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Abstract

Convex relaxations based on different hierarchies of linear /semi-definite programs have been
used recently to devise approximation algorithms for various optimization problems. The ap-
proximation guarantee of these algorithms improves with the number of rounds r in the hierarchy,
though the complexity of solving (or even writing down the solution for) the r’th level program
grows as n*(") where n is the input size.

In this work, we observe that many of these algorithms are based on local rounding procedures
that only use a small part of the SDP solution (of size n®2°(") instead of n2(")). We give an
algorithm to find the requisite portion in time polynomial in its size. The challenge in achieving
this is that the required portion of the solution is not fixed a priori but depends on other parts
of the solution, sometimes in a complicated iterative manner.

Our solver leads to n®M29(") time algorithms to obtain the same guarantees in many cases
as the earlier n°(") time algorithms based on r rounds of the Lasserre hierarchy. In particular,
guarantees based on O(logn) rounds can be realized in polynomial time. For instance, one can
(i) get O(1/A,) approximations for graph partitioning problems such as minimum bisection and
small set expansion in n®M2°0(") time, where )\, is the 7’th smallest eigenvalue of the graph’s
normalized Laplacian; (ii) a similar guarantee in nPWEO) for Unique Games where k is the
number of labels (the polynomial dependence on k is new); and (iii) find an independent set of
size Q(n) in 3-colorable graphs in (n2")°M time provided \,_, < 1.11.

We develop and describe our algorithm in a fairly general abstract framework. The main
technical tool in our work, which might be of independent interest in convex optimization, is
an efficient ellipsoid algorithm based separation oracle for convex programs that can output a
certificate of infeasibility with restricted support. This is used in a recursive manner to find a
sequence of consistent points in nested convex bodies that “fools” local rounding algorithms.

*An extended abstract of this work appears in the Proceedings of FOCS 2012. This is an expanded version.
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1 Introduction

A rich body of recent research has shown that for many optimization problems, the Unique Games
conjecture (UGC) serves as a barrier to further improvements to the approximation factor achieved
by efficient algorithms. In many cases, including all constraint satisfaction problems and various
graph partitioning problems, the best algorithms are based on fairly simple semi-definite program-
ming (SDP) relaxations. The UGC foretells that for these problems, no tighter relaxation than
these simple SDPs will yield a better approximation ratio in the worst-case.

Hierarchies of convex relaxations. A natural question thus is to understand the power and
limitations of potentially stronger SDP relaxations, for example those from various hierarchies
of relaxations. These hierarchies are parameterized by an integer r (called rounds/levels) which
capture higher order correlations between (roughly r-tuples of) variables (the basic SDP captures
only pairwise correlations, and certain extensions like triangle inequalities pose constraints on
triples). Larger the r, tighter the relaxation. The optimum of n’th level of the hierarchy, where n
is the number of variables in the underlying integer program, usually equals the integral optimum.

There are several hierarchies of relaxations that have been studied in the literature, such
as Sherali-Adams hierarchy of linear programs [SA90], the Lovéasz-Schrijver hierarchy [LS91], a
"mixed” hierarchy combining Sherali-Adams linear programs with the base level SDP, and the
Lasserre hierarchy [Las02] (see [CT11] for a recent survey focusing on their use in approximate
combinatorial optimization). Of these hierarchies, the most powerful one is the Lasserre hierarchy
(see [Lau03] for a comparison), and therefore holds the most potential for new breakthroughs in
approximation algorithms. Arguably, Lasserre SDPs pose the currently strongest known threat to
the Unique Games conjecture, as even the possibility of the 4’th level of Lasserre SDP relaxation
improving upon the Goemans-Williamson 0.878 approximation factor for Max Cut has not been
ruled out. Recently, it has also been shown that O(1) rounds of the Lasserre hierarchy are able to
solve all candidate gap instances of Unique Games [BHK"12]. (On the other hand, for some of the
weaker hierarchies, integrality gaps for super-constant rounds are known for various Unique-Games
hard problems [KS09, RS09].)

In light of the above, the power and limitations of the Lasserre hierarchy merit further inves-
tigation. There has been a fair bit of recent interest in Lasserre hierarchy based approximation
algorithms [CS08, KMN10, GS11, BRS11, RT12, AG11, GS12a]. For instance, our work [GS11]
shows that various graph partitioning problems (including minimum bisection, sparsest cut, and
Unique Games) can be well-approximated by ~ r rounds of the Lasserre SDP on graphs whose r’th
smallest eigenvalue ), (of the Laplacian) is reasonably large.

A (near)-optimal solution to the r’th level Lasserre relaxation can be found in n°(") time. So
understanding the power of these relaxations for small values of r is of particular interest. The main
contribution of this work is to improve the running time of various Lasserre-based approximation
algorithms to 20700 (from the default n°(")). In particular, the guarantees achieved by O(logn)
rounds of Lasserre SDPs can be realized in polynomial time. Plugging our methods into some of
the algorithms in [GS11] gives us the following application:

Theorem 1. For the graph partitioning problems such as uniform sparsest cut, small set expansion,
and minimum bisection, one can compute a cut with cost at most m times the optimum

in nPMW200) time, where n is the number of vertices and \, the r’th smallest eigenvalue of the

normalized Laplacian of the input graph.!

'For the case of minimum bisection, the cut may have a o(n) imbalance. In fact, an approximation factor of



For Unique Games with k labels and n variables, an approximation factor of 3/ min{1, \,} can
be achieved for the minimization version in time n®WEO) where \, the r’th smallest eigenvalue of
the normalized Laplacian of the constraint graph. (Note the polynomial dependence of the runtime
on the number of labels, which is new to this work.)

Our methods also apply to Lasserre hierarchy based approximation algorithms discovered re-
cently. A table of several algorithms whose algorithms we are able to improve is given in Section 7.
In particular, we describe how Lasserre hierarchy based algorithms for finding independent sets in
3-colorable graphs [AG11] and approximating 2-CSPs [BRS11] can be fit into our framework. The
details of this are described in Appendix B, and along the way, in Appendix A, we collect useful
geometric bounds on the variance of conditioned solutions in Lasserre SDPs. As a result, we get
the following speed-ups to the algorithms in [BRS11, AG11].

Theorem 2 (Informal). Given a 3-colorable regular graph G, we can find an independent set of
size at least n/12 in 20 nOW) time when the r’th largest eigenvalue of the normalized Laplacian
of G is at most a constant less than 10/9.

Theorem 3 (Informal). Let P be an arity 2 CSP over a domain of size k, and let € € (0,1).
Given an instance of P whose constraint graph G is reqular, we can find an assignment satisfying
at least opt(G) —e fraction of constraints in 2" poly(k/e) ppoly(k/€) time assuming that the r’th smallest
eigenvalue of the normalized Laplacian of G is at least 1 — % (Here opt(G) denotes the fraction
of constraints of G satisfied by an optimal assignment.)

Our techniques might also be useful in the context of fixed-parameter tractability, which we
leave as a potentially interesting avenue for future research.

Local rounding algorithms. Note that even writing down the full r-round Lasserre solution
takes n¥(") time. The hope to speed-up the algorithms to a runtime dependence of 20(") is based
on the observation that many of the rounding algorithms have a ”local” character that uses only
a small portion of the SDP solution. In the simplest setting, the rounding algorithm proceeds in
two steps: (i) find a “seed set” S* of ~ r nodes based only the solution to the base (1-round) SDP,
and (ii) use the value of r-round Lasserre solution on the set S* to sample a partial assignment to
S* and then propagate it to the other nodes. Thus the rounding algorithm only uses the portion
of the Lasserre SDP corresponding to the subsets S* U {u} for various u. Further, the analysis of
the rounding algorithm also relies only on Lasserre consistency constraints for subsets of S*. More
generally, the algorithms might pick a sequence of seed subsets Sp, .59, ..., Sy iteratively and the
SDP solution restricted to subsets of S1 U Sy U--- U .Sy is used for rounding.

Note that the needed portion of the solution (corresponding to S*, or more generally S; U
Sy U---Sy) itself depends on certain other parts of the solution. So one cannot simply project the
space down to the relevant dimensions to find the required part of the Lasserre solution. Our main
technical contribution is an ellipsoid algorithm that can find the needed partial solution (which
satisfies all the local constraints induced on those variables) in time polynomial in the number of
variables in the partial solution. We stress that the partial solution we find may not extend to a
full Lasserre solution. This, however, does not matter for the approximation guarantee as it will
“fool” the rounding algorithm which can’t distinguish the solution we find from a global Lasserre
solution.

There are two examples of hierarchy based approximation algorithms which have been sped
up to 290" dependence on the number of rounds, both of which rely on weaker hierarchies than

ﬁli\} can be achieved in n°1/¢3)200/) time.



Lasserre: (i) the algorithm for sparsest cut on bounded treewidth graphs using the Sherali-Adams
hierarchy [CKR10] and (ii) the Unique Games algorithm based on the “mixed” hierarchy [BRS11].
The faster algorithm is for the former case is immediate as the required portion of the solution only
depends on the input graph, so one can simply find that part using any LP solver. For the Unique
Games algorithm, the seed set S* depends on the vector solution to the basic SDP relation. The
goal is to extend the solution to local distributions of labels on subsets S* U {u} for various nodes
u, whose 2-way marginals agree with the vector inner products. As briefly sketched in [BRS11],
these constraints form a linear program, and if infeasible, by Farkas’ lemma, one can get a new
constraint for the vector inner products, which can be fed into an ellipsoid algorithm for solving the
basic SDP. Our situation is more complicated as we handle several iterations of seed set selection,
and the “extension” problems we solve are no longer simple linear programs. Also, the runtime of
the Unique Games algorithm in [BRS11] had an exponential dependence on the number of labels,
as opposed to our polynomial dependence.

Main technique: Separation oracle with restricted support. We describe the high level
ideas behind our method for finding adequate partial solutions to Lasserre SDPs in Section 2. Our
approach applies in a fairly general set-up, and therefore we describe our methods in an abstract
framework for clarity, both in Section 2 and later in Section 4 where the formal details appear.

In addition to the runtime improvements, our results contribute a useful, and to our knowledge
new, basic tool in convex optimization, which is an efficient ellipsoid algorithm based sep-
aration oracle that can output a certificate of infeasibility with restricted support (or
more generally belonging to a restricted subspace). For instance, suppose we are given a convex
body K C R™ via a separation oracle for it. Given a point y € RY (a potential partial solution) for
some U C {1,2,...,n}, we give an algorithm to either find x € K such that proj;(z) = y (if one
exists?), or find a separating constraint that is supported on U.

1.1 Organization

Our paper is organized in the following way. In Section 2, we formalize the notion of local rounding
algorithms and briefly introduce our main technical contribution. We then present some mathe-
matical preliminaries in Section 3 and our main technical contribution in Section 4. Our final solver
is given in Section 5.

In Section 6, we introduce Lasserre Hierarchy in a way suitable for our framework. Finally
we state the faster running times we obtain for various rounding algorithms based on Lasserre
Hierarchy in Section 7.

For the semi-coloring algorithm from [AG11] and the 2-CSP algorithm from [BRS11], we present
the faster rounding algorithms and prove their correctness in Appendix B. Along the way, in Ap-
pendix A, we give a geometric interpretation of variance reduction via conditioning as needed in
[BRS11, AG11], using terminology and methods from [GS11]. We believe this could be useful
elsewhere.

% Actually, we need the volume of K N proj;'(y) to be at least some small &



2 An abstract framework of local rounding and Overview of our
techniques

Consider a rounding algorithm with following property: Given an optimal solution z € RY as
input, it only reads a much smaller part of this solution, say ' C N with |T'| = o(|N|). We call
these “local” rounding algorithms: Even though this setting might sound too restrictive and/or
unrealistic, observe that several of the known rounding algorithms which use “hierarchies” fit into
this framework, [CS08, KMN10, GS11, AG11, RT12, GS12a]. See Section 7 for details.

Local Rounding. We first start by outlining a generic iterative rounding algorithm. This frame-
work depends on two application specific deterministic® procedures, SEED and FEASIBLE. Without
going into the formal details, at a high level, SEEDg procedure chooses next “seed set” designating
which fragment of the solution we will read based on current seeds S and FEASIBLEg(y) is a strong
separation oracle for a convex body Kg representing the induced solutions on seeds S.

At the end, final seeds and induced solution are fed into another application specific rounding
procedure.

Formal Framework. Given two problem specific procedures, SEED and FEASIBLE, we formalize
the generic algorithm described above as follows.

1. Let x € RY be a vector representing an optimal solution for some convex optimization
problem, z € K.

2. Let S(0) be the initial solution fragment and y(0) <- zg() be the induced solution.

3. For i < 0to ¢:

(a) Fail if FEASIBLEg(;)(y(i)) asserts infeasible (i.e. y(i) ¢ Kg()-
(b) If i <, read next part of solution: S(i + 1) <= SEEDg;(y(i)) and y(i + 1) = g(i41)-
4. Perform rounding using S(¢) and y(¢).
Our Goal. Suppose |S(¢)| < |N| — the algorithm reads only a negligible portion of the full

solution. Then can we find an equivalent rounding algorithm which runs in time poly(]S(¢)]) as
opposed to poly(N)? Claim 4 shows this can be expected:

Claim 4. Above rounding algorithm can not distinguish between the following two cases, i.e. any
properties satisfied by the output assuming 1 still holds under a weaker condition, 2:

1. There exists a feasible solution x € RY, i.e. FEASIBLEN(z) asserts feasible.
2. For alli € {0,...,0}:

e y(i) € Kg(;)- FEASIBLEg;)(y(i)) asserts feasible,
e S(i+1)= SEEDS(Z)(y(Z)) ifi </,
o y(i+1)su) =y(i) if i <L

Using this insight, we first consider a simple case and give an algorithm whose running time depends
on |S(¢)] instead of |N|.

3We can allow randomization also, but we stick to the deterministic case for simplicity, since all the seed selection
procedures used by the known algorithms can be derandomized.



2.1 An Algorithm for a Simple Case

Suppose that SEED procedure does not depend on y. Then the above conditions can easily be
expressed as a convex problem of size |S(¢)|, which is much smaller than the original problem.
Then we can solve this convex problem using standard ellipsoid procedure and execute the above
procedure on this solution instead.

2.2  Our Algorithm

Unfortunately for all algorithms we consider in this paper, the procedure SEED heavily depends on
y. In particular, at the i*" level, 0 < i < ¢, we are trying to solve the following induced problem on
S(i+1). Given y(i) € Kg(:

Find y(i+1)

st y(i +1)su) = y(i), y(i+1) € Kg(iy1);
Jy(i + 2) KS(Hl y(i+ 2)S(i+1) =y(i+1)
where S(i + 2) = SEEDg ;1) (y(i + 1)); (1)

Fy(l) € Ksqry 1 y()se—1) =yl — 1)
where S(£) = SEEDg,—1)(y(¢ — 1)).

Observe that if we can construct a weak separation oracle for eq. (1) at (i + 1) level, then we can
combine it with ellipsoid algorithm to solve the problem at i level also. Thus if we can convert this
ellipsoid algorithm to a weak separation oracle, then we can call these separation oracles recursively
starting from 0%" level all the way down to £ level:

Recursive Separation Oracle. (Template for i*" level)

1. Given S(i) and y(i), if FEASIBLEg;)(y(i)) asserts infeasible and returns ¢, then assert infea-
sible and return ¢ (to the (i — 1)*" level).

2. If i = ¢, then return the solution y(¢).

3. Let S(i+1) «+ SEEDS(Z)(y(l))

4. Use ellipsoid method to find y(i+1) such that y(i+1); = y(i); for all j € S(i) with separation
oracle being a recursive call for the (i + 1) level (which takes inputs S(i + 1) and y(i + 1)).

5. If ellipsoid method fails to find such solution y(i + 1), return a separating hyperplane.

The key question now is how one might implement (the currently vague) step 5. Let us inspect a
simple option, and see what goes wrong with it.

Return an arbitrary hyperplane seen so far. Any inequality returned by the recursive sep-
aration oracle call is a valid separating hyperplane, so consider returning an arbitrary one. What
goes wrong in this case? The problem is that the running time now might be as large as polynomial
in |[NV]. To see this, suppose that FEASIBLE g, (y(¢)) returned an inequality on support S(¢). Then
the parent ellipsoid procedure needs to keep track of the additional variables from this particular
S(0), call it S. At some later stage, the algorithm may backtrack and change an earlier seed set,
say S(¢ —5), which will need to a new S(¢). But the algorithm would still need to keep the values
of variables from the S, the old value of S (¢). Continuing in this fashion, the set of variables the
algorithm has to track might end up being N, which is equivalent to constructing the whole solution
on RV!



This attempt has not been futile though, as it shows what kind of hyperplanes we need:
Any hyperplane returned by step 5 at (i + 1) level should have support S(i). (2)

We outline our proposed solution in the next section.

2.3 Our Contribution: A Separation Oracle with Restricted Support

Our solution to 2 is based on a new ellipsoid algorithm for finding separating constraints with
restricted support. Specifically, the main technical contribution of this paper is Algorithm 1 with
the following guarantee: Given a feasibility problem of the form

Find y € R" subject to Ily = yo, y € int(K),

where II is a projection matrix, yo € span(II) C R"; along with separation oracle for convex body
K; it either finds feasible y or asserts that the problem is infeasible and outputs a separating
hyperplane ¢ € span(IT). This algorithm coupled with the recursive separation oracle meets both
our correctness and running time requirements. In particular, the running time instead of being
the trivial bound of |N|9() will be roughly |S(£)|°®). Assuming the exponential-time hypothesis,
the exponential dependence on the number of seed selection stages ¢ cannot be avoided (a sub-
exponential dependence would lead to a f (k:)no(k) time algorithm to decide if an n-vertex graph
has a k-clique).

Remark 1. Our algorithm can be thought as a weak separation oracle for eq. (1) at level i given
a weak separation oracle for level i + 1. When each convex body Kg(),...,Kg() is guaranteed
to be a polytope, such as LPs from the Sherali-Adams Hierarchy, it is known that one can obtain
a strong separation oracle at level ¢ by using only using a strong separation oracle at level i + 1
(see Corollary 6.5.13 in [GLS93]). However in the case of semi-definite programming, it is an open
question [PK97] whether one can obtain a strong separation oracle from another strong separation
oracle in polynomial time.

3 Preliminaries

For any positive integer n, let [n] £ {1,2,...,n}. We will use 0 to denote empty set. Given set A,
let 24 be its power set, i.e. set of all subsets. For any real k, we will use Ay, Acj, and A>j to denote
the set of all subsets of A having size exactly k, at most k and at least k respectively. Observe that
24 = A-g, ) = Ag. Finally note that A is the set of non-empty subsets of A.

Given sets A, B and a field F (R for reals, Q for rationals) , we will use F4 and FA*5 to
denote vectors and matrices over F whose rows and columns are identified with elements of A and
B respectively. For any function f: A — F (resp. g: A x B — F), we will use [f(u)]yca (resp.
[9(w, V)] (up)caxp) tO denote the vector (resp. matrix) whose value at row u (resp. row u and
column v) is equal to f(u) (resp. g(u,v)). Given vector x € F4 and matrix Y € FA*B for any
subset C and D let z¢ € FC and Yep € FE¢*P denote the minors of , Y on rows AN C and
columns B N D with 0’s everywhere else.

Finally we will use S4 > Sﬂ D Sﬂ . to denote the set of symmetric, positive semi-definite and
positive definite matrices on rows and columns A.



3.1 Convex Geometry and Ellipsoid Method

The main crux of our algorithm relies on an ellipsoid solver method which can also return a
certificate of infeasibility. Throughout this section, we assume the underlying space is n-dimensional
whose coordinates are identified with [n]. So all our vectors and matrices (unless noted otherwise)
will have [n] as their rows.

Notation 5 (Projection). We will use Il € S[f} to denote a projection matriz representing some
linear subspace span(Il) C R and I+ to denote the projection matriz onto null space of 11, i.e.
I+ = identity — II.

Given vector yo € R, we will use yo € II if yo is in the span of II, i.e. yg = yo and we will
use I (yo) to denote the following set of vectors:

I (yo) £ {y € R

I (y —yo) = 0}-

Notation 6 (Balls). Given a set K C RI" and non-negative real € > 0, we define B(K,+¢) in the
following way.
B(K,e) = {m eRMFy e K s.t. |y — |2 < 8} )

B(K,—¢) 2 K \BRM\ K,¢).

Observe that for y € R, B(y,¢) is the n-dimensional sphere with origin vy, with B(K,¢) being
Minkowski addition of sphere of radius € to K and B(K, —¢) being Minkowski subtraction of sphere
of radius € from K.

Observation 7 (See [GLS93]). For any convex body K C R and non-negative reals , 1, €5, the
following hold:

1. B(B(K,¢),—¢) = K, B(B(K, —¢),e) C K.
2. E(E(K,&l),EQ) = B(K,El + 82).
3. B(B(K,—¢1), —e2) = B(K, —&1 — £2).

Notation 8 (Volumes). Given K C R, we will use voly(K) to denote d-dimensional volume of
K, provided it exists. Furthermore for any non-negative real € > 0, let voly(e) be the volume of
d-dimensional ball of radius €. We will use VOIJI(K) to denote the radius of a d-dimensional sphere
whose volume is equal to voly(K) so that

voly(K) = voly(vol; ! (K)).
Notation 9 (Polytope). Given matriz A € R™*™ and vector b € R™, let

poly(A,b) = {:c e R[4z < b} .

Lemma 10 (See Lemma 3.2.35 in [GLS93]). Given a polytope P = poly(A,b), for any positive real

e >0,
B(P, —¢) = poly(A,b — g4/diag(AT A)).

Here \/diag(AT A) denotes the vector whose it coordinate is equal to Euclidean norm of it" row of
A.



Definition 11 (Separation Oracle). Given a convex body K C R™ | SEPs(y) is a separation oracle
for K if the following holds. On inputs a rational vector y € Q™ and rational number § > 0,
SEPs(y) asserts feasible if y € K. Otherwise, if y ¢ K, it returns ¢ such that ||c||cc = 1 and

Ve e K : (c,z) < (c,y) + 9.
We will use T(SEPs) to denote the worst case running time of SEP;.

Theorem 12 (Central-Cut Ellipsoid Method [GLS93]). There exists an algorithm, called the
central-cut ellipsoid method,
CCUT—E(SEP(;,H,yo,Eo)

that solves the following problem. Given a projection matriz 11 € SKL] of rank m, vector y° € II, a
convex body K C [-A, A]™ for some positive A with SEPs (see Definition 11) and rational number
€o > 0, it runs in time

|log A|N [poly(n) + T(SEPy-~)] where N < 6(n —m)(|logeo| + (n —m));

after which it outputs:

1. Either a vector a € Q™ such that a € K NI~ (y°);
2. Or a polytope of the form P = poly(C,d), where C € QWIXI" d ¢ QN with K C P and
voly—m (P NIT(y?)) < &o.

Proof. Such algorithm can be obtained by trivial modifications to the central-cut ellipsoid algo-
rithm [GLS93], which we outline here. Handling the constraint Ila = y" can be done by projecting
the covariance matrix of ellipsoid onto TI71(y%). At kth iteration, for all k, we add hyperplanes
returned by SEPgs to P.

Algorithm terminates with a feasible a € Q" with ITa = y° only if SEP;(a) asserts feasible for
some d < €g, in which case ¢ € K. Otherwise, when the maximum number of iterations is reached
we simply return. O

4 Finding Separating Hyperplanes on a Subspace

We now describe our main technical contribution: An ellipsoid algorithm which can output a
certificate of infeasibility on a restricted subspace using only the separation oracle SEP;s as in
Definition 11. The procedure uses the central-cut ellipsoid method [GLS93] as a sub-routine. The
main technical ingredient of our algorithm is Theorem 17, which is stated and proven in Section 4.1:
It allows us to express this as another convex programming problem in terms of the “history” of
constraints returned by separation oracle. Finally in Section 4.2 we present our ellipsoid algorithm,
bound its running time and prove its correctness.

4.1 An Equivalent Convex Problem

We first state some useful propositions. Recall our goal: Given convex body K, a subspace II
and yo € II, we have a polytope P separating various points {y} C II"!(yg) from K. We want
to compute a separating hyperplane on II. Our approach is formulated in Lemma 16, see also
Figure 1. We first show that points interior in K have far off projections from Ilyy.



Lemma 13. Given convez body K C R, a projection matriz TI € SKL] with rank(IT) = m, vector
yo € R and positive real § > vol, 1, (II7(yo) N K),

for all y € B(K, —20), |II(y —yo)|| = 9.

We can restate our goal as the following: Given convex body K, a subspace II and yg € II, we
have a polytope P separating various points {y} C II"!(yg) from K. We want to show that points
interior in K have far off projections from Ilyy. First, we show that points in the interior cannot
project exactly onto Ilyg.

Proposition 14. Given K C RI", ¢ projection matrix 11 € S[f] with rank(IT) = m, and y € R[]
the following holds: For any 6 > vol. ' (1" (y) N K),

T y) NB(K, —6) = 0.
Proof. If 3z € II"!(y) N B(K, —J), then Observation 7 implies B(x,d) C K. In particular,
B(z,0) NI ' (y) CH ' (y) N K = vol,(IT7 (y) N K) = vol,, (1T (y) N B(x, 0)).

Finally since z € 1! (y), B(x,8) NI~ 1(y) is an m-dimensional ball of radius &, whose volume is
vol,, (6) > vol,,, (T~ (y) N K). Hence

vol,, (1T (y) N K) > vol,, (B(xz,6) N H_l(y)) > vol,, (IT"(y) N K),
which is a contradiction. O

Lemma 13 is simply a quantitative version of the above, showing that points further interior in
K have far off projections from Ilyqg.

Lemma 15 (Lemma 13 restated). Given convez body K C R 4 projection matriz 11 € S[}:] with
rank(I) = m, vector yo € R™ and positive real § > VOl;le (H_l(yo) N K),

for ally € B(K, —26), |[II(y — yo)|l = 0.

Proof. For the sake of contradiction, assume there exists y € B(K, —2§) such that ||[TI(y —yo)|| < 0.
Consequently IIB(y, d), which is a sphere of radius ¢ on span of II, contains ITyg. In other words,

0 #1 (yo) N B(y, ). (3)
Since y € B(K, —26), by convexity of K, we can repeatedly apply Observation 7 to show that

y €B(K, —26) = B(B(K, —5), —9),
B(y,§) CB(B(B(K, —3), —5),8) C B(K, ).

Substituting this into eq. (3), we have () # I~ (yo) NB(y, §) C I~ (yo) NB(K, —§) which contradicts
Proposition 14 for our choice of §. O

Having shown that there is a é-neighborhood of Ilyg disjoint from interior of K whenever their
intersection has small volume, we can immediately use Minkowski’s Separating Hyperplane The-
orem to infer the existence of such hyperplane. In fact, any hyperplane perpendicular to the line
from 7o to the closest point in K has this property. We formalize this below.

10



Y

Figure 1: We want to find a hyperplane parallel to I+ separating II7(yo) and K, using only the
inequalities returned by separation oracle, polytope P. The optimal solution of Lemma 16 is given
by y* with corresponding hyperplane IT~*(y*).

Lemma 16. Given convez body K C R™ | a projection matriz I1 € SKL] with rank(IT) = m, vector
Yo € R and positive real § > VOl,;im (Hfl(yo) N K), the hyperplane perpendicular to the projection
of direction from y to closest point in the interior of ILK separates yy and interior of I1K :

Formally any optimal solution y* to the following eq. (4):

Minimize | TL(y — yo)||? (@)
subject to  y € B(K, —26),
satisfies eq. (5):
min _(I(y" —yo), & —yo) > [IL(y* —yo) || (5)

r€B(K,—20)
Proof. By contradiction. Assume for optimal solution y*, there exists x € B(K, —20) such that
((y* = yo), = — yo) < ITL(y* — yo)|I* = (T(y* — 40), T(y* — o)) = (TL(y" — v0), 4" — yo) -

Therefore

(I(y" —yo),z —y") <0 (6)
For some 6 € (0, 1] to be chosen later, consider y(0) « (1 —6) - y* + 6 - x, which is always feasible
for eq. (4) as x € B(K, —29) and B(K, —26) is convex. Then:

1 9[TI(y(8) — yo)|I? 9(y(0) — yo)
5 90 6—0t+ <H H o0 > 0—0t
_ a(11(9) )
a <H o > 0—0+
<H Yy '9) )7 y*>‘9—>0+ = <H(y(0) - yO)vx - y*>
=(I(y" — o),z —y") <0

11



where we used eq. (6) at the last step. We arrive at a contradiction by noting that above inequality
implies existence of 8* € (0, 1] such that

Ty (6%) — yo)|I> < ITL(y* — yo)|1%, y(0%) € B(K, —24). O
Given Lemma 16, we can choose our separating hyperplane ¢ as ¢ = —%. But this
does not quite work for two reasons:

1. Hyperplane ¢ only separates “strict interior” of K as it is, whereas we need to separate K
itself.

2. Depending on K, it might not be possible to represent optimal ¢ using polynomially many
bits, thus we need to account for near optimal solutions.

We now show how to overcome these problems.

Theorem 17. Given convex body K C [—A, A" for some A > 0, a projection matriz I1 € SLT_L] with
rank(I) = m, a vector yo € [~A, A]", for any positive real § > 0 with § > vol; !, (IT7Y(yo) N K),
the following holds: If i/ is an %— approzimate solution to eq. (7)

Minimize  ||TI(y — yo)||?
subject to  y €B (K - <2 + g\ﬁA> 5) v

then TI(y' — yo) # 0 and for ¢ being

A H(y/ — yO)

cE—— " = VzeK:{(cr)<{c,y) + 20v/m. (8)
ITL(y" = yo)lloo
Proof. Before we begin, we set ¢ £ Mﬁ' Let y* be an optimal solution of eq. (7) with ||y* — /|| <

gd. Since y* € B(K,—(2 + €)d), we have B(K,—20) D B(y*,£d) > ¢/. By Lemma 13, this implies
ITI(y" — yo)|| = §, proving II(y — yo) # 0. For any = € K, we can decompose = as x = 2’ + z for
some =’ € B(K,—26) and ||z]|2 < 20. Then:

IL(y" — yo), z — yo) =Ly — vo), 2" — yo) + ALy — v0), 2)
>y —y*), 2" — yo) + (IL(y" — o), 2" — o) — |12] - (¥ — o)
> — Iy —y")| 1T — o)+ 82, —26[T(y — o)
<ed <2AVm by Lemma 16

5
SAm

> — 26||TI(y’ — yo)|| (by the choice of & =

> — 26v/m|[TI(y" = yo)lo-

)

Since ¢ = —H&T&%, we have (c,z) < (¢, y0) + 25/m for any = € K. O

4.2 Ellipsoid Algorithm with Certificate of Infeasibility

Our solver is given in Algorithm 1.

12



Algorithm 1 CERTIFY-E(SEPs,I1, 39, £0): Ellipsoid method with certificate of infeasibility.
Input. e Convex body K C [0,1]" and separation oracle SEPs as in Definition 11,

e Projection matrix II € ST] with rank(IT) = m, yo € R[" and positive real 0 < g9 < 1.

Output. e Either a vector y € Q" st y € K NII7(yq).

e Or c € II with ||¢||oc =1 and Vz € K : {c,x) < g9 + (¢, y0)-
Procedure. 1. Run CCUT-E(SEPg, 11, yo, €) where & « vol,,_, (%)

2. If it returns y € K NI17(yg), then return y.

3. Else let P = poly(C,d) be the polytope it returns. Set J +— 2\5/0%. e+ QA% and

4. Solve eq. (9) using regular ellipsoid method to find an &’d-approximate solution, y* € Q™:

Minimize ||TI(y — yo)||* subject to Cy < d — (2 + £')54/diag(CTC). 9)

(y* —yo)

5. Return ¢ <= —ppre=y S

The proof of the following theorem follows by combining various ingredients we have so far,
especially Theorems 12 and 17.

Theorem 18 (Main technical tool). Algorithm 1 runs in time N - T(SEP,-n) + poly(n)log? %
where N = O <(# of free variables)? log 2oL fwed W”“““) =0 ((n —m)?log %), and provides the

€0

following guarantee: If vol. ' (K NI~ (yo)) > 2\8/% then it outputs y € K NII7(yp).

Proof of Running Time. By Theorem 12, step 1 finishes in time N(poly(n) + T (SEPy-~)) with
N =O((n —m)?+ (n —m)log1/e), where log 1/e = log 1/ vol,_m(g0/2y/m) < O ((n —m) log g)

SO N:O((n—m)Qlogg).

For step 4, we can implement a simple separation oracle which runs in time O(Nn). The regular
ellipsoid method requires O(n? +nlog(1/€'8)) iterations to reach an accuracy of €’d. Each iteration
takes time poly(n) in addition to separation oracle, therefore the total running time of fourth step
is bounded by N poly(n)log(1/¢) = poly(n) log? % Hence the claim follows. O

Proof of Correctness. There are two cases. If algorithm outputs y at step 2, by Theorem 12 y €
Q*n Hil(yo) NnK.

Now consider the other case. Then step 1 will output a polytope P = poly(C,d) such that
K C P, whose volume is bounded by

voly—m(P NI (o)) < Voln_mm <2\€/0m> .

The set of feasible solutions for eq. (9) is B(P, —(2+¢')d) by Lemma 10. Since vol ' (PN~ (yo)) <

0= %, we can apply Theorem 17 and conclude that ¢ as constructed in step 5 will have the

following properties:

e cell

13



¢ flelloo =1,
e Forall x € P, (c,x) < (¢, y0) + 2¢/md. To see this, note K C P, for all € K means:

(c,z) < max(c, z) < max(c,2’) < (¢, y0) +2v/md = (¢, yo) + €o.
reK z'eP

This finishes the proof of correctness. O

5 Faster Solver for Local Rounding Algorithms

We return back to our motivating example. Assume we have n variables, and we want to find a
discrete labeling Z € L[ of those from a set of labels L, under various constraints and objective.
Suppose we “lifted” this problem into a higher dimension RY where |N| > n, and obtained a family
of increasingly tight convex relaxations defined over various subspaces of RY.

Formally, we have a set of subspaces {IIg} sc[n]» represented by their projection matrices and

associated with subsets of [N], and with each subspace IIg, we have an associated convex body,
Kg C IIg[0, 1]V with such that

IIg C Il = llgKr C Kg.

We are given functions FEASIBLE, ROUND and SEED, along with positive integers n,s such
that:

e FEASIBLEg : ITIsQY — {feasible,IsQN}. On input S C N,y € IgQ", it asserts feasible
if y € Kg or returns ¢ € IMgQ" : ||c[|oc = 1 such that* Vo € Kg : {(c,z) < (c,y) in time
poly(rank(Ilg)).

e SEEDg : Kg — 2V. Given S C [N] and y € IIgQ", it returns subset S’ O S such that
% < s when S # (), and rank(Ilg) < n when S = (). Its worst case running time is
bounded by poly(rank(Ilg)) (or poly(n) in the case of S = 0).

e ROUNDg : Kg — L. On inputs S € N and y € Kg, returns an approximation to the
original problem in time poly(rank(Ilg)).

We now describe our main solver. Note that once the algorithm outputs y* € Kg(), the final
output labeling will simply be ROUNDg ) (y*). The proof of the following theorem is easy given
the ingredients so far.

Theorem 19. Algorithm 2 runs in time [sgn log(l/eo)]o(z) (compare this with the straightforward
algorithm which runs in time N log(1/20)) and achieves the following guarantee: Provided that
vol K > o, it outputs y* € Kg(g) and S(0),...,S(l) st for all i:

Hs6)y™ €Ks(, (10)
S(i +1) =SEEDs ) (y"). (11)

Otherwise it asserts vol K < gg.

?)

Furthermore there is no algorithm which runs in time n°® assuming Exponential Time Hypoth-

esis.

4We can handle FEASIBLEs that only returns a weak separation oracle, but since in our application to SDPs we
have access to a strong separation oracle, we assume this for simplicity.

14



Algorithm 2 Fast Solver (to fool local rounding algorithm)

Input. ¢ Maximum number of iterations ¢ and positive real g > 0,
e n, 7, (Kgs)gcin) with separation oracle FEASIBLE, SEED, 1y and y(0) € KyQN all as described

in Section 5.

Output. e Either asserts vol K < &y,
e Or outputs y* € Kg and S(0),...,S(f) st for all iz 1. Hgyy* € Kguy; 2. S+ 1) =
SEEDg(;) (y*)-

Procedure. 1. Initialize global variables S(1),...,S(¢) representing seed sets and global sparse
vector y* € QI representing the final solution (it will be in span of Hgp)-

2. Set S(0) + {0}.

3. Run CCUT-E(SEP () 5,0,0,0) (see Theorem 12) where SEP is given in Algorithm 3.
4. If it asserts feasible, output S(0),...,S(¢) and y*.

5. Else assert vol K < &g.

We prove correctness, running time claim, and ETH hardness in turn.

Proof of Correctness. First we assume correctness of Algorithm 3 and prove correctness of Algo-
rithm 2. There are only two cases:

1. Algorithm 2 returns y* € Kg(y) only if CCUT-Eg(;) returns a feasible solution. For such y*,
by Theorem 12, SEP gy ., (y*) asserts feasible. By correctness of SEP g1y ., (y*), y* satisfies
all claims.

2. Else algorithm asserts voly] K < g9 which means CCUT-E asserted g9 > volg(g) B(Kg(1),0) =
VOIS(O) KS(O)' We know that HS(O)K - KS(O) and K C [0, 1][N] therefore VO][N] (K) <
vol HS(O)K < VO]S(O) KS(O) < €0-

Now we will prove correctness of Algorithm 3 inductively starting from i = ¢. For each i, in
order to prove inductive step, we need to consider in which one of the following steps SEP g(; .,
returned:

1. Step 1: Follows from definition of FEASIBLE.

2. Steps 2 and 6: By construction of S(j)’s and inductive hypothesis, S(j + 1) = SEEDg(;)(y")
holds for all j > 4.

We will prove that FEASIBLEg(;)(y*) asserts feasible for all j > i. For j > i, this immediately
follows from inductive hypothesis. For j = 4, at Step 1 FEASIBLEg(;(y*) asserted feasible.
Thus IIg;)y* € Kgj for all j.

3. Step 5: It returns ¢, only if CERTIFY-E at step 4 outputs ¢, correctness of which follows from
Theorem 18. ]

Proof of Running Time. If we let n; + ns~! for i > 1, we can see that rank(Ilg,) < n; at it
iteration. Hence

T(FEASIBLEg(;)) + T(SEEDg(;)) = (sn;)°™M = nO0).

15



Algorithm 3 SEPg; ., (y):Separation Oracle.

Input. e Positive real g > 0, current iteration 4, current seeds S(i), vector y € Q° @),

Output. e Either asserts feasible, and sets values of global variables S(i +1),...,5(¢) along with
y* so that:
L. Ig)y* € Kg(;) forall j 11 < j </,
2. S(j+1) =SEEDgj(y*) forall j:i < j <l —1.
e Or returns c € g with [|c[oc = 1 such that Vr € Kg(;) : (c,x —y) < 0.
Procedure. 1. If FEASIBLEg; (y) returns ¢ € Ilg;), return c.
2. Else if ¢ > ¢, set y* < y. Assert feasible and return.
3. S(i+ 1) < SEEDg(;()-
4. Run CERTIFY—E(SEPHS(HI)’(;,Hs(i),y,ao) (see Algorithm 1).
5. If it returns ¢, return c.
6

. Else assert feasible.

If we use T; to denote the maximum of T'(SEPg(;) ., (y)) over all possible S(i) and y’s, with Ty =
T'(main); then T; = neo(l) = (r'n)®™M and for any i < ¢:

O .
T; <O(n?,logni/eo)Tit1 + nz+(11) = (nip1)°Wlog(1/e0)Tip1 = s°DnWlog1/eq - Tiya

Tp =000 log*(1/e0). O

Proof of ETH Hardness. Consider the k-clique problem, which cannot be solved in time f (k)n"(k)
under the exponential-time hypothesis [LMS11]. Moreover it is easy to see that k rounds of Lasserre
Hierarchy relaxation is integral for this problem [Lau03], and we can find such a k-clique using a
seed selection procedure with £ = k levels. ]

Next, we will review semidefinite programs from the Lasserre Hierarchy in Section 6 and finally
in Section 7, we will show a sample of how some approximation algorithms using Lasserre Hierarchy
relaxation fit into our framework.

6 Lasserre Hierarchy

In this section, we present a general derivation of Lasserre Hierarchy relaxation. Although our
relaxation is only given for 0/1 programming problems, it can easily be adapted to work on any
set of finite labels.

6.1 Preliminaries

For some positive integer d, let Q@ € RlM<d (resp. P = {P},...,Py} C RM<) be a degree
< d multilinear polynomial (resp. subset of degree < d multilinear polynomials) over n variables
representing objective function (resp. constraints). We want to find a binary labeling of n variables,
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z € {0,1}", which satisfies eq. (12):

Minimize ZSG[M@ Qs [Lies Tu
subject to > gery, Ps[lyes@u =20 forall P € P, (12)
z € {0,1}".

Observe that we can convert any constraint satisfaction problem on {0,1}[™ to this form easily.
In this section, we will first express eq. (12) as an equivalent SDP problem, from which Lasserre
relaxation can be obtained by enforcing positivity only on certain principal minors of this matrix.
This exposition of Lasserre relaxation through constraints on certain minors will be convenient
when we are presenting our partial SDP solver.

Notation 20. Given positive integers n,d, for any vector P € RlM<d and y R2[n], we define
Pxye R2" g5 the following vector:

(Pxy)s = > Pryrus.

TE[n]gd
Definition 21 (Multivariate Moment Matrix on P and Q). Given positive integer n let M" :
R2™ _y R2M2 b yhe following linear matriz function:
M"(y) = [yAUB]A,Bg[n]-

For any P = {P1,...,Py} C Rl<a representing constraints, Q) € RM<d gnd g € R representing
objective polynomial and a guess for its value, let M™7 : R2™ _y Rbn2px2)x(mt2)x2) ge ype
following linear function on block diagonal matrices:

M (y) 0 0 0 0
0 qyw—{(Qy) 0 0 0
0 0 M (P % y) 0 0
n,P,Q, Y
MPOIy) £ 0 0 M (Py # 1) 0
0 0 0 0 o MP(Py*y))

Having defined the moment matrix, we can state the following:

Theorem 22 (See [Las02]). eq. (12) has optimal value < q if and only if there exists y with y # 0
such that M™P:@4(y) = 0.

Definition 23 (Principal Minors of Multivariate Moment Matrices). Given P C Rl<a @ e Rl<a

and ¢ € R as described, for any T : T C 20", T D support(Q) being a family of sets over [n]
n n7P7Q7q
containing the support of Q, we define M ‘T(y) =M ‘T (y) as the following principal minor of

Mn,P,Q,q(y) .

[(M"(y)) 7 0 0 e 0 ]

. 0 qyp — (Q, ) 0 e 0

M| (v) £ 0 0 (M™(PL*y))pp - 0
0 0 0 (MP (P * )77
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Observation 24. Given a family of sets over [n], T C 2", for any P € RlV<d, the minor
(M™(P *y))rr is only a function of Yex(r,q) where

ex(T,d) 2 {AUBUC:AcT,BeT,C € n]<a}-

Proof. Consider (M"(P *y)) 4 p with A, B € U. By Definition 21, this is equal to

(M™"(Pxy))ap=(Pxy)aus= Y Peyausuc,
CE[H]Sd
where AUBUC € ex(U,d) by definition. The second part follows immediately from the definition
of M T(y) O

Using Theorem 22 and observation 24, we can easily state and prove the following:

Theorem 25 (Lasserre Relaxation [Las02]). Given positive integers n,r and d, polynomials P C
RlM<a and Q € RW<e with ¢ € R, the following is r* round Lasserre Hierarchy relazation of

eq. (12):
Find y € RIM<2r+a gubject to M . (y) = 0 and yp = 1. (13)

nl<r
Note that the straightforward SDP relaxation of eq. (12) corresponds to d rounds of Lasserre
hierarchy relaxation (and the “basic” SDP relaxation for the case of quadratic polynomials).

6.2 Separation Oracle for Lasserre Hierarchy

Given a binary labeling problem, we first cast 7 rounds of Lasserre Hierarchy relaxation in our
framework:

e The set of labels is L = {0,1}.
e Lifted space N is (L’ﬂ/), the subsets of [n] of size at most 7/,

e For any subset S C [n], we define IIg as the projection matrix onto R™(52) so that

1 if T eex(S,2),

0 else.

[Mlsz]r = {
The associated convex body, Kg, is defined as
KS = {y c RGX(572) 1Yy = 17 M }:X(S2)(y) t 0} .

Before stating the FEASIBLE procedure, we need the following well known result:

Proposition 26. Given a symmetric matric A € SB, there exists an algorithm which asserts if
A =0 or returns x € QP such that 27 Az < 0 in time at most polynomial in size of A.

Then our FEASIBLEg(y) procedure is trivial: It asserts feasible if M ‘:X(S 2)(y) = 0. Else it
returns z € Q*(52) for which 27 M |:x(s %) (y)x < 0.
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7 Applications of faster solver to Lasserre hierarchy rounding al-
gorithms

In this section, we finally apply our main algorithm as given in Algorithm 2 to various rounding
algorithms for Lasserre Hierarchy relaxations as stated in the introduction. For all these problems,
our separation oracle is the same procedure as described in Section 6.2. The running times we
obtained as well as approximation factors and other guarantees are summarized in Figure 2. The
last two columns list the value of s (the factor by which rank(Ilg) increases in each step of seed
selection) and ¢ (the number of iterations of seed selection) used by the rounding algorithm in each
case. The parameter r refers to the index of the eigenvalue governing the approximation guarantee,
and € is a positive parameter.

Algorithm 4 SEED-QIPg(y): Seed selection procedure for approximation algorithms given
in [GS11] for two-way partitioning problems.

Input. Subset S C [n], and y € Q™52 provided M |

]

Lx(sz) (y) = 0 and yy = 1, positive integer 7.
Output. T with |T| <7 -|S|.

Procedure. 1. Let (z7)r be vectors corresponding to Cholesky factorization of M ]([;1]( g 2)(y). For
each S € ex(S5,2) and f € {0,1}°, set

r5(f) Z (_1)|T‘33f*1(1)UT- (14)

TCf~1(0)

2. Let Tg < 3 reqoys mxs(f)xs(f)T and T4 < I — TIg.
3. Use volume sampling [DR10, GS12b] to choose S”: an r'-subset of vectors from (II§z,(1))
4. Return SU S’

u€n]’

Algorithm 5 SEED-COLORg(y): Seed selection procedure for semi-coloring algorithm as given
in [AG11] on graph G.
Input. Graph G on nodes [n], positive integer r’.

Output. S € [n]<,.
Procedure. 1. Let X, «+ Z?:l e ® xa-xu(z) (same embedding as [AG11)).
2. Use volume sampling [DR10, GS12b] to choose S, an r’-subset of vectors from (Xu)uen)-

3. Return S.

The claimed running times follow from the = sO)R0M runtime guaranteed by Theorem 19

for our solver (Algorithm 2). The rounding algorithm in each case runs within the same time. For
problems marked with *, check the caption for required conditions.

The works [BRS11] and [AG11] use greedy seed selection, but these can be replaced by the
above column selection procedure as well. Below, in Algorithms 4 to 6, we present seed selec-
tion procedures for binary graph partitioning algorithms from [GS11], sparsest cut algorithm from
[GS12a], and semi-coloring algorithm from [AG11], respectively.
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Algorithm 6 SEED-SPARSEST-CUTg(y): Seed selection procedure for sparsest cut algorithm
as given in [GS12a] on graphs G and H.

Input. Graphs G, H on nodes [n] with edge weights given by wg H respectively, positive integer

.

Output. S € [n]<,.

Procedure. 1. Let Xy, < /wl, (z, — xy).

2. Use volume sampling [DR10, GS12b] to choose S, an r’-subset of vectors from (X, )

3. Return S.

u,vE€[nl2”

Problem Name Running Time opPT Rounding S l
Maximum Cut [GS11] 20(r/e%)p0(1/e) 1—n 1- %n 20(r/e) O(1/e)
k-Unique Games [GS11] kO /50 1—n 1- 2)\—";577 kOU/e) 1
Minimum Bisection [GS11] 20(r/)p0(1/e) n Len —o(1) 200/9)  O(1/e)
Maximum Bisection [GS11] 20(r/)p0(1/e) 1-n 1- %n —o(1) 2007/e) O(1/e)
Sparsest Cut* [GS12a] 20(r/€),001) n 1 20(r/€) 1
Independent Set* [GS11] 20(),001) n Q(n) 20(r) o(1)
[AG11] 20 o) n 2z 20(r) 1
Maximum 2-CSPs*  [BRS11] | 2Polv(k/e)rppoly(k/e) ) n—e KOUR/E) 0 (k2 /€2)

Figure 2: Running times and approximation guarantees for various Lasserre Hierarchy relaxation
rounding algorithms using our faster solver. For sparsest cut, the spectral assumption is A, >
n/(1 — ¢). For independent set [GS11], the spectral assumption is A\, < 14 O(1/A) where A is
the maximum degree. For independent set [AG11], the assumptions are that G is 3-colorable and

An—r < 10/9. Finally for maximum 2-CSPs [BRS11], the assumption is that A, > 1 — (i)2

We conclude the paper by mentioning some notable Lasserre based approximation algorithms
for which we are not able to get a runtime improvement:

e The algorithm for independent sets in 3-uniform hypergraphs [CS08] and the algorithm for
directed Steiner tree [Rotll]|, which are adaptive with a large number of stages ¢ in the

rounding procedure.

e The algorithm for minimum/maximum bisection in [RT12], which requires choosing the seed
set at random independently from the final solution; whereas our solver, by nature, outputs
a solution which depends on the seed set.
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A Conditioning and Variance Reduction of Lasserre solutions

For any S C [n], let [k]® be the set of all possible labelings of S. Recall the vectors zg(f) defined
in (14). Let [k]® = {T} where T denotes the (only) labeling of empty set with z(T) = x4 being
some constant unit vector.

Definition 27. Given S C [n] and f € [k]® with xs(f) # 0, we define the vectors conditioned on
f as the following. For any A C [n] and g € [k]?, the vector w4(f(g) is given by:

A zsua(fog)
a9 = Tl

Formally the conditional vectors x4 7(g) correspond to relaxations of respective indicator vari-
ables. Thus such vectors behave exactly in the same way with non-conditional vectors. Some of
these properties are given in the following easy claim, whose proof we skip. For g € [k]A and
h € [k]P that are consistent on A N B, we denote by g o h € [k]4YP the labeling that restricts to g
(resp. h) on A (resp. B).

Claim 28. For any f € [k]° with xs(f) # 0, the following are true:
(a) xpp(T) = zg)¢(f) and [|zg ¢ (f)]* = 1.

2 .
(b) For any g € [k]* and h € [k]B, we have (aip(9),zpp(h) = ||zavpr(goh)||” if g.h are
consistent on AN B and 0 otherwise.
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(¢) For any g € [k]*, we have xa(g) = >orllzs(Fllzar(g) so that
lza(@)l? = ¢ llzs(DIPzar (911 -

A _ {zs(f),zalg)
(d) For any g € (M4, [lz.(g)||? = ZsUhzatal,

(e) For any g € [k]* and h € [k]P,

xAuB|f(gOh)
2pipa(h) = SAVBILI 2 1)
Blre(M) = T

Proof. Ttems a to d are easy. For item e, by definition:

wpiy(h) = ZSuAus(fogoh) _ zauplgeh) - Jzs(f)l .
o lesoalfo gl Teas@l-Tes(Hl

Assume that some labeling fy € [k]%° to Sy has been fixed, and we further sample a labeling
f to S with probability [|zgf,(f)||* (i-e., from the conditional probability distribution of labelings
to S given labeling fy to Sp). The following defines a projection matrix which captures the effect
of further conditioning according to the labeling to S. For a nonzero vector v, we denote by v the
unit vector in the direction of v.

Notation 29. Given fo € [k]*° and S C [n], let

T
Ui & > zsip(f) - zs5, ()
fxs)p (£)#0

Similarly let H§ & ] —IIg where I is the identity matriz of the appropriate dimension.

We will now relate properties of the conditional probability distribution arising from partial
labelings to the above projection matrix. First we will define the random variables corresponding
to each indicator function with matching moments:

Definition 30. Given f € [k]°, for all g € [k]4, h € [K]B, let X4 f(g9) and Xpjs(h) be two random
variables over {0,1} such that:

Prob[X4¢(g) = 1 A Xp¢(h)] = (z4)£(9), vB£(h))-

The above definition suggests a very simple rounding scheme: Choose a label for each variable
based on this probability. In fact, all rounding algorithms we can handle in our framework carry
this trait. One way to measure how far we can go with only these probabilities is to look at their
variance:

Claim 31. Var(X4¢(9)) = llza(9)1* — lzas(9)I* = Hl'é)_‘f"L'AU(g)Hz'
Proof. Since X4f(g) is a random variable over {0, 1},
Var(Xaj;(9)) = E[Xap(9)](1 = E[Xa(9)]) = w417 (9)1* = (o, wa1(9)) = llagpap(9)|®. O

Claim 32. Cov(Xa\f(9). Xp|s(h)) = (w5 ;25(9), x5 ;)£ ()
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Proof. Since E[XAU(Q)XBU(}L)] = <xA|f(g),:zB‘f(h)), We can express COV(XA|f(g),XB|f(h)) as

= (zA1£(9), 2B (h) — (To|p, 217 (9)) (T s, w1 (h)) = <5Uq)ﬁf$A|f(9)>fUé|f$B|f(h)>- O

The following was first observed in [GS11], and enables controlling probabilistic quantities in
terms of a geometric quantity, the projection distance to certain subspaces. In particular, it says
that if we can somehow choose S and fj in such a way that span of Ig) s, is very close to the vectors
Ty|f,, then the variance will be small.

Lemma 33. Given fo € [k]®°, subsets S, A C [n], and g € [k]*, we have
L 2
B fas s (512 [Var(Xajs,, (9))] = 55,2 415, (9) 7.

Proof. Using Claim 31, we see that:

E f ooy DIz [Var(Xaj, g (9 Z 5170 I (2 agz. g0 (D12 = Nz a17.50 (9)1I)
= HxA\fo Z HQCS\fo || ”95A|f fo( )||4 (using Claim 28 (c))
= H:EA\fo Z ”‘Ts‘fo || fL’@lf fO,SL‘Alf fo( )>2 (using Clalm 28 (b))
= HxA\fo (g)H2 - Z<$S|fo(f)a$A|f,f0 (9))2 (using Definition 27)
f
2
= HxA\fo(g)H2 - Z <$S|f0(f), xSUAVO(fog)> (using Claim 28 (e))
el w5150
1 . .
=z a@)? - Z m(wsm(f), a1, (9))? (using Claim 28 (b))
fias) 5, (F)#0 |fo
=z @1 =D (@si5(F) as(9))?
f
= HHfS‘_\fo'xAUo (9)”2 (using Notation 29). O

B Other Rounding Algorithms

In this section, we will show how the partial coloring algorithm from [AG11] and 2-CSP algorithm
from [BRS11] fit into our framework. The main difficulty is that both these algorithms are adaptive.
In particular, a naive adaptation will have ¢ = (r) which is quite undesirable for our faster solver.
We can easily get around this difficulty by replacing the adaptive seed selection procedure with a
suitable version of Algorithm 4.

B.1 Partial Coloring of 3-Colorable Graphs
Theorem 34. Given a 3-colorable d-regular graph G on n nodes, positive real 1 > ¢ > 0 and

positive integer r, suppose its r" largest eigenvalue of normalized Laplacian matriz, Ay—r, satisfies

Ay < 4-9
3
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for some positive real § > 0. Then, for the choice of ' = O(r/de), Algorithm 5 followed by
the rounding algorithm as described in [AG11] will output a partial coloring which colors at least
(1-— 5)2%71 nodes. Furthermore this algorithm can be implemented in time poly(n)2°0 /%) using
the faster solver framework.

The main advantage of our seed selection procedure (which enables the speed-up using our
faster solver) is that we pick ' nodes all at once, instead of picking them one-by-one in r’ steps as
in [AG11]. We have the following as an immediate corollary of Theorem 34:

Corollary 35. Given a 3-colorable d-regular graph G, for any positive integer r with Ap—, <
% — (1), we can find a partial coloring on %§ nodes and an independent set of size at least {5 in
time poly(n)2°()

Before we begin the proof of Theorem 34, we will state some simple claims. As the method
applies for k-colorable graphs with different parameters, below for clarity we first use k£ for the
number of colors, and then later set k = 3.

Claim 36. For any edge (u,v) of G,
1 2
92 HXu +Xv”2 S1- k
In particular, if we use A to denote the normalized adjacency matriz of G, then:

Tr [ XTX(I+ A)] <n (1 — z> :

Proof.

1 1 . . ) .
SIXu+Xl? = 53 (leg 2@ + lag 2o ()P + 2eg 2.6, o3 20()))

:52

[y

lru @I = @I + 2@ = oo @)

s
Mm
=
N

- % S (@I + o (I + 2l ()220 ()]?) (using (u(i), (i) = 0)
1€[k]

1= LS ()P + 1P
1€[k]

At this point, observe that ;. (Jlza(@)? + Hxv(z)|]2)2 is a convex function on ||z, (i)||* and
2o (7)I*’s. Since 3=, l|lzu (@) = 32, 2o (7)| = 1, it is minimized when [z, (3)[* = [l2.(j)|* = .
Substituting this into the above expression, we see that:

1 ) k(2)? 2
— || X+ XISl ==+ )] =1——.
I+ <1-5(2) =13

For the final part, observe that:

T 1 2 _ 2|E(G)| 2\ _ 2
Tr [X X(HA)]_a Y Xu+ X P (1-2)=n(1-2). O
{uv}€E(G)
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Claim 37. Given a graph G and positive integer v, for A\, being the r™* smallest eigenvalue of
corresponding normalized graph Laplacian matriz, the following holds:

12
D o (XTX) < <k

j=r

Proof. Follows from using the upper bound from Claim 36 on inequality:
> oi(XTX) < T [(XTX(1+A4)] . O
j=r

Claim 38. Assume u is uncolored. Then:
1
1
> gzl > 5.
i

Proof. Note that quﬁfxu“c( DNI? = N2y (D)2 (A= 12y () [|*). If wis uncolored, then 1— ||x, ¢ (4)[|* =

% for all i € [k]°, in which case we have:
L 2 1 e 1
> izl > 52 2 s DI = 5- 0
i i

For a subset S of vertices of G, we denote by X § the projection operator onto the orthogonal
complement of span{X, | u € S}.

Lemma 39. For coloring f to a subset S sampled with probability ||zs(f)||?:

Ey [Z Hflféfxuf(i)\zl < IX5 Xl
%

Proof. From Lemma 33, we know that E/ [Zl Hxé‘fxu‘f( ] > Mg @ (i H < || XFX,|% The

final inequality follows from the same arguments as in [GS11]. O

Proof of Theorem 34. Let &' = 3§ and ¢’ = e§’. By [GS12b], we know that volume sampling of
= O(r/e’) columns yields

S IXEXP < (142 Y05 (X7X) < (1 +) S
u j=r r
Using Markov inequality, the fraction of uncolored nodes is bounded by:
/
<2n(1+¢) 12—2){:4: = 5((21+ir)) (for k = 3).
For A\, < % — %5’ , this expression becomes %igjn, which implies
1+ o —¢ & 5/2

(1—¢) = (1—¢).

(1—¢) =

E [fraction of colored nodes| > 1— 55 =157 ~ 157 o2 o
To prove that the coloring output is legal, notice that for any pair of adjacent nodes (u,v) €

E(G), both |2y £(i)||* and [|2,;(i)]|* cannot be larger than 1/2 both at the same time. O

®This follows from the threshold rounding algorithm used in [AG11] for coloring, which colors u with color i if
[zt (D) > 1/2.
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B.2 Approximating 2-CSPs

Given a 2-CSP problem on variables [n] and labels [k], let G be its constraint graph. For conve-
nience, we assume G is regular; however all our bounds still hold when G is non-regular. We use
A to denote G’s normalized adjacency matrix and \; to denote the i*" smallest eigenvalue of G’s
normalized Laplacian matrix. Finally we will use uv ~ G to denote sampling a constraint with
probability proportional to the weight of constraint between v and wv.

Embedding. Consider the embedding used in Lemma 5.3 of [BRS11] which is used to con-
vert k vectors z,(i) into a single vector. Given a partial assignment f € [k]° and u € [n] with
(w4 £(4))iep) C R™, we define X, (f) as the following vector.

RN
Xu(f) = N Z ”méﬂfwulf(J)H (15)
J

Seed Selection and Rounding. We will give only an overview of the seed selection procedure.
In [BRS11], assuming some lower bound on A, (in terms of ¢, k, where ¢ is the additive approxima-
tion error), a seed set of 7 - poly(k/e) vertices will be picked in as many iterations, one vertex at a
time. We modify the seed selection to involve fewer adaptive stages, with £ = O(k?/c?) stages each
picking O(r/e) vertices each. Plugging into our general solver then gives a runtime improvement
as before.

At i Jevel, we choose a seed set of size O(r/e), S;, from the matrix X(fi) = [Xu(fi)luepm

where X,,’s are defined in eq. (15). After choosing seed set S;, we sample an assignment g; € [k]°
(conditioned on f;_1) that satisfies

Ofi_1,9i S IEHN||=’JES\fi_1(9)||2 [5fi7179]

where 07 is defined in eq. (17) and set f; <— fi_1 0 g;. We repeat the seed selection procedure as
long as €5, > € where € is as defined in eq. (16).

The rounding procedure remains the same — independent labeling for each CSP variable from
the respective conditional distributions. Formally, for each variable u € [n], we choose a label
i € [k] with probability ||z, (1)||?> independently at random. In Theorem 44, we will show that

=0 <I§), i.e. seed selection will terminate after choosing at most /¢ sets.

Analysis. Let us begin by defining the quantity

Ef é]Euva Z ‘E [Xuv|f(ij)] —E [XUIf(i)] E [Xv|f(j)] ‘

(i,5)€lk]?
=Euw~c Z ’COV [Xu\f(l)a X’u|f(])] ’ = Euv~a Z )<$(Z)L|fxu|f(l)v mqﬁfxmf(]» . (16)
i3 i,J

As shown in [BRS11], the above gives an upper bound on the expected extra fraction of unsatisfied
constraints in the rounded solution compared to the Lasserre SDP optimum (when performing
rounding after conditioning on assignment f). Therefore, when €5 < €, we get an additive e-error
approximation. Our goal is prove (which we will do in Theorem 44) that for £ < O(k/e), we must
have e, < e.

27



If we define the quantity 6y measuring the expected total variances of each &, (i) as

0p £Eu Y Var [Xy ()] =Eu Y llajipau ;0 (17)
ic[k] i€[k]

then it is easy to see that ¢y < kéy by Cauchy-Schwarz.
We will first relate eq. (16) to the inner products of the embedded vectors X, (f).

Claim 40. Eyuc [(Xu(f), Xo(f))] = (3£)°.

Proof. We have

2
(il s O (2 [@iyalr (@), 2w ()]

KXu(f), Xo(f)) = Z ||xé-‘fxu‘f(i)||H:Eﬁfxmf(j)n - Zij HafﬁfoIf(i)H”xé_\fx”'f(j)u

(18)

where the second step uses Cauchy Schwarz. Since

1/2 1/2
2 N 0) (lewwxuf ||> <¢E(Z||xu|f<i>u2) — Vi

i

the expected value of the above lower bound (18) for uv ~ G is at least 5? k. O

We now upper bound the lengths of the embedded vectors.

2
Claim 41. || X, (f)|]? < Zie[k] Hxé_lfxﬂf(Z)H . In particular, E,|| X, (f)||? < d¢.

(o 51 05 7 O
1 2 _ o (jpTuls (D)ol .
Proof. gIXulHI" =B ot oot 2 O S (=

2 2
:Ué‘lfxuv(z)H) < E; xdﬂfxldf(i)H . ]

Now for fixed f we will upper bound the expected value of 874 over g ~ ||z ¢(g)||* in terms of
the projection distance of the embedded vectors from the subspace spanned by X,(f) for v € S.
(Below, Xg(f)* denotes the projection onto the orthogonal complement of span{X,(f) | v € S}.)

Claim 42. E9N||zs|f(9)”2 [5f,g] < EUNG |:HX§‘_(f)XU(f)H2:| .

2 2
Proof. By Lemma 33, we know that E, [ij'g quu\g,f(i)“ ] = Hﬂélfxuv(i)H . Since x|y is in the

span of Ilg; by Claim 28(c), H§|fxu|f(i) = H§‘ij‘fxu‘f(i). Similarly for any v € S and j € [k],
the vector mé-‘fxv”(j) is in the span of IIg;. By using the same arguments from [G811]6, namely

the embedding used here preserves linearity,

2
T ) v (i H X5 (HXu(HI-
Taking expectation over u completes the proof.

Using the above, we can prove the main claim about the seed selection procedure, namely that,
assuming A, is close enough to 1, the expected variance d; can be reduced by a geometric factor
by conditioning on the assignment to a further O(r/e) nodes.

5See Claim 24 in the full version of [GS11].
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Lemma 43. Given f € [k]®, positive real € > 0 and positive integer r with A\py1 = 1 — %, if
e = ¢ then there exists a set of O(rk?/e?)-columns of X(f), S and g € [k]® such that zs£(g) # 0
and:

52
5f’g<5f_9</€2) . (19)

Furthermore such S and g can be found in poly(n)ko(’"/g) time using volume sampling [DR10,
GS12b] to find S and then enumerating all g’s.

Proof. Let p = ¢/k, and u = E, || X,||?> where for notational convenience we suppress the dependence
on f and denote X, (f) by X,. Observe that

1
—Tr [XTXA] = Eypnc:(Xus Xo) = (e4/k)* = p?
n

by Claim 40. This implies 1 Tr [XTX L] < E, | Xu[* — p* = p — p*. From Lemma 30 of [GS11], we
know that volume sampling O(r/p?) columns from X yields a set S for which:

1/n)Tr [XTXL] —p?
Ly < 2y ( o N
E.| X3 Xull” < (1+0(%) § e A 0) S (1+0(p*)) 2

Since p < 1, we have (1 — p?/2)71 < (1+ 2p?):

2

<(1+0) (=0 <1 + ip2> < (1+0(p%) <M - '04>

<u—Q(p°)
<6 —2(p*)  (by Claim 41) .

By Claim 42, E, [07,] < E,|| X2 X,||?, which means there exists g for which §7, < §p —Q (2—2) O

We put together everything in the following theorem.

Theorem 44. For { = O (é”—j), seed selection procedure will output a partial assignment fo with
€f, €.

Proof. Suppose €5, > ¢ for all i < £. Then by Lemma 43, for each ¢ < £:

. g2 ie?
Og(sfig(SfO—ZQ ﬁ <1-9Q ﬁ 25f€<0,

which is a contradiction. O
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