
Towards An Optimal Query Efficient PCP?

Subhash Khot ∗

NYU & U.Chicago
Muli Safra

Tel Aviv University
Madhur Tulsiani
TTI-Chicago

Abstract

We construct a PCP based on the hyper-graph linearity test with 3 free queries. It has
near-perfect completeness and soundness strictly less than 1

8 . Such a PCP was known before
only assuming the Unique Games Conjecture, albeit with soundness arbitrarily close to 1

16 .
At a technical level, our main contribution is constructing a new outer PCP which is “robust”

against bounded degree polynomials, and showing that it can be composed with the hyper-graph
linearity test with 3 free queries. We believe this outer PCP may be useful in obtaining the
optimal query vs. soundness tradeoff for PCPs.

∗Research supported by NSF CAREER grant CCF-0833228, NSF Expeditions grant CCF-0832795, NSF Waterman
Award and BSF grant 2008059.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 109 (2012)

1 Introduction

Testing procedures for certain classes of boolean functions have been extremely useful towards
constructing Probabilistically Checkable Proofs (PCPs) for NP. Two classes of boolean functions
that are most relevant from the PCP viewpoint are the class of linear functions and the class of
dictator functions.

A function f : {0, 1}n 7→ {0, 1} is called linear if there is some α ∈ {0, 1}n such that f(x) = α · x =∑n
i=1 αixi (all computations are over GF (2)). Blum, Luby and Rubinfeld [5] suggested the following

test: pick two inputs x, y ∈ {0, 1}n uniformly at random and accept iff f(x) + f(y) = f(x + y).
They analyzed the test combinatorially and subsequently a Fourier analytic approach led to the
following theorem (see for instance [11]).

Theorem 1.1 The BLR Test

• has perfect completeness, meaning if f is linear, the test passes with probability 1.

• has soundness 1
2 , in the sense that if the test passes with probability 1

2 + ε, then f has a
non-negligible Fourier coefficient.

We note that the soundness characterization in terms of existence of a non-negligible Fourier co-
efficient is the most relevant from PCP viewpoint. Here non-negligible means a constant that is
independent of the dimension n. In the above theorem, there is in fact a Fourier coefficient with
magnitude Ω(ε), but we will ignore a specific dependence since it typically is less important in
PCP applications. The BLR test and its generalizations have found many applications, e.g. in the
(original) proof of the PCP Theorem [9, 4, 3], H̊astad’s 3-bit PCP [11], and the “query efficient”
PCPs [21] that are the focus of this paper.

A generalization of the BLR test is the hyper-graph linearity test (HLT) with k free queries1, k ≥ 2:
pick k inputs x1, . . . , xk ∈ {0, 1}n uniformly at random and accept iff

∀S ⊆ {1, . . . , k}, |S| ≥ 2, f

(∑
i∈S

xi

)
=
∑
i∈S

f(xi).

A variant of the HLT is the graph linearity test (GLT) where the above test is carried out only
for the

(
k
2

)
sets S with |S| = 2. Clearly both GLT and HLT have perfect completeness, meaning

a linear function passes the test with probability 1. Samorodnitsky and Trevisan [21] showed (see

also [12]) that the GLT has soundness 2−(k2) (in the sense of Theorem 1.1) and the soundness does
not improve with the HLT. Both these are remarkable facts! In the GLT, each of the

(
k
2

)
queries

in addition to the k free queries cuts down the soundness by a factor half, and afterwards, all the
other queries in HLT put together (all those corresponding to sets with |S| > 2) do not help at

all. Specifically, [21] exhibits a function f that passes the HLT with probability 2−(k2) and has no

non-negligible Fourier coefficient. On the other hand, if the acceptance probability exceeds 2−(k2),
even in the GLT, the function must have a non-negligible Fourier coefficient.

After one designs a linearity test (or a dictatorship test), the next question from the PCP viewpoint
is whether the test can translated to a full-fledged PCP. One expects the PCP to have near-perfect

1A set of queries is called “free” if the answer to every other query is determined by the answers to these “free”
queries.

1

completeness, the same acceptance predicate as the test and (ideally) the same soundness as the
test. Indeed, the BLR test can be translated to a PCP, namely the celebrated 3-bit PCP of
H̊astad [11], and so can be the GLT test [21, 8] (the first paper gets down to soundness 2−k

2/4

for even k and the latter to the “correct” bound of 2−(k2)). We would like to emphasize that this
translation is often highly non-trivial and as we will see later, there are tests, especially for the class
of dictatorship functions, that are currently known to translate to PCPs only assuming the Unique
Games Conjecture [14]. When a PCP construction is viewed as an inapproximability result for a
constraint satisfaction problem (CSP), these results imply that is it hard to distinguish whether the

CSP on the “GLT predicate” has optimum 1−o(1) or at most 2−(k2) +o(1). The GLT predicate is a
predicate on k+

(
k
2

)
variables where the last

(
k
2

)
variables are pairwise sums of the first k variables

and negated variables are allowed in the CSP. Another application to inapproximability is a much
simpler proof of H̊astad’s n1−ε inapproximability result for clique [10]. For the clique application
one desires a PCP whose amortized free bit complexity is arbitrarily small. Indeed, for the [21, 8]
PCP, this parameter, defined as the ratio of the number of free queries to the logarithm of the
inverse soundness, is ≈ k

(k2)
which becomes arbitrarily small as k gets larger2.

After successfully translating the GLT to a PCP, it is natural (and fruitful) to further investigate
the HLT. As we already mentioned, the HLT, when viewed as a linearity test, gets stuck at the

soundness threshold of 2−(k2), i.e. there are functions with no non-negligible Fourier coefficient

but pass the HLT with probability 2−(k2). One approach to get around this barrier is to use the
HLT as a dictatorship test instead (and this is how the BLR Test and the GLT are actually used
in [11, 21, 8], but the way these tests are used, the distinction between a linearity test and a
dictatorship test is hazy). A function f : {0, 1}n 7→ {0, 1} is called a dictatorship if f(x) = xi for
some i ∈ [n]. In other words, the ith co-ordinate has influence 1 where influence of a co-ordinate
is the probability that flipping that co-ordinate flips the value of the function on a random input.
The HLT (and similarly the BLR Test and the GLT) can be adapted into a dictatorship test, called
the hyper-graph dictatorship test (HDT), where the test is the same except that a small noise is

added to each query.3 Viewed now as a dictatorship test, the soundness barrier of 2−(k2) is broken,
as shown in [22]! Specifically,

Theorem 1.2 The HDT

• has near-perfect completeness, meaning if f is a dictatorship, it passes the test with probability
close to 1.

• has soundness 2−(2k−k−1), in the sense that if the test passes with probability slightly above
this threshold, then f has a co-ordinate with non-negligible influence4

Note that the threshold 2−(2k−k−1) indicates that each of the 2k − k − 1 queries (corresponding
to sets S ⊆ {1, . . . , k}, |S| ≥ 2) in addition to the k free queries cuts down the soundness by a
factor half. HDT is a remarkable test and it would be even more remarkable if it were to translate
into a PCP. In addition to being an interesting PCP in its own right, it would have (at least)

2The results in [21] are stated in terms of the amortized query complexity which is the ratio of the number of
queries to the logarithm of the inverse soundness, and is 1 + O(1

k
) for the PCPs in [21, 8]

3Dictatorship functions form a restricted sub-class of linear functions. Thus a dictatorship test is required to “kill”
not just the non-linear functions but also the linear functions with a “large support”. The purpose of introducing
noise is precisely to “kill” the latter.

4There is an issue of influence versus the low-degree influence which we omit from this discussion.

2

two applications to inapproximability: firstly, for the the Max-K-CSP problem, it would be NP-
hard to distinguish whether a CSP on K = 2k − 1 variables has optimum 1 − o(1) or at most

2−(2k−k−1) + o(1), which would essentially match the best known algorithm for the problem [7].
Secondly, it would be NP-hard to approximate the independent set problem on degree d graphs
within factor d/polylog(d) [22].

However, one knows how to translate HDT to a PCP only assuming the Unique Games Conjecture
[22]. This is the case for many other dictatorship tests, perhaps the Max-Cut Test being the most
prominent example. Therein, we know a two-query test that “works” and analyzed via the Majority
Is Stablest Theorem [17], but one knows how to translate the test to a PCP and obtain optimal
inapproximability result for Max-Cut only assuming the UGC [15].

Since the UGC, if true, remains out of reach of current techniques, it is worth-while to attempt
proving (at least some of) the implications of UGC without relying on it. This paper may be viewed
as a modest step in this direction for the specific problem of Max-K-CSP and the related HLT test.

Fix the number of free queries to k = 3. Let us call the corresponding GLT and HLT predicates
as 3GLT and 3HLT. Note that 3GLT is a predicate on 6 variables (x, y, z, a, b, c) which is True iff
a = x+ y, b = y+ z, c = x+ z. Similarly, 3HLT is a predicate on 7 variables (x, y, z, a, b, c, d) which
is True iff in addition d = x+ y+ z. As mentioned before, 3GLT is known to be NP-hard with gap
(1− o(1), 1

8 + o(1)) [8] and 3HLT is known to be Unique Games hard with gap (1− o(1), 1
16 + o(1))

[22]. The predicate 3HLT has one additional “query” and the UGC tells us that this query helps
bring the soundness down to 1

16 from 1
8 . However, without relying on UGC, we didn’t know whether

this additional query helps at all. Our main result is to show that it does:

Theorem 1.3 There exists a constant s < 1
8 such that for an arbitrarily small constant ε > 0, it is

NP-hard to distinguish whether the CSP on 3HLT predicate has optimum at least 1− ε or at most
s+ ε.

The constant s for which we can prove the above theorem is 1
8 −

1
320 .

Techniques

At a high level, our approach is to revisit the analysis of HLT and not get discouraged by lack of
a non-negligible Fourier coefficient. A non-negligible Fourier coefficient would allow us to conclude
that the boolean function f is correlated with a linear function. We instead conclude that the
function is close (in Hamming distance) to a unique quadratic polynomial and hence the function
may be decoded uniquely to a quadratic polynomial. This constitutes the so-called Inner PCP. To
integrate it inside a full PCP however requires an Outer PCP that is robust against quadratic poly-
nomials. We construct such an Outer PCP from scratch (it is robust against degree d polynomials
for any fixed d). In the following, we give a more detailed overview of the techniques.

Consider the HLT with three free queries. Given a function f : {0, 1}n 7→ {0, 1}:

• Pick inputs x, y, z ∈ {0, 1}n uniformly at random.

• Accept iff:

f(x+y) = f(x)+f(y), f(y+z) = f(y)+f(z), f(x+z) = f(x)+f(z), f(x+y+z) = f(x)+f(y)+f(z).

3

A (by-now) standard way to analyze such a test is to think of the function f as {1,−1} valued and
arithmetize the acceptance predicate:

1 + f(x)f(y)f(x+ y)

2
· 1 + f(y)f(z)f(y + z)

2
· 1 + f(x)f(z)f(x+ z)

2
· 1 + f(x)f(y)f(z)f(x+ y + z)

2
.

The above expression equals 1 if the test accepts and 0 otherwise and thus the acceptance probability
equals its expectation over the choice of x, y, z. The expression can be written as a sum of 16 terms,
with the constant term equal to 1

16 . Fourteen of the terms, after taking expectation over x, y, z, can

be written in terms of Fourier coefficients either as
∑

α f̂(α)3 or as
∑

α f̂(α)4. This step is standard
and allows us to conclude that if either of these fourteen terms is non-negligible, then f must have
a non-negligible Fourier coefficient. Moreover f may be decoded into a small list of non-negligible
Fourier coefficients. In this sense, these fourteen terms may be “handled well” in the PCP setting
(if and when we get to the PCP) and hence may be assumed to be arbitrarily small. The only
“troublesome term” is the last one:

E
x,y,z

[f(x)f(y)f(z)f(x+ y)f(y + z)f(x+ z)f(x+ y + z)] .

Indeed, if f is a quadratic polynomial (or to be precise, a quadratic phase (−1)g(x) where g is a
quadratic polynomial, since we are now thinking of f as being {1,−1} valued), the above expec-
tation equals 1 whereas there are quadratic phase functions that have no non-negligible Fourier
coefficient. Still, for a small enough constant θ ∈ (0, 1

20), it was shown by Alon et al. [1] that if
the above expectation is at least 1− θ, then f is (1− θ) close in Hamming distance to a quadratic
phase function, which then may be taken as a unique decoding of f . Thus we may upper bound
the “troublesome term” by 1− θ and get an overall soundness of 1

16 + 1
16(1− θ) = s < 1

8 .

The next issue is whether the decoding to a quadratic polynomial can be integrated with an
appropriate Outer PCP. The known Outer PCPs are obtained by parallel repetition of a basic
“equation versus variable” game and this basic game is not robust enough towards this end. We
design a new game that is robust against low degree polynomials. Its description is a bit cumbersome
and non-intuitive, so we elaborate it in some detail.

Let us first describe the standard “equation versus variable” game. One starts with a hard instance
of 3LIN problem: a set of variables x1, . . . , xn and equations E1, . . . , Em over GF (2) with each
equation containing three variables. It is known [11] that distinguishing between a gap (1−o(1), 1

2 +
o(1)) is NP-hard. For the ease of exposition, assume that all right hand sides of the equations are
zero (this would actually make the instance trivial, but the right hand sides serve as “offsets” that
can easily be incorporated via “folding”). The basic game consists of two provers and a verifier.
The verifier picks a random equation, say E` : xi +xj +xk = 0. The first prover is asked to furnish
values of two variables in the equation, say xi and xj (and given the equation). The second prover
is asked to furnish the value of one of the three variables chosen at random (without revealing the
equation). The verifier accepts iff the two provers’ answers are consistent on variables xi, xj and on
the variable xk, the sum of the values of variables xi, xj furnished by the first prover equals the value
of variable xk furnished by the second prover. The value of the game is the maximum probability
with which the provers can make the verifier accept. It is easily checked that the hardness of 3LIN
translates to hardness of distinguishing whether the value of the game is 1− o(1) or bounded away
from 1.

Let us now reformulate the above game so as to incorporate the notion of robustness against low
degree polynomials. Let r = 2. We first describe the reformulated game in abstract and then show
how it indeed is a reformulation of the above game.

4

• The question to the first prover is an index ` ∈ [m]. His answer is a linear function f` :
{0, 1}r 7→ {0, 1}.

• The verifier chooses a random non-zero input z ∈ {0, 1}r. Depending on the index ` and
input z, the verifier calculates an index t ∈ [n].

• The question to the second prover is the index t ∈ [n]. His answer is a single bit, say yt.

• The verifier accepts iff f`(z) = yt.

It is intended that yt = xt in a supposedly almost-satisfying assignment to the 3LIN instance. The
function f` is intended to be the linear function

f`(z1, z2) = xi · z1 + xj · z2,

where the index ` identifies the equation E` : xi + xj + xk = 0. After choosing ` and non-zero
z ∈ {0, 1}r, verifier calculates the index t as: if z = “10”, t = i, if z = “01”, t = j, and if
z = “11”, t = k. Note that the input z is not revealed to either of the provers. It is clear that the
game is a simple reformulation of the game before and hence the hardness of its gap-version holds.

With the reformulated version, it is now straightforward to introduce the notion of robustness. We
prove that it is NP-hard to distinguish whether the value of the game is 1 − o(1) (and the first
prover furnishes linear functions as required) or whether the value of the game is bounded away
from 1 even if the first prover is allowed to furnish functions f` : {0, 1}r 7→ {0, 1} that are degree d
polynomials. I.e. the soundness is robust even against degree d polynomials. Our result holds with
r = d + 1 and the soundness is 1 − 2−O(d). A formal statement of the result appears as Theorem
3.1 and proved in Section 3. The proof is a rather significant and non-intuitive variant (in authors’
opinion) of H̊astad’s 3-bit PCP and instead of attempting to give some intuition here, the reader
is referred directly to Section 3.

The Outer PCP is now obtained by a smooth parallel repetition of the basic robust game. The
term smooth refers to a variant of the parallel repetition where the actual game is played only
on a small fraction of co-ordinates and on the remaining co-ordinates, the same question is sent
to both provers. As demonstrated in [16], when Hadamard Code (i.e. table of values of a linear
function) is “plugged in” at the Inner PCP level, the smoothness of the parallel repetition game
ensures the so-called subcode covering property. In short, the property says that the code (or rather
the encoding space) corresponding to a fixed question to the “larger” prover is almost uniformly
covered by the codes (or rather the encoding spaces) of the questions to the “smaller” prover. This
property is very convenient (and essential towards the result in [16]) and we make use of it as well.

Related and Future Work

The question of obtaining a PCP with 2k − 1 queries and the optimal soundness of 2−(2k−k−1)

(without relying on the UGC) which was the motivating application for our construction, was
subsequently resolved by a beautiful result of Chan [6]. Implicit in his construction, is also a PCP
similar to ours, which is robust against degree-d polynomials. However, our PCP construction still
leads to several other questions which might be interesting for future work.

We construct a PCP based on the 3HLT predicate with soundness strictly below 1
8 . A natural (and

very interesting in authors’s opinion) question is whether the soundness of this particular PCP can
be pushed arbitrarily close to 1

16 , matching the UGC-based result. At the Outer PCP level, one may

5

use the same Outer PCP as herein: a smooth parallel repetition of the basic robust game. At the
Inner PCP level however we can no longer appeal to unique decoding to a quadratic polynomial and
a naive appeal to list decoding does not work because the list would be too large. If a function has
a non-negligible correlation with a a linear polynomial, i.e. has a non-negligible Fourier coefficient,
then the list decoding consists of making a list of all non-negligible Fourier coefficients, and since
the sum of squares of the Fourier coefficients is 1, the list is bounded (by O(1/ε2) if the correlation
is ε). For the class of quadratic polynomials, we (fortunately) do have a theorem [20] stating that
if the expectation

E
x,y,z

[f(x)f(y)f(z)f(x+ y)f(y + z)f(x+ z)f(x+ y + z)]

is non-negligible, then f : {0, 1}n 7→ {1,−1} must be correlated with a quadratic polynomial (or
rather a quadratic phase). Unfortunately however, the list of all quadratic phases with which f
may have a non-negligible correlation could be as large as 2O(n). This seems like an insurmountable
difficulty from the PCP viewpoint, a priori at least. The authors however do have some indications
that there might be a way to bypass this difficulty.

The nature of our PCP also leads to a natural question about a variant of parallel repetition. We
formulate is as a concrete problem in Section 7. The resolution of this problem would provide
an alternate approach to the construction of optimal query efficient PCPs, bypassing the above
difficulty.

2 Preliminaries and Definitions

2.1 Fourier Analysis

The vector space of all functions f : {0, 1}n 7→ R has an orthonormal basis {χα | α ∈ {0, 1}n} where
the inner product between two functions f, g : {0, 1}n → R is defined as 〈f, g〉 := Ex [f(x)g(x)].
Hence, every f : {0, 1}n 7→ R can be expressed uniquely as f =

∑
α∈{0,1}n f̂(α) χα. The coefficients

f̂(α) ∈ R are called Fourier coefficients and are defined by: f̂(α) = 〈f, χα〉 = Ex
[
f(x)χα(x)

]
. By

Parseval’s identity,
∑

α |f̂(α)|2 = ‖f‖22 = Ex
[
|f(x)|2

]
. In particular, for a function taking values in

{−1, 1}, the sum of squared absolute values of all its Fourier coefficients equals 1.

Definition 2.1 Let f : {0, 1}n 7→ {−1, 1} be a Boolean function. We define the influence of the ith

variable in f as the probability over all inputs that changing the ith bit changes the value of f .

Infi(f) := P
x∈{0,1}n

[f(x) 6= f(x+ ei)] =
∑

α∈{0,1}n
αi=1

|f̂(α)|2 .

Here ei represents the input with 1 only in the ith position. The influence for f : {0, 1}n → {0, 1}
is also defined as the same probability as above.

For η > 0, let µ ∼η {0, 1}n denote sampling µ ∈ {0, 1}n from a distribution with each bit indepen-
dently set to 1 with probability η and 0 with probability 1−η. For a function f : {0, 1}n 7→ {−1, 1},
it’s noise stability at noise η is given by

E
x∈{0,1}n
µ∼η{0,1}n

[f(x)f(x+ µ)] =
∑
α

(1− 2η)|α| · |f̂(α)|2 ,

where |α| denotes the number of 1s in α.

6

2.2 Hellinger and Statistical Distance

The squared Hellinger distance between distributions D1 and D2 over a discrete probability space
A is

H2(D1, D2) :=
1

2

∑
a∈A

(√
D1(a)−

√
D2(a)

)2
= 1−

∑
a∈A

√
D1(a)D2(a).

It is clear that 1−H2(·, ·) is multiplicative for product distributions Dk
1 , D

k
2 on space Ak, i.e.

1−H2(Dk
1 , D

k
2) = (1−H2(D1, D2))k.

The statistical distance between D1 and D2 is:

∆(D1, D2) :=
1

2

∑
a∈A
|D1(a)−D2(a)| .

We have the standard inequality:

Lemma 2.2
H2(D1, D2) ≤ ∆(D1, D2) ≤

√
2 ·H(D1, D2).

2.3 Label Cover and 2 Prover 1 Round Games

Definition 2.3 An instance L of Label Cover with projection property is defined by a tuple
(U, V,E,Σ1,Σ2,Π). Here, (U, V,E) is a bipartite graph, R1 ≥ R2 are natural numbers (called
alphabet sizes) and Π = {πuv}(u,v)∈E is a collection of projection functions πuv : [R1] 7→ [R2]. A
labeling is pair of maps A : U 7→ [R1], B : V 7→ [R2]. We say that an edge e = (u, v) is satisfied by
the labeling if πuv(A(u)) = B(v). We define:

Opt(L) := max
A:U→[R1]
B:V→[R2]

P
(u,v)∈E

[πuv(A(u)) = B(v)] .

It is known that for all δ > 0, there exist R1, R2 such that it is NP-hard to decide if for a given
label cover instance with alphabet sizes R1, R2, Opt(L) = 1 or Opt(L) < δ. This result also holds
for the special case of instances in which the bipartite graph (U, V,E) is regular on both sides.

Definition 2.4 A 2P1R Game G(U, V, µ,R,S, {πuv}) consists of sets of questions U, V and sets of
answers R,S for the two provers respectively, a distribution µ on the set of question pairs U × V
and for every question pair (u, v) in the support of µ, a predicate πuv : R×S 7→ {0, 1} that defines
the pairs of accepting answers. A strategy of provers is a map ϕ : V 7→ R, ϕ : U 7→ S. The value
of the strategy ϕ is:

Val(ϕ,G) := P
(u,v)∼µ

[πuv(ϕ(u), ϕ(v)) = 1] .

The value of the game Val(G) is the maximum value of any prover strategy. A Projection Game is
one where for every answer of the first prover, there is exactly one accepting answer of the second
prover. For a projection game, the predicate πuv can be thought of as a map πuv : R 7→ S and the
accepting answers are of the form (r, πuv(r)) for r ∈ R. For a projection game, |S| ≤ |R|.

7

A 2P1R Game is best viewed as a game between the two provers and a verifier. The verifier picks
a random question pair (u, v) from the distribution µ, asks one question each to the two prover
respectively, and accepts if and only if the provers’ answers satisfy the predicate πuv. The probability
of acceptance of the verifier is same as the value of a provers’ strategy. Each bipartite label cover
instance can be viewed as a 2P1R Game where the verifier picks a random edge (u, v) ∈ E, and the
questions sent to the two provers are the vertices u and v. The acceptance predicate is the same
as the projection πuv for the edge.

Definition 2.5 Given a 2P1R Game G(U, V, µ,R,S, {πuv}), the k-wise repeated game is

G⊗k(Uk, V k, µk,Rk,Sk, {πkuv}),

where for u = (u1, . . . , uk) and v = (v1, . . . , vk), π
k
uv := ∧ki=1πuivi .

We state below Raz’s Parallel Repetition Theorem along with the recent improvements (and sim-
plifications) by Holenstein and Rao.

Theorem 2.6 ([19, 13, 18]) There exists an absolute constant c > 0 such that for a 2P1R Game
G with answer sets R,S and val(G) = 1− ε,

Val(Gk) ≤ (1− ε3)ck/ log(|R||S|).

For a Projection Game, the bound of (1− ε2)ck holds.

2.4 Linear vs. Degree-d Labeling

We will, in fact, consider label cover instances in which the labels on one side are functions. These
will have the property that in the YES case one can satisfy almost all constraints with labels
corresponding to linear functions, while in the NO case it not possible to satisfy many constraints
even with labels corresponding to degree-d polynomials (for technical reasons, we only argue about
polynomials with no constant term). We define the problem below.

Definition 2.7 An instance of Linear vs. Degree-d Label-Cover with parameters η, γ > 0 is a graph
(U, V,E) and a set of (possibly weighted) constraints. A label for each vertex u ∈ U is a function
Fu : {0, 1}d+1 → {0, 1} and a label for each v ∈ V is a bit A(v) ∈ {0, 1}. Each constraint is indexed
by a tuple (u, v, x) for x ∈ {0, 1}d+1 \ {0d+1} and is of the form

Fu(x) = A(v) + cuv,x mod 2 ,

for cuv,x ∈ F2. The goal is to distinguish between the cases:

YES: ∃A : V → {0, 1} and homogeneous linear functions
{
Fu : {0, 1}d+1 → {0, 1}

}
u∈U satisfying

1− η fraction of the constraints.

NO: ∀A : V → {0, 1}, any collection of degree-d polynomials
{
Fu : {0, 1}d+1 → {0, 1}

}
u∈U (with

Fu(0) = 0 ∀u) satisfies at most 1− γ fraction of the constraints.

Remark 2.8 The instances of Linear vs. Degree-d Label-Cover we will consider will have the addi-
tional property that for all u ∈ U and all x, x′ ∈ {0, 1}d+1\{0d+1}, the total weight of the constraints
involving the pair (u, x) will be the same as the weight of the constraints involving the pair (u, x′).
This assumption is not crucial, but it makes the PCP construction a little simpler.

8

It is perhaps also useful to view Linear vs. Degree-d Label-Cover as a gap version of a con-
straint satisfaction problem, where the hardness result involves two kinds of constraints. Let
L : {0, 1}2d+1 → {0, 1} be a predicate on 2d+1 variables which is 1 iff the input corresponds to the

evaluation table of a linear function in d + 1 variables. Let D : {0, 1}2d+1 → {0, 1} be a similar
predicate which is 1 iff the input corresponds to the table of a polynomial of degree at most D.

Then an instance of Linear vs. Degree-d Label-Cover as above can be considered as a constraint
satisfaction problem, where each constraint is imposed on the 2d+1 values of the form A(v) cor-
responding to all the inputs of a single function Fu (after shifting the values A(v) by appropriate
constants cuv,x). The goal is to distinguish between the cases when 1−η fraction of the constraints
can be satisfied even when we consider each constraint to be the predicate L, and when not even
1− γ fraction of the constraints can be satisfied even when we take the constraints to be predicate
D (the accepting assignments for which are a superset of those for L).

3 Hardness of Linear vs. Degree-d Labeling

We now give a reduction from Label Cover to the Linear vs. Degree-d Label-Cover problem as defined
in Definition 2.7. We will prove the following theorem:

Theorem 3.1 For any d ≥ 1, there exists γ = 2−O(d) such that for any η ∈ (0, γ), the Linear vs.
Degree-d Label-Cover problem with parameters η and γ is NP-hard.

Let (U, V,R1, R2,Π) be an instance of Label Cover where Π = {πuv}(u,v)∈E is a collection of
projections πuv : [R1]→ [R2]. Assume the constraint graph is regular on both sides. To prove the
hardness of Linear vs. Degree-d Label-Cover with parameters η, γ, we will need δ for the Label Cover
instance to be less than η · 2−Ω(d)/

√
γ.

Reduction from Label-Cover. Identify {0, 1}d+1 with 2[d+1] in the canonical way and for
y1, y2, . . . , yt ∈ [d+ 1], let 1{y1,...,yt} ∈ {0, 1}d+1 denote the string which has 1s only in the positions
corresponding to y1, . . . , yt.

For u ∈ U, v ∈ V and S1 ⊆ {0, 1}R1 , S2 ⊆ {0, 1}R2 , |S1| = |S2| = d + 1, we will impose constraints
on functions Fu,S1 : {0, 1}d+1 → {0, 1}, Fv,S2 : {0, 1}d+1 → {0, 1}, Au : {0, 1}R1 → {0, 1} and
Av : {0, 1}R2 → {0, 1}. Thus, for the resulting instance of Linear vs. Degree-d Label-Cover, the
left vertices will be of the form (u, S1) and (v, S2) for u ∈ U, v ∈ V and S1 ⊆ {0, 1}R1 , S2,⊆
{0, 1}R2 , |S1| = |S2| = d + 1. The labels for these vertices are functions from {0, 1}d+1 to {0, 1}.
The right vertices are of the form (u, x) and (v, y) for u ∈ U, v ∈ V, x ∈ {0, 1}R1 and y ∈ {0, 1}R2 .
The labels for these vertices are bits. The collection of labels for the vertices (u, x) for all x (and
similarly (v, y) for all y) can be viewed as a function Au : {0, 1}R1 → {0, 1} and we write the
constraints for the values of such functions.

Remark 3.2 We will write our constraints assuming that the functions Au and Av are folded for
all u, v i.e., they satisfy Au(x + 1) = Au(x) + 1 (and similarly for Av) where 1 denotes the all-1s
string. This is implemented by requiring the labeling Au to be specified only for half the inputs in
{0, 1}R1 (say with the first bit 0) and constructing the value for the remaining inputs using the
above relation. This is what results in the constants cuv,x in the constraints.

9

We also assume Au(0) = Av(0) = 0 for all u, v. This will be true for the labeling we give in the YES
case. Also, any labeling can be modified to satisfy this without significantly affecting the number of
satisfies constraints.

We include the following types of constraints with equal probability:

1. For each u ∈ U , select a random set S ⊆ {0, 1}R1 with |S| = d + 1 and a random T ⊆ S,
T 6= ∅, and include the constraint:

Fu,S(1T) = Au

∑
y∈T

y

 .

Similarly, for each v ∈ V , S ⊆ {0, 1}R2 with |S| = d + 1 and T ⊆ S, T 6= ∅, include the
constraint:

Fv,S(1T) = Av

(∑
z∈T

z

)
.

2. For each u ∈ U , select a random S ⊆ {0, 1}R1 with |S| = d + 1, T ⊆ S, T 6= ∅ and µ ∼η
{0, 1}R1 . Include the constraint 5:

Fu,S(1T) = Au

∑
y∈T

y + µ

 .

Similarly, for each v ∈ V , S ⊆ {0, 1}R2 with |S| = d + 1, T ⊆ S, T 6= ∅ and µ ∼η {0, 1}R2 ,
include:

Fv,S(1T) = Av

(∑
z∈T

z + µ

)
.

3. For each edge (u, v) ∈ E, pick y1, . . . , yd ∈ {0, 1}R1 and z ∈ {0, 1}R2 . Let π−1
uv (z) ∈

{0, 1}R1 denote the string obtained by copying appropriate bits of z. Let S =
{y1, . . . , yd, y1 + . . .+ yd + π−1

uv (z)}. Include the constraint

Fu,S(1S) = Av(z) .

Also, for each T ⊆ S, 1 ≤ |T | ≤ d, include the constraint

Fu,S(1T) = Au

∑
y∈T

y

 .

Note that some of the constraints of type (3) are the same as constraints of type (1).
However, type (1) constraints would have small total weight for special sets S of the form
{y1, . . . , yd, y1 + . . .+ yd + π−1

uv (z)}, whereas constraints of type (3) are exclusively for sets of this
form, and thus have large total weight.

5We will need to use these constraints only for singletons sets T . However, we include them for all non-empty T
to maintain the property that all non-zero inputs to the functions Fu,S are equally likely to appear in a constraint,
as discussed in Remark 2.8.

10

3.1 Completeness

Let L : U ∪ V :→ Σ1 ∪ Σ2 be a labeling which satisfies all the constraints in the Label-Cover
instance. Choose the functions Au, Av to be dictator functions according to L. For each u and
S ⊆ {0, 1}R1 , let let Fu,S be the linear function defined as Fu,S(x) =

∑
y∈S xy ·Au(y) mod 2, where

we think of x being in {0, 1}S . We define Fv,S similarly. We now verify the completeness for each
type of constraints.

1. Since Fu,S and Au are both linear, for any set T ⊆ S we have

Fu,S(1T) =
∑
y∈S

1T (y) ·Au(y) =
∑
y∈T

Au(y) = Au

∑
y∈S

y

 .

A similar argument holds for any v ∈ V .

2. Since Au (similarly Av) is a dictator function, with probability 1− η over the choice of µ, we
have

Fu,S(1T) =
∑
y∈S

1T (y) ·Au(y) =
∑
y∈T

Au(y) = Au

∑
y∈T

y

 = Au

∑
y∈T

y + µ


Hence, a 1− η fraction of constraints of this type are satisfied.

3. By linearity of Fu,S and Au, we get

Fu,S

(
1y1,...,yd,y1+...+yd+π−1

uv (z)

)
=

d∑
i=1

Au(yi) +Au(y1 + . . .+ yd + π−1
uv (z)) = Au(π−1

uv (z)) ,

which is equal to Av(z) since Au and Av are dictator functions according to a labeling satisfy-
ing the constraint on the edge (u, v). The rest of the type (3) constraints are satisfied simply
as type (1) constraints.

Thus, if the starting instance of Label-Cover is satisfiable, there exist linear functions
{Fw,S}w∈U∪V,|S|=d+1 satisfying at least 1− η fraction of the constraints.

3.2 Soundness

Suppose there exist functions {Fw, Aw}w∈U∪V satisfying 1−γ fraction of the constraints. Also, the
functions {Fw,S}w∈U∪V,|S|=d+1 are degree-d polynomials.

For at least 1 − 3
√
γ fraction of the edges (u, v) we have that at least 1 − √γ fraction of the

constraints of type (1) and (2) are satisfied for u and v, and that at least 1 − √γ fraction of
constraints of type (3) are satisfied. For the rest of the argument, we fix such an edge (u, v) and
drop the subscript from the projection πuv,

Using the fact that 1 −√γ fraction of the constraints of type (1) are satisfied and that each Fu,S
is a degree-d polynomial over {0, 1}d+1, the following claim gives that Au must also be close to a
degree-d polynomial over {0, 1}R1 .

11

Claim 3.3 With probability 1−O(2d
√
γ) over the choice of the tuples (y1, . . . , yd+1), the function

Au must satisfy ∑
I⊆[d+1]

Au

(∑
i∈I

yi

)
= 0 .

Proof: Note that if the tuple (y1, . . . , yd+1) has yi = yj for any i 6= j then the expression on the
left is identically 0. Hence, we only need to prove the claim when y1, . . . , yd+1 are all distinct.

Since the functions Fu,S and Au satisfy 1−√γ fraction of the constraints of type (1), we have

P
|S|=d+1,T⊆S

Fu,S(1T) = Au

∑
y∈T

y

 ≥ 1−√γ ,

Where we have also included T = ∅ since Fu,S(0) = 0 by assumption and Au(0) = 0 by assumption.
By averaging, we get

P
|S|=d+1

 P
T⊆S

Fu,S(1T) = Au

∑
y∈T

y

 ≥ 1− 2−(d+2)

 ≥ 1−√γ · 2d+2 .

This means that for a large fraction of the subsets S, the constraint is satisfied for all T ⊆ S, since
the number of subsets is only 2d+1. Since picking a set S ⊆ {0, 1}R1 with |S| = d + 1 is the same
as picking d+ 1 distinct elements y1, . . . , yd+1, we have

P
y1,...,yd+1

∀T ⊆ {y1, . . . , yd+1} Fu,S(1T) = Au

∑
y∈T

y

 ≥ 1−√γ · 2d+2 .

Also, since each Fu,S is a degree-d polynomial,
∑

T⊆S Fu,S(1T) = 0 for every S = {y1, . . . , yd+1}.
Combining this with the above, we get that

P
y1,...,yd+1

 ∑
T⊆{y1,...,yd+1}

Au

∑
y∈T

y

 = 0

 ≥ 1−√γ · 2d+2 ,

which proves the claim.

By [1], there exits a degree-d polynomial Ãu which is at distance at most 2O(d)√γ from Au. Sim-

ilarly, Av is close to a degree-d polynomial Ãv. We will need to show that these polynomials can
have only few relevant variables (variables with non-zero influence). We need the following lower
bound on the influence of a relevant variable.

Claim 3.4 Let P : {0, 1}R → {0, 1} be a degree-d polynomial over F2 and let the Infi(P) > 0.
Then Infi(P) ≥ 2−(d−1).

Proof: This simply follows by noting that Infi(P) is the probability that the degree d − 1
polynomial P (y+ ei)−P (y) is non-zero. Since Infi(P) > 0, the polynomial is non-trivial and hence
must be non-zero with probability at least 2−(d−1).

12

With probability 1−√γ ·2d+1 over the choice of y, S 3 y and µ, we have that Fu,S(1y) = Au(y+µ)

(since they form at least a 2−(d+1) fraction of the type (2) constraints). Also with probability
1 − √γ · 2d+1 we have Fu,S(1y) = Au(y) (since these form a 2−(d+1) fraction of the type (1)
constraints). Thus, with probability at least 1 − 2d+2√γ, Au(y) = Au(y + µ). We then have that

for Ãu,

P
y,µ

[
Ãu(y) = Ãu(y + µ)

]
≥ 1− 2O(d) · √γ ,

and similarly for Ãv. However, since Ãu and Ãv are degree-d polynomials and highly resistant
to noise by the above, the following claim gives that they cannot have too many variables with
non-zero influence.

Claim 3.5 Let P be a degree-d polynomial over FR2 with at least t variables having non-zero influ-
ence. Let y be uniform in {0, 1}R and µ ∼η {0, 1}R. Then

P
y,µ

[P (y) = P (y + µ)] ≤ 1− 1

2d+1
+

(1− 2η)t/2
d

2d+1
.

Proof: Let the polynomial P have exactly t variables with non-zero influence. Let f denote the
function f(y) = (−1)P (y). Note that

P
y,µ

[P (y) = P (y + µ)] =
1

2
+

1

2
· E
y,µ

[f(y)f(y + µ)] =
1

2
+

1

2
·
∑

α∈{0,1}R
(1− 2η)|α|(f̂(α))2 .

Since
∑

α(f̂(α))2 = Ey
[
f2(y)

]
= 1, we can think of these values as giving a distribution, say D,

on the vectors α. We want to upper bound the quantity Eα∼D
[
(1− 2η)|α|

]
. We have by Claim 3.4

that ∑
i∈[R]

Infi(f) =
∑

α∈{0,1}R
|α| · (f̂(α))2 = E

α∼D
[|α|] ≥ t

2d−1
.

On the other hand, we also know that since P (and hence f) has exactly t relevant variables, D
is supported only on vectors α of size at most t. Thus, we have that Pα∼D

[
|α| ≥ t

2d

]
≥ 1

2d
. This

gives the required bound as

E
α∼D

[
(1− 2η)|α|

]
≤
(

1− 1

2d

)
· 1 +

1

2d
· (1− 2η)t/2

d
.

Thus, both Ãu and Ãv can have at most t ≤ √γ · 2O(d)

η variables with non-zero influence.

We now consider constraints of type (3) which are satisfied with probability 1−√γ.

Claim 3.6 With probability 1− 2O(d)√γ over the choice of y1, . . . , yd ∈ {0, 1}R1 and z ∈ {0, 1}R2,
we have that ∑

T⊆[d+1]
1≤|T |≤d

Au

(∑
i∈T

yi

)
= Av(z) ,

where we take yd+1 = y1 + . . .+ yd + π−1(z).

13

Proof: The proof is virtually identical to that of Claim 3.3. Let S be a random set chosen by
picking y1, . . . , yd ∈ {0, 1}R1 and z ∈ {0, 1}R2 at random and taking S = {y1, . . . , yd, yd+1} with
yd+1 = y1 + . . .+ yd + π−1(z). As in Claim 3.3, we have that

P
S

∀T ⊆ S, T 6= S Fu,S(1T) = Au

∑
y∈T

y

 and Fu,S(1S) = Av(z)

 ≥ 1−√γ · 2d+2 .

However, since Fu,S is a degree d polynomial with Fu,S(0) = 0, we have that for any S =
{y1, . . . , yd+1},

∑
T⊆S,T 6=∅ Fu,S(1T) = 0. Thus, with probability 1 − √γ · 2d+2 over the choice

of S as above, we have that

∑
T⊆[d+1]
1≤|T |≤d

Au

(∑
i∈T

yi

)
+Av(z) = 0 ,

which proves the claim.

Note that we cannot simplify the left hand side in the above equation using Claim 3.3 since the
d+ 1 elements y1, . . . , yd+1 are not independent elements of {0, 1}R1 . However, we can replace Au
by Ãu and then simplify the LHS as it holds for every y1, . . . , yd+1 that

∑
T⊆[d+1]
1≤|T |≤d

Ãu

(∑
i∈T

yi

)
= Ãu

(
d+1∑
i=1

yi

)
.

However, y1 + . . .+ yd+1 = π−1(z). We then have with probability 1− 2O(d)√γ over the choice of
z ∈ {0, 1}R2 that

Ãu(π−1(z)) = Ãv(z) .

But Ãu(π−1(z)) − Ãv(z) is a degree-d polynomial in z. If 2O(d)√γ ≤ 2−d, then the above implies
that the polynomial must be always 0 i.e.

Ãu(π−1(z)) = Ãv(z) ∀z ∈ {0, 1}R2 .

Thus, if Infi(Ãv) > 0 then ∃j ∈ π−1(i) such that Infj(Ãu) > 0. If we construct the unique
polynomials Ãu and Ãv close to Au and Av and randomly pick the index of a variable with non-
zero influence it gives a labeling satisfying the edge with probability 1/t, where t is the maximum
number of relevant variables in either of these polynomials. By Claim 3.5, t is at most 2O(d)√γ/η.

This gives a labeling which in expectation satisfies (1 − 3
√
γ) · 1

t = 2−O(d)η/
√
γ fraction of the

constraints of the label cover instance. By choosing the parameter δ for the Label-Cover instance
to be smaller than η/2O(d), we can conclude that if the Label-Cover instance we start from is such
that at most δ-fraction of the constraints are satisfiable, then one cannot have degree-d polynomials
satisfying 1− γ fraction of the constraints for Linear vs. Degree-d labeling, with γ = 2−O(d).

4 The Outer PCP

We will construct an outer PCP starting with an instance of Linear vs. Degree-d Label-Cover and
performing (smooth) parallel repetition. Let Φ = (U, V,E) be an instance of Linear vs. Degree-d

14

Label-Cover with parameters η, γ > 0. This can be equivalently thought of as a two-prover game
in which the verifier picks a constraint indexed by (u, v, x) and sends u to the first prover and v to
the second prover. We define the two-prover game corresponding to the outer PCP according to
the following procedure:

• The verifier picks constraints (u1, v1, x
′
1), . . . , (uk, vk, x

′
k) ∈ Φ.

• The question sent to the first prover is u = (u1, . . . , uk).

• The question sent to the second prover is w = (w1, . . . , wk) where each wi = ui with prob-

ability 1 − β and vi with probability β. Let Rw
def
= {i ∈ [k] : wi = ui} and let |w| denote

|Rw|.

• The provers are required to respond with functions Fu : {0, 1}(d+1)k → {0, 1} and Gw :
{0, 1}(d+1)|w|+(k−|w|) → {0, 1}. We think of each input x to Fu as x = (x1, . . . , xk) where each
xi ∈ {0, 1}d+1. Similarly, we think of an input y to Gw as y = (y1, . . . , yk) where yi ∈ {0, 1}d+1

if i ∈ Rw and yi ∈ {0, 1} otherwise.

• Let Fu|i denote the function on d+ 1 bits obtained by setting all inputs to Fu except the ith

one to 0 i.e., Fu|i(z) = Fu(x1, . . . xk) where xj = z if j = i and xj = 0 otherwise. Define Gw|i
similarly. The verifier accepts if the following conditions are satisfied:

Fu|i(z) = Gw|i(z) ∀i ∈ Rw,∀z ∈ {0, 1}d+1

Fu|i(x′i) = Gw|i(1) + cuivi,x′i ∀i /∈ Rw

where the inputs x′i for i /∈ Rw are picked initially as part of the constraints.

Let G(Φ, k, β) denote the above two-prover game with parameters k, β, starting from an instance
Φ of Linear vs. Degree-d Label-Cover. Let Val(l)(G(Φ, k, β)) denote the maximum acceptance prob-
ability of the verifier over the prover strategies where all the functions are degree-l polynomials.

Completeness

Lemma 4.1 Let the instance Φ of Linear vs. Degree-d Label-Cover be such that there exists a
labeling A : V → {0, 1} and linear functions {Fu}u∈U satisfying 1 − η fraction of the constraints.

Then Val(1)(G(Φ, k, β)) ≥ 1− kη.

Proof: The provers define the functions Fu and Gw as

Fu(x1, . . . , xk)
def
= Fu1(x1) + . . .+ Fuk(xk) ∀x1, . . . , xk

Gw(y1, . . . , yk)
def
=

∑
i∈Rw

Fui(yi) +
∑
i/∈Rw

yi ·A(vi) ∀y1, . . . , yk .

By definition of the functions, for any pair of questions (u,w) generated by the verifier, the answers
of the provers always satisfy Fu|i(z) = Gw|i(z) for all i ∈ Rw, z ∈ {0, 1}d+1. Moreover, with
probability at least 1− kη over the choice of the initial constraints (u1, v1, x

′
1), . . . , (uk, vk, x

′
k) ∈ Φ,

it is true that for all i ∈ [k], Fui(x
′
i) = A(vi) + cuivi,x′i . Then the answers of the provers also satisfy

Fu|i(x′i) = Gw|i(1) + cuivi,x′i for all i /∈ Rw.

15

Soundness

Lemma 4.2 Let the instance Φ of Linear vs. Degree-d Label-Cover be such any labeling A : V →
{0, 1} and degree-d polynomials {Fu}u∈U satisfy at most 1 − γ fraction of the constraints. Then

Val(d)(G(Φ, k, β)) ≤ (1− γ2)Ω(βk).

Proof: Let the prover strategy make the verifier accept with probability s. Note that constraints
checked by the verifier are only on the polynomials obtained by setting all inputs except one (xi
for some i ∈ [k]) to zero. Thus, if Fu and Gw are a pair of degree-d polynomials which make the
verifier accept, then so do the polynomials F ′u and G′w obtained by dropping all the monomials
involving bits from two different inputs xi and xj for i 6= j. Also, the constant terms in both Fu

and Gw must be the same for the verifier to accept and we can drop these in F ′u and G′w.

We can then write F ′u and G′w as

F ′u(x1, . . . , xk) = Fu1(x1) + . . .+ Fuk(xk) ∀x1, . . . , xk

G′w(y1, . . . , yk) = Gw1(y1) + . . .+Gwk(yk) ∀y1, . . . , yk ,

where Fu1 , . . . , Fuk and Gw1 , . . . , Gwk are degree-d polynomials with Fui(0) = Gwi(0) = 0 ∀i. Since
the above pair is accepted by the verifier, it must be true that Fui = Gwi for i ∈ Rw. Also, for
i /∈ Rw, since Gwi is a homogeneous function on a 1-bit input, it must be of the form A(vi) · yi.
Moreover, if vi was chosen according to a constraint indexed by (ui, vi, x

′
i), then A(vi) must satisfy

Fui(x
′
i) = A(vi) + cuivi,x′i .

Thus, the prover strategy also gives a strategy for game obtained by parallel repetition of Φ, when
viewed as a two-prover game, which makes the verifier accept with probability s. However, as
argued in [16], then we must have s ≤ (1 − γ2)Ω(βk), which completes the proof. As in [16], we
consider the set of useful coordinates, which are the coordinates i /∈ Rw. With probability at least
1 − 2−Ω(βk), the number of useful coordinates is at least βk/2. The repeated game restricted to
questions with at least βk/2 useful coordinates is a convex combination of sub-games, in each of
which the basic game corresponding to Φ is repeated at least βk/2 times. By Theorem 2.6, each
such sub-game has value at most (1− γ2)Ω(βk) and hence so does the game G(Φ, k, β).

5 The Inner PCP

The inner PCP we will simply use the Hypergraph Test with 7 queries as described by Samorod-
nitsky and Trevisan [22]. Given a function f : {0, 1}m → {−1, 1}, the test HypergraphTest(f) picks
x, y, z ∈ {0, 1}m at random and accepts if and only if

f(x+ y) = f(x) · f(y) ,

f(y + z) = f(y) · f(z) ,

f(z + x) = f(z) · f(x) ,

and f(x+ y + z) = f(x) · f(y) · f(z) .

Let s(f) denote the probability that HypergraphTest(f) accepts. We can write s(f) as

s(f) = E
x,y,z

 (1+f(x)f(y)f(x+y)
2

)(
1+f(y)f(z)f(y+z)

2

)
×
(

1+f(z)f(x)f(z+x)
2

)(
1+f(x)f(y)f(z)f(x+y+z)

2

) 
16

We can also write s(f) as a multilinear polynomial in the values of f since f(x)2 = 1 for
f : {0, 1}m → {−1, 1}. We define s(f) for a function f taking values in [−1, 1] to be the expec-
tation of the corresponding multilinear polynomial. We will also need the following (well-known)
concentration result for Lipschitz functions, which follows from Azuma’s inequality:

Lemma 5.1 (Theorem 7.4.2 in [2]) Let F = F(X1, . . . , XN) be a function in random variables
X1, . . . , XN taking value ±1, which is C-Lipschitz in each of the variables i.e., for any i ∈ [N],
x1, . . . , xN ∈ {−1, 1} and x′i ∈ {−1, 1}, |F(x1, . . . , xi, . . . , xN)− F(x1, . . . , x

′
i, . . . , xN)| ≤ C. Then

P [|F− E [F]| > γ] ≤ exp
(
−γ2/(2C2N)

)
.

The following is easy to prove using the results from [1].

Lemma 5.2 Let f : {0, 1}m → [−1, 1] be such that s(f) > 1
8 −

1
320 + ε. Then,

• there exists α ∈ {0, 1}m such that
∣∣∣f̂(α)

∣∣∣ ≥ ε
2 , or

• there exists a quadratic polynomial q : {0, 1}m → {0, 1} such that Ex
[
f(x)(−1)q(x)

]
≥ 9

10 − ε.

Proof: We first argue that we can take f to be Boolean. Given an f as above, consider a random
function f̃ such that for each x ∈ {0, 1}m, f̃(x) = 1 with probability (1 + f(x))/2 and −1 with

probability (1− f(x))/2. Thus, for each x, E
[
f̃(x)

]
= f(x).

The quantity s(f̃) is a degree-7 polynomial in the 2m random variables
{
f̃(x)

}
x∈{0,1}m

with ex-

pectation s(f) (since we wrote s as a multilinear polynomial in the values of f). Also, it is C-

Lipschitz with C = 7/2n. Thus, by Lemma 5.1, the probability that
∣∣∣s(f)− s(f̃)

∣∣∣ > ε/4 is at most

exp(−Ωε(2
m)). Also, the correlation of f̃ with any quadratic polynomial q is Ex

[
f̃(x)(−1)q(x)

]
,

which is a linear polynomial in the values of f̃ , with expectation Ex
[
f(x)(−1)q(x)

]
. The probability

that the correlation differs from it’s expected value by more than ε/2 for any quadratic polynomial
is at most 2m

2 · exp−Ωε(2
m). Since the set of quadratic polynomials also includes all linear func-

tions, this also gives that with high probability, all Fourier coefficients of f̃ are within an additive
ε/4 of the corresponding Fourier coefficients of f . Thus, up to a change of an additive ε/4 in the
correlations and the quantity s(f), we can replace the function f by a “good” f̃ . We this assume
f takes values in {−1, 1} in the argument below.

Expanding the terms and changing variables to simply, we can re-write s(f) as

s(f) =
1

16
+

7

16
· E
x,y

[f(x)f(y)f(x+ y)] +
7

16
· E
x,y,z

[f(x)f(y)f(x+ z)f(y + z)] +

1

16
· E
x,y,z

[f(x)f(y)f(z)f(x+ y)f(y + z)f(z + x)f(x+ y + z)]

=
1

16
+

7

16

∑
α

(f̂(α))3 +
7

16

∑
α

(f̂(α))4 +

1

16
· E
x,y,z

[f(x)f(y)f(z)f(x+ y)f(y + z)f(z + x)f(x+ y + z)]

Let s∗(f) denote the expectation in the last term. If s(f) ≥ 1
8 −

1
320 + ε, then we must have∑

α(f̂(α))3 ≥ ε,
∑

α(f̂(α))4 ≥ ε or s∗(f) > 1− 1
20 . The first two cases both imply

max
α

∣∣∣f̂(α)
∣∣∣ = max

α

∣∣∣f̂(α)
∣∣∣ ·∑

α

(f̂(α))2 ≥
∑
α

∣∣∣f̂(α)
∣∣∣ · (f̂(α))2 ≥ ε .

17

On the other hand Alon et al. [1] show that for f : {0, 1}m → {−1, 1}, if s∗(f) > 1− ν for ν ≤ 1
20 ,

then there exists a quadratic function q : {0, 1}m → {0, 1} such that Ex
[
f(x)(−1)q(x)

]
≥ 1 − 2ν.

Using ν = 1/20 and adjusting all correlations for the loss of ε/4 in passing from f to f̃ gives the
required result.

6 The Composed PCP

We instantiate the outer PCP with d = 2. The final proof comprises of the tables of functions
{Gw}w∈(U∪V)k . The verifier chooses a random u ∈ Uk and performs HypergraphTest(F̃u), where

F̃u is a virtual function described below. To query F̃u on an input x = (x1, . . . , xk) ∈ {0, 1}3k,
the verifier generates a random w ∈ (U ∪ V)k and y = (y1, . . . , yk) ∈ {0, 1}3|w|+(k−|w|) and queries
Gw(y). The tuple w is generated by taking wi = ui for each i ∈ Rw, generating a string x′i ∈
{0, 1}3 for each i /∈ Rw and taking wi as vi ∼ (ui, x

′
i), where this notation denotes taking a

random constraint (ui, vi, x
′
i) (with probability proportional to weights) involving the pair (ui, x

′
i)

and choosing the corresponding vi. Below we describe the distribution of (w, y, x′) given an input
x.

Suppose that we have already (randomly) chosen the set Rw. Recall that the intended solution is

Fu(x1, . . . , xk)
def
= Fu1(x1) + . . .+ Fuk(xk) ∀x1, . . . , xk

Gw(y1, . . . , yk)
def
=

∑
i∈Rw

Fui(yi) +
∑
i/∈Rw

yi ·A(vi) ∀y1, . . . , yk ,

where Fu1 , . . . , Fuk are polynomials with Fui(0) = 0 ∀i. Thus, to obtain Fu from the function Gw,
we simply want to take yi = xi if i ∈ Rw. Also, for i /∈ Rw, xi 6= 000 and vi ∼ (ui, xi), Fui(xi)
and A(vi) must be related as Fui(xi) = A(vi) + cuivi,xi . Thus, if i /∈ Rw and xi 6= 000, the verifier
must choose x′i = xi, vi ∼ (ui, x

′
i) and yi = 1. The contribution of the intended solution in the ith

coordinate is then A(vi) and the verifier can add cuivi,x′i for this coordinate to obtain the (intended)

contribution from the ith coordinate of Fu.

However, when i /∈ Rw and xi = 000, the verifier has more freedom in choosing vi. Suppose
we choose any x′i 6= 000 and vi ∼ (ui, x

′
i) (recall that constraints (ui, vi, x

′
i) are only defined for

x′i 6= 000). If yi is chosen to be 0, then the contribution from the ith coordinate of Gw(y) is
yi · A(vi) = 0, and so is Fui(0) for the intended solution. Thus, when i /∈ Rw and xi = 000, we
take yi = 0 and choose x′i randomly from {0, 1}3 \ {000}. Note that this does not complete the
description of the sampling process since P [i ∈ Rw | xi] might (and will) depend on the value of xi.

From the above description, given the tuple (w, y, x′), we can uniquely identify the input x i.e.
there exists a map ϕ such that ϕ(w, y, x′) = x given for the ith coordinate by

xi =
(
ϕ(w, y, x′)

)
i

=


yi if i ∈ Rw

x′i if i /∈ Rw and yi = 1
000 otherwise

We will now define a distribution Du on the tuples (w, y, x′) (for a fixed u) such that y is uniformly
distributed in {0, 1}3|w|+(k−|w|) and ϕ(w, y, x′) is close to the uniform distribution on {0, 1}3k. Given
an input x, the verifier will simply sample a tuple (w, y, x′) from Du conditioned on ϕ(w, y, x′) = x.
Given the tuple, the function F̃u is taken to be

F̃u(x) = Gw(y) +
∑
i/∈Rw

yi · cuivi,x′i .

18

We now describe the distribution Du. For a fixed u ∈ Uk, we sample a tuple (w, y, x′) according
to Du by performing the following process for each i ∈ [k]:

• with probability 1− β, set wi = ui and sample yi ∈R {0, 1}3.

• with probability β/2, take yi = 1, x′i ∈R {0, 1}3 \ {000} and wi = vi ∼ (ui, x
′
i).

• with probability β/2, take yi = 0, x′i ∈R {0, 1}3 \ {000} and wi = vi ∼ (ui, x
′
i).

Let ϕ(Du) denote the distribution on {0, 1}3k obtained by sampling (w, y, x′) according to Du and
then computing ϕ(w, y, x′). We show that it is very close to the uniform distribution on {0, 1}3k,
denoted by U3k.

Claim 6.1 ∆ (ϕ(Du),U3k) = O(β
√
k) .

Proof: It is easy to see that ϕ(Du) is also a product distribution. For each i ∈ [k],

P
x∼Du

[xi = 000] =
1− β

8
+
β

2
=

1

8
+

3β

8

P
x∼Du

[xi = b] =
1− β

8
+
β

2
· 1

7
=

1

8
− 3β

56
∀b 6= 000 .

Let Di denote the distribution of xi when x is sampled according to ϕ(Du). By the above, we can
bound the squared Hellinger distance of Di and U3, the uniform distribution on 3 bits as

H2 (Di,U3) = 1−
∑

b∈{0,1}3

√
1

8
· Di(b) = 1−

√
1

8
·
(

1

8
+

3β

8

)
− 7

√
1

8
·
(

1

8
− 3β

56

)
= O(β2) .

By multiplicativity of 1−H2(·, ·) for product distributions, we get

1−H2 (ϕ(Du),U3k) ≥ (1−O(β2))k ≥ 1−O(β2k) .

Finally, using the relationship between statistical and Hellinger distance gives

∆ (ϕ(Du),U3k) ≤
√

2H (ϕ(Du),U3k) = O(β
√
k)

as claimed.

It is also easy to observe that if u is chosen with probability proportional to the weight of constraints
incident on it, then the distribution of the pair (u,w) is the same as in the outer PCP.

Claim 6.2 Let u ∈ Uk be sampled with probability proportional to the weight of constraints (in the
outer PCP) incident on it and let (w, y, x′) be sampled according to Du. Then the distribution of
the pair (u,w) is the same as the questions of the verifier in G(Φ, k, β).

Proof: By definition of Du, the distribution is a product distribution over the coordinates. It
only remains to analyze the distribution of a pair of questions (ui, wi) in a single coordinate. With
probability 1 − β, wi = ui and with probability β, wi = vi ∼ (ui, x

′
i) for a random x′i i.e. it is a

random constraint incident on ui. This is exactly the same as the distribution of questions for the
game G(Φ, k, β).

We can now analyze the composed PCP.

19

6.1 Completeness

Lemma 6.3 Let Val(1)(G(Φ, k, β)) ≥ 1− η. Then there exists a proof that the verifier accepts with
probability at least 1− 7η.

Proof: Let {Fu}u∈Uk and {Gw}w∈(U∪V)k be a family of linear functions which make the verifier in
G(Φ, k, β) accept with probability 1−η. Since any pair of functions Fu, Gw satisfying the constraint
corresponding to the pair of questions (u,w) must have the same constant term, we can assume
that all the polynomials have constant term 0. We can then write the functions for each u and w
as a sum of linear functions

Fu(x1, . . . , xk) = Fu1(x1) + . . .+ Fuk(xk) ∀x1, . . . , xk

Gw(y1, . . . , yk) = Gw1(y1) + . . .+Gwk(yk) ∀y1, . . . , yk

Let the proof for the final verifier consist of the tables Gw as above. By Claim 6.2, the distribution
of the pairs (u,w) generated by the final verifier is the same as that in the game G(Φ, k, β) and thus,

for any x, Pu,r

[
Fu(x) = F̃u(x)

]
≥ 1 − η, where r is the randomness used in sampling a random

Gw to read the value of F̃u. Recall that the verifier performs HypergraphTest(F̃u) which reads the
value of F̃u on 7 inputs. By the above, we have that

P
u

[All 7 values read by HypergraphTest agree with the function Fu] ≥ 1− 7η .

However, if all 7 values read by HypergraphTest agree with Fu, then the verifier will accept since
Fu is linear.

6.2 Soundness

Lemma 6.4 Let {Gw}w∈(U∪V)k be a proof that makes the verifier accept with probability at least
1/8−1/320 + ε. Let G(Φ, k, β) denote the game constructed by the outer verifier as before with β, k
chosen so that β

√
k = o(ε). Then Val(2)(G(Φ, k, β)) ≥ ε6/218.

Proof: Let s(f) be the expression for the probability of acceptance of HypergraphTest(f) as
defined in Section 5. Let F̃u : {0, 1}3k → {0, 1} be the (random) function queried by the verifier as
above. Then,

P [Verifier accepts] = E
u

[
s
(

(−1)F̃u

)]
.

If r is the randomness used by the verifier in sampling F̃u, let Hu denote the real-valued function

Hu(x) = E
r

[
(−1)F̃u(x)

]
= E

(w,y,x′)|x

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
]
.

Since the verifier uses fresh randomness for sampling F̃u(x) for each input x, we can re-write the
acceptance probability of the verifier as

P [Verifier accepts] = E
u

[s (Hu)] .

Since the verifier accepts with probability 1
8 −

1
320 + ε, we have

E
u

[s(Hu)] ≥ 1

8
− 1

320
+ ε ⇒ P

u

[
s(Hu) ≥ 1

8
− 1

320
+
ε

2

]
≥ ε

2

20

By Lemma 5.2, for each u with s(Hu) ≥ 1
8 −

1
320 + ε

2 , either there exists an αu ∈ {0, 1}3k such

that
∣∣∣Ĥu(αu)

∣∣∣ ≥ ε
4 or there exists a quadratic function qu such that Ex

[
Hu(x)(−1)qu(x)

]
≥ 9

10 −
ε
2 .

Thus we have

P
u

[
max
α

{∣∣∣Ĥu(α)
∣∣∣} ≥ ε

4

]
≥ ε

4
or P

u

[
∃qu such that E

x

[
Hu(x)(−1)qu(x)

]
≥ 9

10
− ε

2

]
≥ ε

4
.

We first consider the case that a significant fraction of the functions Hu have a large Fourier
coefficient.

Claim 6.5 Let Pu

[
maxα

{∣∣∣Ĥu(α)
∣∣∣} ≥ ε

4

]
≥ ε

4 . Then Val(1)(G(Φ, k, β)) ≥ ε6/218.

Proof: Let u be such that
∣∣∣Ĥu(α)

∣∣∣ ≥ ε
4 for some α ∈ {0, 1}3k. We will show that there exists a

prover strategy which satisfies a significant fraction of constraints incident on all such u. We give
the argument for the case when Ĥu(α) ≥ ε

4 . The argument for the case when the value is negative
is identical. By assumption, we have

E
x∼U3k

[Hu(x)(−1)α·x] ≥ ε

4
.

By Claim 6.1, the distribution U3k is very close to the distribution ϕ(Du). Hence, we also have

E
x∼ϕ(Du)

[Hu(x)(−1)α·x] ≥ ε

4
−O(β

√
k) ≥ ε

8

since β
√
k = o(ε). Using the definition of the function Hu we have

E
x∼ϕ(Du)

[
E

(w,y,x′)|x

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
]
· (−1)α·x

]
≥ ε

8

⇒ E
(w,y,x′)∼Du

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
+α·ϕ(w,y,x′)

]
≥ ε

8

since sampling x ∼ ϕ(Du) and (w, y, x′) from Du conditioned on ϕ(w, y, x′) = x is the same as
sampling the tuple (w, y, x′) from Du and taking x = ϕ(w, y, x′). The above gives that

P
(w,x′)

[
E

y|(w,x′)

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
+α·ϕ(w,y,x′)

]
≥ ε

16

]
≥ ε

16
.

Note that according to the distribution Du, given the tuple (w, x′), y is distributed uniformly
in {0, 1}3|w|+(k−|w|). We can now analyze the inner expression. We can write α · ϕ(w, y, x′) as∑

i∈Rw
αi · (ϕ(w, y, x′))i+

∑
i/∈Rw

αi · (ϕ(w, y, x′))i where αi denotes the 3 bits of α in the positions
(3i−2, 3i−1, 3i) and (ϕ(w, y, x′))i denotes the corresponding 3 bits of x = ϕ(w, y, x′). For i ∈ Rw,
we have xi = yi. Also, for i /∈ Rw, xi = 000 if yi = 0 and x′i if yi = 1. Thus, we can write
α · ϕ(w, y, x′) as

α · ϕ(w, y, x′) =
∑
i∈Rw

αi · yi +
∑
i/∈Rw

yi · (αi · x′i) .

Consider a pair (w, x′) for which the inner expectation is large. Grouping the terms in the expec-
tation, we have

E
y|(w,x′)

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·(αi·x′i+cuivi,x′i
)+

∑
i∈Rw

yi·αi
]
≥ ε

16

21

Since y is uniformly distributed, the above expression gives that Ey
[
(−1)Gw(y)(−1)α·y

]
≥ ε

16 where

α ∈ {0, 1}3|w|+(k−|w|) is defined as

αi =

{
αi for i ∈ Rw

αi · x′i + cuivi,x′i for i /∈ Rw

This implies that for a question pair (u,w) if the first prover answers with the linear function
Lu(x) = α · x and the second prover answers with the linear function Lw(x) = α · y, then their
answers satisfy

Lu|i(z) = αi · z = αi · z = Lw|i(z) ∀i ∈ Rw,∀z ∈ {0, 1}3

Lu|i(x′i) = αi · x′i = αi + cuivi,x′i = Lw|i(1) + cuivi,x′i ∀i /∈ Rw

which are all the constraints checked by the outer verifier. Thus, the strategy for the provers is
simply as follows. Given a u, the first prover gives a linear function α · x for a random α such that∣∣∣Ĥu

∣∣∣ ≥ ε
4 . Similarly, given a w, the second prover answers with the function α · y for a random α

such that Ey
[
(−1)Gw(y)(−1)α·y

]
≥ ε

16 . The probability that they choose a consistent pair (α, α)

is at least ε2

16 ·
ε2

256 = ε4

212
. Thus, the probability that they make the outer verifier accept over the

choice of the pair (u,w) is at least ε
4 ·

ε
16 ·

ε4

212
= ε6

218
.

The argument for the second case is almost identical.

Claim 6.6 Let Pu

[
∃qu such that Ex

[
Hu(x)(−1)qu(x)

]
≥ 9

10 −
ε
2

]
≥ ε

4 . Then Val(2)(G, k, β) ≥
ε2/4.

Proof: Let u be such that Ex∼U3k
[
Hu(x)(−1)q(x)

]
≥ 9

10 −
ε
2 for some quadratic function q. As

before, this gives

E
x∼ϕ(Du)

[
Hu(x)(−1)q(x)

]
≥ 9

10
− ε

⇒ E
(w,y,x′)∼Du

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
+q(ϕ(w,y,x′))

]
≥ 9

10
− ε

⇒ P
(w,x′)

[
E
y

[
(−1)

Gw(y)+
∑
i/∈Rw

yi·cuivi,x′i
+q(ϕ(w,y,x′))

]
≥ 9

10
− 2ε

]
≥ ε .

Now, given x′, we can interpret q(ϕ(w, y, x′)) as a polynomial in y. Let q′ : {0, 1}3|w|+(k−|w|) →
{0, 1} be the quadratic polynomial in y obtained as follows. Replace the 3 bits corresponding to
the input xi in q by the 3 bits corresponding to yi for i ∈ Rw. Also, for i /∈ Rw, let xi1, xi2, xi3 be
the 3 bits corresponding to xi. Replace them by yix

′
i1, yix

′
i2, yix

′
i3 where x′i1, x

′
i2, x

′
i3 are the 3 bits

of x′i.

Let q denote the polynomial q′ +
∑

i/∈Rw
yi · cuivi,x′i . It is easy to check that

q|i(z) = q|i(z) ∀i ∈ Rw,∀z ∈ {0, 1}3

q|i(x′i) = q′|i(1) = q|i(1) + cuivi,x′i ∀i /∈ Rw .

Thus, in this case, given u, the first prover answers with the unique quadratic polynomial q such that
Ex
[
Hu(x)(−1)q(x)

]
≥ 9

10 − ε, and the second prover, given w, answers with the unique quadratic

polynomial q such that Ey
[
(−1)Gw(y)(−1)q(y)

]
≥ 9

10 − 2ε. If u,w are as above, then q and q satisfy

the required conditions and the verifier accepts. Hence, this strategy makes the verifier accept with
probability at least (ε/4) · ε = ε2/4.

22

Since Val(2)(G(Φ, k, β)) ≥ Val(1)(G(Φ, k, β)), we have Val(2)(G(Φ, k, β)) ≥ ε6/218 in both cases.

6.3 Choice of Parameters

We require that β
√
k = o(ε) and the soundness of the outer PCP, which is (1 − γ2)Ω(βk) is less

than ε6/218. Since we are working with d = 2, we have γ = Ω(1) and so this means that we require
βk = Ω(log(1/ε)). Choosing k = Ω((1/ε3) · log2(1/ε)) and β = O(ε3/ log(1/ε)) meets both these
conditions. Finally, we choose the parameter η for the Linear vs. Degree-d Label-Cover problem to
be O(ε/k) so that the completeness of the composed PCP is 1− ε.

7 Parallel Repetition of Linear vs. Degree-d PCPs

Let Φ be an instance of Linear vs. Degree-d Label-Cover as defined in Definition 2.7. Consider a
new instance of Linear vs. Degree-d Label-Cover defined by the following two-prover game:

• The verifier picks constraints (u1, v1, x
′
1), . . . , (uk, vk, x

′
k) ∈ Φ.

• The question sent to the first prover is u = (u1, . . . , uk).

• The question sent to the second prover is v = (v1, . . . , vk).

• The first prover is required to respond with a degree-d polynomial Fu : {0, 1}(d+1)k → {0, 1}
and the second prover responds with a bit A(v) ∈ {0, 1}. The verifier accepts if

Fu(x′1, . . . , x
′
k) = A(v) + cu1v1,x′1 + . . .+ cukvk,x′k .

Note that the label for u = (u1, . . . , uk) is now a single polynomial, which is supposed to be the
XOR of the polynomials Fu1 , . . . , Fuk . Similarly, the label for v is supposed to be the XOR of
A(v1), . . . , A(vk).

It is natural to ask that if any degree-d labeling can satisfy (say) at most s = 1 − 2−O(d) fraction
of constraints in Φ, then does the fraction of constraints satisfiable in the new instance obtained
above decrease to 1/2 + exp(−Ωs(r)). Note that since the first prover is required to prove a single
polynomial Fu in (d+1)k variables, which might involve cross-terms between the inputs x1, . . . , xk,
the above does not follow from known results on parallel repetition.

If it is indeed possible to reduce the soundness of the Linear vs. Degree-d Label-Cover label cover
to a value arbitrarily close to 1/2 as above, then one can in fact avoid the complication of going
through the smoothed parallel repetition approach in the outer PCP. In our current proof, both
provers are required to decode a degree-2 polynomial in a way that the polynomial of the second
prover is a projection of the polynomial of the first prover. We are unable to do this unless there
is only a unique choice of the quadratic polynomial for each prover.

However, using the above instance of Linear vs. Degree-d Label-Cover, one can instead apply the
HLT directly the functions Fu by only reading the corresponding values for A(v). Then, if the
table of values A(v) satisfies the verifier in the composed PCP with probability more than 1/16,
the first prover can find functions Fu which are polynomials of degree at most 2 (by using the table
A(v)), which satisfy significantly more than half of the constraints in the instance above. We omit
the details of the analysis.

23

We believe that if the parallel repetition as above can indeed be used to reduce the soundness even
for degree-d labeling then an appropriate modification of our PCP might even give an alternate
proof of the soundness guarantee of 2−(2d+1−(d+1)−1) with 2d+1 − 1 queries.

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes.
IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

[2] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 2008.

[3] S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[4] S. Arora and S. Safra. Probabilistic checking of proofs : A new characterization of NP. Journal
of the ACM, 45(1):70–122, 1998.

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[6] S. O. Chan. Personal Communication, 2012.

[7] M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for unique games.
In Proc. ACM Symposium on the Theory of Computing, pages 205–214, 2006.

[8] L. Engebretsen and J. Holmerin. More efficient queries in pcps for np and improved approxi-
mation hardness of maximum csp. Random Struct. Algorithms, 33(4):497–514, 2008.

[9] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

[10] J. Hastad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142, 1999.

[11] J. Hastad. Some optimal inapproximability results. Journal of ACM, 48:798–859, 2001.

[12] J. Hastad and A. Wigderson. Simple analysis of graph tests for linearity and PCP. In Proc.
16th IEEE Conference on Computational Complexity, 2001.

[13] T. Holenstein. Parallel repetition: simplifications and the no-signaling case. In Proc. ACM
Symposium on the Theory of Computing, pages 411–419, 2007.

[14] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symposium on
Theory of Computing, 2002.

[15] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[16] S. Khot and M. Safra. A two prover one round game with strong soundness. In Proceedings
of the 52nd IEEE Symposium on Foundations of Computer Science, pages 648–657, 2011.

[17] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences:
invariance and optimality. In Proc. 46th IEEE Symposium on Foundations of Computer Sci-
ence, pages 21–30, 2005.

24

[18] A. Rao. Parallel repetition in projection games and a concentration bound. In Proc. ACM
Symposium on the Theory of Computing, pages 1–10, 2008.

[19] R. Raz. A parallel repetition theorem. SIAM J. of Computing, 27(3):763–803, 1998.

[20] A. Samorodnitsky. Low-degree tests at large distances. In Proceedings of the 39th ACM
Symposium on Theory of Computing, pages 506–515, 2007.

[21] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized
query complexity. In Proc. 32nd ACM Symposium on Theory of Computing, pages 191–199,
2000.

[22] A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and PCPs. In
Proc. 38th ACM Symposium on Theory of Computing, 2006.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

