignment fLIN for ILIN, let the assignment fHorn for IHorn be defined as: ∀i ∈ [n], fHorn(vi) =
fLIN(xi), fHorn(v

′
i) = fLIN(xi)

Lemma 3.6. There exists ε > 0 such that for large enough n:

(a) If fLIN satisfies ILIN, then fHorn also satisfies IHorn.

(b) If fLIN is ε-far from satisfying ILIN, then fHorn is also ε-far from satisfying IHorn.

6

Proof. The first part is immediate. It is easy to check that if fLIN satisfies a constraint in ILIN,
then fHorn also satisfies the corresponding constraint in IHorn.

To see part (b), assume it is false so that fLIN is ε-far from satisfying ILIN but fHorn is ε-close
to a satisfying assignment gHorn for IHorn. Let S = {xi | i ∈ [n] such that gHorn(vi) = gHorn(v

′
i)}.

Clearly, |S| ⩽ 2εn, since fHorn(vi) ̸= fHorn(v
′
i) for every i.

Also, we can prove S ̸= ∅. Suppose otherwise. Then, define an assignment gLIN for ILIN as:
gLIN(xi) = gHorn(vi) for every i ∈ [n]. gLIN is ε-close to fLIN. We now show that gLIN satisfies ILIN,
and so fLIN is ε-close to ILIN, a contradiction. Consider a constraint xi + xj + xk = 0 (mod 2)
in ILIN. We know that gHorn(vi) = gLIN(xi) and, since |S| = 0, gHorn(v

′
i) = gLIN(xi). Since gHorn

satisfies IHorn, the following constraints must be true:

gLIN(xi) ∧ gLIN(xj) → gLIN(xk)

gLIN(xi) ∧ gLIN(xj) → gLIN(xk)

gLIN(xi) ∧ gLIN(xj) → gLIN(xk)

gLIN(xi) ∧ gLIN(xj) → gLIN(xk)

It is now easy to check that these constraints hold iff gLIN(xi) + gLIN(xj) + gLIN(xk) = 0 (mod 2).
Therefore, 0 < |S| ⩽ 2εn. If ε is sufficiently small, Lemma 3.4 shows that there must exist

a constraint in ILIN that contains exactly one variable of S. On the other hand, we now show
that any constraint in ILIN containing one variable in S must contain at least one other variable
in S, thus causing a contradiction and finishing the proof. Consider a constraint xi + xj + xk = 0
(mod 2) in ILIN, and suppose xi ∈ S. There are two cases.

– Suppose gHorn(vi) = gHorn(v
′
i) = 1. Since gHorn is a satisfying assignment, it must be:

gHorn(vj) → gHorn(v
′
k) gHorn(vk) → gHorn(v

′
j)

gHorn(vj) → gHorn(vk) gHorn(vk) → gHorn(vj)

gHorn(v
′
j) → gHorn(vk) gHorn(v

′
k) → gHorn(vj)

gHorn(v
′
j) → gHorn(v

′
k) gHorn(v

′
k) → gHorn(v

′
j)

So, gHorn(vj) = gHorn(v
′
j) = gHorn(vk) = gHorn(v

′
k), and therefore, xj , xk ∈ S.

– Suppose gHorn(vi) = gHorn(v
′
i) = 0. Then, the first eight Horn constraints corresponding to

xi + xj + xk = 0 are vacuously satisfied. The remaining four are satisfied exactly when

gHorn(vj) ∧ gHorn(vk)

gHorn(v
′
j) ∧ gHorn(vk)

gHorn(vj) ∧ gHorn(v
′
k)

gHorn(v
′
j) ∧ gHorn(v

′
k)

are all false. This can only hold when gHorn(vj) = gHorn(v
′
j) = 0 or gHorn(vk) = gHorn(v

′
k) = 0.

Thus, either xj or xk is in S.

□

Theorem 3.1 now immediately follows from Theorem 3.5.

7

4 Classification of Boolean CSPs

In this section, we classify (finite) Boolean structures A into three categories with respect to the
query complexity for testing CSP(A). Namely, we give necessary and sufficient conditions for each
of the following three cases: (i) CSP(A) is constant-query testable, (ii) CSP(A) is sublinear-query
testable but not constant-query testable, and (iii) CSP(A) is not sublinear-query testable.

4.1 Universal Algebra Preliminaries

An n-ary operation on a set A is a map from An to A. An n-ary operation f on A preserves the
k-ary relation R on A (equivalently, we say that R is invariant under f) if the following holds:
given any matrixM of size k×n whose columns are in R, applying f to the rows ofM will produce
a k-tuple in R. For instance, one can check that every binary Boolean relation is preserved by the
ternary majority operation and that the ternary Boolean relation x ∧ y → z is preserved by the
binary AND operation.

Given a constraint language Γ, let Pol(Γ) denote the set of all operations that preserve all
relations in Γ. It’s known [15] that if for two constraint languages Γ1,Γ2, we have Pol(Γ1) = Pol(Γ2),
the computational complexity of CSP(Γ1) and CSP(Γ2) are equal (upto log-space reducibility), and
as we will soon see, their query complexities are roughly equal also. Hence, we can together study
the complexity of all CSP(Γ) such that Pol(Γ) equals some particular F .

To this end, given a constraint language Γ, define Alg(Γ) to be the algebra ⟨A; Pol(Γ)⟩, where
the domain A of the algebra in our case is fixed to be {0, 1}. It can be easily seen that for any
Γ, Pol(Γ) forms a clone, i.e., a set of operations closed under compositions and containing all the
projections (operations of the form f(x1, . . . , xk) = xi). Also, in fact, the converse is true: every
clone can be characterized as Pol(Γ) for some set of relations Γ [19]. Hence, it suffices to only
consider algebras ⟨A;F ⟩, where F is a clone.

Remarkably, it turns out that there is an explicit description [20] of the countably many Boolean
clones. When ordered by inclusion, they form a lattice known as Post’s lattice, shown in Figure 1
and Table B with standard notation for the operations. In the rest of this section, we will settle
the query complexity for the CSPs associated to each clone in Post’s lattice.

In Section 4.2, we review known upper and lower bounds. In Section 4.3, we give a classification
of A assuming that A is neither 0-valid nor 1-valid. We deal with structures that are 0-valid or
1-valid in Section 4.4.

4.2 Known results

For an algebra A = (A;F), we say CSP(A) is testable with q(n,m, ε) queries if, for any constraint
language Γ satisfying Pol(Γ) = F , CSP(Γ) is testable with q(n,m, ε) queries. The following lemma
states that essentially Pol(Γ) decides the query complexity for testing CSP(Γ).

Lemma 4.1 ([25]). Given constraint language Γ, suppose CSP(Γ) is testable with q(n,m, ε) queries.

– If Γ′ is a constraint language such that Pol(Γ′) ⊇ Pol(Γ), then CSP(Γ′) is testable with
O(1/ε) + q(O(n+m), O(m), O(ε)) queries.

– CSP(Alg(Γ)) is testable with O(1/ε) + q(O(n+m), O(m), O(ε)) queries.

A k-ary operation f(x1, . . . , xk) is called a near-unanimity if f(y, x, . . . , x) = f(x, y, x, . . . , x) =
· · · = f(x, . . . , x, y) = x for any x, y. A 3-ary near-unanimity operation is called a majority.
In [25], it is shown that CSP(A) is testable with O(

√
n) queries if A contains a majority as its term

8

operation. The argument can be generalized to near-unanimity operations, and thus we have the
following. (We give a proof in Appendix B for completeness.)

Lemma 4.2. Let A be an algebra containing a (k+1)-ary near-unanimity operation. Then, CSP(A)
is testable with O(n1−

1
k) queries.

Ben-Sasson et al. [2] showed a linear lower bound for 3-LIN.

Corollary 4.3. For R = {(x, y, z) | x + y + z = 0 (mod 2)}, testing CSP({R}) requires Ω(n)
queries even when m = O(n).

Also, we have the following sublinear lower bound for CSPs related to monotonicity of functions.

Lemma 4.4 ([12]). Testing CSP({→}),CSP({∨}) and CSP({∧}) requires Ω
(

logn
log logn

)
queries even

when m = n1+O(1/log logn).

4.3 Classification of structures that are neither 0-valid nor 1-valid

The goal of this section is showing the following classification. We use below standard notation for
the clones in Post’s lattice; see Table B for their definitions.

Theorem 4.5. Let A = ⟨{0, 1}; Γ⟩ be a structure that is neither 0-valid nor 1-valid.

– If Pol(Γ) ∈ {D1, D,R2}, then CSP(A) is testable with O(1) queries.

– If S00 ⊆ Pol(Γ) ⊆ S2
02, S10 ⊆ Pol(Γ) ⊆ S2

12 or Pol(Γ) ∈ {D2,M2}, then testing CSP(A)
requires Ω(logn/log logn) queries and is testable with o(n) queries. The lower bound holds even
when m = n1+O(1/log logn).

– If Pol(Γ) ∈ {I2, N2, E2, V2, L2, L3}, then testing CSP(A) requires Ω(n) queries. The lower
bound holds even when m = O(n).

If A is neither 0-valid nor 1-valid, then Pol(Γ) does not contain constant relations. Thus,
Theorem 4.5 covers all cases (Figure 1). Lemmas 4.6, 4.7, 4.8 and 4.9 below imply Theorem 4.5.

Lemma 4.6. If Pol(Γ) ∈ {D1, D,R2}, then CSP(Γ) is testable with O(1) queries.

Proof. For R = x∧ (y⊕ z), we have Pol({R}) = D1. Thus from Lemma 4.1, it suffices to show that
CSP({R}) is testable with O(1) queries. However, the problem is just 2-Colorability plus constant
relations, and the problem is known to be testable with O(1) queries (see Lemma 3.8 of [25]). □

Lemma 4.7. If a constraint language Γ satisfies S00 ⊆ Pol(Γ) ⊆ S2
02, S10 ⊆ Pol(Γ) ⊆ S2

12 or
Pol(Γ) ∈ {D2,M2}, then we can test CSP(Γ) with o(n) queries.

Proof. If Pol(Γ) ∈ {D2,M2}, the algebra contains a majority operation, and then, Lemma 4.2
shows O(

√
n) query complexity. Otherwise, Pol(Γ) ∈ {Sk

00, S
k
10, S

k
02, S

k
12} for some finite k ⩾ 2 since

we assume that each relation in Γ has finite arity. In any case, Pol(Γ) contains the (k+1)-ary near-
unanimity operation hk. Thus, we can test CSP(Γ) with O(n1−1/k) queries from Lemma 4.2. □

Lemma 4.8. If a constraint language Γ satisfies S00 ⊆ Pol(Γ) ⊆ S2
02, S10 ⊆ Pol(Γ) ⊆ S2

12 or
Pol(Γ) ∈ {D2,M2}, then testing CSP(Γ) requires Ω(logn

log logn) queries.

9

Proof. Suppose Pol(Γ) = M2, and assume that we can test CSP(Γ) with o(logn
log logn) queries. Since

the relation (→) is invariant under M2, we have a tester for CSP({→}) with o(log(n+m)
log logn) queries

from Lemma 4.1. However, we have a lower bound of Ω(logn
log logn) even when m = n1+O(1/log logn)

from Lemma 4.4, contradiction.
We have the same lower bound for the cases Pol(Γ) = S2

02 and Pol(Γ) = S2
12. Note that the

relations (∨) and (∧) are invariant under any operation in S2
02 and S2

12, respectively. Thus, we have

lower bounds of Ω(logn
log logn) for testing CSP({∨}) and CSP({∧}) even when m = n

1+O(1
log logn

)
from

Lemma 4.4. The same lower bound hold also for other cases from Lemma 4.1. □

Lemma 4.9. If a constraint language Γ satisfies Pol(Γ) ∈ {I2, N2, E2, V2, L2, L3}, then testing
CSP(Γ) requires Ω(n) queries.

Proof. Note that algebras corresponding to Horn 3-SAT and Dual Horn 3-SAT are E2 and V2,
respectively. Since we have Ω(n) lower bounds for these CSPs even when m = O(n), we have the
desired lower bound also for the case Pol(Γ) = E2 and Pol(Γ) = V2. From Lemma 4.1, the same
lower bounds hold also for I2.

Suppose that Pol(Γ) = L2, and we can test CSP(Γ) with o(n) queries. We note that R =
{(x, y, z) | x+ y + z = 0 (mod 2)} in Lemma 4.3 satisfies Pol({R}) = L2. Then from Lemma 4.1,
we have a tester for CSP({R}) with o(n +m) queries. However, we have a lower bound of Ω(n)
even when m = O(n) from Corollary 4.3, contradiction.

To show the lower bound for L3, we reduce from testing CSP({R}). Consider an instance
I of CSP({R}) on variables {x1, x2, . . . , xn} and a weight function w. Let R′ = {(x, y, z, w) :
x+ y + z +w = 1 (mod 2)}. Note that Pol({R′}) = L3. We reduce testing I with respect to w to
testing an instance I ′ of CSP({R′}) with respect to a different weight function w′. The instance I ′

is defined on the variable set {t, x1, x2, . . . , xn} as follows: for each equation x1 + x2 + x3 = 1 in I,
the equation x1+x2+x3+ t = 1 is contained in I ′. The weight function w′ is set to be w′(t) = 1/2
and w′(xi) = w(xi)/2 for all i ∈ [n]. Given an assignment f for I, consider the following assignment
f ′ for I ′: f ′(t) = 0 and f ′(xi) = f(xi) for all i ∈ [n]. Clearly, if f satisfies I, then f ′ satisfies I ′.
On the other hand, for ε < 1/2, if f is ε-far from I with respect to w, then f ′ is ε/2-far from I ′

with respect to w′. (To see this, just note that if f ′ is ε/2-close to a satisfying assignment g′, then
g′(t) = 0 because of the weight on t.) This gives a reduction from testing CSP({R}) to testing
CSP({R′}), and so, CSP({R′}) requires Ω(n) queries even if m = O(n). By the same argument as
in the previous paragraph, Lemma 4.1 then implies a lower bound of Ω(n) for testing CSP(Γ) for
every Γ such that Pol(Γ) = L3. Additionally, Lemma 4.1 shows that the same lower bound holds
also for N2. □

4.4 Classification of all structures

In this section, we examine how adding equality and constant relations affect the query complexity
of CSPs. Since adding such relations make a Boolean structure neither 0-valid nor 1-valid, we can
use the results of the previous section to classify the query complexity of all Boolean CSPs.

Theorem 4.10. Given a constraint language Γ, suppose Γ′ is obtained from Γ by adding the equality
relation and constant relations.

– If Pol(Γ′) ∈ {D1, D,R2}, then CSP(Γ) is testable with O(1) queries.

– If S00 ⊆ Pol(Γ′) ⊆ S2
02, S10 ⊆ Pol(Γ′) ⊆ S2

12 or Pol(Γ′) ∈ {D2,M2}, then testing CSP(Γ)
requires Ω(logn

log logn) queries and can be done with o(n) queries. The lower bound holds even

when m = n
1+O(1

log logn
)
.

10

– If Pol(Γ′) ∈ {I2, N2, E2, V2, L2, L3}, then testing CSP(Γ) requires Ω(n) queries. The lower
bound holds even when m = O(n).

Before we prove Theorem 4.10, let us indicate how it implies Theorem 1.1 in the introduction.

Proof of Theorem 1.1. The classification of sublinear-query testable CSPs in terms of complexity
of the decision problem follows directly from Theorem 4.10 and the main result of Allender et al.
[1]. The classification of constant-query testable CSPs in terms of counting complexity follows from
the result by Creignou and Hermann [8] that #CSP(Γ) is in P if all relations in Γ are affine, and
otherwise, #CSP(Γ) is #P-complete. □

We now turn to the proof of Theorem 4.10. The following reduction is already implicitly used
in Section 3.

Definition 4.11. Given constraint languages Γ,Γ′, a gap-preserving local reduction from CSP(Γ′)
to CSP(Γ) exists if there are functions t1(n,m), t2(n,m) and constants c1, c2 satisfying the following:
given an instance I ′ = (V ′, C′) of CSP(Γ′), a weight function w′ and an assignment f ′ for I ′, there
exist an instance I = (V, C) of CSP(Γ), a weight function w and an assignment f for I such that:

1. |V | ⩽ t1(|V ′|, |C′|).

2. |C| ⩽ t2(|V ′|, |C′|).

3. if f ′ satisfies I ′, then f also satisfies I.

4. if distI′,w′(f ′) ⩾ ε, then distI,w(f
′) ⩾ c1ε.

5. we can compute f(v) for any v ∈ V by querying f ′ at most c2 times.

Lemma 4.12 ([25]). For constraint languages Γ,Γ′, if there exists an ε-tester for CSP(Γ) with
query complexity q(n,m, ε) and a gap-preserving local reduction from CSP(Γ′) to CSP(Γ), then
there exists an ε-tester for CSP(Γ′) with query complexity O(q(t1(n,m), t2(n,m), O(ε))).

To show Theorem 4.10, we need the following lemma that states that adding equality relations
and constant relations does not change much the difficulty of testing CSPs.

Lemma 4.13. Given a constraint language Γ, let Γ′ be obtained from Γ by adding the equality
relation and constant relations. Assume that ε≪ 1/2.

– If CSP(Γ′) is testable with q(n,m, ε) queries, then CSP(Γ) is testable with q(n,m, ε) queries.

– If CSP(Γ) is testable with q(n,m, ε) queries, then CSP(Γ′) is testable with O(1/ε) + q(O(n+
m), O(m), O(ε)) queries.

Proof. The first claim is trivial. We turn to the second claim. Suppose that we can test CSP(Γ) with
q(n,m, ε) queries. Let Γ= be the language obtained from Γ by adding equality constraints. Since
Pol(Γ=) = Pol(Γ), we can test CSP(Γ=) with O(1/ε) + q(O(n+m), O(m), O(ε)) from Lemma 4.1.

Suppose that, given an instance I ′ = (V ′, C′) of CSP(Γ′), a weight functionw′ and an assignment
f ′ for I ′, we want to test whether f ′ is a satisfying assignment or ε′-far from satisfying assignments.
We create an instance I = (V, C) of CSP(Γ=), a weight function w and an assignment f for I as
follows. We set V = V ′ ∪ {x0, x1} and

f(v) =

{
f ′(v) if v ∈ V ′

i if v = xi, i ∈ {0, 1},
w(v) =

{
(1− 2ε′)w′(v) if v ∈ V ′

ε′ if v = x0 or v = x1

11

Then, for each constraint of the form (v = 0) in C′, where v ∈ V ′, we add a constraint of the form
(x0 = v) in C. And similarly for each constraint (v = 1) in C′, we add a constraint (x1 = v) in C.
Other constraints in C′ are just copied to C.

We check that the construction above is a gap-preserving local reductions from CSP(Γ′) to
CSP(Γ=). It is easy to see that n = n′ + 2,m = m′ and we can take c2 = 1. Also, if f ′ is a
satisfying assignment, then f is also a satisfying assignment.

Let ε = ε′/2 and suppose f is ε-close to a satisfying assignment f̃ . Then, f̃(x0) = 0 and
f̃(x1) = 1 since weights of x0 and x1 are larger than ε. So, f̃ |V ′ must be a valid assignment for I ′.
It is easy to check that the distance between f ′ and f̃ |V ′ in I ′ is at most ε/(1− 2ε′) < ε′ when ε′

is sufficiently small. Thus, we can take c1 as 1/2, and we can apply Lemma 4.12. □

Proof of Theorem 4.10. It is easy to see that upper bounds hold from Theorem 4.5 and the first
item of Lemma 4.13.

We now see the lower bounds. Suppose Γ′ satisfies the second condition and CSP(Γ) is testable
with o(logn

log logn) queries. Then, from the second item of Lemma 4.13, we can test CSP(Γ′) with

o(log(n+m)
log logn) queries as well. However, we have the lower bound of Ω

(
logn

log logn

)
for testing CSP(Γ′)

from Theorem 4.5 even when m = n
1+O(1

log logn
)
, contradiction.

Suppose Γ′ satisfies the third condition and CSP(Γ) is testable with o(n) queries. Then, from the
second item of Lemma 4.13, we can test CSP(Γ′) with o(n+m) queries as well. However, we have
the lower bound of Ω(n) for testing CSP(Γ′) from Theorem 4.5 even whenm = n, contradiction. □

5 Conclusion

In this work, we characterized the Boolean CSPs that are testable in constant and sublinear queries,
according to their defining constraint language. Besides the obvious problem for non-Boolean CSPs,
here are two other interesting open questions:

– Can we classify the query complexity of testing Boolean CSPs, when the weight function is
fixed to be the uniform distribution? This question is of particular interest as the unweighted
Hamming distance is the most standard notion of distance.

– Can we classify the query complexity of testing conservative Boolean CSPs? In a conservative
CSP, the set of values for each individual variable can be restricted arbitrarily. Bulatov [4] ob-
tained a dichotomy theorem that characterized the conservative CSPs solvable in polynomial
time. As for query complexity, Yoshida [25] obtained a classification of constant-query and
sublinear-query testable List H-coloring problems, a particular subset of conservative CSPs.

References

[1] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complexity of
satisfiability problems: Refining Schaefer’s theorem. J. Comp. Sys. Sci., 75(4):245–254, June
2009. 3, 11

[2] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test.
SIAM J. on Comput., 35(1):1–21, 2006. 2, 5, 6, 9

[3] A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2):321–
339, 2006. 18

12

[4] A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput.
Logic, 12(4):1–66, July 2011. 12

[5] A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite alge-
bras. Proc. 27th Annual International Conference on Automata, Languages, and Programming,
pages 272–282, 2000. 2

[6] A. Bulatov and M. Valeriote. Recent results on the algebraic approach to the csp. Complexity
of Constraints, pages 68–92, 2008. 2

[7] S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah, and I. Newman. Testing st-connectivity.
Proc. 11th International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, pages 380–394, 2007. 3

[8] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.
Inform. and Comput., 125(1):1–12, Feb. 1996. 3, 11

[9] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-
proved testing algorithms for monotonicity. Combinatorica, 20(3):301–337, 2000. 3

[10] T. Feder and M. Vardi. The computational structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group theory. SIAM J. on Comput., 28(1):57–104,
1998. 18

[11] E. Fischer, O. Lachish, I. Newman, A. Matsliah, and O. Yahalom. On the query complexity of
testing orientations for being eulerian. Proc. 12th International Workshop on Randomization
and Computation, pages 402–415, 2008. 3

[12] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proc. 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 474–483, 2002. 2, 3, 9

[13] O. Goldreich, editor. Property Testing: Current Research and Surveys, volume 6390 of LNCS.
Springer, 2010. 1

[14] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998. 1

[15] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1-2):185–204, 1998. 2, 8

[16] P. Jeavons, D. Cohen, and M. Cooper. Constraints, consistency and closure. Artificial Intel-
ligence, 101(1-2):251–265, 1998. 18

[17] M. Jha and S. Raskhodnikova. Testing and reconstruction of lipschitz functions with applica-
tions to data privacy. In Proc. 52nd Annual IEEE Symposium on Foundations of Computer
Science, pages 433–442, 2011. 3

[18] I. Newman. Property testing of massively parametrized problems - a survey. In Property
testing, volume 6390 of LNCS, pages 142–157. Springer, 2010. 3

[19] R. Poschel and L. A. Kaluznin. Funktionen- und Relationenalgebren. WEB Deutscher Verlag
der Wissenschaften, Berlin, 1979. 8

13

[20] E. Post. The two-valued iterative systems of mathematical logic. Number 5 in Annals of
Mathematics Studies. Princeton Univ Pr, 1941. 2, 8

[21] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in
Theoretical Computer Science, 5:73–205, 2010. 1

[22] R. Rubinfeld and A. Shapira. Sublinear time algorithms. Electronic Colloquium on Computa-
tional Complexity (ECCC), 18, 2011. TR11-013. 1

[23] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM J. on Comput., 25(2):252–271, 1996. 1

[24] T. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium
on the Theory of Computing, pages 216–226, 1978. 2

[25] Y. Yoshida. Testing list H-homomorphisms. In Proc. 27th Annual IEEE Conference on
Computational Complexity, 2012. to appear. 2, 3, 8, 9, 11, 12

A Testing Horn SAT on Trees

Let G = (V,E) be a directed rooted tree. From the tree G, we can obtain an instance I of Horn
k-SAT as follows. For every vertex v ∈ V be a vertex and u1, . . . , uk its children, I contains a
constraint of the form (u1 ∧ · · · ∧ uk → v). In this section, we show that any such instance I of
Horn k-SAT is testable with Õ(

√
n) queries with respect to the uniform weight function (w(i) = 1

n
for all i ∈ [n]).

We introduce several definitions used in this section. Given I = (V, C) an instance of Horn k-
SAT on a tree, let f be an assignment for I. A constraint (u1 ∧ · · · ∧uk → v) ∈ C is called violating
if f(ui) = 1, ∀i ∈ [k] whereas f(v) = 0. Let C = (u1 ∧ · · · ∧ uk → v) be a violating constraint.
We define the upper violation u(C) of C as the set of ancestors w of v (including v) such that the
unique path between v and w contains vertices of value 0 only. We define the lower violation ℓ(C)
of C as the set of descendants w of v such that the unique path between v and w contains vertices
of value 1 only. In particular, u(C) contains v, and ℓ(C) contains u1, . . . , uk. Also, note that u(C)
forms a path, and ℓ(C) forms a set of trees whose roots are u1, . . . , uk. We define the violation
v(C) of C as u(C) ∪ ℓ(C). Note that for two violating constraints C,C ′, their violations intersect
only at their upper violations, that is, v(C)∩ v(C ′) = u(C)∩ u(C ′). A vertex not contained in any
violation is called free.

Two violating constraints C and C ′ are said to be touching if some vertex in the upper violation
of C is adjacent to some vertex in the lower violation of C ′. We define the violation closure of C
is the set of vertices obtained as follows: starting with the vertices in v(C), we add the vertices in
violations touching the current set of violations as long as possible.

We have the following useful fact.

Lemma A.1. Let S be a violation closure and u, v ∈ S be vertices with f(u) = 1, f(v) = 0, and v
an ancestor of u in the tree. If we perform binary search along the unique path between u and v,
then we always find two vertices u′, v′ in a violating constraint.

Proof. After performing binary search, we will find two vertices u′ and v′ such that u′ is a child of
v′, f(u′) = 1 and f(v′) = 0. The only place such u′ and v′ exist in a violation closure is a violating
constraint. □

14

A pair of vertices (u, v) is called good if u and v are in the same violation closure, f(u) =
1, f(v) = 0 and v is an ancestor of u. The main technical lemma here is the following.

Lemma A.2. If f is ε-far from satisfying I, then there exists a set M of good pairs of vertices of
size εn.

We first see that we can construct a testing algorithm using Lemma A.2.

Theorem A.3. Horn k-SAT on trees is testable with query O(
√
n/ε · (k + log n)) queries.

Proof. Let I = (V, C) be the Horn k-SAT instance on a tree, and let f be the given assignment.
The algorithm is as follows.

1: Let S be a set of Θ(
√
n/ε) vertices chosen uniformly at random.

2: Let S0 = {v ∈ S | f(v) = 0} and S1 = {v ∈ S | f(v) = 1}.
3: for each u ∈ S1 do
4: Let v be the closest ancestor of u in S0 if such a vertex exists.
5: if v exists then
6: Perform binary search along the path between u and v.
7: Let u′ and v′ be the obtained vertices.
8: if the constraint containing u′ and v′ is violating then
9: Reject.

10: Accept.

It is easy to observe that the algorithm is a one-sided error tester and its query complexity is
O(

√
n/ε · (k + log n)).

Suppose that f is ε-far from satisfying I. Then, we have a set of εn good pairs from Lemma A.2.
Thus, by choosing the hidden constant in Θ(

√
n/ε) large enough, we have a good pair (u, v) in

S × S with probability at least 2/3. Note that if (u, v) is a good pair and there is a vertex v′ with
f(v′) = 0 along the path between u and v, then (u, v′) is also a good pair. Thus, the algorithm
finds a violating constraint from Lemma A.1. □

A.1 Proof of Lemma A.2

To show that there is a large set of good pairs, we consider fixing the current assignment to a
satisfying assignment. An issue here is that two violation closures may overlap at their upper
violations. Thus, if we tried to fix two violation closures simultaneously, then it may conflict.

To avoid this issue, we take vertices greedily. We start with an empty set T . We choose an
arbitrary violation closure S, add S \

∪
T∈T T to T , and repeat. We call each set in T a maximal

violation closure.
Let T be a maximal violation closure. We say an assignment f ′ proper for T if f ′(u) = f ′(v) holds

for any u, v in the violation of the same violating constraint. For a set of vertices T ⊆ V , we define
I|T as the partial instance obtained by restricting the set of vertices to T . If there is a constraint
(u1 ∧ · · · ∧ uk → v) and T = {ui1 , . . . , uij , v}, then the constraint becomes (ui1 ∧ · · · ∧ uij → v) in
I|T .

Lemma A.4. Let f ′ be an assignment such that, for every maximal violation closure T ∈ T , f ′ is
proper for T and I|T is satisfied by f ′. Then, f ′ is a satisfying assignment.

15

Proof. Suppose that there is a violating constraint (u1 ∧ · · · ∧ uk → v) with respect to f ′. Note
that f ′(u1) = · · · = f ′(uk) = 1 and f ′(v) = 0. In particular, since f ′ is proper for any maximal
violation closure, {ui} and v must be contained in different maximal violation closures (or one of
them is free.) We have three cases to consider.

– Suppose v is in the upper violation of some violating constraint C. Then, u1, . . . , uk must be
in the violation of C. This contradicts the fact that f ′ is proper for the maximal violation
closure corresponding to C.

– Suppose v is in the lower violation of some violating constraint C. Let T be the maximal
violation closure corresponding to C. If some ui, i ∈ [k] is contained in T , then it contradicts
the fact that β′ is a satisfying assignment for I|T .
Thus, each ui is either free or contained in another maximal violation closure. Suppose that
there are maximal violation closures containing vertices in {ui}. Then, since these maximal
violation closures and T are touching, T must have been extended, contradiction.

Thus, all u1, . . . , uk are free and it follows that f(u1) = · · · = f(uk) = 1. Note that f(v) = 1
since y is in a lower violation. Then, the lower violation must have contained u1, . . . , uk,
contradiction.

– Suppose v is free. Note that f(v) = 0 since v is free. Also, there exists i ∈ [k] such that
f(ui) = 0 and ui is contained in a upper violation. Then, the upper violation must have
contained v, contradiction.

□

Let dist(f, f ′) be the Hamming distance between f and f ′, and distsat(f) be the distance from
satisfying assignments. Also, let distprop(f) be the distance from proper satisfying assignments.
For a set of vertices T , we define f |T as the assignment obtained by restricting the domain to T .
From Lemma A.4, we have the following.

Corollary A.5. It holds that distsat(f) ⩽
∑
T∈T

distprop(f |T). □

Thus, to show that there is a large set of good pairs in an ε-far assignment, it suffices to show
that there is a large set of good pairs in a maximal violation closure that is far from proper satisfying
assignments.

From now on, we concentrate on a fixed maximal violation closure T . Note that a maximal
violation closure T can be seen as a tree, in which each vertex corresponds to a violating constraint.
Let C be a violating constraint in T . Let f0C (resp., fC,1) be an assignment over v(C) with f0C ≡ 1
(resp., f1C ≡ 1). Then, we define d0C = d(f |C , f0C) and d1C = d(f |C , f1C). Note that d0C (resp., d1C) is
simply the number of ones (resp., zeros) in v(C).

For a violating constraint C, we define TC ⊆ T as the subtree of T consisting of v(C) and its
descendants. Let f0

C↓ (resp., f1
C↓) be the proper satisfying assignment for TC closest to f such that

∀v ∈ v(C), f0
C↓(v) = 0 (resp., ∀v ∈ C, f1

C↓(v) = 1). Then, we define d0
C↓ = d(f |TC

, f0
C↓) (resp.,

d1
C↓ = d(f |TC

, f1
C↓)) Note that d0

C↓ = d0C and d1
C↓ = d1C when C is a leaf in the maximal violation

closure.
We recursively make pairings from leaves of the maximal violation closure T . For each vi-

olating constraint C, first we make pairings between u(C) and ℓ(C). The cardinality is clearly
min{|u(C)|, |ℓ(C)|}. Suppose that |u(C)| > |ℓ(C)|, that is, we have extra zeros in C. Then, if
the subtree TC contains unpaired vertices v with f(v) = 1, we make pairings between them and
unmatched vertices in u(C).

16

Lemma A.6. Let T be a maximal violation closure. we have max{d0
C↓ − d1

C↓ , 0} unpaired ones in
TC .

Proof. We use the induction on the number of violating constraints in T .
Suppose that T contains only one violating constraint C. Then, we have max{d0C − d1C , 0}

unpaired ones in T (C).
Suppose that the lemma holds for 1, . . . , t − 1. Let T be a maximal violation closure with t

violating constraints and C be the violating constraint corresponding to the root. Let v1, . . . , vℓ
be leaves of the lower violation ℓ(C). Let Di,1, . . . , Di,ci be violating constraints touching vi. Note
that Di,1, . . . , Di,ci are children of C in the tree corresponding to T .

When we assign zeros to v(C), at least one of Di,1, . . . , Di,ci must be assigned zeros for each i.
Thus, we have

d1C↓ = d1C +
∑
i

min
ui∈{0,1}ci

{dui,j

D↓
i,j

}, (1)

d0C↓ = d0C +
∑
i

min
ui∈{0,1}ci\(1,...,1)

{dui,j

D↓
i,j

}. (2)

Here, ui,j stands for the choice of values for Di,j . Let û1i (resp., û0i) be the one that achieves the
minimum in d1

C↓ (resp., d0
C↓). We define Si = {j ∈ [ci] | û1i,j ̸= û0i,j}. Note that if û1i ̸= û0i , then

we must have û1i = (1, . . . , 1). Thus, for every j ∈ Si, we have û1i,j = 1, û0i,j = 0 and d0
D↓

i,j

⩾ d1
D↓

i,j

.

Then,

d0C↓ − d1C↓ = d0C − d1C +
∑
i∈[ℓ]

∑
j∈Si

(d0
D↓

i,j

− d1
D↓

i,j

) = d0C − d1C +
∑
i∈[ℓ]

∑
j∈Si

max{d0
D↓

i,j

− d1
D↓

i,j

, 0}. (3)

From the inductive hypothesis, we have unpaired max{d0
D↓

i,j

− d1
D↓

i,j

, 0} ones in TDi,j . We consider

two cases.

– d0C − d1C ⩾ 0: This means that we have more ones in C. Thus, we have d0C − d1C unmatched
ones in C and the claim holds.

– d0C − d1C < 0: This means that we have more zeros in C. It cancels out at most d1C − d0C
unmatched ones from {TDi,j}i,j and the claim holds.

□

Lemma A.7. Let T be a maximal violation closure. Then, we can make a set of distprop(f) good
pairings.

Proof. We use the same notation as previous lemma. Let C be the root violating constraint in T .
Then, we have min{d0

C↓ , d
1
C↓} ⩾ d. We use the induction on the number of violating constraints in

T .
Suppose that T contains only one violating constraint C. Then, we clearly have distprop(f)

good pairs.
Suppose that the lemma holds for 1, . . . , t − 1. Let T be a maximal violation closure with

t violating constraints. We can make min{d0C , d1C} good pairs in C. Also, from the inductive

hypothesis, we have at least
∑

i

∑
j min{d0

D↓
i,j

, d1
D↓

i,j

} =
∑

i

∑
j d

û1
i,j

D↓
i,j

good pairs in {TDi,j}i,j . We

consider the following two cases.

17

– distprop(f) = d1
C↓ : From (1), it suffices to show that we can make max{d1C − d0C , 0} matching

pairs between C and {TDi,j}i,j . It suffices to consider the case d1C − d0C ⩾ 0. Clearly, we have
at least d1C − d0C unmatched zeros in C. Note that we have (3) ⩾ 0. Thus,

d1C − d0C ⩽
∑
i

∑
j∈Si

max{d0
D↓

i,j

− d1
D↓

i,j

, 0}.

Thus, from Lemma A.6, we have at least d1C − d0C unpaired ones in {TDi,j}i,j .

– distprop(f) = d0
C↓ : It suffices to show that we can make

d0C↓ −min{d0C , d1C} −
∑
i

∑
j

d
û1
i,j

D↓
i,j

= max{d0C − d1C , 0}+
∑
i

∑
j∈Si

(d0
D↓

i,j

− d1
D↓

i,j

)

= max{d0C − d1C , 0}+
∑
i

∑
j∈Si

max{d0
D↓

i,j

− d1
D↓

i,j

, 0}. (4)

good pairs between C and {TDi,j}i,j . From the fact that (3) ⩽ 0, we have (4) ⩽ max{d0C −
d1C , 0}+ d1C − d0C = max{d1C − d0C , 0}. Thus, it suffices to consider the case d1C − d0C ⩾ 0. In
this case, (4) =

∑
i

∑
j∈Si

max{d0
D↓

i,j

− d1
D↓

i,j

, 0} ⩽ d1C − d0C . Clearly, we have at least d1C − d0C

unpaired zeros in C. Also, we have
∑

i

∑
j∈Si

max{d0
D↓

i,j

−d1
D↓

i,j

, 0} unpaired ones in {TDi,j}i,j .

□

B Proof of Lemma 4.2

We first review properties of (k + 1)-near-unanimity operations. If a relation R is preserved by a
(k+1)-near-unanimity operation, then it is known that the relation can be made k-ary by projecting
R into every k-sized subset [10, 16]. That is, a tuple a belongs to R if and only if a|U ∈ R|U for
every subset U with |U | = k, where a|U and R|U are projections of a and R on U , respectively.
Thus, we can assume the input instance I = (V, C) consists of constraints of arity at most k.

Now, we can preprocess the instance I in polynomial time and we obtain a set of partial solutions
SU for each variable set U ⊆ V of size k. A crucial property of SU is that any partial solution
a ∈ Su can be extended to a satisfying assignment for the entire instance. The preprocess is called
(k, k + 1)-Minimality and the property of SU is called the Helly property (see [3, 10] for details).
We call a subset of variables U ⊆ V of size k violated with respect to an assignment f : V → {0, 1}
if f |U ̸∈ SU .

Proof of Lemma 4.2. First, we describe our algorithm. We query each variable v with probability

q ·w(v), where q = Θ(n
1−1/k

ε). If we query more than 100q times along the way, we immediately
stop and accept. Suppose that the number of queries is at most 100q. Then, we reject if there is
some subset S ⊆ V of size k such that f |U ̸∈ SU , and we accept otherwise.

It is easy to see that the algorithm always accepts if f is a satisfying assignment (no matter
whether we stopped as we have queried more than 100q times).

Now, we see that the algorithm rejects with high probability when the instance is ε-far. From
Markov’s inequality, the query complexity is at most 100q with probability at least 99

100 .

18

Let U be the family of violated variable sets U of size k. We first observe that f |V \H is extendable
to a satisfying assignment for any hitting set H of U . Indeed, if f |V \H is not extendable, then there
must be a variable set U ⊆ V \H with |U | = k and f |U ̸∈ SU from the Helly property. However,
such set U must be contained in U , contradiction.

Let Vℓ be a set of variables v with w(v) ⩽ ε
2n and Uh ⊆ U be a set of violated variable sets that is

not hit by any vertex in Vℓ. Let H
∗
h be a minimum (weighted) hitting set of Uh. From the argument

above, f |V \(Vℓ∪H∗
h)

is extendable to a satisfying assignment and hence we have w(Vℓ ∪ H∗
h) ⩾ ε.

Since, w(Vℓ) ⩽ ε
2n · n = ε

2 , we have w(H∗
h) ⩾ ε

2 . Let U∗
h ⊆ Uh be any maximal set of disjoint

violated variable sets in U . Since the variable set
∪

U∈U∗
h
U itself is a hitting set of Uh, we have∑

U∈U∗
h

∑
v∈U w(v) ⩾ w(H∗

h) ⩾ ε
2 .

We need the following claims for our analysis.

Claim B.1. Suppose
∑

i∈[k] xi = s and mini∈[k] xi ⩾ t ⩾ 0. Then,
∏k

i=1 xi ⩾ tk−1(s− (k − 1)t).

Proof. Use induction on k. □

Claim B.2. Suppose
∑

j∈[ℓ]
∑

i∈[k] xij ⩾ s and mini∈[k],j∈[ℓ] xij ⩾ t ⩾ 0. Then,
∑

j∈[ℓ]
∏

i∈[k] xij ⩾
tk−1s− tk(k − 1)ℓ.

Proof. For j ∈ [ℓ], let sj =
∑

i∈[k] xij . From Claim B.1, we have∑
j∈[ℓ]

∏
i∈[k]

xij ⩾
∑
j∈[ℓ]

tk−1(sj − (k − 1)t) ⩾ tk−1s− tk(k − 1)ℓ. □

Now, we are back to the proof of Lemma 4.2. Note that for each variable set U , the probability
that we do not find U is 1− qk

∏
v∈U w(v). Thus, the probability that we do not find any violated

variable set in Uh during the process of our algorithm is∏
U∈U∗

h

(1− qk
∏
v∈U

w(v)) ⩽
∏

U∈U∗
h

exp(−qk
∏
v∈U

w(v)) = exp(−qk
∑
U∈U∗

h

∏
v∈U

w(v))

⩽ exp

(
−qk

((ε

2n

)k−1
ε−

(ε

2n

)k
(k − 1)|U∗

h |
))

(from Claim B.2)

⩽ exp

(
−qk

((ε

2n

)k−1
ε−

(ε

2n

)k (k − 1)n

k

))
(from |U∗

h | ⩽
n

k
)

⩽ exp

(
− (εq)k

2(2n)k−1

)
If we choose the constant hidden in q large enough, then assuming that n is sufficiently large
enough, the probability above is bounded by 1

100 . Thus, with probability at least 98
100 , we reject the

instance. □

19

S
2

00

BF

R1

R2

R0

M

M1 M0

M2

D

D1

D2

L

L3

L2

L1 L0

V

V2

V1 V0

E

E2

E1 E0

I

I2

I1 I0

N

N2

S
3

00

S00

S
2

01

S
3

01

S01

S
2

02

S
3

02

S02

S
2

0

S
3

0

S0

S10

S
3

10

S
2

10

S11

S
3

11

S
2

11

S12

S
3

12

S
2

12

S1

S
3

1

S
2

1

O(
√

n),Ω(
log n

log log n
)

O(1)

contains

constants

Ω(n)

Figure 1: Post’s Lattice and our result

20

Table 1: List of all closed classes of Boolean functions and their bases. hn(x1, . . . , xn+1) =
∨n+1

i=1 x1∧
x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1 is an (n+ 1)-ary near-unanimity operation.

Name Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing} {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing} {∨,↔}
R2 R1 ∩R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic} {∨,∧, 0, 1}
M1 M ∩R1 {∨,∧, 1}
M0 M ∩R0 {∨,∧, 0}
M2 M ∩R2 {∨,∧}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {→,dual(hn)}
S0 {f ∈ BF | f is 0-separating} {→}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF | f is 1-separating} {x ∧ y}
Sn
02 Sn

0 ∩R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩M {dual(hn), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩R2 ∩M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩M {hn, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩R2 ∩M {x ∧ (y ∨ z), hn}
S10 S1 ∩R2 ∩M {x ∧ (y ∨ z)}
D {f | f is self-dual} {xy ∨ xz ∨ yz}
D1 D ∩R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f | f is linear} {⊕, 1}
L0 L ∩R0 {⊕}
L1 L ∩R1 {↔}
L2 L ∩R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f | f is constant or an n-ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f | f is constant or an n-ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

