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Abstract

We consider a model of teaching in which the learners areistem$ and have bounded state, but
are otherwise arbitrary. The teacher is non-interactivk“amassively open”: the teacher broadcasts a
sequence of examples of an arbitrary target concept, istefat every possible on-line learning algo-
rithm to learn from. We focus on the problem of designingriesting teachers: sequences of examples
that allow all capable and consistent learnersfticientlylearn concepts, regardless of the underlying
algorithm used by the learner. We use two measures of effigighe number of mistakes made by the
worst-case learner, and the maximum length of the exampleesee needed for the worst-case learner.
Our results are summarized as follows:

e Given a uniform random sequence of examples of.dit concept function, learners (capable of
consistently learning the concept) witfn) bits of state are guaranteed to make ofify: - s(n))
mistakes and exactly learn the concept, with high probgbilihis theorem has interesting corol-
laries; for instance, every concephas a sequence of examples can teatd all capable con-
sistent on-line learners implementable wiiin)-size circuits, such that every learner makes only
O(s(n)Q) mistakes. That is, all resource-bounded algorithms capafbtonsistently learning a
concept can be simultaneously taught that concept with féstakes, on a single example se-
quence.

We also show how to efficiently generate such a sequence ofigga on-line: using Nisan's
pseudorandom generator, each example in the sequence gemémted with polynomial-time
overhead per example, with &(n - s(n))-bit initial seed.

e To justify our use of randomness, we prove that any nonardérandomization of our sequences
would imply circuit lower bounds. For instance, if there ideterministic2””"" time algorithm
that generates a sequence of examples, such that all @msisd capable polynomial-size circuit
learners learn the all-zeroes concefih less thar2™ mistakesthenEXP ¢ P/poly.

e We present examples illustrating that the key differenoesur model — our focus on mistakes
rather than the total number of examples, and our use of a btaind — must be considered
together to obtain our results.

e We show that for every consistesn)-state bounded learnet, and everyn-bit concept thatd
is capable of learning, there is a custom “tutoring” seqeewfconly O(n - s(n)) examples that
teachesA the concept. That is, in principle, there are slow learnersonly bad teachers if
a state-bounded learner is capable of learning a concefit #iem it can always be taught that
concept quickly via some short sequence of examples.

*Supported by ONR grant number N000141210358 and NSF GraRt@39370.
TSupported in part by a David Morgenthaler Il Faculty Fellbigs and NSF Grant CCF-1212372 (Exploiting Duality between
Algorithms and Complexity).

ISSN 1433-8092



1 Introduction

In 1960, Hans Freudenthal(] proposed a non-interactive message called LINCOS, whitghmgts to
teach the “whole bulk of our knowledge” in a way that can bdlgamderstood by any intelligent being.
Using regularities in the message itself, the messagemiseadong sequence of examples for each concept,
starting with basic concepts such as equality (of naturatlmers), gradually building up a vocabulary of
arithmetic, and then proceeding onwards to more complegaquta using the existing vocabulary. Freuden-
thal’s intent was to broadcast this message into outer spgateach alien civilizations about humanity.

Inspired by this remarkable (but perhaps a bit zany) workaslea more grounded question: can con-
cepts be taught teverycapable and bounded computational device in a non-inteeasty? This sort of
guestion is “dual” to the usual type of problem that arise®®en in TCS, where we wish to design an
algorithm that is “useful” on a large class of data. Here weeha problem oflata design presenting an
arrangement of data that is useful to a large class of algost We wish to design, once and for all, a se-
guence of inputs and outputs so that no matteoor whatobserves the behavior (including future observers
we haven'’t conceived of), the observer can efficiently discaghe structure of the underlying process. Is
this possible, even in principle? What are the constramisived?

To properly formalize these questions, we consider a newetrmfdeaching in which the learners are of
limited computational complexity (and consistent), butestvise arbitrary. A vast array of teaching models
already exist in the literature (cf. Secti@r?); most of these works have either considered models in which
either the learner is assumed to be more sophisticatede ¢edicher and learner are designed as a pair. The
closest relative to our study is the well-known work on teaghdimension by Goldman and Kearrisl]
and Shinohara and Miyan@€§], which studies the number of examples needed to identifh eancept
in a given class. The model we consider retains a compléégretic “universal” flavor along the lines
of Goldreich, Juba, and Sudab3: we wish to design sequences of examples for efficientlghizagy an
unknownbut capable bounded-state learner. Our work can be seencamspexity-theoretic extension of
the work on teaching dimension, focused on efficient leatn@ee Sectioé for more comparison.)

1.1 Our Results

We first observe that the number of examples required to teawte very simple concepts for very simple
learners can be maximally large. L&E°-LINEAR be the class of on-line learning algorithms whose func-
tionality is computable bAC? circuits of sizeO(n); more precisely, the learner’s prediction and hypothesis
update functions are computable waiC® circuits of O(n) size (as a consequence, the learner stores its
hypotheses with at mog}(n) bits of state).

Theorem 1.1 (Teaching weak learners requires many examplesThere is a concept clasi such that
for all n, there is a conceph,, € H such that, for every sequensg of n-bit examples that allow all
ACC-LINEAR learners to identify, the length of,, equals2™.

Hence we cannot measure learning efficiency by the numbexashgles, without further constraints.
Furthermore, we observe that existing results on PAC-legrreadily imply methods foapproximately
teaching concepts to many bounded learners. However, ihgtead focus on exact learning, and consider
the number ofmistakesmade by learners, we enter interesting territory. We find thare are simple,
efficient (per round, on-line) universal teaching stragegor learners with bounded state. Informally, we
say that a learning algorithm i$n)-boundedf, in learning anyn-bit concept function, the maximum length
of any of its state descriptions i$n). (Full definitions will come later.)



Theorem 1.2 (Exact learning with few mistakes from random eamples) For all concepts: : {0,1}" —
Y andé > 0, every consistent(n)-boundedA for . learnsh and makes at mos(s(n)(n + log 1)) mis-
takes with probability at least — 9, when the instances of lengthare chosen uniformly at random.

Theoreml.2 has interesting corollaries; for example, any conceptithebnsistently learnable by some
subset of thes(n)-size circuits can be learned all such circuits simultasgpwvith O(s(n)?) mistakes by
any learner, just by broadcasting uniform random examglesd]lary 3.1). Our use of the probabilistic
method begs the question of whether such a sequence can déeatgenefficiently, with little to no ran-
domness. As a partial answer, we confirm that Nisan's pseandom generator2fl] for space-bounded
computation can be used to obtain an efficient teachingegiyahat uses few bits of randomness.

Theorem 1.3 (Few mistakes from low randomness)Jsing a block length 0B (s(n) + n + log %) (and
k= 0O(n+log %)), Nisan’s pseudorandom generator produces a sequen28(®f random bits for which
with probability 1 — ¢ over the seed, ..., hx, z, any consistent learning algorithm that 4én)-bounded
on a given concept exactly identifies that concept and make®stO(s(n)(n + log 3)) mistakes.

So usingO(s(n) - n) random bits, we can genera2€ (™) examples such that any learning algorithm
consistent ork can be taught with at mostO(s(n) - n) mistakes on the examples, with high probability.
This still does not answer the question of whether we canimdita randomness entirely. We show that
a deterministicexponential time algorithm for generating a sequence witfila properties would imply
strong circuit lower bounds fdEXP.

Theorem 1.4 (Deterministic sequences teaching all learngimplies circuit lower bounds) Let F be a
class of functions fronN to N. Suppose there is a deterministi¢z) time algorithm M such that for
all s(n) € F and all sufficiently largen, M (1™) prints a sequencé of examples of the empty concept
h:{0,1}™ — {0} such that every consistestn)-size circuit learnerA for h learnsh and makes less than
2" mistakes on the sequenSe Then there are problems solvabletim) time that do not have circuits of
sizes(n), for all s(n) € F and almost every..

To illustrate, letF contain all functions of the fornf(n) = 2°" and lett(n) = 2°(™), Suppose there
is ane > 0 and a2°(™ time algorithm which (for all) prints a sequence such that all consistent learners
implementable witt2¢"-size circuits learn the empty concept with less thamistakes. Then Theorefin4
implies E lacks 2™ size circuits (almost everywhere), which by Impagliazzd &vigderson 15] implies
P = BPP. (In contrast, Theorem.2 says that a uniform random sequence would teach all suchelesar
with less than2?" mistakes.) For another example, [Etcontain all polynomials and let(n) = on*
for a fixedk. Then anyQ"k time algorithm which prints a sequence teaching all polyiabsize circuit
learners the empty concept with less ti2&nmistakes implie€XP ¢ P/poly. Hence our teaching model
provides another case where non-trivial derandomizatfansimple random process implies circuit lower
bounds 4, 17]. Theorem1.4 also clarifies why we consider our “data design” problem todbal to
algorithm design: positive solutions to the data desigrbl@m entail negative solutions to some circuit
design problems.

Another natural question is whether we could remove thentdgece on the state sizén) in the above
bounds. We prove that this dependency is inherent:

Theorem 1.5 (Learners with large space can make many mistakg For every integers € [n,2"], there

is a concept clas${, a concepth € ‘H and a consistent on-line learning algorith for 7, computed by a
uniform family ofAC° circuits of sizeO(s - n) usings-bit states, such that for every sequence of examples
of ¢, A makes at least — 1 mistakes before identifying
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Finally, we consider a slightly relaxed objective. Suppwse have chosen both a concéptand a
particular algorithmA capable of learning the concept. Canbe taughth quickly? A variant of our
analysis in Theorer.1 establishes that there is always a short sequence of exaithpleforces any given
state-bounded learner to identify any concept it is capablearning:

Theorem 1.6 (Short sequences of examples for exact identdikton) For every concept clas${, every
h € H, and every consistent(n)-bounded learnetd for H, there is a sequence of examples of length
O(n - s(n)) after whichA identifiesh.

1.2 Existing models of teaching

Although we will try to review the main threads of researcheheve advise the interested reader to consult
the recent survey of Balbach and Zeugmaéj [The oldest model of teaching, described by Freivalds et
al. [22] is a variant of inductive inference (featuring little to rmphasis on computational complexity) in
which the learner is given a carefully selected set of “gaostiinces.” Balbach and Zeugma#dhdonsidered

a different sort of inductive-inference model in which agidiorhood structure is imposed on the space of
concepts, and they study the structural properties of seming—for example, they consider a variant in
which the teacher may view the learner’s hypothesis.

The highly influential notion of teaching dimension was ipeledently introduced and studied by Shi-
nohara and MiyanoZ6] and by Goldman and Kearnd]]. While we will discuss the relationship of our
work to teaching dimension further in Secti@na brief summary is warranted here, as it motivated most
subsequent work. The underlying goal is to select minimuis gieexamples so that a target concept can be
uniquely identified out of the class of possible concepts;rittaximum size of such a set (over all concepts
in the class) is called the teaching dimension of that candegs. (The definition may also be cast in terms
of consistent learning, a point we return to in SectionAlthough the definition is highly natural and has
spawned much interesting work, its consequences are unéadly counterintuitive. For instance, the set
CON J of non-contradictory conjunctions overvariables has polynomial-size teaching dimension, but
when the empty (always false) concept is included @\ 7, the teaching dimension jumps 3, i.e.,
everyexample must be presented to the learner.

In follow-up work, Anthony et al. 2] consider (among other results) theerageteaching dimension
(under the uniform measure over concepts), where the abadesirable effect disappears. In a similar
vein, Balbach and Zeugman§][consider an “average” learner modeled by a MDP that chobsesncept
at random from the space of consistent concepts; they adtictehe number of states in the MDP.

A different direction concerns models in which the teachmet l2arner are designed together. The main
obstacle in such a model is that somehow the teacher museskighteach the class to the learner, and
not “collude” by coordinating an encoding of the concepty] ¢hus directly sending an encoding of the
target concept, e.g., by either requiring that the leartikoperate correctly with an adversarial teacher (as
in Jackson and Tomkind §]), by requiring that the learner still identify the concetrrectly when (e.g.)
additional examples are inserted into the teaching sen(&oldman and MathiaslP] and Mathias 20]),
or by giving the teacher and learner different represemmatbf the concept (as in Angluin and Kri kig]].

Another recent direction assumes a powerfully helpfulheaevhich provides aninimalset of examples
necessary for learning a concept, so the learner can elienamenpeting concepts based on the size of the
teaching setd, 28]. Naturally, the strange behavior of the learner on therealittory concept also vanishes
in this model (and in fact, this concept has a teaching seizef(3(1)), but only under the troublesome
assumption that the learner “knows” the optimal size of e sets—troublesome because Served@t) |



showed that the optimal size of teaching sets (in the tadhitisense) iBIP-hard to compute, so it is doubtful
that these more sophisticated notions of teaching dimerwiald be computed easily.

1.3 Work on compression in learning and other structural leaning themes

Our main results can be seen as a variant on the theme thaihigatgorithms which compress the data well
must necessarily learn efficiently. At the most basic lewe,note in Section 3 that a standard hypothesis-
size analysis in PAC-learning establishes the existensbat teaching sequences for approximate concept
identification. A more general result for the PAC model, tatgrfrom an arbitrary compression scheme,
was the content of the well-known work by Blumer et &l. §n Occam’s razor. The difference here is that
we start with a stronger algorithm — a consistent on-linenlieg algorithm rather than a consistent batch
algorithm (or mere “compression scheme”) — but then showtti@given algorithm learns exceptionally
well, obtainingexactrather than approximate identification in a mistake-bodna@del. The “moral” that
compression implies generalization is certainly a comrhogetd across these results. Relationships between
compression schemes and learnability were also considgrédttiestone and WarmuthlP], and further
developed by Floyd and Warmut8|[ but there the learner was restricted to remember a listarigples that
“compressed” the given sample; Floy&] hlso studied on-line algorithms in a similar vein. Our leens are

not restricted to store information in any particular form.

Our analysis, which considers the performance of an onldiaming algorithm on i.i.d. examples from
an arbitrary distribution, is thus also vaguely related eastructions that convert on-line learning algo-
rithms to batch PAC-learning algorithms (cLg, 24]). Here, we analyze an on-line model and obtain mis-
take bounds for exact identification from random examplather than extracting an approximately good
hypothesis in the batch model from an (on-line) algorithm.

2 Preliminaries and definitions

We first recall some standard terminology for on-line leagralgorithms.

Definition 2.1 (On-line learning algorithms) Anon-line learning algorithnis specified by a pair of algo-
rithms, EVAL and UPDATE, and an initial stateo, € {0,1}* which may depend on the instance length
Learning of atarget conceph : {0,1}" — Y from aconcept clas${ proceeds in a sequence wials:
given the currenstateof the algorithmo € {0,1}* and the currentinstancez € {0,1}*, EVAL(c, z)
produces apredictionp € Y (typically Boolean). The subsequent state of the algoritbroutput by
UPDATE(o, x, p, h(x)) for a reinforcementvalue h(x). If p # h(x), then we say that the algorithm has
made amistake Themistake bounaf an algorithm for a concept clasg and fixed size: is given by the
maximum number of mistakes over/alE H and (infinite) sequences of instances of length

LetC be a class of algorithms. We say that an on-line learning @ilym is C-boundedf the algorithms
EVAL and UPDATE are given by algorithms fror@. If C is a class of non-uniform circuits, we require that
for eachn € N that the algorithm€VAL and UPDATE on examples of length are given by circuits fron®
havingn-bit inputs.

We say that a learning algorithm @nsistent or# if, for everyn and everyh € H, after every sequence
of examplesy, ...,z € {0,1}" of h, the algorithm is in a state such thatVvAL (o, z;) = h(z;) for all 7.

We say that the algorithm hadentifiedor learnedh if the algorithm is in a stater such that for every
subsequent sequence of examples. ., z; € {0,1}" the algorithm correctly predicts(z;) for all 4.

We say that the algorithm islaarner forh if there exists a sequence of examples after which the algo-
rithm has identified:.



The most relevant learning concept to our present work isahi@aching dimension.

Definition 2.2 Let?H be a concept class. #&aching sequender an h € H is a list of examples such that
all consistent learners fot identify i after receiving those examples. Tinenimum teaching lengtfor an

h € H is the minimum numbet of examples in any teaching sequenceffoll heteaching dimensioof

is the maximum over all € H of the minimum teaching length fér

Therefore, the teaching dimension specifies the minimumbeurof examples needed for any consistent
learner to distinguish any conceptinfrom all other concepts. This concept is quite similar tortbéon of
teaching that we consider; the two major differences arevileeonly consider learners with bounded state
complexity, and we will focus on the number of mistakes rathan the number of examples in order to
achieve meaningful generic bounds. The tutoring sequermesidered in Sectio are different from the
teaching sequences in the above definition, in that theyadlordd to a specific learner and they take into
account the learner’s complexity.

As noted earlier, the teaching dimension modé, [26] has some counterintuitive properties, namely
that some very simple concepts are maximally hard to teaeh,itirequires specifying the entire domain.
An example we will use is:

Definition 2.3 (Singletons and empty conceptfor eachy € {0, 1}", thesingletonconcept fory is given
by the function that evaluates toat y and 0 everywhere else; the class of singletons is thus the set of al
singleton concepts. Thamptyconcept is the constant allfunction.

We defineS to be the concept class consisting of all singleton conaampdshe empty concept, for ail

3 Teaching consistent learning algorithms of bounded compkity

Can we find sequences of examples that force every simpléstamislearning algorithm to identify the
target hypothesis? Fapproximateidentification (i.e., standard PAC guarantees) this is idhate: the
standard counting analysis shows that for learners thatdamsistent hypotheses of size at megt),
presentingO (1 (s(n) + log +)) random examples suffices to guarantee that any such leamersaat a

1 —e-accurate hypothesis with probability- §. Our hope is that the introduction of a “simple” requirement
on the learners might reduce the complexity of (exact) teachHn one sense, we can show that ttesinot

be true. The concept classrom the previous section, which is hard to learn in the ugBaldman-Kearns-
Shinohara-Miyano) teaching model, remains hard underseamplexity restrictions on learners. Recall
from the Introduction thaAC’-LINEAR is the class of on-line learning algorithms whose functioyas
computable byAC® circuits of sizeO(n).

Reminder of Theorem 1.1 For all n, leth,, : {0,1}" — {0,1} be the all-zeroes concept (i.e., the empty
concept). For every sequensg of n-bit examples that allow alhC°-LINEAR learners to identifyh,,, the
length ofs,, equals2™.

Note that the length of the sequence cannot exeéednce all examples have been seen, the concept is
surely identified. Hence we only have to prove a lower bounat téast2™.

Proof. Consider the following class of learnefs for eachz € {0, 1}", the initial hypothesis fol., € £
is the singleton concept for, which is used for prediction until eithagt, makes a mistake on, or L,
makes a mistake on some otherln the former casel., switches to the empty concept; in the latter case,



L. switches to the singleton concept f@r Finally, if the current hypothesis is the empty concept] &n
makes a mistake on somethenL, switches to the singleton far.

Observe that for alt € {0,1}", the learner, is consistent for the concept claSsand everyL, can be
implemented with linear size depth-2 circuits which outgtattes of length at most+ 1. The firstn bits of
the state are used to represent a singleton concept, anasthatlof the state i$ if and only if the current
hypothesis is the empty concept. The algorithiPDATE for L., works as follows: if the label of the current
example isl, then the firs bits of state are switched to the current example and théilast state is set to
0. If the label isO and the current example equalghen the last bit of state is settoThis behavior can be
easily implemented with an OR of ANDs 6f(n) size. The algorithnEVAL just tests if the input equals the
first n bits of state (and that the last bit of stat@)swhich can be done with a linear size depth-2 circuit.

Note that for any sequencs, of length less thar2”, there must be some € {0,1}" that does not
appear in the sequence. Then the leamerafter reading the sequensgg, still has not identified the empty
concept (it will make a mistake or). O

Rather than being discouraged, let us consider other mesastithe complexity of teaching. Notice that
1. The learnerd. , constructed above only make at most two mistakes.
2. For every learnet., there is a one-example sequence after wiicldentifies the target concept.
In the following sections, we show that some version of tiése properties hold of low-complexity learners
in generalfor state-bounded learners, and for arbitrary conceptghles can learn.

3.1 Sequences guaranteeing few mistakes for state-boundedrners

Another measure of the quality of a teaching strategy is tireber of mistakes that the learners make. Here,
we show how to construct strategies for whaberyconsistent learner with bounded state makes at most a
polynomial number of mistakes in its space bound and thedfitee examples.

Definition 3.1 Let. A = (EVAL, UPDATE) be an on-line learning algorithm, and let: N — N. A is s(n)-
boundedf, on all length« instances, the length of the initial state.dfis at mosts(n), and all outputs of
UPDATE (on all length« instances and all states of length at megt)) have length at most(n).

That is, ans(n)-bounded learner always stores its hypothesis and its gesemmary of then-bit
examples it has seen, using at mest) bits.

The core of our analysis is the following theorem, giving atatke bound for consistent on-line learning
algorithms when presented with i.i.d. examples (as opptusedversarial). A key point is that the quality
of the final hypothesis improvesxponentiallywith the number of mistakes—this will ensure that we can
get exact identification of a concept in a polynomial numbdenistakes.

Theorem 3.1 (Random examples teach consistent bounded lears with few mistakes) For every con-
cepth : {0,1}" — Y, > 0,6 > 0, distribution D over examples of length, and consistent(n)-bounded
learner A for h, the following holds. Given random labeled examples draam D, after A makes at most
O(s(n)(log % +log 1)) mistakes on the examples, the hypothesi4 afirees with on all but ane-fraction
of D, with probability at leastl — §.

To prove the theorem, we need a couple of useful definitions.

Definition 3.2 Given ans(n)-bounded learning algorithrod, and a concept : {0,1}" — Y, we define
the configuration graph of4 on & to be a directed graph in which the vertices correspond to#(2*(™)



states of the algorithm, and there is an edge from a stat® a states; labeled byx € {0,1}" provided
that UPDATE(0;, x, EVAL(0;, x), h(x)) = 0.

For a given concept and algorithm.A, we say that a state knows (the label ofy € {0, 1} if there is
a path from the initial state to o such that some edge in the path is labeled:by

The key property of our “knowledge” definition is the follavg:

Proposition 1 For any on-line learning algorithm that is consistent brand is in a stater that knows an
instancez, we haveEVAL(o, x) = h(x). Furthermore, all states reachable fromr must also know.

Next, we show that after making(n) mistakes, the fraction of instances not known by the algorit
drops by a constant fraction. For a distributibn we say that a subsétC D is ap-fraction of D provided
thatPr,cplz € S| = p.

Lemma 3.1 Suppose that the algorithid is in a states, that knows all but g-fraction of D. Then, after
a sequence of trials in which instances are drawn florand.A makess(n) mistakes,A enters a state;
that knows all but §3/4 - p)-fraction of D, with probability at leastl — 2~5("),

Proof. Consider any staté that is reachable from a path from on whichs(n) mistakes occur, and that
knows less than @l — 3/4 - p)-fraction of D. Sinceo, knows a(1 — p)-fraction of D, and all mistakes made
by A starting fromo; must fall in thep-fraction thato, does not know, this means that thg) mistakes
leading tos must have all been drawn from a set that has conditional pitityaat most1/4, out of the
instances that; does not know. The probability that we hit such a set of camulil probability at most /4
for s(n) times (for ours(n) mistakes) is at most—25("), Therefore the probability that we reagtrom o,
(assuming we make(n) mistakes) is at most—2*("), Taking the union bound over all (at mast™) such
statess, the probability that we reach some state that does not knéeast a(1 — 3/4 - p)-fraction of D is
at most2—("), O

The final ingredient in the proof of Theore®l is the following probabilistic inequality, which can be
derived from Chernoff-Hoeffding bounds:

Theorem 3.2 Let X, ..., X; be independent Bernoulli random variables such thak;| > 1/2 for all i,
let§ > 0, and lets € N. Then fort = 3s + 3log(1/6) trials, Pr[>'_, X; < s] < 6.

The proof of Theoren3.2is in AppendixA. Now we can complete the proof of Theoréni:

Proof of Theorem 3.1 Let.4 andh be as in the theorem statement. Undilhas correctly labeled every
instance correctly (in which case we are dond)reduces the fraction ab that it does not know by a
(3/4)-factor, after every sequence of examples frbrin which it makess(n) mistakes, with probability at
leastl — 2—5(") (independently on each such sequence). Thi2~*(") probability event only has to occur
u = (log1/¢)/log(4/3) times, in order for the fraction @b that.A does not know to drop below Letting

t =3-u+ 3log(1l/d) and applying Theorerf.2, we find that aftet - s(n) = O(s(n)(log1/d + log 1/¢))
mistakes, the probability thad knows all but are-fraction of D is at leastl — ¢. O

Note that there are several examples in the literature dfistant on-line learning algorithms with poly-
nomially bounded state, such as the learning algorithmsave Hescribed for learning singletons, learning
constant-degree polynomials ov@r, and the elimination algorithm for learning conjunctioasdlyzed by
Valiant [27] in the original work on PAC-learning) which also lends tadeing £-CNF formulas.



Exact learning from Theorem 3.1 It is now straightforward to construct the desired teaclstigtegies
for state-bounded consistent learners: we only need t@prdise learner with i.i.d. examples from a dis-
tribution for which the minimum probabilities are relatiydarge (at most exponentially small). Of course,
the uniform distribution meets these needs optimally:

Reminder of Theorem1.2 For every concept : {0,1}" — Y and¢ > 0, every consisteni(n)-bounded
A for h makes at mosD(s(n)(n + log 3)) mistakes with probability at leadt— &, when the instances of
lengthn are chosen uniformly at random.

Proof. Since the instance space has siZe once the algorithm is in a state that is correct on all but a
e-measure set under the uniform distributionfor. 27", the algorithm must label every instance correctly.
The claim thus follows immediately from Theoredril O

Theoreml.2only guarantees that the sequence of examples selected slydtegy works for a particular
learner with high probability. Of course, when the prohipils exponentially close to 1, we can obtain a
fixedsequence that guarantees a polynomial mistake bouradl fofrthe learners from some finite class. Let
SIZE[s(n)] denote the class of all circuit familigs”,, } such that”,, has bounded fan-in andn) size.

Corollary 3.1 For every conceph : {0,1}" — Y and every size boundn) > n, there is a sequence of
examples of such that evergIZE[s(n)]-bounded learner foh makes at mosP(s(n)? log s(n)) mistakes.

Proof. First, note that if the learning algorithm is computable hyrauit of sizes(n), its states must have
length at mosk(n). Second, note that there are at mést= s(n)?*(™) circuits of sizes(n). Therefore,

by takingd < 1/S, we find by Theoreml.2 that a random sequence of examples guarantees that every
consistent learner fdr with states of size(n) makes at mosD(s(n)(n+log S)) mistakes with probability

> 1—1/S. By taking a union bound over al circuits, we find that every circuit makes a number of
mistakes not exceedin@(s(n)(n + logS)) < O(s(n)?log s(n)) with nonzero probability, hence some
sequence of examples suffices. O

Finally, before moving on, we note that some polynomial aeleece on the space bound (hypothesis
size) is essentially inevitable in the mistake bound of @aghing sequence for learners given any reasonable
complexity bound. Recall tha is the class consisting of all singleton and empty concepts.

Reminder of Theorem1.5 For every integes € [n, 2"], there is a consistent on-line learning algorith/
for the concept clas§ computed by a uniform family efC? circuits of sizeO(s - n) usings-bit states, such
that for every sequence of examples of the empty condapgkes at least — 1 mistakes before identifying
the empty concept.

Proof. We describe our “adversarial” learning algorith# Fix a lexicographic ordering on strings, and
divide the space of0, 1}™ into s — 1 intervals of equal length in which the first- 2 intervals all have length
|2" /(s — 1)| (and the final interval contains the rest).Afever sees an exampjesuch that:(y) = 1, then

it switches to the singleton far as its concept. Otherwisgl represents its concept by a bit-vector of length
s — 1, corresponding to each of these intervals. Initially this bire all set td, and if 4 sees an example
falling in an interval with its corresponding bit set 1pEVAL predicts1, otherwise it predict®. When the
UPDATE algorithm sees an exampidor which 2(z) = 0 in an interval with a bit previously set tg that bit

is set to0. (All other bits remain unchanged.) We observe that this consistent on the class of singletons
with the empty concept—once it see$,at always predicts the singleton correctly (and likewiserectly
labels all of the other points it previously saw labet@dand until that point, every example it sees labeled
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0 will subsequently be predicted to bgalong with the rest of the interval it belongs to). We alscaie
that the lexicographic comparisons can be carried out iformi AC?, and that the hypotheses df can

be represented inbits as required. Finally, observe that urdilhas received an example from each of the
s — 1 intervals,.A does not identify the empty concept. O

On the efficiency of teaching. Although we noted in Theorerh.1 that teaching concepts such as even
the singletons and empty concept may involve presentingrexqtially many examples, there is a sense
in which the teaching sequences of Theoremare efficiently generated. Namely, if we consider an on-
line communication model such as the one introduced by @ildy Juba, and Sudaidd|, then as our
teaching strategy simply chooses raibit example uniformly at random on each round, our straisgy
(randomized) linear-time on-line universal teachingtsfyg (for space-bounded consistent learners) that
achieves polynomial error complexity (inand the space bound).

3.2 Seguences guaranteeing few mistakes, from Nisan’s geser

We have already noted that the teaching sequences we consic be exponentially long in order to
guarantee thaéveryconsistent algorithm identifies the target concept. Néedess, we might hope to
improve the construction of such sequences in Theadtéhiy reducing the number of random bits they
require. As stated, Theoret2requires exponentially many random bits. However, givanttie sequences
are uniform-random and the learners have bounded statanigid anticipate that Nisan's pseudorandom
generator for space-bounded computatiaf] could generate a sequence with similar properties, from a
polynomial-length random seed. Although Nisan’s analgaigs nothing about such a property of the entire
string — it only considers the probability that the algamitlends up in an accepting state — we can confirm
that it also generates sequences suitable for our purpdf&eprove:

Reminder of Theorem1.3 Using a block length 0®(s(n) +n + log 1) (andk = O(n + log 1)), Nisan’s
pseudorandom generator produces a sequenc@’@f random bits for which with probability — § over
the seedy, ..., hy, x, any consistent learning algorithm that 4¢»)-bounded on a given concept exactly
identifies that concept and makes at mo$t(n)(n + log 1)) mistakes.

Nisan’s pseudorandom generator. We recall that Nisan’s generator uses a family of pairwiskependent
hash functionsf{ taking b bits to b bits, i.e., satisfying the property that faf, x5, 1, andys, in {0,1}°,
for a uniformly chosem. € H, Pry[h(z1) = y; and h(z2) = 2] = 27%; we know that these can be
constructed fromO(b) random bits by, e.g., multiplying by a random Toeplitz matind adding a ran-
dom vector. The construction is then a recursive constmgcin whichG,, takes ab-bit seed and: hash
functions: Gy (z) = =, and

Gk(ac, hl, ey hk) = Gk_l(x, hl, vy hk—l), Gk_l(hk(x), hl, ey hk—l)

i.e., concatenating the output 6%,_; on x with Gx_; on hi(x). So, the generator stretch@gkb) bits to
b2" bits. We refer tdh as theblock lengthof the generator (observe that the sequence is a concaiemwti
blocks of lengthb obtained by hashing with the many various subsets bf, .. . , hy).

As is well known, Nisan’s generator is also time-efficienamon-line sense: after the initial choice of
seed and: hash functions, théth block (out of2¥) of the generator’s output may be computed by taking,
for eachjth bit in the binary representation éthat is al, the hash functiork;, and applying them to the
seed in order. Thus, by keepingkebit counter of the blocks, the sequence of examples can inguted



on-line in time polynomial im ands(n). So, Theoreni.3also yields an efficient on-line universal teaching
strategy with polynomial error complexity.

Our starting point is the following lemma encapsulating éhstract version of the analysis of Nisan’s
generator. For convenience, giveén- 0, for eachk,b € N and pairs of statesand; of a given (learning)
algorithm, we will define eventhf;"“’hk thatGy(x, hq,. .., hy) takes staté to statej, and eventsﬁlﬁj that

a sequence df* uniformly chosen blocks df bits takes statéto state;.

Lemma 3.2 (Lemma 2 of R1]) Let any spaceq{n) algorithm that reads its input bits at a time from a
read-once input tape be given. LEtbe a family of pairwise-independent hash function® tits, § > 0,

andk € N. Then with probability at least — &?ﬁrb overhq,...,h; chosen fron,

I[Pr[AF,)] — [Pr(BI"*]]|y < (2F —1)s

Now, instead of merely examining the probability that . . ., h; take state to statej (as Nisan does),
we will also examine the probability that the algorithm makegiven number of mistakes, Ultimately, we
will argue that thgoint distribution over final states and number of mistakes remains closg {gtistance)
when Nisan's PRG is substituted for uniform random bits; wethds by noting that the algorithm could
be modified to keep count of the number of mistakes that it makenn-bit counter (using total space
s(n) + n) and then the distribution over states of this modified algor captures the joint distribution over
states of the original algorithm and total number of missakenen by a union bound over the various sources
of error, we obtain a general analysis of the quality of Nisa@seudorandom generator for generating easy
sequences of examples:

Theorem 3.3 (Nisan’'s pseudorandom generator produces easgquences)Using a block length 0B (s(n)+
n + log 5i + log R) rounded to a multiple of (and &k = log R/b), Nisan’s pseudorandom generator pro-
duces a sequence &f random bits for which with probability — §* over the seea@,, ..., hy, z, for any
consistent learning algorithm that is spaeg=) bounded on a given concept, the distribution over states
and total number of mistakes of the learning algorithm iretlby the generator for the conceptisclose

to the distribution induced by the uniform distribution ove bits in ¢;.

Proof. Given any consistent spasér) bounded learning algorithr for a given concept, consider the
algorithm A" with states given by pairgr, m) whereo is a state ofdA andm is an integer, which simulates
A and keeps count of the number of mistakésnakes in the second component; note that siAcs
consistent, it can never make more tl&mmistakes (since the concept is then identified) and hetheses
at mosts(n) + n bits of state.

By Lemma3.2, for this block length, with probability — §* over the choice of hash functions and seed,
the pseudorandom generator produces a sequenBerafidom bits such that the statistical distance over
final states ofd’ is 6*-close to the distribution over states 4f on R uniformly chosen bits; agd’ behaves
identically to A, by considering the two components of the stateglofwe find that the joint distribution
over final states ofl and total number of mistakes made Ayis therefored*-close to the distribution over
states and mistakes df on R uniformly chosen bits. The theorem follows. O

In particular, we can get exact identification sequencdapkshing the main theorem of this section:

Proof of Theorem 1.3 By the coupon collector's bound, the expected number ofoumfy random
examples needed to include every exampl®{&2"), and by Markov's inequality, the probability that
this exceedzﬂ(%m”) is at mosty/3. So, usingR = O(%n22") random bits, the algorithm enters a state
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that knows the entire domain with probability— § (and therefore exactly identifies the concept). By
Theoreml.2, the algorithm makes more tha(s(n)(n + log 1)) mistakes with probability at most/3.

By a union bound over these two events, we find thatouniform bits, the algorithm enters a state that
identifies the concept and makes at mosgt(n)(n + log $)) mistakes with probability at least— (2/3)d.
Therefore, Theorer.3 guarantees that for the stated block length, the probalbiiat the algorithm fails
to identify the concept or makes more th@fs(n)(n + log $)) mistakes on the output of the generator is
greater by at most/3. O

3.3 Deterministic sequences guaranteeing few mistakes itgs circuit lower bounds

We now turn to the question of whether the random seed cambheviel entirely in generating a sequence
which teaches all bounded consistent learners a concemhtMethat a deterministic sequence that achieves
any mistake bound less thah for all bounded learners implies circuit lower bounds:

Reminder of Theorem 1.4 Let F be a class of functions frolN to N. Suppose there is a deterministic
t(n) time algorithmM such that for alls(n) € F and all sufficiently large:, M (1™) prints a sequencé

of examples of the empty concépt {0, 1}" — {0} such that every consistegtn)-size circuit learner4
for h learnsh and makes less tha¥ mistakes on the sequenseThen there are problems solvabletim)
time that do not have circuits of sizén), for all s(n) € F and almost every.

Proof. By contradiction. Suppose there is a deterministic alborithat runs int(n) time and prints a
sequence of examples for the empty concefptwith the hypothesized property. Further suppose that for
every problem solvable in timgn) there is ans(n) € F such that the problem has circuits of sife:),
for infinitely many input lengths:. First note that alR™ strings must appear among §) otherwise some
O(n)-size circuit learner which learns the claS®f singletons with the empty concept will not be able to
distinguishh from some singleton concept (cf. Theorém). This also entails thatn) > 2".

We define a “bad” on-line algorithmd for learningh as follows. First, order the-bit strings by the
order in which they first appear in the sequeS¢c@nd re-index the strings as, xo, ..., xon. (Thatis,z; is
the first instance irb, x5 is the next distinct instance;; is the one after that, and so on. Since every string
must appear somewhere$ this is indeed an ordering on aitbit strings.)

e The states of4 are the integers frofito 2", and the initial state i6.

e Given an exampléz, 0) on which a mistake was been made:
UPDATE the state to be the integésuch thatr = ;.

e EVAL(4,x) predicts0 if = x; for somej € [1, 1], otherwise it predicts.

That is, in the initial stat®, all examples are classified asbut if A makes a mistake on examplex
must have the labdl. A rectifies this by increasing the stateitsuch thatr = ;.

It is easy to verify that, assuming every language in tifng has circuits of size(n) € F for infinitely
manyn, the aboveUPDATE andEVAL functions can be implemented with(s(n))-size circuits for some
s(n) € F and some sufficiently large — this follows becausg can be generated itin) time.

Observe thatd is consistent forh: the state; always increases with each mistake, and when we make
a mistake ornr;, we increase the state to some> ¢ such that this never happens again. However, on the
sequences, A makes2™ mistakes: it predicts every example it sees to have lapehtil all 2" examples
have appeared ifi. That is, the statémust equal” in order for.A to correctly label all examples @sbut
when A receives examples in the sequelstehe state increases only by for each mistake that is made.
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ThereforeA is consistent for the empty concept, and it learns the engtgept, but on the sequense
of examples generated B, A makes2” mistakes. This is a contradiction. O

Note it is not hard to show thad actually learns the empty concept from a uniform random secg!
of examples with onlyO(n) mistakes, with high probability, confirming our earlier uts. Moreover, it is
easy to quickly teact! the empty concept: simply give it thast example(xan, 0).

4 Short tutoring sequences

Finally, we consider the problem of generating short segeef examples tailored to a given learner and
given concept that lead the learner to exactly identify thecept. We will informally refer to these as
tutoring sequencesAlthough the motivation for considering such sequencesimewhat different from
that we discussed for the “massive on-line” teaching moaele can think of it as a communication model
that reveals a sense in which a weaker receiver may be easiemmunicate with.

The technique from Theoref1 also easily yields a probabilistic (nonconstructive) probexistence
of such sequences, which haemgththat is only polynomially related to the learner’s state pterity.
This is in stark contrast to the earlier setting, where tihgtles of sequences were forced to be exponential.

Reminder of Theorem 1.6 For every concept clask, everyh € H, and every consistentn)-bounded
learner A for #, there is a sequence of examples of ler@th - s(n)) after which.A identifiesh.

Proof. The argument is quite similar to Theoredrl: we again consider the configuration graph of the
algorithm, and will argue that the set of examples the allgoridoes not know shrinks exponentially. We
first state an appropriately modified version of Lem#a (assuming the uniform distribution, along the
lines of Theoremn.?2):

Claim 1 Suppose that the on-line algorithm is in a statehat knows all but g-fraction of {0, 1}". Then,
after a sequence of(n) instances chosen uniformly at random from the set of instanicato; does not
know, the algorithm enters a statg, ; that knows all but 3/4 - p)-fraction of{0, 1}", with probability at
leastl — 275("),

The proof is essentially the same as LemBia Now, since the algorithm reaches such a state with
nonzero probability, we can in particular fix a sequence(eff examples for which the remaining instances
decreases by a factor 8f4; thus, afterlog,(4/3) - n of these sequences efn) examples, the algorithm
identifies the target concept as needed. O

5 Conclusion

We have introduced a new model of teaching that attemptsaicthtell “worst-case learners” a concept
with a single sequence of labeled examples, and have estadllithat the number of mistakes made by
consistent learners on random examples are only polyniymrielated to the learner’s state complexity.
Several interesting questions arise naturally.

The most immediate question is: how tight is the connect&twben mistakes and state complexity? The
lower bound in Theoreri.5only provides arf2(s(n)) lower bound on the number of mistakes, whereas our
constructions all achieve mistake boundsigk(n) - n). Is this extra factor ofi essential (say, for constant
probability of success)?
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Of course, our results analyze the mistake bound just indesfrthe state bound of the (consistent)
algorithm. In the standard (batch) PAC model, analysesdbaseepresentation sizes have been very useful,
e.g., for analyzing Rivest's algorithm for learning deaislists R3]. Our analysis may not be very useful for
many learning algorithms, because they do not satisfy sistioag “consistency” condition (it is often the
case that an algorithm may initially label an example cdlyeand later switch to a hypothesis that labels it
incorrectly). Is it possible to generalize the class oféay algorithms further and achieve similar results?
Perhaps our work can help give a novel analysis of some sttegeon-line learning algorithms.

We have found another setting where uniform random bits dqah, but generating similar bits deter-
ministically would entail circuit lower bounds. Could weikba sequence foACC-circuit learners in such
a way that we separateXP from ACC? DoesEXP ¢ P/poly imply the existence of good deterministic
teaching sequences?
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A Appendix

Here we prove:

Reminder of Theorem3.2 Let X1, ..., X; be independent Bernoulli random variables such thak;| >
1/2for all i, lets > 0, and lets € N. Then fort = 3s + 3log(1/6) trials, Pr[>'_, X; < s] < .

The theorem will follow from a calculation using Hoeffdisginequality (a.k.a. the additive Chernoff
bound).

Theorem A.1 Let X, ..., X; be independent Bernoulli random variables such tAak;] > 1/2 for all 4,
andE[1 3| X;] = . Then for any > 0,

t

1 2

Pr [z E 1 Xi < p— e] < exp(—2te”)
1=

To prove our inequality, we want to compute the number ofgdriaso that at least of theseX; come
up 1, with probability 1 — §. Naturally, in2s trials, we have at leastin expectation; we will calculate the
number of additional trials needed to guarantee at leastith probability 1 — 6. That is, we want such
that the probability that fewer thanout of the2s + a trials come upl is at most. Plugging in Hoeffding’s
inequality, we find that satisfying

exp (—2(23 +a) (ﬁ)j = exp (%) <5

suffices. Ast > 0 increases, the LHS decreases, so we merely need to find thlestmahat suffices. We
note that equality holds when

1 a®
In-=——
b 2(2s+a)

1 1
O:a2—2alng—4slng

which has the solutions

2Ini 4+ ,/41n?L +16sIn 1 1 1
a = > \/ 26 6:lng:|:\/1n2g—|—4slng.

To simplify the expression far, we recall that,/22 + y? < z 4+ y and,/zy < (x + y)/2 for non-negative

2 andy, and obtain:
1 [ 51 1
a = lng—i- In S+4Sln5
1 1 1
< _ _ _
< ln5—|—ln5—|—2\/sln6

< it tstine
< n5 n5 s n5

Thereforet = 2s + a < 3s + 31n(1/0) trials suffice.
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