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1 Introduction

Informally, a family of computational groups is a family of groups whose elements are represented by
bit strings in such a way that equality testing, multiplication, inversion, computing the identity element,
and sampling random elements can be performed efficiently. Loosely speaking, a family of computational
groups is called pseudo-free if, given a random group G in the family (for an arbitrary value of the security
parameter) and random elements f1, . . . , fm ∈ G, it is computationally hard to find a system of group
equations

vi(a1, . . . , am;x1, . . . , xl) = wi(a1, . . . , am;x1, . . . , xl), i = 1, . . . , s, (1)

and elements g1, . . . , gl ∈ G such that (1) is unsatisfiable in the free group freely generated by
a1, . . . , am (over variables x1, . . . , xl), but vi(f1, . . . , fm; g1, . . . , gl) = wi(f1, . . . , fm; g1, . . . , gl) in G for
all i ∈ {1, . . . , s}. The notion of pseudo-free family of computational groups (in many variants) was
considered by Hohenberger [Hoh03], Rivest [Riv04], Micciancio [Mic10], Jhanwar and Barua [JB09]; for
motivation, we refer the reader to those works.

An interesting problem is to construct a provably pseudo-free family of finite computational groups
under some standard cryptographic assumption. Micciancio [Mic10] proposed a solution to this problem
in the class of all abelian groups. The definition of pseudo-free family in this class is obtained from the
above definition by requiring all groups in the family to be abelian and replacing the free group with the
free abelian group. If both p and 2p+1 are prime numbers, then p is called a Sophie Germain prime and
2p+ 1 is said to be a safe prime. Let N be the set of all products of two distinct safe primes. Then the
pseudo-free family in [Mic10] consists of the groups of all invertible residues modulo n ∈ N . However,
the proof of pseudo-freeness in [Mic10] is based on a very strong assumption. Informally, this assumption
is that, given a random n ∈ N (for an arbitrary value of the security parameter) and a random invertible
residue g modulo n, it is computationally hard to find an integer e ≥ 2 and an eth root of g modulo n.
Note that it is unknown whether N is infinite. Indeed, this holds if and only if there are infinitely many
Sophie Germain primes, which is a well-known unproved conjecture in number theory.

Jhanwar and Barua [JB09] considered the same family of finite abelian computational groups as
in [Mic10], but with slightly different representations of group elements by bit strings and different
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distributions of random elements of the groups. They proved that this family is pseudo-free under the
same assumption as in [Mic10].

The main result of this paper is a construction of a pseudo-free family of finite computational groups
(in the class of all groups) based on the general integer factoring intractability assumption (see Section 4).
To our knowledge, this is the first family of finite computational groups that is provably pseudo-free in
the class of all groups under a standard cryptographic assumption. Our main result has both advantages
and disadvantages compared to the results of [Mic10] and [JB09] cited above. The advantages are as
follows:

• Our result is based on a much weaker cryptographic assumption.

• Our construction is based on general results (Theorem 3.7 and Lemma 3.8), which may be useful
in constructing other pseudo-free families of finite computational groups.

The disadvantages are as follows:

• Each element of a group in our pseudo-free family is represented by infinitely many bit strings.

• We have to use a non-succinct representation for elements of the free group by bit strings (in systems
of equations).

Note that we define pseudo-freeness in an arbitrary variety of groups V with respect to a concrete
probability ensemble (of a special form) and a concrete representation for elements of the V-free group
by bit strings. This definition is more general and more correct than the ones used in other works.

The most interesting pseudo-free families of computational groups are those that have exponential
size (see Definition 3.2). Without this condition, pseudo-free families of computational groups per se are
of little interest; they can be constructed without any cryptographic assumptions (see Lemma 3.8). In
Remarks 3.4–3.5, we show how to construct (under some additional assumptions) a collision-intractable
hash function family from a family of computational groups that is pseudo-free in a nontrivial variety of
groups and has exponential size. Our pseudo-free family has exponential size (see Remark 4.1); the same
holds for the pseudo-free families in [Mic10] and [JB09].

The rest of the paper is organized as follows. Section 2 contains notation, basic definitions, and
general results used in the paper. In Section 3, we formally define and discuss pseudo-free families of
computational groups and related notions. Also, Section 3 contains some general results concerning
pseudo-free families of computational groups. In Section 4, we construct a family of finite computational
groups and prove its pseudo-freeness (under the general integer factoring intractability assumption).

2 Preliminaries

Throughout the paper, N denotes the set of all nonnegative integers. Suppose n ∈ N. As usual, we
denote by {0, 1}n the set of all bit strings of length n. Furthermore, let {0, 1}≤n =

∪n
i=0{0, 1}i and

{0, 1}∗ =
∪∞

i=0{0, 1}i. The unary representation of n, i.e., the string of n ones, is denoted by 1n.
When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples

of integers) are represented by bit strings in some natural way. Sometimes we identify such objects with
their representations. Unless otherwise specified, integers are represented by their binary expansions.
For a positive integer n, denote by binn the binary expansion of n without leading zeros. That is, if
n = 2m + 2m−1bm−1 + · · · + 2b1 + b0, where bi ∈ {0, 1}, then binn = 1bm−1 . . . b1b0. It is evident
that bin is a one-to-one mapping of N \ {0} onto the set of all bit strings beginning with 1. Moreover,
|binn| = ⌊log2 n⌋+ 1 for all positive integers n.

Let n be a positive integer. Then we denote by Zn the ring Z/nZ and by Z⋆
n the group of units

of Zn. It is well known that Z⋆
n = {z + nZ | z ∈ Z, gcd(z, n) = 1}. A divisor d of n is called nontrivial if

d ∈ {2, . . . , n− 1}. (If k and l are integers and k > l, then {k, . . . , l} = {i ∈ Z | k ≤ i, i ≤ l} is empty.)

Remark 2.1. Let n ∈ N \ {0}. Also, suppose y is an integer such that y ̸≡ 1 (mod n), y ̸≡ −1 (mod n),
and y2 ≡ 1 (mod n). Then it is well known that gcd(y − 1, n) and gcd(y + 1, n) are nontrivial divisors
of n. Indeed, since

y − 1 ̸≡ 0 (mod n) and y + 1 ̸≡ 0 (mod n), (2)
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we have gcd(y− 1, n) ̸= n and gcd(y+1, n) ̸= n. Moreover, (y− 1)(y+1) = y2 − 1 ≡ 0 (mod n) and (2)
imply that gcd(y − 1, n) ̸= 1 and gcd(y + 1, n) ̸= 1. Thus, gcd(y − 1, n), gcd(y + 1, n) ∈ {2, . . . , n − 1}.
See also [NC00, Theorems 5.2 and A4.11], [AB07, Lemma 10.22].

An integer n ≥ 2 is said to be a perfect power if n = ml for some integers m, l ≥ 2.

Lemma 2.2 ([Ber98], [Die04, Algorithm 2.3.5, Lemma 2.3.6], [NC00, Exercise 5.17], [Sho08, Exer-
cise 3.31]). There exists a deterministic polynomial-time algorithm that, given an integer n ≥ 2, decides
whether n is a perfect power and if so, finds some integers m, l ≥ 2 satisfying n = ml.

Let ϕ be a mapping. We denote by domϕ the domain of ϕ. For any k× l matrix M over domϕ, ϕ(M)
is defined as the k × l matrix whose (i, j) entry is ϕ(mi,j), where mi,j is the (i, j) entry of M (for all
i ∈ {1, . . . , k} and j ∈ {1, . . . , l}). Since tuples can be considered as matrices with one row, this extends
ϕ to tuples of elements of domϕ. For example, if g is an element of a group G and M is an integer k × l
matrix, then gM is the k× l matrix over G whose (i, j) entry is gmi,j , where mi,j is the (i, j) entry of M .

Suppose ρ is a mapping of a subset of {0, 1}∗ onto a set S. Also, let s ∈ S. Then we denote by [s]ρ an
arbitrary preimage of s under ρ. A similar notation was used by Boneh and Lipton in [BL96]. In general,
[s]ρ denotes many strings in {0, 1}∗ unless ρ is one-to-one. We use any of these strings as a representation
of s for computational purposes.

Let I be a set. Suppose each i ∈ I is assigned an object zi. Then we denote by (zi | i ∈ I) the family
of all such objects and by {zi | i ∈ I} the set of all elements of this family.

For convenience, we say that a function π : N→ N \ {0} is a polynomial if there exist c ∈ N \ {0} and
d ∈ N such that π(n) = cnd for any n ∈ N \ {0} (π(0) can be an arbitrary positive integer). Let K be
an infinite set of nonnegative integers. A function ϵ : K → {r ∈ R | r ≥ 0} is called negligible if for every
polynomial π there exists a nonnegative integer n such that ϵ(k) ≤ 1/π(k) whenever k ∈ K and k ≥ n.

Throughout the paper, we deal with only discrete probability distributions. Let Y be a probability
distribution on a finite or countably infinite sample space Y . Then we denote by suppY the support of Y,
i.e., the set {y ∈ Y | PrY{y} ̸= 0}. In many cases, one can consider Y as a distribution on suppY. Any
mapping of Y into an arbitrary set is called a random variable. Suppose θ : Y → Z is a random variable,
where Z is a finite or countably infinite set. Then the distribution of θ is denoted by θ(Y) (recall that
this distribution is defined by Prθ(Y){z} = PrY θ

−1(z) for each z ∈ Z).
We use the notation y1, . . . ,yn ← Y to indicate that y1, . . . ,yn (denoted by upright bold letters)

are independent random variables distributed according to Y. We assume that these random variables
are independent of all other random variables defined in such a way. Furthermore, all occurrences of an
upright bold letter in a probabilistic statement refer to the same (unique) random variable. Of course,
all random variables in a probabilistic statement are assumed to be defined on the same sample space.
Note that the probability distribution in the above notation can be random. For example, suppose
(Ei | i ∈ I) is a probability ensemble consisting of distributions on a finite or countably infinite set E,
where the set I is also finite or countably infinite. Moreover, let I be a probability distribution on I.
Then i ← I and e ← Ei mean that the joint distribution of the random variables i and e is given by
Pr(i = i, e = e) = PrI{i}PrEi

{e} for each i ∈ I and e ∈ E.
The notation y1, . . . , yn ← Y indicates that y1, . . . , yn (denoted by upright medium-weight letters)

are fixed elements of Y chosen independently at random according to Y.
Let P and Q be probability distributions on the same finite or countably infinite sample space S.

Then the statistical distance (also known as variation distance) between P and Q is defined as

∆(P,Q) = 1

2

∑
s∈S

|PrP{s} − PrQ{s}|.

It is well known that ∆(P,Q) = maxM⊆S |PrP M − PrQM |. See also, e.g., [Sho08, Section 8.8], [AB07,
Subsection A.2.6].

Suppose E = (Ei | i ∈ I) is a probability ensemble consisting of distributions on {0, 1}∗, where I ⊆
{0, 1}∗ or I ⊆ N. Then E is called polynomial-time samplable if there exists a probabilistic polynomial-
time algorithm A such that for every i ∈ I the distribution of the random variable A(i) (if I ⊆ {0, 1}∗)
or A(1i) (if I ⊆ N) coincides with Ei. It is evident that if E is polynomial-time samplable, then there
exists a polynomial π satisfying supp Ei ⊆ {0, 1}≤π(|i|) (if I ⊆ {0, 1}∗) or supp Ei ⊆ {0, 1}≤π(i) (if I ⊆ N)
for any i ∈ I.

Let Z be a nonempty finite set. Then we denote by U(Z) the uniform probability distribution on Z.
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We need to generate, given a positive integer n, random integers m such that m+ nZ are distributed
uniformly on Z⋆

n. But if |Z⋆
n| is not a power of 2, then this cannot be done in any bounded time. However,

the next well-known lemma shows that there exists a probabilistic polynomial-time algorithm A satisfying
the following conditions for every positive integer n:

• A(n) ∈ {0, . . . , n− 1}, A(n) and n are coprime.

• The statistical distance between the distribution of A(n) + nZ and U(Z⋆
n) is at most 2−π(|binn|),

where π is an arbitrarily prescribed polynomial.

This algorithm is constructed by using the well-known generate and test paradigm (see [Sho08, Sec-
tion 9.3]).

Lemma 2.3. Let π be a polynomial. Then there exists a probability ensemble (Zn |n ∈ N\{0}) such that
the following conditions hold:

(i) For any n ∈ N \ {0}, suppZn is the set of all integers in {0, . . . , n− 1} that are coprime to n.

(ii) For all n ∈ N \ {0}, ∆(νn(Zn),U(Z⋆
n)) ≤ 2−π(|binn|), where νn is the natural homomorphism of

Z onto Zn.

(iii) The probability ensemble (Zbin−1 u |u ∈ bin(N \ {0})) is polynomial-time samplable.

Proof. Choose a polynomial η such that |Z⋆
n|/n ≥ 1/η(|binn|) for all positive integers n. (In fact,

|Z⋆
n|/n = Ω(1/ logb logb n) for any fixed real number b > 1; see, e.g., [Pra57, Kapitel I, Satz 5.1], [Sho08,

Exercise 5.5].) Let n be a positive integer and let l = |binn|. For brevity, we denote by In the set of all
integers in {0, . . . , n− 1} that are coprime to n. Suppose A is a probabilistic polynomial-time algorithm
that iterates on input n the following steps at most 2η(l)π(l) times:

1. Choose m← U
({

0, . . . , 2⌈log2 n⌉ − 1
})

.

2. If m ∈ In, then output m and stop.

If the computation does not terminate during 2η(l)π(l) iterations, then A outputs 1 (this can happen
only for n ≥ 2).

We define Zn to be the distribution of the random variable A(n). Then Condition (iii) is evident.
Let Sn be the event that the computation of A on input n terminates in some iteration and let S′n be
the complementary event of Sn. It is easy to see that, conditioned on Sn, the random variable A(n) is
distributed uniformly on In. This implies Condition (i). Finally, Condition (ii) holds because

∆(νn(Zn),U(Z⋆
n)) = ∆(Zn,U(In)) = max

M⊆In

∣∣Pr(A(n) ∈M)− PrU(In)M
∣∣

= max
M⊆In

∣∣Pr(A(n) ∈M |Sn) Pr Sn + Pr(A(n) ∈M, S′n)− PrU(In)M
∣∣

= max
M⊆In

∣∣Pr(A(n) ∈M, S′n)−
(
PrU(In)M

)
(PrS′n)

∣∣ ≤ PrS′n

and

PrS′n =

(
1− |In|

2⌈log2 n⌉

)2η(l)π(l)

=

(
1− n

2⌈log2 n⌉
|Z⋆

n|
n

)2η(l)π(l)

≤
(
1− 1

2η(l)

)2η(l)π(l)

≤ e−π(l) ≤ 2−π(l).

Here e denotes the base of the natural logarithm.

Let G be a group. Then for any system S of elements of G, ⟨S⟩ denotes the subgroup of G generated
by S. Moreover, let ord g denote the order of an element g ∈ G.

Lemma 2.4. Suppose n is an odd positive integer and τ(n) is the number of prime divisors of n. Also,
let u← U(Z⋆

n). Then

Pr(ordu is odd or −1 + nZ ∈ ⟨u⟩) ≤ 1

2τ(n)−1
. (3)
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Proof. If τ(n) ≤ 1, then (3) is trivial. Assume that τ(n) ≥ 2. Then n is composite and, in particular,
ord(−1 + nZ) = 2. It is easy to see that if g is an element of even order in a group, then g(ord g)/2 is the
only element of order 2 in ⟨g⟩. Therefore,

−1 + nZ ∈ ⟨u⟩ ⇐⇒ ordu is even and u(ordu)/2 = −1 + nZ (4)

for any u ∈ Z⋆
n.

By [NC00, Theorems 5.3, A4.13, and errata list], we have

Pr(ordu is odd or (ordu is even and u(ordu)/2 = −1 + nZ)) ≤ 1

2τ(n)−1
.

But (4) implies that the probability in the last inequality coincides with the probability in (3). Thus, (3)
holds.

We recall the basic definitions and simple facts concerning varieties of groups and their free groups.
For a detailed introduction to this subject, the reader is referred to [Neu67], [KM77, Chapter 5]. As
usual, any element of the free group freely generated by a countably infinite alphabet is called a group
word. A class of groups V is said to be a variety if there exists a set of group words V such that

G ∈ V ⇐⇒ ∀ v ∈ V ∀ g1, g2, . . . ∈ G (v(g1, g2, . . . ) = 1)

for any group G. By G. Birkhoff’s theorem (see, e.g., [Neu67, 15.31 and Theorem 15.51], [KM77, Theo-
rem 15.2.1]), a class of groups is a variety if and only if it is closed under taking subgroups, homomorphic
images, and cartesian products (including the cartesian product of the empty family of groups; recall that
this product is {1}).

Let V be a variety of groups. Then a group F ∈ V is said to be V-free if it has a system of
generators (fi | i ∈ I) such that for every system of elements (gi | i ∈ I) of any group G ∈ V there exists
a homomorphism α : F → G satisfying α(fi) = gi for each i ∈ I (evidently, this homomorphism α is
unique). A system of generators (fi | i ∈ I) with this property is called a system of free generators of F .
It is well known that for any set I there exists a unique V-free group (up to isomorphism) with a system
of free generators indexed by I. The variety consisting of {1} only (up to isomorphism) is said to be
trivial ; all other varieties of groups are called nontrivial. It is easy to see that if V is nontrivial, then for
any system of free generators (fi | i ∈ I) of a V-free group, fi are distinct. In this case, one can consider
systems of free generators as sets.

We denote by F∞,∞(V) a V-free group such that a system of its free generators is represented in the
form a1, a2, . . . , x1, x2, . . . . Furthermore, suppose m,n ∈ N and let F∞(V) = ⟨a1, a2, . . . ⟩, Fm,n(V) =
⟨a1, . . . , am, x1, . . . , xn⟩, Fm(V) = Fm,0(V) = ⟨a1, . . . , am⟩. For elements of Fm,n(V), we use the notation
v(a1, . . . , am;x1, . . . , xn) = v(a;x), where v is a group word. It is well known that ai and xj can be
considered as variables taking values in an arbitrary group G ∈ V. That is, for any v(a;x) ∈ Fm,n(V),
g1, . . . , gm ∈ G, and h1, . . . , hn ∈ G (separated from g1, . . . , gm), the element v(g1, . . . , gm;h1, . . . , hn) ∈ G
is well defined as α(v(a;x)), where α is the unique homomorphism of Fm,n(V) into G such that α(ai) = gi
and α(xj) = hj for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. If g = (g1, . . . , gm) and h = (h1, . . . , hn),
then we sometimes write this element v(g1, . . . , gm;h1, . . . , hn) as v(g;h). Whenever n = 0, we omit the
semicolon in the above notation (e.g., v(a; ) = v(a) for any v(a; ) ∈ F∞(V)). If V is the variety of all
groups, then we write F∞,∞, F∞, Fm,n, and Fm instead of F∞,∞(V), F∞(V), Fm,n(V), and Fm(V),
respectively.

3 Pseudo-Free Families of Computational Groups

Suppose G is a group, ρ is a mapping of a subset of {0, 1}∗ onto G, and R is a probability distribution
on dom ρ. Then the triple (G, ρ,R) is called a computational group if the following two conditions hold:

• The following operations can be performed in deterministic polynomial time:

– Given [f ]ρ and [g]ρ (for any f, g ∈ G), decide whether f = g.

– Given [f ]ρ and [g]ρ (for any f, g ∈ G), compute [fg]ρ.

– Given [g]ρ (for any g ∈ G), compute [g−1]ρ.
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• There exists a probabilistic constant-time algorithm that takes no input and outputs a string in
dom ρ distributed according to R.

Assume that (G, ρ,R) is a computational group. Then it is said to have a group-theoretic property if
G has this property.

In this paper, we deal with families of computational groups rather than individual ones. Moreover,
we require that these families are uniform in the sense of the next definition.

Let D be a subset of {0, 1}∗. Also, suppose ((Gd, ρd,Rd) | d ∈ D) is a family of triples, where Gd is a
group, ρd is a mapping of a subset of {0, 1}∗ onto Gd, and Rd is a probability distribution on dom ρd for
any d ∈ D.

Definition 3.1. The family ((Gd, ρd,Rd) | d ∈ D) is called a (uniform) family of computational groups
if the following two conditions hold:

(i) The following operations can be performed in deterministic polynomial time:

• Given d ∈ D and [f ]ρd
, [g]ρd

(for any f, g ∈ Gd), decide whether f = g.

• Given d ∈ D and [f ]ρd
, [g]ρd

(for any f, g ∈ Gd), compute [fg]ρd
.

• Given d ∈ D and [g]ρd
(for any g ∈ Gd), compute [g−1]ρd

.

• Given d ∈ D, compute [1]ρd
.

(ii) The probability ensemble (Rd | d ∈ D) is polynomial-time samplable.

Throughout the paper, all families of computational groups are assumed to be uniform. Therefore we
omit the attribute “uniform” when referring to families of computational groups. A similar terminology
was used in [Riv04, Mic10, JB09].

It is easy to see that the last item in Condition (i) of Definition 3.1 is redundant. This item is present
in Definition 3.1 only for convenience.

Definition 3.2. The family ((Gd, ρd,Rd) | d ∈ D) is said to have exponential size if there exists a
polynomial η such that |Gd| ≤ 2η(|d|) for all d ∈ D.

Of course, exponential size is a property of the family (Gd | d ∈ D), but it is convenient to define this
property for families of the form ((Gd, ρd,Rd) | d ∈ D).

Suppose K is an infinite set of nonnegative integers, D = (Dk | k ∈ K) is a polynomial-time samplable
probability ensemble consisting of distributions on D, V is a variety of groups, and σ is a mapping of
a subset of {0, 1}∗ onto F∞,∞(V). For a group G ∈ V, a mapping ρ of a subset of {0, 1}∗ onto G, and
f1, . . . , fm ∈ G (m ≥ 0), let Σ(G,V, σ, ρ, (f1, . . . , fm)) denote the set of all tuples

(([v1(a;x)]σ, [w1(a;x)]σ), . . . , ([vs(a;x)]σ, [ws(a;x)]σ), ([g1]ρ, . . . , [gl]ρ)) (5)

such that the following conditions hold:

• s ≥ 1, l ≥ 0, vi(a;x), wi(a;x) ∈ Fm,l(V) for all i ∈ {1, . . . , s}, and gj ∈ G for all j ∈ {1, . . . , l}.

• The system of equations
vi(a;x) = wi(a;x), i = 1, . . . , s,

over variables x1, . . . , xl is unsatisfiable in Fm(V) (or, equivalently, in F∞(V)).

• vi(f1, . . . , fm; g1, . . . , gl) = wi(f1, . . . , fm; g1, . . . , gl) in G for any i ∈ {1, . . . , s}.

In the rest of this section, except in Lemma 3.8, we assume that Gd ∈ V for all d ∈ D and that
((Gd, ρd,Rd) | d ∈ D) is a family of computational groups.

Definition 3.3. The family of computational groups ((Gd, ρd,Rd) | d ∈ D) is called pseudo-free in V
with respect to D and σ if for any polynomial π and any probabilistic polynomial-time algorithm A the
following holds. For every k ∈ K, let d← Dk, r1, . . . , rπ(k) ←Rd, and r = (r1, . . . , rπ(k)). Then

Pr(A(1k,d, r) ∈ Σ(Gd,V, σ, ρd, ρd(r)))

is negligible as a function of k ∈ K.
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Remark 3.4. If V is trivial, then Σ(G,V, σ, ρ, (f1, . . . , fm)) is empty for any G ∈ V, any mapping ρ
of a subset of {0, 1}∗ onto G, and any f1, . . . , fm ∈ G. Therefore in this case the considered family of
computational groups ((Gd, ρd,Rd) | d ∈ D) is always pseudo-free in V with respect to D and σ.

Throughout the rest of this remark, we assume that V is nontrivial. Also, suppose there exists a
deterministic polynomial-time algorithm that, given b1, . . . , bm ∈ {0, 1}, computes [ab11 . . . abmm ]σ. This
holds in many cases, e.g., for the mapping σ defined in Section 4.

Assume that the family of computational groups ((Gd, ρd,Rd) | d ∈ D) is pseudo-free in V with respect
to D and σ. Moreover, let π be a polynomial such that |Gd| < 2π(k) for all k ∈ K and d ∈ suppDk.
We assume that such a polynomial exists; in particular, this holds if the family ((Gd, ρd,Rd) | d ∈ D) has
exponential size.

Let k ∈ K, d ∈ suppDk, m = π(k), and r = ([f1]ρd
, . . . , [fm]ρd

), where fi ∈ Gd. Denote by ψk,(d,r) a
mapping of {0, 1}m into dom ρd such that

ψk,(d,r)(y1 . . . ym) = [fy1

1 . . . fym
m ]ρd

for all y1, . . . , ym ∈ {0, 1}. Note that unless ρd is one-to-one, ψk,(d,r) is not necessarily uniquely determined
by this condition. We say that a pair (y, z) of strings in {0, 1}m is a group collision for ψk,(d,r) if y ̸= z
and ρd(ψk,(d,r)(y)) = ρd(ψk,(d,r)(z)). (The last equality means that fy1

1 . . . fym
m = fz11 . . . fzmm , where yi

and zi are the ith bits of y and z, respectively.) Any collision for ψk,(d,r) is a group collision for this
mapping. Furthermore, if ρd is one-to-one, then the set of all group collisions for ψk,(d,r) coincides with
the set of all collisions for ψk,(d,r). (Recall that a collision for a mapping ϕ is a pair of distinct elements in
domϕ having the same image under ϕ.) Since |Gd| < 2m, group collisions for ψk,(d,r) exist. However, the
problem of finding group collisions for ψk,(d,r) is computationally hard in the following sense: If d← Dk,
r1, . . . , rm ←Rd, and r = (r1, . . . , rm), then for any probabilistic polynomial-time algorithm A,

Pr(A(1k,d, r) is a group collision for ψk,(d,r))

is negligible as a function of k ∈ K. This follows from the above assumptions and from the fact that if
(y1 . . . ym, z1 . . . zm) is a group collision for ψk,(d,r) (where yi, zi ∈ {0, 1}), then

(([ay1

1 . . . aym
m ]σ, [a

z1
1 . . . azmm ]σ), ()) ∈ Σ(Gd,V, σ, ρd, ρd(r)).

(Since V is nontrivial, we have ay1

1 . . . aym
m ̸= az11 . . . azmm whenever y1 . . . ym ̸= z1 . . . zm.)

In many cases, ψk,(d,r) can be chosen so that, given (1k, d, r) and y ∈ {0, 1}m, ψk,(d,r)(y) can be
computed in deterministic polynomial time. In particular, this holds if there exists a polynomial η such
that dom ρd ⊆ {0, 1}≤η(k) for all k ∈ K and d ∈ suppDk. Also, this holds for the family of computational
groups constructed in Section 4.

Remark 3.5. Assume that the family of computational groups ((Gd, ρd,Rd) | d ∈ D) is pseudo-free in
V with respect to D and σ. In this remark, we need the following additional assumptions:

• The variety V is nontrivial (as in Remark 3.4).

• There exists a deterministic polynomial-time algorithm that, given b1, . . . , bm ∈ {0, 1}, computes
[ab11 . . . abmm ]σ (as in Remark 3.4).

• There exists a polynomial η such that dom ρd ⊆ {0, 1}η(k) for all k ∈ K and d ∈ suppDk.

Let π be a polynomial such that π(k) > η(k) for any k ∈ K. Suppose k ∈ K. Denote by Wk the set of all
pairs (d, (r1, . . . , rπ(k))) such that d ∈ suppDk and r1, . . . , rπ(k) ∈ dom ρd. For every w ∈Wk, let ψk,w be

a mapping defined as in Remark 3.4. Moreover, we choose these mappings so that, given (1k, w) (where
w ∈Wk) and y ∈ {0, 1}π(k), ψk,w(y) can be computed in deterministic polynomial time. Also, supposeWk

is the distribution of the random variable (d, (r1, . . . , rπ(k))), where d← Dk and r1, . . . , rπ(k) ← Rd. Of
course, the probability ensemble (Wk | k ∈ K) is polynomial-time samplable. Then Remark 3.4 implies
that the family (ψk,w | k ∈ K, w ∈ Wk) is a collision-intractable (or collision-resistant) hash function
family with respect to (Wk | k ∈ K). Namely, the following conditions hold:

• For all k ∈ K and w ∈Wk, ψk,w maps {0, 1}π(k) into {0, 1}η(k), where π(k) > η(k).

• Given (1k, w) (where k ∈ K and w ∈ Wk) and y ∈ {0, 1}π(k), ψk,w(y) can be computed in deter-
ministic polynomial time.
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• If w←Wk, then for any probabilistic polynomial-time algorithm A,

Pr(A(1k,w) is a collision for ψk,w)

is negligible as a function of k ∈ K.

Remark 3.6. Assume that the family of computational groups ((Gd, ρd,Rd) | d ∈ D) is pseudo-free in V
with respect to D and σ. Let D′ be a subset of D such that {Gd | d ∈ D′} does not generate the variety V.
Then there exists an element v(a) ∈ Fm(V) \ {1} (for some m ≥ 1) such that v(f1, . . . , fm) = 1 in Gd for
all d ∈ D′ and f1, . . . , fm ∈ Gd. It is easy to see that (([v(a)]σ, [1]σ), ()) ∈ Σ(Gd,V, σ, ρd, (f1, . . . , fm)) for
any d ∈ D′ and f1, . . . , fm ∈ Gd. This implies that PrDk

D′ is negligible as a function of k ∈ K. Thus, we
see that if D′ is a subset of D such that PrDk

D′ is not negligible as a function of k ∈ K (e.g., D′ = D),
then {Gd | d ∈ D′} generates the variety V. In particular, if there exists a pseudo-free family of finite
computational groups in V with respect to D and σ, then the variety V is generated by its finite groups
or, equivalently, Fn(V) is residually finite for all n ∈ N (see [Neu67, Theorem 17.81]). This shows that
for some varieties of groups V, there are no pseudo-free families of finite computational groups in V with
respect to any D and σ of the above form.

Theorem 3.7. Assume that the family of computational groups ((Gd, ρd,Rd) | d ∈ D) is pseudo-free in
V with respect to D and σ. Furthermore, let (Ed | d ∈ D) be a polynomial-time samplable probability
ensemble such that for every d ∈ D, Ed is a probability distribution on a set Ed ⊆ {0, 1}≤ξ(|d|), where ξ is
a fixed polynomial. (We can let Ed = supp Ed for all d ∈ D.) Also, suppose each pair (d, e) with d ∈ D
and e ∈ Ed is assigned a normal subgroup Hd,e of Gd. Assume that the following conditions hold:

(i) There exists a deterministic polynomial-time algorithm that, given

(d, [u(a;x)]σ, ([f1]ρd
, . . . , [fm]ρd

), ([g1]ρd
, . . . , [gl]ρd

))

for any d ∈ D, u(a;x) ∈ Fm,l(V) (m, l ≥ 0), and fi, gj ∈ Gd, computes
[u(f1, . . . , fm; g1, . . . , gl)]ρd

.

(ii) There exists a deterministic polynomial-time algorithm that, given d ∈ D, e ∈ Ed, and [g]ρd

(g ∈ Gd), decides whether g ∈ Hd,e.

(iii) If d← Dk and e← Ed, then for any probabilistic polynomial-time algorithm A,

Pr(A(1k,d, e) = [h]ρd
, h ∈ Hd,e \ {1})

is negligible as a function of k ∈ K.

For any k ∈ K, let D′
k be the distribution of the random variable (d, e), where d ← Dk and e ← Ed.

Moreover, for every d ∈ D and e ∈ Ed, suppose the mapping ρ′d,e : dom ρd → Gd/Hd,e is defined by
ρ′d,e(r) = ρd(r)Hd,e. Then Γ = (Gd/Hd,e, ρ

′
d,e,Rd | d ∈ D, e ∈ Ed) is a pseudo-free family of computa-

tional groups in V with respect to (D′
k | k ∈ K) and σ.

Proof. It is evident that (ρ′d,e)
−1(gHd,e) = ρ−1

d (gHd,e) for any d ∈ D, e ∈ Ed, and g ∈ Gd. This together
with Condition (ii) implies that Γ is a family of computational groups.

Suppose π is a polynomial and A is a probabilistic polynomial-time algorithm. Let B be a prob-
abilistic polynomial-time algorithm that on input (1k, d, r) for arbitrary k ∈ K, d ∈ suppDk, and
r = (r1, . . . , rπ(k)) (ri ∈ dom ρd), chooses e← Ed and outputs A(1k, (d, e), r). Furthermore, suppose C is

a probabilistic polynomial-time algorithm that proceeds on input (1k, d, e) for every k ∈ K, d ∈ suppDk,
and e ∈ supp Ed as follows:

1. Choose r1, . . . , rπ(k) ←Rd; let r = (r1, . . . , rπ(k)).

2. Invoke A on input (1k, (d, e), r). Assume that the output is

(([v1(a;x)]σ, [w1(a;x)]σ), . . . , ([vs(a;x)]σ, [ws(a;x)]σ), (t1, . . . , tl)), (6)

where s ≥ 1, l ≥ 0, vi(a;x), wi(a;x) ∈ Fπ(k),l(V) for all i ∈ {1, . . . , s}, and tj = [gj ]ρd
=

[gjHd,e]ρ′
d,e

(gj ∈ Gd) for all j ∈ {1, . . . , l}. If this is not true, then C fails.
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3. Using an algorithm that exists by Condition (i), compute [vi(ρd(r); g)]ρd
and [wi(ρd(r); g)]ρd

for
all i ∈ {1, . . . , s}, where g = (g1, . . . , gl).

4. If there exists an index i ∈ {1, . . . , s} satisfying vi(ρd(r); g) ̸= wi(ρd(r); g), then output
[vi(ρd(r); g)

−1wi(ρd(r); g)]ρd
for some such i. Otherwise, the algorithm C fails.

Assume that the algorithm A is invoked by B or C on input (1k, (d, e), r) and that the output of
A (denoted by u) is in Σ(Gd/Hd,e,V, σ, ρ

′
d,e, ρ

′
d,e(r)). In particular, this means that u has the form (6)

and vi(ρd(r); g) ≡ wi(ρd(r); g) (mod Hd,e) for all i ∈ {1, . . . , s}. If vi(ρd(r); g) = wi(ρd(r); g) for every
i ∈ {1, . . . , s}, then the algorithm B outputs u ∈ Σ(Gd,V, σ, ρd, ρd(r)). Otherwise, the algorithm C
outputs [h]ρd

for some h ∈ Hd,e \ {1}. This implies that

Pr(A(1k, (d, e), r) ∈ Σ(Gd/Hd,e,V, σ, ρ
′
d,e, ρ

′
d,e(r)))

≤ Pr(B(1k,d, r) ∈ Σ(Gd,V, σ, ρd, ρd(r)))

+ Pr(C(1k,d, e) = [h]ρd
, h ∈ Hd,e \ {1}),

where k ∈ K, d ← Dk, e ← Ed, r1, . . . , rπ(k) ← Rd, and r = (r1, . . . , rπ(k)). Since both probabilities
in the right-hand side of this inequality are negligible as functions of k ∈ K, the same holds for the
probability in the left-hand side. Thus, Γ is pseudo-free in V with respect to (D′

k | k ∈ K) and σ.

Lemma 3.8. Let D = {1k | k ∈ K}. Furthermore, suppose M is a set of integers such that 1 ∈ M and
−M = {−m |m ∈ M} = M . For every k ∈ K, let Dk be the probability distribution concentrated at 1k.
Also, for each 1k ∈ D, suppose ρ1k is the mapping of

{((i1,m1), . . . , (in,mn)) |n ≥ 0, ij ∈ {1, . . . , 2k}, mj ∈M}

onto F2k(V) defined by ρ1k((i1,m1), . . . , (in,mn)) = am1
i1

. . . amn
in

and R1k is the distribution of the random

variable ((i, 1)), where i ← U({1, . . . , 2k}). Assume that there exists a deterministic polynomial-time
algorithm that, given 1k ∈ D and [f ]ρ

1k
, [g]ρ

1k
(for any f, g ∈ F2k(V)), decides whether f = g. (In

particular, this holds if V is the variety of all groups or the variety of all abelian groups.) Then Γ =
((F2k(V), ρ1k ,R1k) | 1k ∈ D) is a pseudo-free family of computational groups in V with respect to D =
(Dk | k ∈ K) and σ.

Proof. It is easy to see that Γ is a family of computational groups. Suppose π is a polynomial and A is
a probabilistic polynomial-time algorithm. Let k ∈ K. Assume that

A(1k, 1k, (((i1, 1)), . . . , ((iπ(k), 1)))) ∈ Σ(F2k(V),V, σ, ρ1k , (ai1 , . . . , aiπ(k)
))

for some i1, . . . , iπ(k) ∈ {1, . . . , 2k} (it is evident that ρ1k((i, 1)) = ai). Then, in particular, there exist
v1(a;x), . . . , vs(a;x), w1(a;x), . . . , ws(a;x) ∈ Fπ(k),l(V) (for some s ≥ 1 and l ≥ 0) such that the system
of equations

vt(a1, . . . , aπ(k);x1, . . . , xl) = wt(a1, . . . , aπ(k);x1, . . . , xl), t = 1, . . . , s,

is unsatisfiable in F∞(V), but the system

vt(ai1 , . . . , aiπ(k)
;x1, . . . , xl) = wt(ai1 , . . . , aiπ(k)

;x1, . . . , xl), t = 1, . . . , s,

is satisfiable even in F2k(V) (over variables x1, . . . , xl). This implies that ij = ij′ for some distinct indices
j and j′. Therefore,

Pr(A(1k, 1k, (((i1, 1)), . . . , ((iπ(k), 1)))) ∈ Σ(F2k(V),V, σ, ρ1k , (ai1 , . . . , aiπ(k)
)))

≤
∑

1≤j<j′≤π(k)

Pr(ij = ij′) =
π(k)(π(k)− 1)

2k+1
,

where i1, . . . , iπ(k) ← U({1, . . . , 2k}). Since π(k)(π(k)− 1)/2k+1 is negligible as a function of k ∈ K, this
shows that Γ is pseudo-free in V with respect to D and σ.
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Remark 3.9. For a group G ∈ V, a mapping ρ of a subset of {0, 1}∗ onto G, and f1, . . . , fm ∈ G
(m ≥ 0), let Σ′(G,V, σ, ρ, (f1, . . . , fm)) be the set of all tuples (5) in Σ(G,V, σ, ρ, (f1, . . . , fm)) such that
s = 1. If we replace Σ(. . . ) by Σ′(. . . ) in Definition 3.3, then we obtain a variant of pseudo-freeness based
on single equations rather than systems of equations. We call this variant 1-pseudo-freeness. Similar
variants of pseudo-freeness were considered by Hohenberger [Hoh03], Rivest [Riv04], Micciancio [Mic10],
Jhanwar and Barua [JB09].

Obviously, if the family of computational groups ((Gd, ρd,Rd) | d ∈ D) is pseudo-free in V with respect
to D and σ (in the sense of Definition 3.3), then it is also 1-pseudo-free in V with respect to D and σ.
In some important cases, the converse also holds (see [Riv04, Mic10]). Furthermore, it is easy to see that
Remarks 3.4–3.6, Theorem 3.7, and, of course, Lemma 3.8 remain valid if pseudo-freeness is understood
as 1-pseudo-freeness.

4 Main Result

In this section, we assume that V is the variety of all groups. Also, let σ be the mapping of

{((b1, i1,m1), . . . , (bn, in,mn)) |n ≥ 0, bj ∈ {a, x}, ij ∈ N \ {0}, mj ∈ {−1, 1}}

onto F∞,∞ defined by σ((b1, i1,m1), . . . , (bn, in,mn)) = (b1)
m1
i1

. . . (bn)
mn
in

. Here (b)i denotes ai if b = a
and xi if b = x.

Our construction is based on the next assumption.

General Integer Factoring Intractability Assumption. There exists a polynomial-time samplable
probability ensemble (Nk | k ∈ K) (indexed by an infinite set K ⊆ N) such that the following two
conditions hold:

• For any k ∈ K, suppNk is a set of composite positive integers.

• If n← Nk, then for any probabilistic polynomial-time algorithm A,

Pr(A(1k,n) is a nontrivial divisor of n)

is negligible as a function of k ∈ K.

Let (Nk | k ∈ K) be a polynomial-time samplable probability ensemble satisfying the conditions of
this assumption. For brevity, denote

∪
k∈K suppNk by N . For any n ∈ N , we have n ≥ 4 because n is

composite. If m is a positive integer, then νm denotes the natural homomorphism of Z onto Zm.
Choose a probability ensemble (Zn |n ∈ N) such that the following conditions hold:

• For any n ∈ N , suppZn is a set of integers that are coprime to n.

• supn∈N ∆(νn(Zn),U(Z⋆
n)) < 1/2.

• The probability ensemble (Zbin−1 u |u ∈ binN) is polynomial-time samplable.

By Lemma 2.3, such a probability ensemble exists.
We start with the pseudo-free family of free computational groups defined in Lemma 3.8. Namely, let

D = {1k | k ∈ K}. Furthermore, suppose M is a set of integers such that 1 ∈ M and −M = {−m |m ∈
M} =M . For example, M can be {−1, 1} or Z. For every k ∈ K, let Dk be the probability distribution
concentrated at 1k. Also, for each 1k ∈ D, suppose ρ1k is the mapping of

{((i1,m1), . . . , (in,mn)) |n ≥ 0, ij ∈ {1, . . . , 2k}, mj ∈M}

onto F2k defined by ρ1k((i1,m1), . . . , (in,mn)) = am1
i1

. . . amn
in

and R1k is the distribution of the random

variable ((i, 1)), where i← U({1, . . . , 2k}).
Let k ∈ K. We denote by E1k the distribution of the random variable (n, (z1, . . . , zk)), where n← Nk

and z1, . . . , zk ← Zn. Also, let E1k = supp E1k , i.e., E1k is the set of all tuples (n, (z1, . . . , zk)) such that
n ∈ suppNk and z1, . . . , zk ∈ suppZn.
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Choose an arbitrary integer c ≥ 2. We use M and c as parameters in our construction. Define the
following integer matrices:

I =

(
1 0
0 1

)
, P =

(
1 c
0 1

)
, Q =

(
1 0
c 1

)
, Pi = Q−iPQi for all i ∈ Z.

Then P and Q freely generate a free subgroup of SL2(Z) (see [KM77, Theorem 14.2.1]). Therefore
the system (Pi | i ∈ Z) also freely generates a free subgroup of SL2(Z) (see [LS77, Chapter I, proof of
Proposition 3.1]). Hence the mapping a1 7→ P1, . . . , a2k 7→ P2k can be extended to a unique isomor-
phic embedding of F2k into SL2(Z); we denote this embedding by γ1k . It is easy to see that for any
((i1,m1), . . . , (in,mn)) ∈ dom ρ1k , we have

γ1k(ρ1k((i1,m1), . . . , (in,mn)))

= Q−i1Pm1Qi1−i2Pm2Qi2−i3Pm3 . . . Pmn−1Qin−1−inPmnQin ,

where

Pm =

(
1 cm
0 1

)
and Qj =

(
1 0
cj 1

)
for every integers m and j. Therefore, given 1k ∈ D and [g]ρ

1k
(for any g ∈ F2k), the integer matrix

γ1k(g) can be computed in deterministic polynomial time.
Let e = (n, (z1, . . . , zk)) ∈ E1k , where n ∈ suppNk and z1, . . . , zk ∈ suppZn. Then we denote by µ(e)

the least common multiple of ord(z1 + nZ), . . . , ord(zk + nZ). (If k = 0, then µ(e) = 1.) Also, let H1k,e

be the kernel of the homomorphism of F2k into SL2(Zµ(e)) defined by g 7→ νµ(e)(γ1k(g)). In other words,
H1k,e is the set of all g ∈ F2k such that every entry of γ1k(g)− I is divisible by µ(e).

Denote by D′
k the distribution of the random variable (1k, e), where e← E1k . Furthermore, for every

e ∈ E1k , let the mapping ρ′1k,e : dom ρ1k → F2k/H1k,e be defined by ρ′1k,e(r) = ρ1k(r)H1k,e.

Remark 4.1. Since the probability ensemble (Nk | k ∈ K) is polynomial-time samplable, there exists a
polynomial η such that log2 n ≤ η(k) for all k ∈ K and n ∈ suppNk. Moreover, for every k ∈ K and
e ∈ E1k ,

|F2k/H1k,e| ≤ |SL2(Zµ(e))| ≤ µ(e)4 ≤ n4 ≤ 24η(k),

where n ∈ suppNk is the first element of e. This shows that the family ((F2k/H1k,e, ρ
′
1k,e,R1k) | 1k ∈

D, e ∈ E1k) has exponential size.

Theorem 4.2. The family ((F2k/H1k,e, ρ
′
1k,e,R1k) | 1k ∈ D, e ∈ E1k) is a pseudo-free family of finite

computational groups in the variety of all groups with respect to (D′
k | k ∈ K) and σ.

Proof. By Lemma 3.8, ((F2k , ρ1k ,R1k) | 1k ∈ D) is a pseudo-free family of computational groups in the
variety of all groups with respect to (Dk | k ∈ K) and σ. Therefore it suffices to prove that Conditions (i)–
(iii) of Theorem 3.7 hold for the objects defined in this section. (By Remark 4.1, F2k/H1k,e is finite for
any 1k ∈ D and e ∈ E1k .)

It is easy to see that Condition (i) of Theorem 3.7 holds. Let k ∈ K, e = (n, (z1, . . . , zk)) ∈ E1k

(where n ∈ suppNk and z1, . . . , zk ∈ suppZn), and g ∈ F2k . Then it is obvious that

g ∈ H1k,e ⇐⇒ ∀ i ∈ {1, . . . , k}
(
(zi + nZ)γ1k

(g) = (zi + nZ)I
)
.

This implies that Condition (ii) of Theorem 3.7 holds.
Suppose A is a probabilistic polynomial-time algorithm. Let B be a probabilistic polynomial-time

algorithm that proceeds on input (1k, n) for all k ∈ K and n ∈ suppNk as follows:

1. If n is even, then output 2 and stop.

2. If n is a perfect power, then find an integer b ≥ 2 such that n = bl for some integer l ≥ 2, output
b, and stop. (By Lemma 2.2, this step can be performed in deterministic polynomial time.)

3. Choose z1, . . . , zk ← Zn; let e = (n, (z1, . . . , zk)).

4. Invoke A on input (1k, 1k, e). Assume that the output is [h]ρ
1k
, where h ∈ H1k,e \ {1}. If this is

not true, then B fails.
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5. Choose a nonzero entry s of the matrix γ1k(h) − I. (Since h ̸= 1 and γ1k is an isomorphic
embedding, such an entry exists.) Represent s as 2ts′, where t ∈ N and s′ is an odd integer.
(Note that ord(zi + nZ) divides s for all i ∈ {1, . . . , k}.)

6. For every i ∈ {1, . . . , k} and j ∈ {0, . . . , t}, compute a representative yi,j of the residue class

(zi + nZ)2js′ . If there exist i ∈ {1, . . . , k} and j ∈ {0, . . . , t − 1} such that yi,j ̸≡ 1 (mod n),
yi,j ̸≡ −1 (mod n), and yi,j+1 ≡ 1 (mod n), then compute and output gcd(yi,j − 1, n) for some
such i and j. (By Remark 2.1, in this case the output of B is a nontrivial divisor of n.) Otherwise,
the algorithm B fails.

Note that Steps 1 and 2 of the algorithm B are borrowed from the algorithm presented in [NC00,
Subsection 5.3.2 and Section A4.3]. Step 6 of the algorithm B is a modification of Step 5 of the above-
mentioned algorithm from [NC00].

For brevity, we denote by S the set of all odd integers n ≥ 3 that are not perfect powers. Also, for
any n ∈ N \ {0}, let Tn be the set of all u ∈ Z⋆

n such that ordu is even and −1 + nZ /∈ ⟨u⟩.

Claim. Consider the computation of the algorithm B on input (1k, n) for arbitrary k ∈ K and n ∈
suppNk. Assume that the following conditions hold:

• n ∈ S (or, equivalently, the computation does not terminate in Steps 1–2).

• The assumption made in Step 4 is true.

• There exists an index i ∈ {1, . . . , k} such that zi + nZ ∈ Tn.

Then the algorithm B outputs a nontrivial divisor of n.

Proof of the claim. Let i ∈ {1, . . . , k} be an index such that zi+nZ ∈ Tn. Since ord(zi+nZ) is even and

s′ is odd, we have yi,0 + nZ = (zi + nZ)s′ ̸= 1 + nZ. Furthermore, (yi,0 + nZ)2t = (zi + nZ)s = 1 + nZ
because ord(zi + nZ) divides s. Hence there exists a unique j ∈ {0, . . . , t − 1} such that yi,j ≡ y2

j

i,0 ̸≡ 1

(mod n) and yi,j+1 ≡ y2
j+1

i,0 ≡ 1 (mod n). Moreover, since yi,j +nZ ∈ ⟨zi+nZ⟩ and −1+nZ /∈ ⟨zi+nZ⟩,
we see that yi,j ̸≡ −1 (mod n). Thus, the condition of Step 6 holds and the claim follows.

Let e = (n, (z1, . . . , zk)), where n ← Nk and z1, . . . , zk ← Zn. We denote by Ak the event that
A(1k, 1k, e) = [h]ρ

1k
for some h ∈ H1k,e \ {1}. Then it is obvious that

Pr(n /∈ S, Ak) ≤ Pr(n /∈ S) ≤ Pr(B(1k,n) is a nontrivial divisor of n). (7)

Furthermore, the claim implies that

Pr(n ∈ S, Ak, ∃ i ∈ {1, . . . , k} (zi + nZ ∈ Tn))
≤ Pr(B(1k,n) is a nontrivial divisor of n). (8)

Suppose n ∈ S ∩ N , τ(n) is the number of prime divisors of n, and u ← U(Z⋆
n). By Lemma 2.4,

Pr(u /∈ Tn) ≤ 1/2τ(n)−1. Since n is composite and is not a perfect power, we have τ(n) ≥ 2. Let g← Zn

and q = supl∈N ∆(νl(Zl),U(Z⋆
l )). Then

Pr(g + nZ /∈ Tn) ≤ Pr(u /∈ Tn) + ∆(νn(Zn),U(Z⋆
n)) ≤

1

2
+ q

and hence

Pr(n ∈ S, Ak, ∀ i ∈ {1, . . . , k} (zi + nZ /∈ Tn))

≤ Pr(n ∈ S, ∀ i ∈ {1, . . . , k} (zi + nZ /∈ Tn)) ≤ Pr(n ∈ S)
(
1

2
+ q

)k

, (9)

where 1/2 ≤ 1/2 + q < 1 because 0 ≤ q < 1/2.
Finally,

PrAk = Pr(n /∈ S, Ak) + Pr(n ∈ S, Ak, ∃ i ∈ {1, . . . , k} (zi + nZ ∈ Tn))
+ Pr(n ∈ S, Ak, ∀ i ∈ {1, . . . , k} (zi + nZ /∈ Tn)). (10)
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Inequalities (7)–(9) imply that the probabilities in the right-hand side of (10) are negligible as functions
of k ∈ K. Therefore, PrAk is also negligible as a function of k ∈ K and Condition (iii) of Theorem 3.7
holds.

Remark 4.3. Assume that M is decidable in deterministic polynomial time (as a subset of Z). Then
there exists a deterministic polynomial-time algorithm that, given 1k ∈ D, decides membership in dom ρ1k
(= dom ρ′1k,e for all e ∈ E1k).

Remark 4.4. Let E =
∪

k∈K E1k . For each e = (n, (z1, . . . , zk)) ∈ E (where k ∈ K, n ∈ suppNk, and
z1, . . . , zk ∈ suppZn), denote k by κ(e). In other words, κ(e) is the unique k ∈ K such that e ∈ E1k .
Then e 7→ (1κ(e), e) is a one-to-one mapping of E onto {(1k, e) | 1k ∈ D, e ∈ E1k}. Both this mapping
and its inverse are computable in deterministic polynomial time. Therefore the family presented in
Theorem 4.2 can be indexed by E instead of {(1k, e) | 1k ∈ D, e ∈ E1k}. Namely, Theorem 4.2 implies
that ((F2κ(e)/H1κ(e),e, ρ

′
1κ(e),e

,R1κ(e)) | e ∈ E) is a pseudo-free family of finite computational groups in the

variety of all groups with respect to (E1k | k ∈ K) and σ. Furthermore, by Remark 4.1, this family has
exponential size.
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