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Abstract

We consider a model of teaching in which the learners are consistent and have bounded state, but
are otherwise arbitrary. The teacher is non-interactive and “massively open”: the teacher broadcasts a
sequence of examples of an arbitrary target concept, intended for every possible on-line learning algo-
rithm to learn from. We focus on the problem of designing interesting teachers: sequences of examples
that allow all capable and consistent learners toefficientlylearn concepts, regardless of the underlying
algorithm used by the learner. We use two measures of efficiency: the number of mistakes made by the
worst-case learner, and the maximum length of the example sequence needed for the worst-case learner.
Our results are summarized as follows:

• Given a uniform random sequence of examples of ann-bit concept function, learners (capable of
consistently learning the concept) withs(n) bits of state are guaranteed to make onlyO(n · s(n))
mistakes and exactly learn the concept, with high probability. This theorem has interesting corol-
laries; for instance, every conceptc has a sequence of examples can teachc to all capable con-
sistent on-line learners implementable withs(n)-size circuits, such that every learner makes only
Õ(s(n)2) mistakes. That is, all resource-bounded algorithms capable of consistently learning a
concept can be simultaneously taught that concept with few mistakes, on a single example se-
quence.
We also show how to efficiently generate such a sequence of examples on-line: using Nisan’s
pseudorandom generator, each example in the sequence can begenerated with polynomial-time
overhead per example, with anO(n · s(n))-bit initial seed.

• To justify our use of randomness, we prove that any non-trivial derandomization of our sequences
would imply circuit lower bounds. For instance, if there is adeterministic2n

O(1)

time algorithm
that generates a sequence of examples, such that all consistent and capable polynomial-size circuit
learners learn the all-zeroes conceptwith less than2n mistakes, thenEXP 6⊂ P/poly.

• We present examples illustrating that the key differences in our model – our focus on mistakes
rather than the total number of examples, and our use of a state bound – must be considered
together to obtain our results.

• We show that for every consistents(n)-state bounded learnerA, and everyn-bit concept thatA
is capable of learning, there is a custom “tutoring” sequence of onlyO(n · s(n)) examples that
teachesA the concept. That is, in principle, there areno slow learners, only bad teachers: if
a state-bounded learner is capable of learning a concept at all, then it can always be taught that
concept quickly via some short sequence of examples.
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1 Introduction

In 1960, Hans Freudenthal [10] proposed a non-interactive message called LINCOS, which attempts to
teach the “whole bulk of our knowledge” in a way that can be easily understood by any intelligent being.
Using regularities in the message itself, the message presents a long sequence of examples for each concept,
starting with basic concepts such as equality (of natural numbers), gradually building up a vocabulary of
arithmetic, and then proceeding onwards to more complex concepts using the existing vocabulary. Freuden-
thal’s intent was to broadcast this message into outer space, to teach alien civilizations about humanity.

Inspired by this remarkable (but perhaps a bit zany) work, weask a more grounded question: can con-
cepts be taught toeverycapable and bounded computational device in a non-interactive way? This sort of
question is “dual” to the usual type of problem that arises sooften in TCS, where we wish to design an
algorithm that is “useful” on a large class of data. Here we have a problem ofdata design: presenting an
arrangement of data that is useful to a large class of algorithms. We wish to design, once and for all, a se-
quence of inputs and outputs so that no matterwhoor whatobserves the behavior (including future observers
we haven’t conceived of), the observer can efficiently discover the structure of the underlying process. Is
this possible, even in principle? What are the constraints involved?

To properly formalize these questions, we consider a new model of teaching in which the learners are of
limited computational complexity (and consistent), but otherwise arbitrary. A vast array of teaching models
already exist in the literature (cf. Section1.2); most of these works have either considered models in which
either the learner is assumed to be more sophisticated, or the teacher and learner are designed as a pair. The
closest relative to our study is the well-known work on teaching dimension by Goldman and Kearns [11]
and Shinohara and Miyano [26], which studies the number of examples needed to identify each concept
in a given class. The model we consider retains a complexity-theoretic “universal” flavor along the lines
of Goldreich, Juba, and Sudan [13]: we wish to design sequences of examples for efficiently teaching an
unknownbut capable bounded-state learner. Our work can be seen as a complexity-theoretic extension of
the work on teaching dimension, focused on efficient learners. (See Section2 for more comparison.)

1.1 Our Results

We first observe that the number of examples required to teachsome very simple concepts for very simple
learners can be maximally large. LetAC

0-LINEAR be the class of on-line learning algorithms whose func-
tionality is computable byAC0 circuits of sizeO(n); more precisely, the learner’s prediction and hypothesis
update functions are computable withAC0 circuits ofO(n) size (as a consequence, the learner stores its
hypotheses with at mostO(n) bits of state).

Theorem 1.1 (Teaching weak learners requires many examples) There is a concept classH such that
for all n, there is a concepthn ∈ H such that, for every sequencesn of n-bit examples that allow all
AC

0-LINEAR learners to identifyc, the length ofsn equals2n.

Hence we cannot measure learning efficiency by the number of examples, without further constraints.
Furthermore, we observe that existing results on PAC-learning readily imply methods forapproximately
teaching concepts to many bounded learners. However, if we instead focus on exact learning, and consider
the number ofmistakesmade by learners, we enter interesting territory. We find that there are simple,
efficient (per round, on-line) universal teaching strategies for learners with bounded state. Informally, we
say that a learning algorithm iss(n)-boundedif, in learning anyn-bit concept function, the maximum length
of any of its state descriptions iss(n). (Full definitions will come later.)
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Theorem 1.2 (Exact learning with few mistakes from random examples) For all conceptsh : {0, 1}n →
Y andδ > 0, every consistents(n)-boundedA for h learnsh and makes at mostO(s(n)(n + log 1

δ
)) mis-

takes with probability at least1− δ, when the instances of lengthn are chosen uniformly at random.

Theorem1.2has interesting corollaries; for example, any concept thatis consistently learnable by some
subset of thes(n)-size circuits can be learned all such circuits simultaneously, with Õ(s(n)2) mistakes by
any learner, just by broadcasting uniform random examples (Corollary 3.1). Our use of the probabilistic
method begs the question of whether such a sequence can be generated efficiently, with little to no ran-
domness. As a partial answer, we confirm that Nisan’s pseudorandom generator [21] for space-bounded
computation can be used to obtain an efficient teaching strategy that uses few bits of randomness.

Theorem 1.3 (Few mistakes from low randomness)Using a block length ofΘ(s(n) + n + log 1
δ
) (and

k = O(n + log 1
δ
)), Nisan’s pseudorandom generator produces a sequence of2O(n) random bits for which

with probability1 − δ over the seedh1, . . . , hk, x, any consistent learning algorithm that iss(n)-bounded
on a given concept exactly identifies that concept and makes at mostO(s(n)(n+ log 1

δ
)) mistakes.

So usingO(s(n) · n) random bits, we can generate2O(n) examples such that any learning algorithm
consistent onh can be taughth with at mostO(s(n) · n) mistakes on the examples, with high probability.
This still does not answer the question of whether we can eliminate randomness entirely. We show that
a deterministicexponential time algorithm for generating a sequence with similar properties would imply
strong circuit lower bounds forEXP.

Theorem 1.4 (Deterministic sequences teaching all learners implies circuit lower bounds) Let F be a
class of functions fromN to N. Suppose there is a deterministict(n) time algorithmM such that for
all s(n) ∈ F and all sufficiently largen, M(1n) prints a sequenceS of examples of the empty concept
h : {0, 1}n → {0} such that every consistents(n)-size circuit learnerA for h learnsh and makes less than
2n mistakes on the sequenceS. Then there are problems solvable int(n) time that do not have circuits of
sizes(n), for all s(n) ∈ F and almost everyn.

To illustrate, letF contain all functions of the formf(n) = 2δn and lett(n) = 2O(n). Suppose there
is anε > 0 and a2O(n) time algorithm which (for alln) prints a sequence such that all consistent learners
implementable with2εn-size circuits learn the empty concept with less than2n mistakes. Then Theorem1.4
impliesE lacks2εn size circuits (almost everywhere), which by Impagliazzo and Wigderson [15] implies
P = BPP. (In contrast, Theorem1.2 says that a uniform random sequence would teach all such learners
with less than23εn mistakes.) For another example, letF contain all polynomials and lett(n) = 2n

k

for a fixedk. Then any2n
k

time algorithm which prints a sequence teaching all polynomial-size circuit
learners the empty concept with less than2n mistakes impliesEXP 6⊂ P/poly. Hence our teaching model
provides another case where non-trivial derandomization of a simple random process implies circuit lower
bounds [14, 17]. Theorem1.4 also clarifies why we consider our “data design” problem to bedual to
algorithm design: positive solutions to the data design problem entail negative solutions to some circuit
design problems.

Another natural question is whether we could remove the dependence on the state sizes(n) in the above
bounds. We prove that this dependency is inherent:

Theorem 1.5 (Learners with large space can make many mistakes) For every integers ∈ [n, 2n], there
is a concept classH, a concepth ∈ H and a consistent on-line learning algorithmA for H, computed by a
uniform family ofAC0 circuits of sizeO(s · n) usings-bit states, such that for every sequence of examples
of c, A makes at leasts− 1 mistakes before identifyingc.
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Finally, we consider a slightly relaxed objective. Supposewe have chosen both a concepth and a
particular algorithmA capable of learning the concept. CanA be taughth quickly? A variant of our
analysis in Theorem3.1establishes that there is always a short sequence of examples that forces any given
state-bounded learner to identify any concept it is capableof learning:

Theorem 1.6 (Short sequences of examples for exact identification) For every concept classH, every
h ∈ H, and every consistents(n)-bounded learnerA for H, there is a sequence of examples of length
O(n · s(n)) after whichA identifiesh.

1.2 Existing models of teaching

Although we will try to review the main threads of research here, we advise the interested reader to consult
the recent survey of Balbach and Zeugmann [6]. The oldest model of teaching, described by Freivalds et
al. [22] is a variant of inductive inference (featuring little to noemphasis on computational complexity) in
which the learner is given a carefully selected set of “good instances.” Balbach and Zeugmann [4] considered
a different sort of inductive-inference model in which a neighborhood structure is imposed on the space of
concepts, and they study the structural properties of such learning—for example, they consider a variant in
which the teacher may view the learner’s hypothesis.

The highly influential notion of teaching dimension was independently introduced and studied by Shi-
nohara and Miyano [26] and by Goldman and Kearns [11]. While we will discuss the relationship of our
work to teaching dimension further in Section2, a brief summary is warranted here, as it motivated most
subsequent work. The underlying goal is to select minimum sets of examples so that a target concept can be
uniquely identified out of the class of possible concepts; the maximum size of such a set (over all concepts
in the class) is called the teaching dimension of that concept class. (The definition may also be cast in terms
of consistent learning, a point we return to in Section2.) Although the definition is highly natural and has
spawned much interesting work, its consequences are unfortunately counterintuitive. For instance, the set
CONJ of non-contradictory conjunctions overn variables has polynomial-size teaching dimension, but
when the empty (always false) concept is included inCONJ , the teaching dimension jumps to2n, i.e.,
everyexample must be presented to the learner.

In follow-up work, Anthony et al. [2] consider (among other results) theaverageteaching dimension
(under the uniform measure over concepts), where the above undesirable effect disappears. In a similar
vein, Balbach and Zeugmann [5] consider an “average” learner modeled by a MDP that choosesits concept
at random from the space of consistent concepts; they also restrict the number of states in the MDP.

A different direction concerns models in which the teacher and learner are designed together. The main
obstacle in such a model is that somehow the teacher must “honestly” teach the class to the learner, and
not “collude” by coordinating an encoding of the concepts, and thus directly sending an encoding of the
target concept, e.g., by either requiring that the learner still operate correctly with an adversarial teacher (as
in Jackson and Tomkins [16]), by requiring that the learner still identify the conceptcorrectly when (e.g.)
additional examples are inserted into the teaching set (as in Goldman and Mathias [12] and Mathias [20]),
or by giving the teacher and learner different representations of the concept (as in Angluin and Kri kis [1]).

Another recent direction assumes a powerfully helpful teacher which provides aminimalset of examples
necessary for learning a concept, so the learner can eliminate competing concepts based on the size of the
teaching set [3, 28]. Naturally, the strange behavior of the learner on the contradictory concept also vanishes
in this model (and in fact, this concept has a teaching set of size O(1)), but only under the troublesome
assumption that the learner “knows” the optimal size of teaching sets—troublesome because Servedio [25]
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showed that the optimal size of teaching sets (in the traditional sense) isNP-hard to compute, so it is doubtful
that these more sophisticated notions of teaching dimension could be computed easily.

1.3 Work on compression in learning and other structural learning themes

Our main results can be seen as a variant on the theme that learning algorithms which compress the data well
must necessarily learn efficiently. At the most basic level,we note in Section 3 that a standard hypothesis-
size analysis in PAC-learning establishes the existence ofshort teaching sequences for approximate concept
identification. A more general result for the PAC model, starting from an arbitrary compression scheme,
was the content of the well-known work by Blumer et al. [7] on Occam’s razor. The difference here is that
we start with a stronger algorithm – a consistent on-line learning algorithm rather than a consistent batch
algorithm (or mere “compression scheme”) – but then show that the given algorithm learns exceptionally
well, obtainingexactrather than approximate identification in a mistake-bounded model. The “moral” that
compression implies generalization is certainly a common thread across these results. Relationships between
compression schemes and learnability were also consideredby Littlestone and Warmuth [19], and further
developed by Floyd and Warmuth [9], but there the learner was restricted to remember a list of examples that
“compressed” the given sample; Floyd [8] also studied on-line algorithms in a similar vein. Our learners are
not restricted to store information in any particular form.

Our analysis, which considers the performance of an on-linelearning algorithm on i.i.d. examples from
an arbitrary distribution, is thus also vaguely related to constructions that convert on-line learning algo-
rithms to batch PAC-learning algorithms (cf. [18, 24]). Here, we analyze an on-line model and obtain mis-
take bounds for exact identification from random examples, rather than extracting an approximately good
hypothesis in the batch model from an (on-line) algorithm.

2 Preliminaries and definitions

We first recall some standard terminology for on-line learning algorithms.

Definition 2.1 (On-line learning algorithms) Anon-line learning algorithmis specified by a pair of algo-
rithms, EVAL andUPDATE, and an initial stateσ0 ∈ {0, 1}∗ which may depend on the instance lengthn.
Learning of atarget concepth : {0, 1}n → Y from a concept classH proceeds in a sequence oftrials:
given the currentstateof the algorithmσ ∈ {0, 1}∗ and the currentinstancex ∈ {0, 1}∗, EVAL(σ, x)
produces aprediction p ∈ Y (typically Boolean). The subsequent state of the algorithmis output by
UPDATE(σ, x, p, h(x)) for a reinforcementvalueh(x). If p 6= h(x), then we say that the algorithm has
made amistake. Themistake boundof an algorithm for a concept classH and fixed sizen is given by the
maximum number of mistakes over allh ∈ H and (infinite) sequences of instances of lengthn.

LetC be a class of algorithms. We say that an on-line learning algorithm isC-boundedif the algorithms
EVAL andUPDATE are given by algorithms fromC. If C is a class of non-uniform circuits, we require that
for eachn ∈ N that the algorithmsEVAL andUPDATE on examples of lengthn are given by circuits fromC
havingn-bit inputs.

We say that a learning algorithm isconsistent onH if, for everyn and everyh ∈ H, after every sequence
of examplesx1, . . . , xt ∈ {0, 1}n of h, the algorithm is in a stateσ such thatEVAL(σ, xi) = h(xi) for all i.

We say that the algorithm hasidentifiedor learnedh if the algorithm is in a stateσ such that for every
subsequent sequence of examplesx1, . . . , xt ∈ {0, 1}n the algorithm correctly predictsh(xi) for all i.

We say that the algorithm is alearner forh if there exists a sequence of examples after which the algo-
rithm has identifiedh.
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The most relevant learning concept to our present work is that of teaching dimension.

Definition 2.2 LetH be a concept class. Ateaching sequencefor anh ∈ H is a list of examples such that
all consistent learners forH identifyh after receiving those examples. Theminimum teaching lengthfor an
h ∈ H is the minimum numbern of examples in any teaching sequence forh. Theteaching dimensionofH
is the maximum over allh ∈ H of the minimum teaching length forh.

Therefore, the teaching dimension specifies the minimum number of examples needed for any consistent
learner to distinguish any concept inH from all other concepts. This concept is quite similar to thenotion of
teaching that we consider; the two major differences are that we only consider learners with bounded state
complexity, and we will focus on the number of mistakes rather than the number of examples in order to
achieve meaningful generic bounds. The tutoring sequencesconsidered in Section4 are different from the
teaching sequences in the above definition, in that they are tailored to a specific learner and they take into
account the learner’s complexity.

As noted earlier, the teaching dimension model [11, 26] has some counterintuitive properties, namely
that some very simple concepts are maximally hard to teach, i.e., it requires specifying the entire domain.
An example we will use is:

Definition 2.3 (Singletons and empty concept)For eachy ∈ {0, 1}n, thesingletonconcept fory is given
by the function that evaluates to1 at y and0 everywhere else; the class of singletons is thus the set of all
singleton concepts. Theemptyconcept is the constant all-0 function.

We defineS to be the concept class consisting of all singleton conceptsand the empty concept, for alln.

3 Teaching consistent learning algorithms of bounded complexity

Can we find sequences of examples that force every simple consistent learning algorithm to identify the
target hypothesis? Forapproximateidentification (i.e., standard PAC guarantees) this is immediate: the
standard counting analysis shows that for learners that findconsistent hypotheses of size at mosts(n),
presentingO(1

ǫ
(s(n) + log 1

δ
)) random examples suffices to guarantee that any such learner arrives at a

1− ǫ-accurate hypothesis with probability1−δ. Our hope is that the introduction of a “simple” requirement
on the learners might reduce the complexity of (exact) teaching. In one sense, we can show that thiscannot
be true. The concept classS from the previous section, which is hard to learn in the usual(Goldman-Kearns-
Shinohara-Miyano) teaching model, remains hard under severe complexity restrictions on learners. Recall
from the Introduction thatAC0-LINEAR is the class of on-line learning algorithms whose functionality is
computable byAC0 circuits of sizeO(n).

Reminder of Theorem1.1 For all n, let hn : {0, 1}n → {0, 1} be the all-zeroes concept (i.e., the empty
concept). For every sequencesn of n-bit examples that allow allAC0-LINEAR learners to identifyhn, the
length ofsn equals2n.

Note that the length of the sequence cannot exceed2n: once all examples have been seen, the concept is
surely identified. Hence we only have to prove a lower bound ofat least2n.

Proof. Consider the following class of learnersL: for eachz ∈ {0, 1}n, the initial hypothesis forLz ∈ L
is the singleton concept forz, which is used for prediction until eitherLz makes a mistake onz, or Lz

makes a mistake on some othery. In the former case,Lz switches to the empty concept; in the latter case,
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Lz switches to the singleton concept fory. Finally, if the current hypothesis is the empty concept, and Lz

makes a mistake on somey, thenLz switches to the singleton fory.
Observe that for allz ∈ {0, 1}n, the learnerLz is consistent for the concept classS, and everyLz can be

implemented with linear size depth-2 circuits which outputstates of length at mostn+1. The firstn bits of
the state are used to represent a singleton concept, and the last bit of the state is1 if and only if the current
hypothesis is the empty concept. The algorithmUPDATE for Lz works as follows: if the label of the current
example is1, then the firstn bits of state are switched to the current example and the lastbit of state is set to
0. If the label is0 and the current example equalsz, then the last bit of state is set to1. This behavior can be
easily implemented with an OR of ANDs ofO(n) size. The algorithmEVAL just tests if the input equals the
first n bits of state (and that the last bit of state is0), which can be done with a linear size depth-2 circuit.

Note that for any sequencesn of length less than2n, there must be somez ∈ {0, 1}n that does not
appear in the sequence. Then the learnerLz, after reading the sequencesn, still has not identified the empty
concept (it will make a mistake onz). �

Rather than being discouraged, let us consider other measures of the complexity of teaching. Notice that
1. The learnersLz constructed above only make at most two mistakes.
2. For every learnerLz, there is a one-example sequence after whichLz identifies the target concept.

In the following sections, we show that some version of thesenice properties hold of low-complexity learners
in generalfor state-bounded learners, and for arbitrary concepts that they can learn.

3.1 Sequences guaranteeing few mistakes for state-boundedlearners

Another measure of the quality of a teaching strategy is the number of mistakes that the learners make. Here,
we show how to construct strategies for whicheveryconsistent learner with bounded state makes at most a
polynomial number of mistakes in its space bound and the sizeof the examples.

Definition 3.1 LetA = (EVAL, UPDATE) be an on-line learning algorithm, and lets : N → N. A is s(n)-
boundedif, on all length-n instances, the length of the initial state ofA is at mosts(n), and all outputs of
UPDATE (on all length-n instances and all states of length at mosts(n)) have length at mosts(n).

That is, ans(n)-bounded learner always stores its hypothesis and its general summary of then-bit
examples it has seen, using at mosts(n) bits.

The core of our analysis is the following theorem, giving a mistake bound for consistent on-line learning
algorithms when presented with i.i.d. examples (as opposedto adversarial). A key point is that the quality
of the final hypothesis improvesexponentiallywith the number of mistakes—this will ensure that we can
get exact identification of a concept in a polynomial number of mistakes.

Theorem 3.1 (Random examples teach consistent bounded learners with few mistakes) For every con-
cepth : {0, 1}n → Y , ε > 0, δ > 0, distributionD over examples of lengthn, and consistents(n)-bounded
learnerA for h, the following holds. Given random labeled examples drawn fromD, afterA makes at most
O(s(n)(log 1

ε
+log 1

δ
)) mistakes on the examples, the hypothesis ofA agrees withh on all but anε-fraction

ofD, with probability at least1− δ.

To prove the theorem, we need a couple of useful definitions.

Definition 3.2 Given ans(n)-bounded learning algorithmA, and a concepth : {0, 1}n → Y , we define
theconfiguration graph ofA on h to be a directed graph in which the vertices correspond to theO(2s(n))
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states of the algorithm, and there is an edge from a stateσi to a stateσj labeled byx ∈ {0, 1}n provided
thatUPDATE(σi, x, EVAL(σi, x), h(x)) = σj.

For a given concepth and algorithmA, we say that a stateσ knows (the label of)x ∈ {0, 1}n if there is
a path from the initial stateσ0 to σ such that some edge in the path is labeled byx.

The key property of our “knowledge” definition is the following:

Proposition 1 For any on-line learning algorithm that is consistent onh and is in a stateσ that knows an
instancex, we haveEVAL(σ, x) = h(x). Furthermore, all states̃σ reachable fromσ must also knowx.

Next, we show that after makings(n) mistakes, the fraction of instances not known by the algorithm
drops by a constant fraction. For a distributionD, we say that a subsetS ⊆ D is aρ-fraction ofD provided
thatPrx∈D[x ∈ S] = ρ.

Lemma 3.1 Suppose that the algorithmA is in a stateσt that knows all but aρ-fraction ofD. Then, after
a sequence of trials in which instances are drawn fromD andA makess(n) mistakes,A enters a stateσt+1

that knows all but a(3/4 · ρ)-fraction ofD, with probability at least1− 2−s(n).

Proof. Consider any statẽσ that is reachable from a path fromσt on whichs(n) mistakes occur, and that
knows less than a(1−3/4 ·ρ)-fraction ofD. Sinceσt knows a(1−ρ)-fraction ofD, and all mistakes made
by A starting fromσt must fall in theρ-fraction thatσt does not know, this means that thes(n) mistakes
leading toσ̃ must have all been drawn from a set that has conditional probability at most1/4, out of the
instances thatσt does not know. The probability that we hit such a set of conditional probability at most1/4
for s(n) times (for ours(n) mistakes) is at most2−2s(n). Therefore the probability that we reachσ̃ from σt
(assuming we makes(n) mistakes) is at most2−2s(n). Taking the union bound over all (at most2s(n)) such
states̃σ, the probability that we reach some state that does not know at least a(1− 3/4 · ρ)-fraction ofD is
at most2−s(n). �

The final ingredient in the proof of Theorem3.1 is the following probabilistic inequality, which can be
derived from Chernoff-Hoeffding bounds:

Theorem 3.2 LetX1, . . . ,Xt be independent Bernoulli random variables such thatE[Xi] ≥ 1/2 for all i,
let δ > 0, and lets ∈ N. Then fort = 3s+ 3 log(1/δ) trials, Pr[

∑t
i=1Xi < s] ≤ δ.

The proof of Theorem3.2is in AppendixA. Now we can complete the proof of Theorem3.1:

Proof of Theorem 3.1. Let A andh be as in the theorem statement. UntilA has correctly labeled every
instance correctly (in which case we are done),A reduces the fraction ofD that it does not know by a
(3/4)-factor, after every sequence of examples fromD in which it makess(n) mistakes, with probability at
least1− 2−s(n) (independently on each such sequence). This1− 2−s(n) probability event only has to occur
u = (log 1/ε)/ log(4/3) times, in order for the fraction ofD thatA does not know to drop belowε. Letting
t = 3 · u+ 3 log(1/δ) and applying Theorem3.2, we find that aftert · s(n) = O(s(n)(log 1/δ + log 1/ε))
mistakes, the probability thatA knows all but anε-fraction ofD is at least1− δ. �

Note that there are several examples in the literature of consistent on-line learning algorithms with poly-
nomially bounded state, such as the learning algorithms we have described for learning singletons, learning
constant-degree polynomials overF2, and the elimination algorithm for learning conjunctions (analyzed by
Valiant [27] in the original work on PAC-learning) which also lends to learningk-CNF formulas.
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Exact learning from Theorem 3.1. It is now straightforward to construct the desired teachingstrategies
for state-bounded consistent learners: we only need to present the learner with i.i.d. examples from a dis-
tribution for which the minimum probabilities are relatively large (at most exponentially small). Of course,
the uniform distribution meets these needs optimally:

Reminder of Theorem1.2 For every concepth : {0, 1}n → Y andδ > 0, every consistents(n)-bounded
A for h makes at mostO(s(n)(n + log 1

δ
)) mistakes with probability at least1 − δ, when the instances of

lengthn are chosen uniformly at random.

Proof. Since the instance space has size2n, once the algorithm is in a state that is correct on all but a
ε-measure set under the uniform distribution forε < 2−n, the algorithm must label every instance correctly.
The claim thus follows immediately from Theorem3.1. �

Theorem1.2only guarantees that the sequence of examples selected by the strategy works for a particular
learner with high probability. Of course, when the probability is exponentially close to 1, we can obtain a
fixedsequence that guarantees a polynomial mistake bound forall of the learners from some finite class. Let
SIZE[s(n)] denote the class of all circuit families{Cn} such thatCn has bounded fan-in ands(n) size.

Corollary 3.1 For every concepth : {0, 1}n → Y and every size bounds(n) ≥ n, there is a sequence of
examples ofh such that everySIZE[s(n)]-bounded learner forh makes at mostO(s(n)2 log s(n)) mistakes.

Proof. First, note that if the learning algorithm is computable by acircuit of sizes(n), its states must have
length at mosts(n). Second, note that there are at mostS = s(n)O(s(n)) circuits of sizes(n). Therefore,
by taking δ < 1/S, we find by Theorem1.2 that a random sequence of examples guarantees that every
consistent learner forh with states of sizes(n) makes at mostO(s(n)(n+logS)) mistakes with probability
> 1 − 1/S. By taking a union bound over allS circuits, we find that every circuit makes a number of
mistakes not exceedingO(s(n)(n + logS)) ≤ O(s(n)2 log s(n)) with nonzero probability, hence some
sequence of examples suffices. �

Finally, before moving on, we note that some polynomial dependence on the space bound (hypothesis
size) is essentially inevitable in the mistake bound of any teaching sequence for learners given any reasonable
complexity bound. Recall thatS is the class consisting of all singleton and empty concepts.

Reminder of Theorem1.5 For every integers ∈ [n, 2n], there is a consistent on-line learning algorithmA
for the concept classS computed by a uniform family ofAC0 circuits of sizeO(s ·n) usings-bit states, such
that for every sequence of examples of the empty concept,A makes at leasts−1 mistakes before identifying
the empty concept.

Proof. We describe our “adversarial” learning algorithmA. Fix a lexicographic ordering on strings, and
divide the space of{0, 1}n into s−1 intervals of equal length in which the firsts−2 intervals all have length
⌊2n/(s− 1)⌋ (and the final interval contains the rest). IfA ever sees an exampley such thath(y) = 1, then
it switches to the singleton fory as its concept. Otherwise,A represents its concept by a bit-vector of length
s − 1, corresponding to each of these intervals. Initially the bits are all set to1, and ifA sees an example
falling in an interval with its corresponding bit set to1, EVAL predicts1, otherwise it predicts0. When the
UPDATE algorithm sees an examplez for whichh(z) = 0 in an interval with a bit previously set to1, that bit
is set to0. (All other bits remain unchanged.) We observe that thisA is consistent on the class of singletons
with the empty concept—once it sees a1, it always predicts the singleton correctly (and likewise correctly
labels all of the other points it previously saw labeled0), and until that point, every example it sees labeled
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0 will subsequently be predicted to be0 (along with the rest of the interval it belongs to). We also observe
that the lexicographic comparisons can be carried out in uniform AC0, and that the hypotheses ofA can
be represented ins bits as required. Finally, observe that untilA has received an example from each of the
s− 1 intervals,A does not identify the empty concept. �

On the efficiency of teaching. Although we noted in Theorem1.1 that teaching concepts such as even
the singletons and empty concept may involve presenting exponentially many examples, there is a sense
in which the teaching sequences of Theorem1.2 are efficiently generated. Namely, if we consider an on-
line communication model such as the one introduced by Goldreich, Juba, and Sudan [13], then as our
teaching strategy simply chooses ann-bit example uniformly at random on each round, our strategyis a
(randomized) linear-time on-line universal teaching strategy (for space-bounded consistent learners) that
achieves polynomial error complexity (inn and the space bound).

3.2 Sequences guaranteeing few mistakes, from Nisan’s generator

We have already noted that the teaching sequences we consider must be exponentially long in order to
guarantee thateveryconsistent algorithm identifies the target concept. Nevertheless, we might hope to
improve the construction of such sequences in Theorem1.2 by reducing the number of random bits they
require. As stated, Theorem1.2requires exponentially many random bits. However, given that the sequences
are uniform-random and the learners have bounded state, onemight anticipate that Nisan’s pseudorandom
generator for space-bounded computation [21] could generate a sequence with similar properties, from a
polynomial-length random seed. Although Nisan’s analysissays nothing about such a property of the entire
string – it only considers the probability that the algorithm ends up in an accepting state – we can confirm
that it also generates sequences suitable for our purposes.We prove:

Reminder of Theorem1.3 Using a block length ofΘ(s(n) + n+ log 1
δ
) (andk = O(n+ log 1

δ
)), Nisan’s

pseudorandom generator produces a sequence of2O(n) random bits for which with probability1 − δ over
the seedh1, . . . , hk, x, any consistent learning algorithm that iss(n)-bounded on a given concept exactly
identifies that concept and makes at mostO(s(n)(n+ log 1

δ
)) mistakes.

Nisan’s pseudorandom generator. We recall that Nisan’s generator uses a family of pairwise-independent
hash functionsH taking b bits to b bits, i.e., satisfying the property that forx1, x2, y1, andy2 in {0, 1}b,
for a uniformly chosenh ∈ H, Prh[h(x1) = y1 and h(x2) = y2] = 2−2b; we know that these can be
constructed fromO(b) random bits by, e.g., multiplying by a random Toeplitz matrix and adding a ran-
dom vector. The construction is then a recursive construction, in whichGk takes ab-bit seed andk hash
functions:G0(x) = x, and

Gk(x, h1, . . . , hk) = Gk−1(x, h1, . . . , hk−1), Gk−1(hk(x), h1, . . . , hk−1)

i.e., concatenating the output ofGk−1 on x with Gk−1 on hk(x). So, the generator stretchesO(kb) bits to
b2k bits. We refer tob as theblock lengthof the generator (observe that the sequence is a concatenation of
blocks of lengthb obtained by hashingx with the many various subsets ofh1, . . . , hk).

As is well known, Nisan’s generator is also time-efficient inan on-line sense: after the initial choice of
seed andk hash functions, theith block (out of2k) of the generator’s output may be computed by taking,
for eachjth bit in the binary representation ofi that is a1, the hash functionhj , and applying them to the
seed in order. Thus, by keeping ak-bit counter of the blocks, the sequence of examples can be computed
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on-line in time polynomial inn ands(n). So, Theorem1.3also yields an efficient on-line universal teaching
strategy with polynomial error complexity.

Our starting point is the following lemma encapsulating theabstract version of the analysis of Nisan’s
generator. For convenience, givenδ > 0, for eachk, b ∈ N and pairs of statesi andj of a given (learning)
algorithm, we will define eventsBh1,...,hk

i,j thatGk(x, h1, . . . , hk) takes statei to statej, and eventsAk
i,j that

a sequence of2k uniformly chosen blocks ofb bits takes statei to statej.

Lemma 3.2 (Lemma 2 of [21]) Let any space-s(n) algorithm that reads its inputn bits at a time from a
read-once input tape be given. LetH be a family of pairwise-independent hash functions onb bits, δ > 0,
andk ∈ N. Then with probability at least1− k26s(n)

δ2
2−b overh1, . . . , hk chosen fromH,

‖
[

Pr[Ak
i,j ]
]

−
[

Pr[Bh1,...,hk

i,j ]
]

‖1 ≤ (2k − 1)δ

Now, instead of merely examining the probability thath1, . . . , hk take statei to statej (as Nisan does),
we will also examine the probability that the algorithm makes a given number of mistakes,m. Ultimately, we
will argue that thejoint distribution over final states and number of mistakes remains close (inℓ1-distance)
when Nisan’s PRG is substituted for uniform random bits; we do this by noting that the algorithm could
be modified to keep count of the number of mistakes that it makes in ann-bit counter (using total space
s(n)+n) and then the distribution over states of this modified algorithm captures the joint distribution over
states of the original algorithm and total number of mistakes. Then by a union bound over the various sources
of error, we obtain a general analysis of the quality of Nisan’s pseudorandom generator for generating easy
sequences of examples:

Theorem 3.3 (Nisan’s pseudorandom generator produces easysequences)Using a block length ofΘ(s(n)+
n + log 1

δ∗
+ logR) rounded to a multiple ofn (andk = logR/b), Nisan’s pseudorandom generator pro-

duces a sequence ofR random bits for which with probability1 − δ∗ over the seedh1, . . . , hk, x, for any
consistent learning algorithm that is space-s(n) bounded on a given concept, the distribution over states
and total number of mistakes of the learning algorithm induced by the generator for the concept isδ∗-close
to the distribution induced by the uniform distribution over R bits in ℓ1.

Proof. Given any consistent space-s(n) bounded learning algorithmA for a given concept, consider the
algorithmA′ with states given by pairs(σ,m) whereσ is a state ofA andm is an integer, which simulates
A and keeps count of the number of mistakesA makes in the second component; note that sinceA is
consistent, it can never make more than2n mistakes (since the concept is then identified) and henceA′ uses
at mosts(n) + n bits of state.

By Lemma3.2, for this block length, with probability1− δ∗ over the choice of hash functions and seed,
the pseudorandom generator produces a sequence ofR random bits such that the statistical distance over
final states ofA′ is δ∗-close to the distribution over states ofA′ onR uniformly chosen bits; asA′ behaves
identically toA, by considering the two components of the states ofA′, we find that the joint distribution
over final states ofA and total number of mistakes made byA is thereforeδ∗-close to the distribution over
states and mistakes ofA onR uniformly chosen bits. The theorem follows. �

In particular, we can get exact identification sequences, establishing the main theorem of this section:

Proof of Theorem 1.3. By the coupon collector’s bound, the expected number of uniformly random
examples needed to include every example isO(n2n), and by Markov’s inequality, the probability that
this exceedsΩ(1

δ
n2n) is at mostδ/3. So, usingR = O(1

δ
n22n) random bits, the algorithm enters a state
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that knows the entire domain with probability1 − δ (and therefore exactly identifies the concept). By
Theorem1.2, the algorithm makes more thanO(s(n)(n + log 1

δ
)) mistakes with probability at mostδ/3.

By a union bound over these two events, we find that onR uniform bits, the algorithm enters a state that
identifies the concept and makes at mostO(s(n)(n+ log 1

δ
)) mistakes with probability at least1− (2/3)δ.

Therefore, Theorem3.3 guarantees that for the stated block length, the probability that the algorithm fails
to identify the concept or makes more thanO(s(n)(n + log 1

δ
)) mistakes on the output of the generator is

greater by at mostδ/3. �

3.3 Deterministic sequences guaranteeing few mistakes implies circuit lower bounds

We now turn to the question of whether the random seed can be removed entirely in generating a sequence
which teaches all bounded consistent learners a concept. Weshow that a deterministic sequence that achieves
any mistake bound less than2n for all bounded learners implies circuit lower bounds:

Reminder of Theorem 1.4 Let F be a class of functions fromN to N. Suppose there is a deterministic
t(n) time algorithmM such that for alls(n) ∈ F and all sufficiently largen, M(1n) prints a sequenceS
of examples of the empty concepth : {0, 1}n → {0} such that every consistents(n)-size circuit learnerA
for h learnsh and makes less than2n mistakes on the sequenceS. Then there are problems solvable int(n)
time that do not have circuits of sizes(n), for all s(n) ∈ F and almost everyn.

Proof. By contradiction. Suppose there is a deterministic algorithm that runs int(n) time and prints a
sequenceS of examples for the empty concepth with the hypothesized property. Further suppose that for
every problem solvable in timet(n) there is ans(n) ∈ F such that the problem has circuits of sizes(n),
for infinitely many input lengthsn. First note that all2n strings must appear among inS, otherwise some
O(n)-size circuit learner which learns the classS of singletons with the empty concept will not be able to
distinguishh from some singleton concept (cf. Theorem1.1). This also entails thatt(n) ≥ 2n.

We define a “bad” on-line algorithmA for learningh as follows. First, order then-bit strings by the
order in which they first appear in the sequenceS, and re-index the strings asx1, x2, . . . , x2n . (That is,x1 is
the first instance inS, x2 is the next distinct instance,x3 is the one after that, and so on. Since every string
must appear somewhere inS, this is indeed an ordering on alln-bit strings.)

• The states ofA are the integers from0 to 2n, and the initial state is0.

• Given an example(x, 0) on which a mistake was been made:
UPDATE the state to be the integeri such thatx = xi.

• EVAL(i, x) predicts0 if x = xj for somej ∈ [1, i], otherwise it predicts1.

That is, in the initial state0, all examples are classified as1, but if A makes a mistake on examplex, x
must have the label1. A rectifies this by increasing the state toi such thatx = xi.

It is easy to verify that, assuming every language in timet(n) has circuits of sizes(n) ∈ F for infinitely
manyn, the aboveUPDATE andEVAL functions can be implemented withO(s(n))-size circuits for some
s(n) ∈ F and some sufficiently largen – this follows becauseS can be generated int(n) time.

Observe thatA is consistent forh: the statei always increases with each mistake, and when we make
a mistake onxi, we increase the state to somej ≥ i such that this never happens again. However, on the
sequenceS, A makes2n mistakes: it predicts every example it sees to have label1, until all 2n examples
have appeared inS. That is, the statei must equal2n in order forA to correctly label all examples as0, but
whenA receives examples in the sequenceS, the statei increases only by1 for each mistake that is made.
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ThereforeA is consistent for the empty concept, and it learns the empty concept, but on the sequenceS
of examples generated by1n, A makes2n mistakes. This is a contradiction. �

Note it is not hard to show thatA actually learns the empty concept from a uniform random sequence
of examples with onlyO(n) mistakes, with high probability, confirming our earlier results. Moreover, it is
easy to quickly teachA the empty concept: simply give it thelast example(x2n , 0).

4 Short tutoring sequences

Finally, we consider the problem of generating short sequences of examples tailored to a given learner and
given concept that lead the learner to exactly identify the concept. We will informally refer to these as
tutoring sequences. Although the motivation for considering such sequences issomewhat different from
that we discussed for the “massive on-line” teaching models, one can think of it as a communication model
that reveals a sense in which a weaker receiver may be easier to communicate with.

The technique from Theorem3.1 also easily yields a probabilistic (nonconstructive) proof of existence
of such sequences, which havelength that is only polynomially related to the learner’s state complexity.
This is in stark contrast to the earlier setting, where the lengths of sequences were forced to be exponential.

Reminder of Theorem1.6 For every concept classH, everyh ∈ H, and every consistents(n)-bounded
learnerA for H, there is a sequence of examples of lengthO(n · s(n)) after whichA identifiesh.

Proof. The argument is quite similar to Theorem3.1: we again consider the configuration graph of the
algorithm, and will argue that the set of examples the algorithm does not know shrinks exponentially. We
first state an appropriately modified version of Lemma3.1 (assuming the uniform distribution, along the
lines of Theorem1.2):

Claim 1 Suppose that the on-line algorithm is in a stateσt that knows all but aρ-fraction of{0, 1}n. Then,
after a sequence ofs(n) instances chosen uniformly at random from the set of instances thatσt does not
know, the algorithm enters a stateσt+1 that knows all but a(3/4 · ρ)-fraction of{0, 1}n, with probability at
least1− 2−s(n).

The proof is essentially the same as Lemma3.1. Now, since the algorithm reaches such a state with
nonzero probability, we can in particular fix a sequence ofs(n) examples for which the remaining instances
decreases by a factor of3/4; thus, afterlog2(4/3) · n of these sequences ofs(n) examples, the algorithm
identifies the target concept as needed. �

5 Conclusion

We have introduced a new model of teaching that attempts to teach all “worst-case learners” a concept
with a single sequence of labeled examples, and have established that the number of mistakes made by
consistent learners on random examples are only polynomially related to the learner’s state complexity.
Several interesting questions arise naturally.

The most immediate question is: how tight is the connection between mistakes and state complexity? The
lower bound in Theorem1.5only provides anΩ(s(n)) lower bound on the number of mistakes, whereas our
constructions all achieve mistake bounds ofO(s(n) · n). Is this extra factor ofn essential (say, for constant
probability of success)?
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Of course, our results analyze the mistake bound just in terms of the state bound of the (consistent)
algorithm. In the standard (batch) PAC model, analyses based on representation sizes have been very useful,
e.g., for analyzing Rivest’s algorithm for learning decision lists [23]. Our analysis may not be very useful for
many learning algorithms, because they do not satisfy such astrong “consistency” condition (it is often the
case that an algorithm may initially label an example correctly, and later switch to a hypothesis that labels it
incorrectly). Is it possible to generalize the class of learning algorithms further and achieve similar results?
Perhaps our work can help give a novel analysis of some interesting on-line learning algorithms.

We have found another setting where uniform random bits do the job, but generating similar bits deter-
ministically would entail circuit lower bounds. Could we build a sequence forACC-circuit learners in such
a way that we separateEXP from ACC? DoesEXP 6⊂ P/poly imply the existence of good deterministic
teaching sequences?
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A Appendix

Here we prove:

Reminder of Theorem3.2 LetX1, . . . ,Xt be independent Bernoulli random variables such thatE[Xi] ≥
1/2 for all i, let δ > 0, and lets ∈ N. Then fort = 3s + 3 log(1/δ) trials, Pr[

∑t
i=1Xi < s] ≤ δ.

The theorem will follow from a calculation using Hoeffding’s inequality (a.k.a. the additive Chernoff
bound).

Theorem A.1 LetX1, . . . ,Xt be independent Bernoulli random variables such thatE[Xi] ≥ 1/2 for all i,
andE[1

t

∑t
i=1 Xi] = µ. Then for anyǫ > 0,

Pr

[

1

t

t
∑

i=1

Xi < µ− ǫ

]

≤ exp(−2tǫ2)

To prove our inequality, we want to compute the number of trials t so that at leasts of theseXi come
up 1, with probability1 − δ. Naturally, in2s trials, we have at leasts in expectation; we will calculate the
number of additional trialsa needed to guarantee at leasts with probability1 − δ. That is, we wanta such
that the probability that fewer thans out of the2s+ a trials come up1 is at mostδ. Plugging in Hoeffding’s
inequality, we find thata satisfying

exp

(

−2(2s + a)

(

a

2(2s + a)

)2
)

= exp

( −a2

2(2s + a)

)

≤ δ

suffices. Asa > 0 increases, the LHS decreases, so we merely need to find the smallest a that suffices. We
note that equality holds when

ln
1

δ
=

a2

2(2s + a)

0 = a2 − 2a ln
1

δ
− 4s ln

1

δ

which has the solutions

a =
2 ln 1

δ
±
√

4 ln2 1
δ
+ 16s ln 1

δ

2
= ln

1

δ
±
√

ln2
1

δ
+ 4s ln

1

δ
.

To simplify the expression fora, we recall that
√

x2 + y2 ≤ x+ y and
√
xy ≤ (x+ y)/2 for non-negative

x andy, and obtain:

a = ln
1

δ
+

√

ln2
1

δ
+ 4s ln

1

δ

≤ ln
1

δ
+ ln

1

δ
+ 2

√

s ln
1

δ

≤ ln
1

δ
+ ln

1

δ
+ s+ ln

1

δ

Therefore,t = 2s+ a ≤ 3s + 3 ln(1/δ) trials suffice.
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