
Optimal Coding for Streaming Authentication

and Interactive Communication

Matthew Franklin∗ Ran Gelles† Rafail Ostrovsky‡ Leonard J. Schulman§

June 6, 2013

Abstract

Error correction and message authentication are well studied in the literature, and various
efficient solutions have been suggested and analyzed. This is however not the case for data
streams in which the message is very long, possibly infinite, and not known in advance to the
sender. Trivial solutions for error-correcting and authenticating data streams either suffer from a
long delay at the receiver’s end or cannot perform well when the communication channel is noisy.

In this work we suggest a constant-rate error-correction scheme and an efficient authentication
scheme for data streams over a noisy channel (one-way communication, no feedback) in the
shared-randomness model. Our first scheme does not assume shared randomness and (non-
efficiently) recovers a (1− 2c)-fraction prefix of the stream sent so far, assuming the noise level
is at most c < 1/2. The length of the recovered prefix is tight.

To be able to overcome the c = 1/2 barrier we relax the model and assume the parties
pre-share a secret key. Under this assumption we show that for any given noise rate c < 1, there
exists a scheme that correctly decodes a (1 − c)-fraction of the stream sent so far with high
probability, and moreover, the scheme is efficient. Furthermore, if the noise rate exceeds c, the
scheme aborts with high probability. We also show that no constant-rate authentication scheme
recovers more than a (1− c)-fraction of the stream sent so far with non-negligible probability,
thus the relation between the noise rate and recoverable fraction of the stream is tight, and our
scheme is optimal.

Our techniques also apply to the task of interactive communication (two-way communication)
over a noisy channel. In a recent paper, Braverman and Rao [STOC 2011] show that any function
of two inputs has a constant-rate interactive protocol for two users that withstands a noise rate
up to 1/4. By assuming that the parties share a secret random string, we extend this result
and construct an interactive protocol that succeeds with overwhelming probability against noise
rates up to 1/2. We also show that no constant-rate protocol exists for noise rates above 1/2 for
functions that require two-way communication. This is contrasted with our first result in which
computing the “function” requires only one-way communication and the noise rate can go up
to 1.

Keywords: data stream, private codes, adversarial noise, authentication, tree codes, interactive
communication.

∗CS Department, UC Davis, franklin@cs.ucdavis.edu
†CS Department, UCLA, gelles@cs.ucla.edu
‡UCLA Department of Computer Science and Department Mathematics, 3732D Boelter Hall, Los Angeles CA

90095-1596, U.S. Email: rafail@cs.ucla.edu. Supported in part by NSF grants 0830803, 09165174, 1065276, 1118126
and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin
Corporation Research Award. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those
of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
§E&AS Division, Caltech. Email: schulman@caltech.edu. Supported in part by NSF Award 1038578.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 104 (2012)

1 Introduction

The tasks of error-correction and of authentication are well studied in the literature. In both cases, a
sender (Alice) wishes to send a message over a one-way, noisy channel to a receiver (Bob). To do so,
Alice produces a longer, redundant message and sends it over the channel. The added redundancy
helps Bob in recovering the original message if possible, or aborting otherwise. The overhead of this
process is the amount of redundancy added to each message; in this work we focus on constant-rate
schemes, i.e., schemes in which the transmitted message is at most constant-times longer.

Interestingly, in all known authentication schemes (and in many of the error-correction codes)
there are two important assumptions: (1) the message to be communicated has a given length n
and (2) the message is fully known to the sender in advance. These two assumptions don’t hold
anymore when the information to be transmitted is in the form of a data stream, which is a long,
possibly infinite, sequence of symbols x1, x2, . . . over some alphabet Σ, where each xi arrives at the
sender’s end at time i and is unknown beforehand.

In this paper, we investigate the question of transmitting data streams over an adversarially
noisy channel. Within this framework we consider two related questions, namely, error-correction
and authentication of data streams. Loosely speaking, in error-correction schemes, the receiver
decodes the correct message as long as the noise level is below some threshold (but possibly outputs
a wrong message if the noise exceeds that threshold). In authentication schemes, the receiver’s task
is to indicate whether or not the received (decoded) message is indeed the one sent to him. To see
the relation between these two tasks note that if the corruption level of an adversary is guaranteed
to be lower than the threshold, any error-correction guarantees that the receiver decodes the original
message. However, while no constant-rate error-correction scheme can withstand a noise level higher
than 1/2, this is not the case for authentication schemes that are capable of indicating a change in
the message even when the adversary has a full control of the channel. On the other hand for the
task of authentication, it is generally assumed that the parties pre-share a secret key.

Standard error-correction and authentication methods do not apply directly to the model of
data streams. The straightforward method to perform error-correction (or authentication) of a data
stream is to cut the stream into chunks and separately encode each chunk. The problem now is
that while the adversary is limited to some global noise rate, there is no restriction on the noise
level of any local part of the stream. Specifically, the adversary can corrupt a single chunk in its
entirety (while not exceeding the global amount of allowed noise), and cause Bob to decode this
chunk in a wrong way. Even if this event is noticed by Bob since the chunk fails the authentication,
the information carried within this chunk is lost unless Bob requests a retransmission of that chunk,
i.e., unless the communication is interactive. The same problem exists (with high probability) when
the noise is random rather than adversarial, given that the stream is long enough or infinite.

A possible mitigation to the above is to increase the chunks’ size. This, however, has an
undesirable side effect—Bob needs to wait until receiving a complete chunk in order to decode and
authenticate it. This means that the information received in the very recent bits is inaccessible to
Bob until the chunk is completely received. Our goal is thus, to construct a constant-rate scheme
that can withstand a constant fraction of errors (globally) and still guarantee the correct decoding
and authenticity of the information received so far. To the best of our knowledge, no such solution
is known.

1.1 Our Results

In this work we construct optimal encoding schemes for both interactive and non-interactive
(streaming) communication, and show a dramatic difference between these two cases in the following

1

sense. For each case, we show an upper bound on the noise rates that allow a successful constant-rate
communication, and construct a protocol that achieves the bound. Interestingly, the bound for
one-way communication is different from the interactive one.

Specifically, our result for one-way communication is a constant-rate coding scheme for data
streams that withstands noise rates of less than 1/2. Informally, as long as the global noise rate up
to some time n does not exceed some parameter c < 1/2, a fraction of 1− 2c of the stream sent up
to time n can be recovered (see Section 4). For constant-rate schemes, it is clear that c < 1/2 is a
hard limit and no scheme can succeed when the noise is higher. In order to achieve schemes that
withstand higher noise rates we must relax the model and give the users more resources. Indeed,
with the use of shared randomness (i.e., a shared secret key) we can break the c = 1/2 barrier.
To emphasize the fact that the parties are allowed to share a secret key, we refer schemes in this
model as authentication schemes rather than error-correction schemes, based on the relation of
these two tasks mentioned above (codes that assume a private shared key are also known as private
codes [Lan04], see Related Work).

This leads to our first main result: we construct a constant-rate authentication scheme for
data streams sent over a noisy (possibly adversarial) channel. For any constant fraction of noise c
less than 1, our scheme succeeds in decoding at least a (1− c)-fraction of the stream so far, with
high probability. The decoded part is always the prefix of the stream. The decoded prefix is
authenticated, meaning that there is only a negligible probability that the scheme outputs a different
string. Furthermore, our scheme is efficient. More formally (see formal theorems in Section 5), we
show that for any noise rate 0 ≤ c < 1 and small constant ε > 0:

• There exists an efficient constant-rate scheme that, at time n, decodes a prefix of length at
least (1− c)n− εn of the stream sent so far.

• Any constant-rate protocol that decodes a prefix of length (1 − c)n + εn succeeds with
probability at most 2−Ω(εn) in the worst case.

Our scheme is unconditionally secure and does not make any (cryptographic) assumptions, other
than pre-sharing a secret random string. The amount of randomness utilized by the scheme grows
with the message length, and can be unbounded if the data stream is infinite. However, if we only
consider a computationally bounded adversary, the required amount of randomness is relatively
small (polynomial in the security parameter). With the aid of a pseudo-random generator, the
parties only need to pre-share a small seed, from which they generate randomness at will. Moreover,
such a solution scales to the multiparty case by a simple public-key infrastructure construction.
Each user generates a pair of a public and a secret key, and any pair of users perform Diffie-Hellman
key-exchange [DH76] to obtain a secret shared authentication-key used as the pseudo-random
generator’s seed.

We apply the same techniques used in our streaming-authentication scheme onto the task of
interactive communication to get our second main result. In the interactive communication scenario,
two parties perform an arbitrary interactive protocol over a noisy channel, while keeping the amount
of exchanged data only a constant factor more than an equivalent protocol for a noiseless channel
(i.e., the encoding is constant-rate). This question was initially considered for both random and
adversarial noise by Schulman [Sch92, Sch93, Sch96] who showed a constant-rate encoding scheme
that copes with a noise rate of up to 1/240, and recently revisited by Braverman and Rao [BR11]
who showed how to deal with noise rates less than 1/4. In addition, Braverman and Rao show that
1/4 is the highest error rate any protocol can withstand, as long as the protocol defines whose turn
it is to speak at every round regardless of the observed noise. The fascinating open question left by
the work of Braverman and Rao is whether other methods could extend the 1/4 bound.

2

In this work we improve the bound obtained by [BR11] by allowing the parties to pre-share
a secret key. Specifically, we show how to convert any interactive protocol (for noiseless channel)
into a constant-rate protocol that withstands any adversarial noise level smaller than 1/2, given
pre-shared randomness. We also show that for higher noise rates, no constant-rate interactive
protocol exists for tasks that depend on inputs of both parties. Similarly to previous results for
interactive communication with adversarial noise [Sch96, BR11, GMS11], our decoding scheme is
inefficient. Very recently, Brakerski and Kalai [BK12] showed how to augment previous results of
interactive communication protocols and achieved efficient schemes that withstand adversarial noise
(the computation efficiency was further improved by Brakerski and Naor [BN13] to O(N logN)).
Note that the bounds (on adversarial noise) obtained by [BK12] are improved by our work as well,
since we improve the bounds of the underlying schemes used by [BK12].

1.2 Our Methods

The Blueberry code. The main ingredient of our construction is an error-detection code we
name the Blueberry code1. The Blueberry code uses the shared randomness in order to detect
corruptions made by the channel, and marks them as erasures. One can think about this code
as a weak message authentication code (MAC) that authenticates each symbol separately with
a constant probability (see [Gol04] for a formal definition of MAC). To this end, each symbol of
the input alphabet Σ is randomly and independently mapped to a larger alphabet Γ (the channel
alphabet). This means that only a small subset of the channel alphabet is meaningful and the other
symbols serve as “booby-traps”. Since each symbol is encoded independently, any corruption is
caught with constant probability |Σ|−1

|Γ|−1 and marked with a special sign ⊥ to denote it was deleted
by the channel. Most of the corruptions made by an adversary become erasures and only a small
fraction (arbitrarily small, controlled by the size of |Γ|) turns into errors.

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

...

0

1

time

Σ = {0, 1}

Γ = {0, . . . , N}

Figure 1: A demonstration of the Blueberry code: at any given time each symbol in Σ is randomly mapped to a
symbol of Γ. Symbols of Γ with no incoming arrow are “booby-traps”, which detect corruptions.

The main insight that leads to our results is the different ways error correction codes deal
with errors and erasures. We observe that, in terms of Hamming distance, the impact of a single
error is twice as harmful as a single erasure. Indeed, assume that the Hamming distance of two

1The name of the Blueberry code is inspired by the children’s book “The case of the hungry stranger” [Bon63] in
which a blueberry pie is gone missing, and the thief (who turns out to be the dog) is identified by his big blue grin.

3

strings, x and y, is m. Then if x was communicated but y is decoded it means that at least m/2
errors have occurred, or alternatively, at least m erasures. More generally, assuming we decode by
minimizing the Hamming distance, then our decoding fails if the number of errors e and the number
of erasures d satisfy 2e+ d ≥ m.

Combining Blueberry codes and tree codes. The second ingredient of our work is encoding
via tree codes [Sch96], an online encoding that has a “self-healing” property: when decoding a
stream at time n, the tree will decode correctly up to a particular time t such that the stream suffix
between times t and n is the longest suffix in which the error rate is high. This means, for instance,
that even if all the transmissions until some time t′ were corrupted (and thus the decoding failed at
those times), if the noise rate up to time n > t′ is low enough, not only can we decode between t′

and n, but we will also be able to decode the entire stream up to time n.
Encoding via both a tree code and a Blueberry code immediately gives a streaming authentication

method: the Blueberry code prevents the adversary from corrupting too many transmissions without
being noticed, and given that the noise level is low enough, the tree code correctly decodes a prefix
of the stream whose length is determined by the average noise level up to that time.

Efficient constructions. The only caveat of the above construction is that tree code decoding
is not necessarily efficient and may be in the worst case exponential in the length of the received
transmission. We obtain an efficient authentication scheme by splitting the stream into small
segments and repeatedly sending random segments of the history. That way, even if some part of
the transmission was changed by the channel, the same information will keep being retransmitted at
random future times, and eventually (with high probability) will be received at the other side intact.

Roughly speaking, we use n/ log n tree codes to encode chunks of the stream (each of length
roughly log n). Note that as n grows, so does the number of the trees in use, and the expected
depth of each tree. At each time step, we randomly select one of the n/ log n trees and transmit
the next label of the path defined by the corresponding chunk of the stream. For most of the
trees, the expected number of labels transmitted is Θ(log n), and the decoding of the specific chunk
succeeds except with polynomially small probability. Since each tree code is used to encode a word
of length O(log n), the decoding can be performed efficiently by an exhaustive search.

1.3 Other Related Works

The works of Even, Goldreich and Micali [EGM90] and Gennaro and Rohatgi [GR97] consider
authentication of data streams, however the focus of these schemes is not only to authenticate
the message but also to prevent the sender from denying having signed the information. These
constructions rely on cryptographic primitives such as one-time signatures. Another related line of
research [PCTS00, MS01, GM01] pursues authentication of streams over lossy channels, usually in
the multicast setting.

Coding schemes that assume the parties pre-share some randomness (also known as Private
Codes [Lan04]) first appeared in [Sha58], and were greatly analyzed since. The main advantage of
such codes is that they can deal with adversarial noise, rather than a random noise. Langberg [Lan04]
considers private codes for adversarial channels that approach Shannon’s bound and require only
O(log n) randomness for block size n, as well as an Ω(log n) lower bound for the needed randomness.
The construction of Langberg also implies an efficient code with O(n log n) randomness. This
result was improved to n + o(n) randomness by Smith [Smi07]. Explicit constructions with o(n)
randomness are yet unknown (see [Smi07]).

4

Error correction codes for computationally bounded noise models were first addressed by Lip-
ton [Lip94] who constructs error-correction codes given pre-shared randomness and later considered
by Micali, Peikert, Sudan and Wilson [MPSW05] who only assume sharing a short public-key, and
recently by the surprising result of Guruswami and Smith [GS10] who assume no shared setup
between the users. Locally Decodable codes with constant-rate in the public-key model were
introduced by Hemenway and Ostrovsky [HO08] and later improved by Hemenway, Ostrovsky,
Strauss and Wootters [HOSW11].

2 Preliminaries, Model and Definitions

We denote the set {1, 2, . . . , n} by [n], and for a finite set Σ we denote by Σ≤n the set ∪nk=1Σk. The
Hamming distance ∆(x, y) of two strings x, y ∈ Σn is the number of indices i for which xi 6= yi.
Throughout the paper, log() denotes the binary logarithm (base 2) and ln() denotes the natural
logarithm (base e).

Shared randomness model. We assume the following shared-randomness model. The legitimate
users (Alice and Bob) have access to a random string R of unbounded length, which is unknown to
the adversary (Eve). Protocols in this model are thus probabilistic, and are required to succeed with
high probability over the choice of R. We assume that all the randomness comes from R and that
for a fixed R the protocols are deterministic.

Tree codes. A d-ary tree code [Sch96] over alphabet Σ is a rooted d-regular tree of arbitrary
depth N whose edges are labeled with elements of Σ. For any string x ∈ [d]≤N , a d-ary tree code T
implies an encoding of x, TCencT (x) = w1w2..w|x| with wi ∈ Σ, defined by concatenating the labels
along the path defined by x, i.e., the path that begins at the root and whose i-th node is the
xi-th child of the (i − 1)-th node. We usually omit the subscript T when the tree is clear from
the context. Note that tree code encoding is online: to communicate TCenc(xσ) where σ ∈ [d]
given that TCenc(x) was already communicated, we only need to send one symbol of Σ. Hence, if
|Σ| = O(1) the encoding scheme has a constant rate.

For any two paths (strings) x, y ∈ [d]≤N of the same length n, let ` be the longest common
prefix of both x and y. Denote by anc(x, y) = n− |`| the distance from the n-th level to the least
common ancestor of paths x and y. A tree code has distance α if for any k ∈ [N] and any distinct
x, y ∈ [d]k, the Hamming distance of TCenc(x) and TCenc(y) is at least α · anc(x, y).

For a string w ∈ Σn, decoding w using the tree code T means returning the string x ∈ [d]n

whose encoding minimizes the Hamming distance to the received word, namely,

TCdecT (w) = argmin
x∈[d]n

∆(TCencT (x), w).

A theorem by Schulman [Sch96] proves that for any d and α < 1 there exists a d-ary tree code of
unbounded depth and distance α over alphabet of size dO(1/(1−α)). However, no efficient construction
of such a tree is yet known. For a given depth N , Peczarski [Pec06] gives a randomized construction
for a tree code with α = 1/2 that succeeds with probability at least 1− ε, and requires alphabet

of size at least dO(
√

log ε−1). Braverman [Bra12] gives a sub-exponential (in N) construction of a
tree code, and Gelles, Moitra and Sahai [GMS11] provide an efficient construction of a randomized
relaxation of a tree code of depth N , namely a potent tree code, which is powerful enough as a
substitute for a tree code in most applications.

5

Communication model. Our communication model consists of a channel ch : Σ→ Σ subject
to corruptions made by an adversary (or by the channel itself). The noise model is such that any
symbol σ sent through the channel can turn into another symbol σ̃ ∈ Σ. It is not allowed to insert
or delete symbols. For all of our applications we assume that one symbol σi ∈ Σ is sent at any time
slot i.2 We say that the adversarial corruption rate is c if for n transmissions, at most cn symbols
were corrupted.

3 The Blueberry Code

Definition 3.1. For i ≥ 1 let Bi : [L + 1] → [L + 1] be a random and independently chosen
permutation. The Blueberry code maps a string x of arbitrary length n to

B(x) = B1(x1)B2(x2) · · ·Bn(xn).

We denote such a code as B : [L+ 1]∗ → [L+ 1]∗.

We use the Blueberry code in the shared-randomness model where the legitimate parties share
the random permutations Bi, unknown to the adversary (these kind of codes, determined by a
random string unknown to the channel are referred to as private codes by [Lan04]). Although Bi is
a permutation on [L+ 1], we actually use it to encode strings over a smaller alphabet [S + 1] with
S < L; that is, we focus on the induced mapping B : [S + 1]∗ → [L+ 1]∗. The adversary does not
know the specific permutations Bi, and has probability of at most S/L to change a transmission
into a symbol whose pre-image is in [S + 1].

Definition 3.2. Assume that at some time i, yi = Bi(xi) is transmitted and ỹi 6= yi is received.
If B−1

i (ỹ) /∈ [S + 1], we mark the transmission as an erasure (specifically, the decoding algorithm
outputs ⊥); otherwise, this event is called an error.

Corollary 3.3. Let x ∈ [S + 1]n and assume B(x) is communicated over a noisy channel. Every
symbol altered by the channel will cause either an error with probability S/L, or an erasure with
probability 1− S/L.

Assuming S � L, most of the corruptions done by the channel are marked as erasures, and only
a small fraction of the corruptions percolate through the Blueberry code and cause an error.

Lemma 3.4. Let S,L ∈ N be fixed and assume a Blueberry code B : [S + 1]∗ → [L+ 1]∗ is used to
transmit a string x ∈ [S + 1]n over a noisy channel. For any constant 0 ≤ c ≤ 1, if the channel’s
corruption rate c, then with probability 1− 2−Ω(n) at least a (1− 2SL)-fraction of the corruptions are
marked as erasures.

Proof. Denote by zi the random variable which is 1 if the i-th corrupted-transmission is marked as
an erasure and 0 otherwise. These are independent Bernoullis with probability 1− S

L . Let Z =
∑

i zi
and note that E[Z] = cn(1− S

L). By Chernoff-Hoeffding inequality,

Pr
R

[
1

n

∑
i

zi < c
(
1− 2SL

)]
< e−2n(cS/L)2 .

2The channel time slots need not correspond with the times in which stream symbols are received. I.e, it is possible
that between the arrival of stream elements xi and xi+1, several channel-symbols are transmitted.

6

Corollary 3.5. Let S,L ∈ N be fixed. If out of n received transmissions, cn were marked as erasures
by a Blueberry code B : [S + 1]∗ → [L + 1]∗, then except with probability 2−Ω(n) over the shared
randomness, the adversarial corruption rate is at most c/(1− 2SL).

We will use the Blueberry code concatenated with another (outer) code that is less sensitive to
erasures than to errors. From the outer code’s point of view, this effectively increases the channel’s
“error rate resilience” from 1−2c to 1−c(1+S/L). The construction of the code B from independent
Bi’s allows us to encode and decode each xi independently, which is crucial for on-line applications
in which the message x to be sent is not fully known in advance.

4 Error Correction of Data Streams

As a simple exposition to our main result, we begin with a simple, non-efficient, constant-rate
error-correction scheme for data streams that withstands noise c < 1/2 and decodes a prefix of
length 1− 2c of the stream sent so far. The scheme is obtained by simply encoding the stream via a
tree code T with large enough distance parameter α ∈ (0, 1) and a constant-size alphabet, which
depends on α.

Theorem 4.1. For any constants c < 1/2 and ε > 0 there exists a constant-rate error-correction
scheme for data stream x1, x2, . . . such that at any given time n the receiver outputs a string
x′1, x

′
2, . . . , x

′
n, and if the noise rate until time n is at most c, then

x′1, x
′
2, . . . , x

′
(1−2c)n−εn = x1, x2, . . . , x(1−2c)n−εn

that is, a prefix of the stream of length at least (1− 2c)n− εn is correctly decoded.

Proof. Assume Alice encodes each stream symbol using TCencT () using some tree code T whose
parameters we fix shortly.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (2c + ε)n. Due
to the tree distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is at least
α(2c + ε)n. Assume Eve causes e errors, a maximal-likelihood decoding will prefer x over x̃ as
long as bα(2c + ε)nc > 2e. Since Eve’s corruption rate is limited to c, we know that e ≤ cn.
By setting α > 2c

2c+ε we guarantee that α(2c + ε)n > 2e, and Bob decodes a string x′ such that
anc(x, x′) < (2c+ ε)n with certainty.

5 Perpetual Authentication

Sending a data stream over a noisy channel is not a simple task, especially when the noise model
is adversarial. Our goal is to design an encoding and decoding scheme such that the encoding
has a constant rate and the decoding recovers the encoded transmitted stream, or else aborts.
Furthermore, we wish an “authentication” guarantee, that is, if the decoding scheme did not abort,
it decodes the correct data with high probability (note that the probability that the scheme aborts
potentially differs from the probability that the decoding scheme outputs incorrect data). The
amount of recoverable data depends on the noise and the goal is to output (and authenticate) the
longest possible prefix of the stream, given a constant corruption rate.

Definition 5.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme with constant rate r is an
encoding e : {0, 1}∗ × {0, 1}∗ → {0, 1}r that encodes a stream x1, x2, . . . into a stream y1 = e(x1, R),
y2 = e(x1x2, R), . . ., yi = e(x1 · · ·xi, R), and a decoding d : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} such

7

that the following holds. For any n, and for any adversary Adv(x1 · · ·xn, y1 · · · yn) = y′1 · · · y′n, either
d(y′1 · · · y′n, R) = x′1x

′
2 · · ·x′n or d(y′1 · · · y′n, R) = ⊥, and if at most c(n) transmissions were corrupted,

then

1. the scheme aborts with probability at most κ(n),

Pr
R

[d(y′1 · · · y′n, R) = ⊥] < κ(n).

2. if not aborted, the probability to decode an incorrect γ(n)-prefix of the stream is at most κ(n),

Pr
R

[d(y′1 · · · y′n, R) 6= ⊥ ∧ x′1 · · ·x′γ(n) 6= x1 · · ·xγ(n)] < κ(n).

Eve is given both the raw stream and the channel transmissions, however she does not know
the shared random string R used as the secret authentication key. It is desired that as long as Eve
corrupts only a small fraction of the transmissions, Bob will be able to correctly decode a prefix of
the stream, or otherwise be aware of the adversarial intervention and abort.

We show the following dichotomy: If the adversarial corruption rate is some constant c, then
there exists a streaming authentication stream that decodes a prefix of at most (1− c)-fraction of
the stream received so far. In addition, there does not exist a streaming authentication scheme that
is capable of decoding a longer prefix with non-negligible probability.

Theorem 5.2. In the shared-randomness model, for every constants c, ε such that 0 ≤ c < 1 and
0 < ε ≤ (1− c)/2 there exists a constant-rate (cn, (1− c)n− εn, 2−Ω(n))-Streaming Authentication
Scheme. Moreover, there exists an efficient constant-rate (cn, (1− c)n− εn, 2−Ω(logn))-Streaming
Authentication Scheme.

For any constant cth > c, if the adversarial corruption rate exceeds cth, the schemes abort with
overwhelming probability over the shared randomness.

Theorem 5.3. Assume that a bitstream x1, x2, . . . is communicated using some encoding protocol
with a constant rate, and assume that at time n the receiver decodes the bitstring x′1, . . . , x

′
n. If the

rate of adversarial corruptions is 0 ≤ c ≤ 1, then for any constant ε > 0,

Pr[x′1 · · ·x′(1−c)n+εn = x1 · · ·x(1−c)n+εn] ≤ 2−Ω(εn)

where the probability is over the coin tosses of the decoding algorithm, assuming {xi} are uniformly,
independently distributed.

We now prove Theorem 5.3 and then construct the protocols guaranteed by Theorem 5.2

Proof. Consider an adversary that, starting at time (1− c)n, corrupts all the transmissions. It is
easy to verify that the corruption rate is c. Clearly, from time (1− c)n and on, the effective capacity
of the channel is 0. This means that the decoder has no use of transmissions of times ≥ (1− c)n and
he decodes only using transmissions received up to time (1− c)n. However, due to the streaming
nature of the model, transmissions at times < (1− c)n depend only on x1, . . . , x(1−c)n (the suffix of
the stream is yet unknown to the sender). The receiver has no information about any bit xi with
i > (1− c)n and his best strategy is to guess them. The probability to correctly guess the last εn
bits is at most 2−bεnc.

8

In order to construct a streaming authentication scheme, we use two concatenated layers of
online codes. The inner code is a Blueberry B : [S + 1]∗ → [L+ 1]∗ code with constant S,L, and the
outer code A is an online code that allows a prefix decoding in the presence of errors and erasures.
The entire process can be described by

(x1, . . .)
A−→ (y1, . . .)

B−→ (z1, . . .)
channel−→ (z̃1, . . .)

B−1

−→ (ỹ1, . . .)
A−1

−→ (x̃1, . . .)

We begin with a simple and elegant construction which, although not efficient, demonstrates the
power of the Blueberry code.

Proposition 5.4. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c) and let A = TCenc() be an
encoding using a binary tree code and B a Blueberry code with constant parameters determined by
c, ε. The concatenation of A and B is a (cn, (1− c)n− εn, 2−Ω(n))-streaming authentication scheme.

Proof. Assume that in order to encode the bitstream x1, x2, . . ., we use a binary tree code over
alphabet [S + 1] with distance α to be determined later, concatenated with a Blueberry-code
B : [S + 1]∗ → [L + 1]∗. We show that if at time n we decode a string x̃1 · · · x̃n whose prefix
x̃1 · · · x̃(1−c−ε)n differs from x1 · · ·x(1−c−ε)n, then the corruption rate was larger than c.

For a specific time n, consider a string x̃ ∈ {0, 1}n, such that anc(x, x̃) ≥ (c+ ε)n. Due to the
tree distance property, the Hamming distance between TCenc(x̃) and TCenc(x) is at least α(c+ ε)n.
Assume Eve causes d erasures and e errors, a maximal-likelihood decoding will prefer x over x̃ as
long as bα(c+ ε)nc > 2e+ d.

If Eve’s corruption rate is limited to c, Lemma 3.4 implies that with overwhelming probability
at most 2cnS/L of these corruptions become errors and the rest are marked as erasures. Setting
α > c

c+ε(1 + 2S
L) we guarantee that α(c+ ε)n > 2 · 2cnS/L+ cn(1− 2S/L),3 thus Bob decodes with

overwhelming probability a string x̃ such that anc(x, x̃) < (c+ ε)n, as claimed.
Note that the actual fraction of adversarial corruptions can be estimated out of the number

of erasures marked by the Blueberry code. We abort the decoding if at a specific time n the
number of erasures exceeds cn. Lemma 3.4 guarantees that if the adversary corrupts more than a
c/(1− 2S

L)-fraction of the transmissions, she will cause at least cn erasures, except with negligible
probability. Choosing L such that (1− 2S

L) ≥ c
cth

completes the proof for the non-efficient case of
Theorem 5.2.

We note that although in the above proof we require ε to be constant, for the case of c = 0 (i.e.,
when the channel is not inherently noisy) we can let ε be smaller. For instance, if we let ε = κ/n
for a security parameter κ, the scheme is comparable to a (non-streaming) authentication scheme
with the same security parameter: in order to change even a single bit in a prefix of length n, after
n+ κ symbols were transmitted, the adversary must change at least ακ/2 transmissions, and will
be caught except with probability 2−Ω(κ). Since the above holds for any time n, we get a perpetual
authentication of the stream.

The case where c > 0 has a meaning of communicating over a noisy channel (regardless of the
adversary). The users do not abort the authentication scheme although they know the message
was changed by the channel. Instead, the scheme features both error-correction and authentication
abilities and the parties succeed to recover (a prefix of) the original message with high probability.

3It is required to have α < 1, thus the choice of (the constant) L should depend on ε and c, specifically, L > 2S c
ε
.

Also note that S depends on α, however L is independent of both. For a fixed value of α (and S = dO(1/(1−α))) there
is always a way to choose a constant L that satisfies the conditions.

9

5.1 Efficient Streaming Authentication

We now complete the proof of Theorem 5.2 by defining an efficient randomized code Aeff for
prefix-decoding in the presence of errors and erasures. The protocol partitions the stream into
words of logarithmic size and encodes each using a tree code. At any time n, one of the O(n/ log n)
words is chosen at random and its next encoded symbol is transmitted. The value n increases as
the protocol progresses which means that the length of each encoded word increases as well. This
however causes no problem: each word is encoded by a tree code (rather than, say, a block code),
which is performed in an online manner without assuming knowledge of the word’s length. Decoding
can be performed efficiently by an exhaustive search since each word is of logarithmic length in the
current time n. We note that the parties hold the entire stream in their memory throughout the
protocol, which is different from the common practice of streaming algorithms in which there is
only a single party (rather than two) which aim to compute some statistics of the stream using
poly-logarithmic memory.

Proposition 5.5. For any constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2 and a constant c1 > 0, there
exist efficient constant-rate encoding and decoding scheme such that, for any set of infinite strings
{x1,x2, . . .} the following holds for any sufficiently large time n except with polynomially small
probability in n.
If the corruption rate at time n is at most c then the scheme correctly decodes a prefix of length
c1 log n of each one of the strings xk with k ∈ {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne}. Moreover, up to time

n the encoding scheme assumes knowledge of only strings xk with k ≤ n/ log n.

Let 0 ≤ c < 1 and 0 < ε < (1 − c)/2 be fixed parameters of the protocol. Let c0, c1 be some constants which

depend on c and ε. Let T be a tree code over alphabet [S + 1] with distance α to be set later.

Aeff Encoding: For every k > 0 set countk = 0.
At any time n > 1, repeat the following process for j = 1, 2, . . . , c0:

(a) randomly choose k ∈ {1, . . . , bn/ log nc}.
(b) set countk = countk + 1.
(c) transmit yn,j ∈ [S + 1], the next symbol of the encoding of xk using T , that is, the last symbol of

TCenc(xk
1 · · ·xk

countk
) = TCenc(xk

1 · · ·xk
countk−1) ◦ yn,j .

Aeff Decoding: For every (i, j) ∈ N× [c0] we denote by ID(i, j) the identifier k of the string xk used at
iteration (i, j). For each time n, mark all the transmissions yi,j with i < εn/4 as erasures, and decode xk

for d εn/4
log εn/4e ≤ k ≤ d

(1−c−ε)n
log(1−c−ε)ne:

let Yk = {(i, j) | ID(i, j) = k}. Decode the received string indexed by Yk. That is, set

x̂k = TCdec(y|Yk
),

where y|Yk
is the string given by concatenating all yi,j with (i, j) ∈ Yk, where yi,j comes before yi′,j′ if

i < i′ or (i = i′) ∧ (j < j′). Consider a prefix of length c1 log n of x̂k and ignore the rest.

Protocol 1: An efficient protocol for communicating a logarithmic prefix of {x1,x2, . . . , }.

In Appendix A.1 we show that Protocol 1 concatenated with a Blueberry code B : [S + 1]∗ →
[L+ 1]∗ satisfies the requirements of Proposition 5.5. We show that with high probability, Θ(log n)

symbols of TCenc(xk) are transmitted by time n for every k in the rangeKn , {d εn/4
log εn/4e, . . . , d

(1−c−ε)n
log(1−c−ε)ne}.

10

Moreover, at least a constant fraction of these transmissions were not corrupted by the adversary.
Therefore, we can use Proposition 5.4 to decode a prefix of length O(log n) of each of the codewords
indexed by Kn, with high probability.

The remaining hurdle is to split the stream x1, x2, . . . into words {x1,x2, . . .}. In Appendix A.2 we
show how to construct the set {x1,x2, . . .} such that for any time n, the entire prefix x1, . . . , x(1−c−ε)n
appears in a c1 log n-prefix of strings {xk} with k ∈ Kn. This gives an efficient (cn, (1 − c)n −
εn, 2−Ω(logn))-authentication scheme and completes the proof of Theorem 5.2.

5.2 Extensions for Streaming Authentication

There are several possible extensions to the above results, which we briefly discuss here.

Efficient streaming authentication scheme with exponentially small error. It is possible
to improve the efficient scheme of Theorem 5.2 so that it aborts with polynomially small probability,
however, given that it did not abort, the probability that the decoded prefix is incorrect is exponen-
tially small. More accurately, the ‘trust’ Bob has in the decoded string increases with the amount
of received transmissions. Thus, except for the last fraction of the stream, the decoded stream is
equal to the one sent by Alice with overwhelming probability.

Theorem 5.6. For any 0 ≤ c < 1, 0 < ε ≤ 1
2(1 − c) there exists an efficient (cn, (1 − c)n −

εn, 2−Ω(logn))-streaming authentication protocol that, for any time n in which the decoding procedure
did not abort, for any 1 ≤ ` ≤ (1− c− ε)n it holds that

Pr[x′` 6= x`] < 2−Ω(n).

See proof in Appendix B.

Decoding a prefix longer than (1− c)n. Although our scheme decodes a prefix of length at
most (1− c)n in the worst case, the successfully decoded prefix can be in fact longer. The worst case,
as demonstrated by Theorem 5.3, happens when the adversary blocks the suffix of the transmitted
stream. On the other hand, if the adversary blocks the prefix of the transmissions, then the scheme
of Proposition 5.4 correctly decodes the entire stream! In fact, the protocol succeeds to decode
the entire prefix for any time n that satisfies the following γ-suffix condition, if the tree distance
satisfies α > γ.

Definition 5.7. For any constant 0 ≤ γ < 1, we say that time n satisfies the γ-suffix condition if
any suffix xt . . . xn has at most γ(n− t) corrupted transmissions.

Definition 5.8. Let c < 1 and γ ∈ (c, 1) be given. For any time n let Nγ(n) be the latest index that
satisfies the γ-suffix condition. When n is clear from the context, we denote Nγ(n) simply as Nγ.

The following Lemma guarantees that, for any γ ∈ (c, 1) it holds that (1− c/γ)n ≤ Nγ(n) ≤ n.

Lemma 5.9. For every corruption rate c and constant 1 < ξ < 1/c there exist a time t > (1− 1
ξ)n

that satisfies the cξ-suffix condition.

See proof in Appendix D.
For a corruption rate c and any ε > 0, and for any time n, if the decoding algorithm did not

decode up to time n, then that time n did not satisfy the suffix condition for γ = c/(c + ε) (see
formal proof in Appendix D), but then, by Lemma 5.9, there must exist a time Nγ > (1− c− ε)n
that satisfies the γ-suffix condition, and at that time the protocol correctly decoded the entire
stream (up to time Nγ). Bob does not know the value of Nγ but he can estimate it by checking the
number of erasures marked by the Blueberry code.

11

Proposition 5.10. Bob can efficiently compute a (lower-bound) estimation N ′γ for Nγ, such that
N ′γ > (1− c− ε)n and

Pr[N ′γ > Nγ] < 2−Ω(N ′γ−Nγ).

See appendix D for proof and discussion.

Reducing the amount of shared randomness. Our schemes rely on the fact that the parties
share a secret random string whose length increases with the size of the information to be com-
municated. This assumption is sometimes not satisfied in practical applications, especially when
considering a multiparty setting in which any two parties run a separate instance of the scheme.

We can mitigate the need for a long shared randomness if the adversary is assumed to be
polynomial, assuming standard cryptographic assumptions (specifically, hardness of DDH). To
this end, each user generates a pair (sk, pk) of a secret and a public key, broadcasts the public
key pk and keeps sk secret. When two users initiate an authentication scheme instance, they first
perform a Diffie-Hellman [DH76] key exchange and obtain an authentication key. They both use
the authentication key as a seed to a pseudo-random-generator that generates a long random string
for the authentication scheme. Under the DDH assumption, a polynomially-bounded adversary has
only negligible information about the authentication key nor the generated randomness, and the
authentication scheme remains secure. See Appendix C for more details and a proof sketch.

6 Interactive Communication

In this section we extend our discussion to the 2-way communication model of interactive communi-
cation. We show that for adversarial corruption rate of 1/2 or higher, no constant-rate protocol can
compute functions that require interaction between the parties, while with the usage of the Blueberry
code we show how to construct a protocol for any function assuming adversarial corruption rate
below 1/2. We begin by defining the interactive communication model.

The interactive-communication model. Assume that Alice and Bob wish to compute some
function f : X × Y → Z, where Alice holds x ∈ X and Bob holds y ∈ Y in the shared-randomness
model. The computation is performed interactively: at each round, both parties communicate a
message which depends on their input and previous transmissions. At the end of the computation
Alice outputs zA ∈ Z and Bob outputs zB ∈ Z, and we say that f was correctly computed if
zA = zB = f(x, y). Without loss of generality we assume the output is a single bit, |Z| = 2.

We show the following separation theorems,

Theorem 6.1. For any function f which depends on both x and y, the following holds. If the
adversarial corruption rate is 1

2 or higher then no constant-rate interactive protocol correctly
computes f with probability higher than the probability of guessing f(x, y) given only the input x (or
only the input y).

Theorem 6.2. For any constants ε > 0 and for any function f and inputs x, y, there exists an
interactive protocol with constant overhead such that if the adversarial corruption rate is at most
c = 1

2−ε, the protocol outputs f(x, y) with overwhelming probability over the shared random string R.

12

Proof. (Theorem 6.1) Assume that the protocol takes T rounds. Furthermore, recall that in our
model it is assumed that at each round both parties send exactly one message.4 Hence and without
loss of generality, Alice is the sender of at most T/2 of the transmissions. Eve corrupts all the
transmissions originated by Alice (causing at least an erasure in each one of these transmissions).
Effectively, the unidirectional channel from Alice to Bob has a zero capacity, and it cannot be that
Bob correctly computes f(x, y) with probability higher than guessing f(x, y) given only y.

It is interesting to note that if f only depends on one of its inputs, then only 1-way communication
is required and c = 1

2 is no longer a limit, as discussed in Section 5.

We now construct a protocol that correctly computes any f(x, y) with overwhelming probability
as long as the adversarial corruption rate is 1

2 − ε for ε > 0. To this end, we concatenate an online
protocol for computing f(x, y) over an adversarial noisy channel with a Blueberry code.

Let us recall how to construct a constant-rate protocol for computing f(x, y) over a noisy channel
out of an interactive protocol π for the same task that assumes a noiseless channel [BR11]. We
assume that π consists of T rounds in which Alice and Bob send a single bit according to their
input and previous transmissions. Without loss of generality, we assume that Alice sends her bits at
odd rounds while Bob transmits at even rounds. We can view the computation of π as a root-leaf
walk along a binary tree in which odd levels correspond to Alice’s messages and even levels to Bob’s,
see Figure 2.

root

0 1

0

0 1

1

0

0 1

0

0 1

1

1
Alice

Bob

Alice

Figure 2: A π-tree showing the path P (bold edges) taken by Alice and Bob for computing f(x, y). Dashed edges
represent the hypothetical reply of Alice and Bob given that a different path P ′ was taken (when such replies are
defined).

In order to obtain a protocol that withstands (a low rate of) channel noise, Alice and Bob
simulate the construction of path P along the π-tree. The users transmit edges of P one by one,
where each user transmits the next edge that extends the partial path transmitted so far.5 This
process is repeated for N = dT/(1−α)e times, for some constant α < 1 to be set later. In [BR11] it

4The proof also holds for protocols for which there exists a function Next(i) which defines, for each round i, which
of the parties sends a message, and is independent of the messages sent by now (these kind of protocols are called
oblivious in [BR11]). In that case there exists one party that communicates at most T/2 messages at rounds known to
Eve in advance.

On the other hand, the proof does not hold for the most general model, in which the protocol adaptively determines
who is next to speak, possibly according to the noise observed so far (so that the party that suffers from higher noise
rate gets more transmission slots, etc.)

5 The users transmit ⊥ when they do not know how to extend P based on current information.

13

is shown that unless the noise rate exceeds 1/4, after N rounds both parties will decode the entire
path P . We refer the reader to [BR11] for a full description of the protocol and correctness proof.
We now extend the analysis for the case of channels with errors and erasures.

To simplify the explanation, assume that each transmission is over the alphabet Σ = {0, . . . , N}×
{0, 1}≤2. Intuitively, the transmission (e, s) ∈ Σ means “extend the path P by taking at most two
steps defined by s starting at the child of the edge I have transmitted at transmission number e”.
Although this alphabet is not of constant size, it is easy to obtain a constant size alphabet by
encoding each (e, s) into a delimited binary string (see Section 6 in [BR11]). Each symbol (e, s) is
communicated to the other side via a |Σ|-ary tree code with distance α and alphabet Γ, that is
at time n Alice sends an ∈ Γ, the last symbol of TCenc((e, s)1, . . . , (e, s)n) = a1a2 · · · an, and Bob
receives ãn ∈ Γ ∪ {⊥}, possibly with added noise or an erasure mark (similarly, Bob sends bn ∈ Γ,
and Alice receives b̃n). Let TCdec(ã1, . . . , ãn) denote the string Bob decodes at time n (similarly,
Alice decodes TCdec(b̃1, . . . , b̃n)). For every i > 0, we denote with m(i) the largest number such
that the first m(i) symbols of TCdec(ã1, . . . , ãi) equal to a1, . . . , am(i) and the first m(i) symbols of

TCdec(b̃1, . . . , b̃i) equal to b1, . . . , bm(i).
Define N (i, j) to be the “effective” number of adversarial corruptions in interval [i, j]: the

number of erasures plus twice the number of errors in the [i, j] interval of the simulation (for both
users).

Definition 6.3. Let Na(i, j) = |{k | i ≤ k ≤ j, ãk = ⊥}| + 2|{k | i ≤ k ≤ j, ãk /∈ {ak,⊥}}|,
and similarly define Nb(i, j). The effective number of corruptions in interval [i, j] is N (i, j) =
Na(i, j) +Nb(i, j).

We begin by showing that if m(i) < i then many corruptions must have happened in the interval
[m(i) + 1, i].

Lemma 6.4. N (m(i) + 1, i) ≥ α(i−m(i)).

Proof. Assume that at time i Bob decodes the string a′1, . . . , a
′
i. By the definition of m(i),

a′1, . . . , a
′
m(i) = a1, . . . , am(i), and assume without loss of generality that a′m(i)+1 6= am(i)+1. Note that

the Hamming distance between TCenc(a1, . . . , ai) and TCenc(a′1, . . . , a
′
i) must be at least α(i−m(i)).

It is immediate that for Bob to make such a decoding error, Na ≥ α(i−m(i)).

Lemma 6.5 ([BR11]). Let t(i) be the earliest time such that both users announced the first i edges
of P within their transmissions. For i ≥ 0, k ≥ 1, if t(k) > i+ 1, then t(k − 1) > m(i).

Proof. The proof is taken from [BR11]: Without loss of generality, assume that the kth edge of P
describes Alice’s move. Suppose t(k − 1) ≤ m(i) and t(k) > i+ 1. Then it must be the case that
the first k − 1 edges of P have already been announced within the first m(i) transmissions of both
parties, yet the kth edge has not. By the protocol definition, Alice will announce this edge at
round i+ 1, in contradiction to our assumption that t(k) > i+ 1.

Next we show that if at some time i the length of the proposed P is not long enough (less
than k), then many transmissions must have been corrupted.

Lemma 6.6. For i ≥ −1, k ≥ 0, if t(k) > i+ 1, then N (1, i) ≥ α(i− k + 1).

Proof. We prove by induction. The claim vacuously holds for k = 0 and trivially holds for i ≤ 0
since N (1, i) is non-negative. Otherwise, we have

N (1, i) = N (1,m(i)) +N (m(i) + 1, i).

14

The second term, by Lemma 6.4 gives N (m(i) + 1, i) ≥ α(i−m(i)). For the first term, Lemma 6.5
suggests that t(k − 1) > m(i) and we can use the inductive hypothesis with i′ = m(i) − 1 and
k′ = k − 1 to get

N (1,m(i)) ≥ N (1, i′) ≥ α(i′ − k′ + 1) = α(m(i)− k + 1).

The above Lemmas allow us to complete the proof of Theorem 6.2 by showing that if the
simulation of P failed, there must have been “too many” corruptions.

Proof. (Theorem 6.2) Assume an unsuccessful run of the simulation protocol. That is, the
simulation of the path P has failed, m(N) < t(T). The number of adversarial corruptions throughout
the protocol is given by N (1, N) = N (1,m(N)) + N (m(N) + 1, N) which by Lemma 6.6 and
Lemma 6.4 is lower bounded by

N (1, N) ≥ α(m(N)− T + 1) + α(N −m(N)) ≥ α(N − T) ≥ α(N − (1− α)N) = α2N .

Yet, assume the adversary is restricted to corrupt at most c = 1/2− ε fraction of the 2N = 2d T
1−αe

transmissions, then Lemma 3.4 guarantees that with overwhelming probability there will be at least
2cN(1 − 2S/L) erasures, assuming a Blueberry code B : [S + 1]∗ → [L + 1]∗ (here, S + 1 = |Γ|).
This implies that with overwhelming probability N (1, N) ≤ 2cN(1 + 2S/L). For any 0 < ε ≤ 1/2
we can choose constants α < 1 and L > S such that α2 > (1− 2ε)(1 + 2S/L) and conclude that the
protocol succeeds with overwhelming probability over the shared randomness.

References

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial
noise. Foundations of Computer Science, IEEE Annual Symposium on, pages 160–166,
2012.

[BN13] Zvika Brakerski and Moni Naor. Fast algorithms for interactive coding. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages
443–456, 2013.

[Bon63] C. Bonsall. The case of the hungry stranger. HarperCollins, 1963.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In Proceedings of the 43rd annual ACM symposium on Theory of
computing, STOC ’11, pages 159–166, New York, NY, USA, 2011. ACM.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, pages 161–167. ACM,
2012.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. Information Theory, IEEE
Transactions on, 22(6):644 – 654, nov 1976.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO ’89 Proceedings, volume
435 of Lecture Notes in Computer Science, pages 263–275. Springer Berlin / Heidelberg,
1990.

15

[GM01] P. Golle and N. Modadugu. Authenticating streamed data in the presence of random
packet loss. In ISOC Network and Distributed System Security Symposium, NDSS’01,
2001.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 768–777, oct. 2011.

[Gol04] Oded Goldreich. Foundations of cryptography. Vol II: Basic applications. Cambridge
University Press, New York, 2004.

[GR97] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. In Burton Kaliski,
editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 180–197. Springer Berlin / Heidelberg, 1997.

[GS10] Venkatesan Guruswami and Adam Smith. Codes for computationally simple channels:
Explicit constructions with optimal rate. Foundations of Computer Science, IEEE
Annual Symposium on, pages 723–732, 2010.

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In David
Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 126–143. Springer Berlin / Heidelberg, 2008.

[HOSW11] Brett Hemenway, Rafail Ostrovsky, Martin Strauss, and Mary Wootters. Public key
locally decodable codes with short keys. In Leslie Goldberg, Klaus Jansen, R. Ravi, and
José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, volume 6845 of Lecture Notes in Computer Science, pages
605–615. Springer Berlin / Heidelberg, 2011.

[Lan04] Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’04, pages 325–334, Washington, DC, USA, 2004. IEEE Computer Society.

[Lip94] Richard Lipton. A new approach to information theory. In Patrice Enjalbert, Ernst
Mayr, and Klaus Wagner, editors, STACS 94, volume 775 of Lecture Notes in Computer
Science, pages 699–708. Springer Berlin / Heidelberg, 1994.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David Wilson. Optimal error correction
against computationally bounded noise. In Joe Kilian, editor, Theory of Cryptography,
volume 3378 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin /
Heidelberg, 2005.

[MS01] S. Miner and J. Staddon. Graph-based authentication of digital streams. In Security
and Privacy, 2001, IEEE Symposium on, pages 232 –246, 2001.

[PCTS00] A. Perrig, R. Canetti, J.D. Tygar, and Dawn Song. Efficient authentication and signing of
multicast streams over lossy channels. In Security and Privacy, 2000, IEEE Symposium
on, pages 56 –73, 2000.

[Pec06] Marcin Peczarski. An improvement of the tree code construction. Information Processing
Letters, 99(3):92–95, 2006.

16

[Sch92] Leonard J. Schulman. Communication on noisy channels: a coding theorem for com-
putation. Foundations of Computer Science, Annual IEEE Symposium on, 0:724–733,
1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 747–756, New York, NY, USA, 1993. ACM.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 42(6):1745–1756, 1996.

[Sha58] Claude E. Shannon. A note on a partial ordering for communication channels. Informa-
tion and Control, 1(4):390 – 397, 1958.

[Smi07] Adam Smith. Scrambling adversarial errors using few random bits, optimal information
reconciliation, and better private codes. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, SODA ’07, pages 395–404, Philadelphia, PA,
USA, 2007. Society for Industrial and Applied Mathematics.

APPENDIX

A Construction of an Efficient Authentication Scheme

A.1 Proof of Proposition 5.5

In this appendix we show that the concatenation of Protocol 1 with a Blueberry code [S+1]∗ → [L+1]∗

satisfies the conditions of Proposition 5.5. We begin by showing that for any time n, if we look at k’s
which are not too close to the start or to the end, that is, k’s in Kn = {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne},
then every string xk is selected by the encoding scheme Θ(log n) times in expectation. In addition,
a constant fraction of a specific tree’s transmissions is received intact, while the expected number of
errors is a smaller fraction, controlled by L. Therefore, a logarithmic prefix of the string xk can be
decoded with high probability.

Lemma A.1. Let c, ε be given. For a given time n and for every k ∈ Kn,

1. the expected number of transmissions (i, j) with ID(i, j) = k is Θ(c0 log n).

2. if the corruption rate is at most c, then for transmissions with ID(i, j) = k, the expected
number of transmissions not corrupted by the adversary is Θ(c0 log n) and the expected number
of errors is Θ(c0 log n/L).

Proof. Fix a k ∈ Kn, and recall that Yk = {(i, j) | ID(i, j) = k}. It is easy to verify that

Pr
(
(i, j) ∈ Yk

)
=

0 i/ log i < k
1⌊
i

log i

⌋ i/ log i ≥ k ,

where the probability is over the shared randomness R. Assume that the channel’s (Eve’s) noise
pattern is P = p1, . . . , pcn, with pi ∈ [n] × [c0]. First let us bound the number of erroneous
transmissions of symbols from Yk. For a specific instance of the scheme, let

ERRk =
∣∣{(i, j) ∈ Yk | ỹi,j is an error

}∣∣ .
17

We are interested in the (adversarial) corruption pattern that maximizes the expected number of
these errors,

max
P

E [ERRk] .

Since the decoding process ignores the first εn/4 transmissions, and since the expected number of
errors is a S

L -fraction of the corrupted transmissions in Yk, this equals to

max
P

E
[
S
L

∣∣{(i, j)
∣∣ ID(i, j) = k, i > εn/4 and ỹi,j 6= yi,j

}∣∣] ,

where the expectation is over the shared randomness R. Note that Pr((i, j) ∈ Yk) is monotonically
decreasing for i ≥ t(k), and zero otherwise. The pattern P that maximizes Eve’s probability to hit
transmissions in Yk is P◦ , {t(k), t(k) + 1, . . . , t(k) + cn}. However, the decoding algorithm ignores
the first εn/4 indices and Eve has no use in attacking them. Therefore, if P◦ ∩ [εn/4] 6= ∅, Eve’s
best strategy is to shift her attack to the window P = {bεn/4c, bεn/4c+ 1, . . . , d(ε/4 + c)ne}.

max
P

E [ERRk] = max
P

S

L

∑
(i,j)∈P

Pr
(
(i, j) ∈ Yk

)
≤ c0S

L

cn+t(k)∑
i=t(k)

1
i

log i − 1
≤ c0S

L

cn+t(k)∑
i=t(k)

log i

i− log i

<
c0S log n

L

n∑
i=εn/4

1

i− log i
<
c0S log n

L

n∑
i=εn/4

1

c′′i
=
c0S log n

c′′L
(Hn −Hεn/4)

where the first inequality on the second line applies to both cases of empty and non-empty P◦∩[εn/4],
and c′′ < 1 is some constant such that c′′i ≤ i− log i for i ≥ εn/4, for a sufficiently large n. Hn is the
nth Harmonic number, and it holds that 0 < Hn−ln(n) < 1. We get maxP E [ERRk] = O(c0 log n/L).

On the other hand, we can lower bound the amount of uncorrupt transmissions in Yk. In a
similar way to the above we define INTACTk =

∣∣{(i, j) ∈ Yk
∣∣ ỹi,j = yi,j

}∣∣ , and wish to lower bound
the quantity minP E [INTACTk]. It is easy to verify that Eve’s strategy from above is optimal for
this case as well, thus

min
P

E [INTACTk] ≥min
P

∑
(i,j)/∈P
i>εn/4

Pr
(
(i, j) ∈ Yk

)
≥

n∑
i=(c+ε/4)n+t(k)

c0 log i

i

≥c0

(
(1− c− ε/4)n− t(k)

) log((c+ ε/4)n+ t(k))

n
,

which is Ω(c0 log n) for t(k) ≤ (1− c−ε)n, hence the claim holds for k ≤ (1− c−ε)n/ log(1− c−ε)n.
Finally, define TOTALk = |Yk| to be the total amount of transmissions with ID(i, j) = k (erasures,

errors, and intact). The expected amount of this quantity is at least

E[TOTALk] ≤ c0

n∑
i=εn/4

log i

i− log i
≤ c0

n∑
εn/4

log i

c′′i
≤ c0 log n

c′′
(Hn −Hεn/4) = O(c0 log n)

with some small constant c′′ < 1 for a sufficiently large n. The sum begins from εn/4 since xk is
declared only at time t(k) ≥ εn/4, if k ≥ εn/4 log(εn/4). Since the number of intact transmissions
is Ω(c0 log n), the total amount of transmissions is lower-bounded by the same quantity, thus
E[TOTALk] = Θ(c0 log n).

18

Lemma A.2. Let c, ε be given. If, for time n, at most cn of the transmissions were corrupted,
then there exist constants c0, L and a constant distance α such that for every constant c1 > 0,
the first c1 log n elements of any xk with k ∈ {d εn/4

log εn/4e, . . . , d
(1−c−ε)n

log(1−c−ε)ne} are correctly decoded
with polynomial computational effort, except with polynomially small probability over the shared
randomness.

Proof. At time n, assume maxk∈Kn E[TOTALk] < CT log n and mink∈Kn E[INTACTk] > CI log n,
and define β = CI/CT . Note that β is independent of n and c1. Fix k ∈ Kn. Denote by BAD1 the
event that there were too many erasures and errors for the kth codeword, i.e. INTACTk/TOTALk <
β/2, and by BAD2 the event that there were not enough transmissions for the kth codeword,
TOTALk <

2c1
β log n.

By an appropriate choice of c0 = O(c, ε, c1, 1/β), we can bound the probability of any bad event
to be polynomially small. For large enough c0 we can assure that E[TOTALk] >

4c1
β log n, and thus

by Chernoff, Pr[BAD2] ≤ 2−Ω(logn). Furthermore, a union bound gives

Pr[BAD1] < Pr[TOTALk >
√

2CT log n] + Pr[INTACTk <
1√
2
CI log n],

and by Chernoff inequality,

Pr[BAD1] ≤ 2−Ω(E[TOTALk]) + 2−Ω(E[INTACTk]) = 2−Ω(logn).

Conditioned on the fact that BAD1 and BAD2 did not occur, we know that n∗ > 2c1
β log n

symbols of TCenc(xk) were transmitted, and the adversary has corrupted at most c∗ < (1− β/2)
fraction of these transmissions. Proposition 5.4 suggests that for an appropriate choice of constant L,
we are able to decode a prefix of length at least ≈ (1 − c∗)n∗ = c1 log n except with probability
exp(−Ω(n∗)) = exp(−Ω(log n)). A union bound over all the possible k ∈ Kn completes the proof.

As for the efficiency, since each codeword is of length O(log n), decoding via exhaustive search
can be performed with polynomial computational effort. Hence, it is easy to verify that both the
encoding and decoding can be done efficiently.

A.2 Construction of {x1,x2, . . .}

For every k, define xk to be the string that contains the stream prefix xt(k) downto x1 concatenated

with as many zeros as needed, xk = xt(k)xt(k)−1 · · ·x2x1000 · · · , where t(k) is defined to be the

minimal time such that t(k)/ log t(k) > k. We say xk is declared at time t(k), meaning that only
from this time and on the algorithm may choose to send symbols of the encoding of xk. It is easy to
verify that the string xk is well defined at the time it is declared (the corresponding xi’s are known).

If some string xk is declared at time t(k) then xk+1 will be declared at time t(k + 1) ≈ t(k) +
log t(k)+O(log log t(k)). By setting c1 = 2 we are guaranteed that, for every εn/4 ≤ ` ≤ (1−c−ε)n,
x` appears in a correctly decoded c1 log n-prefix of some xk with k ∈ Kn.

Lemma A.3. If xk is the latest string declared at time i > 8, then xk+1 is declared at time sooner
than i+ 2 log i.

Proof. Let f(i) = i+2 log i
log(i+2 log i) −

i
log i . f is monotonically increasing, and f(8) > 1.

Corollary A.4. For any time n > 8, and any `, the bit x` is within the first 2 log n symbols
of xd`/ log `e. Hence, every x` with εn/4 ≤ ` ≤ (1− c− ε)n, appears in a 2 log n-prefix of (at least)
one of the strings {xk}k∈Kn.

19

Unfortunately, with the above choice of xks, only part of the stream, namely xεn/4, . . . , x(1−c−ε)n,
is decoded by the protocol. In order to communicate the prefix x1, . . . , xεn/4 we run another instance
of the scheme guaranteed by Proposition 5.5 for the following set of infinite strings {v1,v2, . . .}.
(We explain how to combine these two instances below). Define vk in the following way

vki =


x1 k = 1, ∀i
x1+(` mod dt(k)/2e+1) k > 1, i = 1 and vk−1

2 log t(k−1) = x`

x1+(` mod dt(k)/2e+1) k > 1, i > 1 and vki−1 = x`

It is easy to verify that at time n, the string vbn/ lognc is well defined and known to the encoder.

Lemma A.5. For every time n > 256/(1 − c − ε), any bit x` with 1 ≤ ` ≤ εn/4 appears in a
2 log n-prefix of (at least) one of the strings {vk}k∈Kn.

Proof. Note that the concatenation of O(log n)-prefix of the vks gives a string of the form V ,
x1x2 . . . xdt(k1)/2ex1x2 . . . xdt(k2)/2ex1x2 . . ., and V is decoded by Protocol 1 with high probability.6

By taking c1 = 2 and recalling that ε < (1 − c)/2, (and thus, (1 − c − ε)n/4 > εn/4) the
length of V is lower bounded by the amount of indices in prefixes of size 2 log 1

4(1 − c − ε)n of

{v(1−c−ε)n/4, . . . ,v(1−c−ε)n},

2 log
1

4
(1− c− ε)n

(
(1− c− ε)n

log(1− c− ε)n
−

1
4(1− c− ε)n

log 1
4(1− c− ε)n

)
≥ 3

2
(1− c− ε)n− 4

(1− c− ε)n
log(1− c− ε)n

≥ (1− c− ε)n

where the last inequality holds for n > 256
1−c−ε . Consider the latest place in V where x1 appears. If

that place is at least (1− c− ε)/4 indices from the end of V , it is clear that x1 . . . x(1−c−ε)/4 appears
in the (1− c− ε)/4-suffix of the decoded V . For the other case, let the bit that precedes this x1

be x`. By the way we defined vk it follows that 3
8(1− c− ε) ≤ ` ≤ 1

2(1− c− ε) which means that
x1 . . . x(1−c−ε)/4 must appear in a prefix of size 3/4 · (1− c− ε)n of V . Since (1− c− ε)n/4 > εn/4,
the claim holds.

One cannot run Protocol 1 twice, once for {x} and once for {v}. Indeed, Eve can block all the
transmissions of one of the instances, thus prevent the correct decoding of the stream with probability
one, while her corruption rate does not exceed c = 1/2. One possible solution is to set c1 = 4 and
interleave the transmitted data, that is, define the set {z1, z2, . . .} where zk = xk1vk1xk2vk2 . . ., etc.

Corollary A.6. Let c, ε be constants 0 ≤ c < 1, 0 < ε ≤ (1 − c)/2, and let B be a Blueberry
code with constant parameters determined by c, ε. For the strings {z1, z2, . . .} defined above, the
concatenation of Aeff with B is an efficient (cn, (1− c)n− εn, 2−Ω(logn))-streaming authentication
scheme.

B Efficient Authentication Scheme with Exponentially Small Er-
ror

In this section we show how to change the scheme given by Proposition 5.5 such that the error
probability is exponentially small. That is, for any time n the decoding scheme aborts with at most

6To be more accurate, V is a substring of the string decoded by the scheme.

20

polynomially small probability in n, but on the event that the scheme did not abort, the decoded
string matches the stream sent by Alice with overwhelming probability 1− 2−Ω(n).

To this end, we add a parallel transmission of random hash values of the entire stream (up
to time n), where the hash length is logarithmic in n.7 More formally, define an additional set of
infinite strings {h1,h2, . . . }. We identify a string a = a1a2 · · · an with the n-dimensional vector
(a1, a2, . . . , an), and define hk in the following way. Randomly pick a matrix Rk ∈ {0, 1}log t(k)×t(k)

and a vector Vk ∈ {0, 1}log t(k) and set hk = Rk · (x1, x2, . . . , xt(k))
T +Vk, concatenated with as many

zeroes as needed. The strings {hk} are interleaved with the strings {xk} and {vk}, and c1 increases
as explained in Appendix A.2.

Proposition 5.5 guarantees that except with polynomially small probability in n all the hash values
{hk}k∈Kn are correctly decoded. The decoding at time n aborts if any of the hash values {hk}k∈Kn
mismatch the corresponding prefix x1 · · ·xt(k).

Proposition B.1. Given that Protocol 1 with hash testing did not abort, let x′ be the decoded
stream, then for every ` ≤ (1− c− ε)n,

Pr
R

[x′` 6= x`] < 2−Ω(max{(1−c−ε)n−` , logn}).

Proof. Eve is oblivious of Ri and Vi, thus for any two vectors x̃ ∈ {0, 1}t(i), h̃ ∈ {0, 1}log t(i) chosen
by Eve, PrRi [h̃ = Ri · x̃T + Vi] < 2− log t(i).

Clearly, the smaller ` is, the more hash values that are checked to be consistent with the
decoded x′`. For ` > εn/4 there are at least ((1− c− ε)n− `)/2 log n independent hash values of
stream prefixes longer than `, where the smallest hash length is ≈ log(εn/4). Hence, the probability
that x′` 6= x` yet the decoding procedure did not abort is at most

2
−Ω
(

log(εn/4)
(1−c−ε)n−`

2 logn

)
= 2−Ω((1−c−ε)n−`)).

Clearly, for ` < εn/4 there are as many hash tests as for ` = εn/4, thus the probability to
incorrectly decode x` with ` < εn/4 is exponentially small in n as well. Finally, for the case where
((1−c−ε)n−`) < log n we note that at least one hash value must be consistent, hd(1−c−ε)n/ log(1−c−ε)ne.
The probability to incorrectly decode x` and pass the hash check is at most 2−Ω(logn), which completes
the proof.

The proof of Theorem 5.6 is immediate from the above Proposition.

Proof. (Theorem 5.6) Let c, ε be fixed. Perform Protocol 1 with hash testing with parame-
ters c, ε′ = ε/2. By Proposition B.1, every decoded x′` with ` ≤ (1− c− ε)n satisfies

Pr[x′` 6= x`] < 2−Ω((1−c−ε′)n−`) ≤ 2−Ω(εn/2).

C Computationally Secure Perpetual Authentication

For this section we assume basic knowledge of cryptographic primitives and assumptions.

Multi-Party Shared-Key Setting: Them-party shared-key setting for (c(n), γ(n), κ(n))-Streaming
Authentication is as follows. There are m parties, and parties i and j have shared random string

7This method is similar to the classic authentication method of splitting a stream into chunks of size logn and
adding a MAC of logarithmic size after each chunk.

21

Ri,j , for all 1 ≤ i, j ≤ m. The adversary may corrupt any number of parties, and learn all of their
shared random strings. The adversary may invoke any sequence of streaming authentication sessions
involving parties of his choice (for sender and receiver), messages of his choice, and transmission
lengths of his choice. If the adversary has corrupted the sender, then he may violate the encoding
procedure in an arbitrary manner. The actions of the adversary may be adaptive (e.g., corrupt
some additional parties after invoking some streaming authentication sessions, etc.), and interleaved
(e.g., corrupt some additional parties before some streaming authentication sessions have finished).

Definition C.1. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme is secure in the m-party
shared-key setting if the adversary cannot induce any decoding error (as described in Definition 5.1)
for any streaming authentication session for which he has not corrupted one of the parties, except
with probability at most s · κ(n), where s is the total number of sessions initiated.

Claim C.2. The efficient scheme from the proof of Theorem 5.2 is secure in the m-party shared-key
setting if the Rij are independent (proof by union bound).

Multi-Party PKI Setting: The m-party PKI setting for (c(n), γ(n), κ(n))-Streaming Authenti-
cation is as follows. There are public parameters params← ParamGen(1λ). There are m parties,
and each party i has generated a public key pair (ei, di)← KeyGen(params). The adversary can
see all of the public keys, and can learn any private key by corrupting that party. Otherwise, the
adversary can perform any attack as described for the multi-party shared-key setting, with the
following two differences: (1) If party i is in a streaming authentication session with party j then he
uses di and ej to compute the shared random string, and (2) the adversary is limited to computation
that can be performed in probabilistic polynomial time in λ, n,m, s, where s is the total number of
streaming authentication sessions initiated.

Definition C.3. A (c(n), γ(n), κ(n))-Streaming Authentication Scheme is computationally secure
in the m-party PKI setting if the adversary cannot induce any decoding error (as described in
Definition 5.1) for any streaming authentication session for which he has not corrupted one of the
parties, except with probability at most s · κ(n), where s is the total number of sessions initiated.

Theorem C.4. The efficient scheme from the proof of Theorem 5.2 is computationally secure in the
m-party PKI setting under the Decision Diffie Hellman (DDH) assumption if ParamGen(1λ)→ g, q
where g is a generator of prime order q > 2λ; KeyGen(g, q)→ (ei, di) where di ← [1 . . . q − 1] and
ei = gdi ; For their `th streaming authentication session, parties i and j use Rij = Gij`(g

xixj), where
{Gij`}i,j,` is a family of pseudorandom generators.

Proof. (sketch) LetA be a probabilistic polynomial-time adversary that can break the (c(n), γ(n), κ(n))-
Streaming Authentication Scheme. Without loss of generality, A corrupts all but two of the m
parties during its attack. We use A to construct a ppt adversary B for the DDH problem. Let
(g, u, v, w) be a DDH challenge tuple. That is, g is a generator of order q for suitably large prime
q, u = gx for x← [1 . . . q − 1], v = gy for y ← [1 . . . q − 1], and w = gz (where z = xy mod q with
probability 1/2, and z ← [1 . . . q− 1] with probability 1/2). Given a DDH challenge tuple, adversary
B proceeds as follows:

1. Choose i∗, j∗ ← [1 . . .m] (distinguished parties that B hopes will be targeted for attack).

22

2. For every party k 6= i∗, j∗, generate its public key and private key in the usual way. That is,
the private key of party k is xk ← [1 . . . q − 1], and its public key is gxk .

3. For party i∗, its public key will be u (and its private key will be unknown). For party j∗, its
public key will be v (and its private key will be unknown).

4. If party i∗ and party j∗ start their `th streaming authentication session, then run the efficient
scheme from the proof of Theorem 5.2 using the output of Gi∗j∗`(w) as the shared random
string.

5. If party i∗ and party j 6= i∗ start their `th streaming authentication session, then run the
efficient scheme from the proof of Theorem 5.2 using the output of Gi∗j`(u

xj) as the shared
random string.

6. If party j∗ and party i 6= i∗ start their `th streaming authentication session, then run the
efficient scheme from the proof of Theorem 5.2 using the output of Gij∗`(v

xi) as the shared
random string.

7. If party i 6= i∗ and party j 6= j∗ start a streaming authentication session, then run the efficient
scheme from the proof of Theorem 5.2 using the output of Gij`(g

xixj) as the shared random
string.

8. If adversary A corrupts party k 6= i∗, j∗, then give xk to the adversary.

9. If adversary A ever attempts to corrupt party i∗ or party j∗ then halt and flip a coin to
determine if (g, u, v, w) is a valid DDH tuple.

10. If adversary A succeeds in violating the decoding condition for any streaming authentication
session involving uncorrupted parties, then determine that (g, u, v, w) is a valid DDH tuple.

11. If adversary A fails to violate the decoding condition for any streaming authentication involving
uncorrupted parties, then determine that (g, u, v, w) is not a valid DDH tuple.

Let δ be the maximum success probability of any attack against the scheme in the multi-party
shared-key setting (with independent keys). Let ε > δ be the success probability of A against the
scheme in the multi-party PKI setting. Here are the cases (and probabilities) where adversary B
makes a correct determination of whether or not (g, u, v, w) is a valid DDH tuple:

Case 1: The adversary A never corrupts i∗ or j∗, and the DDH challenge tuple is invalid. If the
attack by A fails, then B makes the correct determination about (g, u, v, w). The probability of this
case occurring is at least (2/n(n− 1))(1/2)(1− δ) = (1− δ)/((n(n− 1)).

Case 2: The adversary A never corrupts i∗ or j∗, and the DDH challenge tuple is valid. If the attack
by A succeeds, then B makes the correct determination The probability of this case occurring is at
least (2/n(n− 1))(1/2)(ε) = ε/(n(n− 1)).

Case 3: The adversary A attempts to corrupt i∗ or j∗, and B halts and flips a coin. If this coin
flip matches the validity of the DDH challenge tuple then B makes the correct determination. The
probability of this case occurring is (1− (2/n(n− 1)))(1/2) = 1/2− (1/(n(n− 1)).

These cases are independent, so the total probability that B makes the correct determination is the
sum of their probabilities, which is at least 1/2 + (ε− δ)/(n(n− 1)). If ε is non-negligibly greater
than δ, then B distinguishes valid from invalid DDH challenge tuples with non-negligible advantage,
which is a contradiction. This completes the proof sketch.

23

D The Suffix Condition

Lemma D.1. Let c and ε be given and let γ = c/(c+ε), then for the protocol given in Proposition 5.4,
and for every noise level Bob’s guessed string x′1, . . . , x

′
Nγ

is identical to the transmitted stream

x1, . . . , x
′
Nγ

Proof. Assume towards contradiction that Bob recovers the stream correctly only until time t < Nγ .
Thus it follows that the errors and erasures in the [t,Nγ] suffix (e and d respectively), satisfy
α(Nγ − t) < 2e+ d. However, we know that Nγ satisfies the γ-suffix condition so e+ d < γ(N − t).
Except with probability 2−Ω(N−t) it holds that 2e+ d < (1 + 2SL) · γ(N − t), thus except with the
same probability, α < (1 + 2SL) c

c+ε which is a contradiction to the way we choose α.

However Bob does not know Nγ . We now show how to estimate this value.

D.1 Proof of Proposition 5.10 and Discussion

Consider the following procedure for estimating Nγ .
Let c ∈ [0, 1) be given. For an input γ ∈ (c, 1), at time n, Bob tries to find the longest suffix that
satisfies the γ-suffix condition. To this end Bob performs the following.

1. Set i = n.

2. Check all the suffixes xt, . . . , xi, with t < i.

(a) If, in all such suffixes, the number of erasures is less than γ(i− t)(1− 2SL), output N ′γ = i.

(b) Otherwise set i← i−1 and repeat. If i < (1−c/γ)n break and output N ′γ = b(1−c/γ)nc.

Proof. (Proposition 5.10). Assume that Bob outputs N ′γ > Nγ . Since Nγ is the latest index
that satisfies the γ-suffix condition, there must exist some time t such that [t,N ′γ] has more than

γ(N ′ − t) corruptions, yet the number of erasures in that interval is less than γ(N ′γ − t)(1− 2SL).
This happens with probability exponentially small in N ′γ − t. If t < Nγ then N ′γ − t > N ′γ − Nγ

which proves the claim for this case.
For the case where t > Nγ , we note that time t does not satisfy the γ-suffix condition, therefore

there must exist some time t1 < t, for which the number of corruptions in the interval [t1, t] is more
than γ(t − t1). If t1 > Nγ , then there must exist time t2 and interval [t2, t1] that doesn’t satisfy
the γ-suffix condition. We repeat this reasoning until we find the first interval [tj , tj−1] such that
tj < N . By considering the union of all these intervals, it follows that the number of corruptions
in [tj , N

′
γ] is more than γ(N ′γ − tj) > γ(N ′γ − Nγ). However, Bob’s estimation process found at

most γ(N ′γ −Nγ)(1− 2SL) erasures when it examined the suffix interval [tj , N
′
γ] (otherwise, it would

have failed the check in Step 2a). By Lemma 3.4/Corollary 3.5, this happens with probability
exponentially small in (N ′γ −Nγ).

Bob learns a lower-bound on Nγ and it is guaranteed that x′1, . . . , x
′
N ′γ

is the same as x1, . . . , xN ′γ ,

maybe except for the last bits of the stream, in case N ′γ exceeds Nγ .
Bob can repeat the same procedure and compute a value N ′′γ which usually upper-bounds Nγ ,

by finding the latest time i whose every suffix [t, i] has less than γ(i− t)(1− 1
2
S
L). As above, the

probability of the bad event that N ′′γ < Nγ is exponentially small in (Nγ −N ′′γ).

24

D.2 Proof of Lemma 5.9

Proof. Look at a suffix yt+1, . . . , yn for which the number of corruptions is strictly larger than
cξ(n−t). If no such suffix exists then the lemma is true for y1, . . . , yn. Otherwise, discard yt+1, . . . , yn,
and repeat the process with y1, . . . , yt. At each iteration we remove more than cξ(n− t) corrupted
transmissions and shorten the string by n− t symbols. Assume that the process stops with some
prefix of length L < (1 − 1

ξ)n, then we have removed at least cξ(n − L) > cξ(n − n + n/ξ) > cn
corruptions which is a contradiction. Therefore, the entire process must stop with some prefix of
length at least (1− 1

ξ)n.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

