
Quasipolynomial-time Identity Testing of Non-Commutative and

Read-Once Oblivious Algebraic Branching Programs

Michael A. Forbes∗ Amir Shpilka†

September 11, 2012

Abstract

We study the problem of obtaining efficient, deterministic, black-box polynomial identity
testing algorithms (PIT) for read-once oblivious algebraic branching programs (ABPs). This
class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz
and Shpilka [RS05]), but prior to this work had no known such black-box algorithm. Here we
obtain the first quasi-polynomial sized hitting sets for this class, when the order of the variables
is known. This work can be seen as an algebraic analogue of the results of Nisan [Nis92] and
Impagliazzo-Nisan-Wigderson [INW94] for space-bounded pseudorandom generators.

We also show that several other circuit classes can be black-box reduced to read-once oblivi-
ous ABPs, including set-multilinear ABPs (a generalization of depth 3 set-multilinear formulas),
non-commutative ABPs (generalizing non-commutative formulas), and (semi-)diagonal depth-4
circuits (as introduced by Saxena [Sax08], and recently shown by Mulmuley [Mul12] to have im-
plications for derandomizing Noether’s Normalization Lemma). For set-multilinear ABPs and
non-commutative ABPs, we give quasi-polynomial-time black-box PIT algorithms, where the
latter case involves evaluations over the algebra of (D + 1)× (D + 1) matrices, where D is the
depth of the ABP. For (semi-)diagonal depth-4 circuits, we obtain a black-box PIT algorithm
(over any characteristic) whose run-time is quasi-polynomial in the runtime of Saxena’s white-
box algorithm, matching the concurrent work of Agrawal, Saha, and Saxena [ASS12]. Finally,
by combing our results with the reconstruction algorithm of Klivans and Shpilka [KS06], we
obtain deterministic reconstruction algorithms for the above circuit classes.

1 Introduction

Let C be an arithmetic circuit in the input variables x1, . . . , xn, over a field F. The output
C(x1, . . . , xn) is a polynomial f in the ring F[x1, . . . , xn]. The polynomial identity testing (PIT)

problem is to efficiently determine “f
?≡ 0”. In particular, we are asking if the formal expression

f , as a polynomial in F[x1, . . . , xn], is zero. Schwartz and Zippel [Zip79, Sch80] showed that if
0 6= f ∈ F[x1, . . . , xn] is a polynomial of degree ≤ d, and α1, . . . , αn ∈ S ⊆ F are chosen uniformly
at random, then f(α1, . . . , αn) = 0 with probability at most1 ≤ d/|S|. Thus, given the circuit C,
we can perform these evaluations efficiently, giving an efficient randomized procedure for answering
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“f
?≡ 0”. An important open problem is to find a derandomization of this algorithm, that is, to

find a deterministic procedure for PIT that runs in polynomial time (in the size of the circuit C).
One interesting property of the above randomized algorithm of Schwartz-Zippel is that the

algorithm does not need to “see” the circuit C. Namely, the algorithm only uses the circuit to
compute the evaluations f(α1, . . . , αn). Such an algorithm is called a black-box algorithm. In
contrast, an algorithm that can access the internal structure of the circuit C is called a white-box
algorithm. Clearly, the designer of the algorithm has more resources in the white-box model and
so one can expect that solving PIT in this model should be a simpler task than in the black-box
model.

The problem of derandomizing PIT has received a lot of attention in the past few years. In
particular, many works examine a particular class of circuits C, and design PIT algorithms only for
circuits in that class. One reason for this attention is the strong connection between deterministic
PIT algorithms for a class C and lower bounds for C. This connection was first observed by Heintz
and Schnorr [HS80] (and also by Agrawal [Agr05]) for the black-box model and by Kabanets and
Impagliazzo [KI04] for the white-box model (see also Dvir, Shpilka and Yehudayoff [DSY09]).
Another motivation for studying the problem is its relation to algorithmic questions. Indeed, the
famous deterministic primality testing algorithm of Agrawal, Kayal and Saxena [AKS04] is based
on derandomizing a specific polynomial identity. Finally, the PIT problem is, in some sense, the
most general problem that we know today for which we have randomized coRP algorithms but no
polynomial time algorithms, thus studying it is a natural step towards a better understanding of
the relation between RP and P. For more on the PIT problem we refer to the survey by Shpilka
and Yehudayoff [SY10].

Although the white-box model seems to be simpler than the black-box model, for most models
for which a white-box PIT algorithm is known, also a black-box PIT algorithm is known, albeit
sometimes with worse parameters. Such examples include depth-2 circuits (also known as sparse
polynomials) [BOT88, KS01], depth-3 ΣΠΣ(k) circuits [SS11], Read-k formulas [AvMV11] and
depth-3 tensors (also known as depth-3 set-multilinear circuits) [RS05, FS12]. While the running
time of the algorithms for depth-2 circuits and ΣΠΣ(k) circuits are essentially the same in the white-
box and black-box models, for Read-k formulas and set-multilinear depth-3 circuits we encounter
some loss that results in a quasi-polynomial running time in the black-box model compared to a
polynomial time algorithm in the white-box model.

Until this work, the only model for which an efficient white-box algorithm was known without
a (sub-exponential) black-box counterpart was the model of non-commutative arithmetic formulas,
or, more generally, the models of non-commutative algebraic branching programs (ABPs) and set-
multilinear algebraic branching programs [RS05] (see Subsection 1.1 for definitions).

The main result in this paper is a quasi-polynomial time PIT algorithm in the black-box model
for read-once oblivious algebraic branching programs. Using this result we obtain black-box algo-
rithms of similar running times for the models of set-multilinear ABPs, non-commutative ABPs, as
well as for diagonal circuits as defined by Saxena [Sax08]. Although exponential lower bounds are
known for these models, we note that the algebraic hardness-versus-randomness result of Kabanets
and Impagliazzo [KI04] (as well as the extension of this result by Dvir, Shpilka and Yehuday-
off [DSY09] to low-depth circuits) does not imply a black-box PIT algorithm for the model, since
their technique does not work for the restricted models studied here.

Although the models which are considered here may seem a bit unnatural at first sight, we note
that the non-commutative model received a lot of attention in the algebraic complexity literature
(mostly in the last few years) as it gives a good starting point for understanding the hardness
of computing the determinant and permanent [Nis91, CS07, AJS09, AS10, HWY10a, CHSS11,

2



HWY10b, HY12]. In addition, we show in the paper that the model of set-multilinear ABPs
generalizes the so called model of diagonal circuits that was introduced by Saxena [Sax08]. Recently,
Mulmuley [Mul12] has shown a connection between derandomizing PIT for diagonal circuits and
the problem of derandomizing Noether’s normalization lemma. We discuss this in more detail
in Subsection 1.3. We also note that derandomizing PIT in the general ABP model is a very
important question. Specifically, the work of Ben-Or and Cleve [BOC92] implies that black-box
derandomization of PIT, even for width-3 ABPs, would imply derandomization of PIT for general
arithmetic circuits of logarithmic depth and in general, a quasi-polynomial time derandomization of
PIT for poly-size arithmetic circuits. Saha, Saptharishi and Saxena [SSS09] showed that black-box
derandomization of PIT of width-2 ABPs implies derandomization of PIT for depth-3 circuits, a
model for which our knowledge is quite limited at the moment.

Besides the natural goal to obtain the most general possible PIT result, the problem of obtaining
a black-box version of the algorithm of Raz and Shpilka [RS05] is interesting because of the technique
used there. Roughly, the PIT algorithm of [RS05] works for any model of computation that out-
puts polynomials whose space of partial derivatives is (relatively) low-dimensional. Set-multilinear
ABPs, non-commutative ABPs, low-rank tensors, and so called pure arithmetic circuits (defined in
Nisan and Wigderson [NW96]) are all examples of algebraic models that compute polynomials with
that property, and so the algorithm of [RS05] works for them. In some sense using information on the
dimension of partial derivatives of a given polynomial is the most applicable technique when trying
to prove lower bounds for arithmetic circuits (see e.g., [Nis91, NW96, Raz06, Raz09, RSY08, RY09])
and so it was an interesting problem to understand whether this powerful technique could be carried
over to the black-box setting. Prior to this work it was not known how to use this low-dimensional
property in order to obtain a small hitting set, and this paper achieves this goal. Earlier, in [FS12],
we obtained a black-box algorithm for the model of low-rank tensors, but could not prove that it
also works for the more general case of set-multilinear ABPs (we still we do not know whether this
is the case or not - we discuss the similarities and differences between this and our new algorithm
in Subsection 1.3), so this work closes a gap in our understanding of such low-dimensional models.

We shall now define the model and state our results.

1.1 The model

The model that we consider in this paper is that of set-multilinear algebraic branching programs.
In fact, we will work with a slightly more general model, but we first describe the model of set-
multilinear ABPs.

Algebraic branching programs were first defined in the work of Nisan [Nis91] who proved expo-
nential lower bounds on the size of non-commutative ABPs computing the determinant or perma-
nent polynomials.

Definition 1.1 (Nisan). An algebraic branching program (ABP) is a directed acyclic graph
with one vertex of in-degree zero, which is called the source, and one vertex of out-degree zero,
which is called the sink. The vertices of the graph are partitioned into levels numbered 0, . . . , D.
Edges may only go from level i− 1 to level i for i = 1, . . . , D. The source is the only vertex at level
0 and the sink is the only vertex at level D. Each edge is labeled with a affine function in the input
variables. The width of an ABP is the maximum number of nodes in any layer, and the size of the
ABP is the number of vertices.

Each directed source-sink path in the ABP computes a polynomial, which is a product of the
labels on the edges in that path. As this work concerns non-commutative computation, we specify
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that the product of the labels is in the order of the path, from source to sink. The ABP itself
computes the sum of all such polynomials.

We consider a slight variation of this model which we call set-multilinear ABP, in line with
the term coined by Nisan and Wigderson [NW96]. In the set-multilinear scenario the variables are
partitioned into sets

X = X1 tX2 t · · · tXD,

where
Xi = {xi,1, . . . , xi,n}.

A set-multilinear monomial is a monomial of the form

m = x1,i1 · x2,i2 · · ·xD,iD .

In words, a set-multilinear monomial is a multilinear monomial that contains exactly one variable
from each Xi. A set-multilinear polynomial is a polynomial consisting of set-multilinear monomials.
In other words, the coefficients of a set-multilinear polynomial can be viewed as map from [n]D to
the field F, and thus is an D-dimensional tensor.

Definition 1.2 (Set-multilinear ABP). A set-multilinear algebraic branching program
(ABP) in the variable set X = X1 t X2 t · · · t XD is an ABP of depth D, such that each
edge between layer i− 1 and layer i is labeled with a (homogeneous) linear function in the variable
set Xi.

It is clear from the definition that a set-multilinear ABP computes a set-multilinear polynomial.
It is also not hard to see that any set-multilinear polynomial can be computed by a set-multilinear
ABP.

In fact, our result holds for the following model, that we call read-once oblivious ABPs, as well.

Definition 1.3 (Read-Once Oblivious ABP). An read-once oblivious ABP in the variable set
X = {x1, . . . , xD} is an ABP of depth D, such that each edge between layer i − 1 and layer i is
labeled with a univariate polynomial in xi of degree < n.

Note that unlike previous definitions, in read-once oblivious ABPs we allow edges to be labeled
with arbitrary univariate polynomials (with a bound of n on the degree) and not just with linear
forms. Observe that be mapping xi,j ↔ xji transforms any set-multilinear ABP into an read-once
oblivious ABP and vice versa (when we index j starting at zero).

1.2 Our results

A black-box PIT algorithm is also known as an explicit hitting set, which we now define. We phrase
the definition in generality to capture the notion of hitting sets for non-commutative polynomials,
generalizing the usual notion.

Definition 1.4 (Hitting Set). Let C be a class of non-commutative n-variate polynomials, with
coefficients in F. Let R be a non-commutative ring with a (commutative) ring homomorphism
F→ R, so that polynomials in C are defined over R. A set H ⊆ Rn is a hitting set for C if for
all f ∈ H, f ≡ 0 iff f |H ≡ 0.

The hitting set H is t(n)-explicit if given an index into H, the corresponding element of H can
be computed in t(n)-time.
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When C is commutative, we will always use R = F, and when C is non-commutative, we will
take R = Fm×m for some appropriate m.

Our main result is a quasi-polynomial time black-box PIT algorithm for read-once oblivious
ABPs.

Theorem (Theorem 3.22, PIT for read-once oblivious ABPs). Let C be the set of D-variate poly-
nomials computable by width r, depth D, individual degree < n read-once oblivious ABPs. If
|F| ≥ poly(D,n, r), then C has a poly(D,n, r)-explicit hitting set, of size ≤ poly(D,n, r)O(lgD).

We remark here that our result assumes that the read-once oblivious ABP takes the order x1 <
· · · < xn, and that our results do not hold under permutation of the variables. In Subsection 3.1
we explain our proof technique and give an overview of the proof. Using this theorem we obtain
black-box PIT algorithms for several related models. We first observe that PIT for set-multilinear
ABPs is an immediate corollary of Theorem 3.22. As with read-once oblivious ABPs, we assume
that we know the partition of the variables into the D sets, and our results do not hold under
permutation of the variables.

Theorem (Theorem 3.23, PIT for set-multilinear ABPs). Let X = X1tX2t· · ·tXD, where Xi =
{xi,1, . . . , xi,n}, be a known partition. Let C be the set of set-multilinear polynomials f(X1, . . . , XD) :
FnD → F computable by a width r, depth D, set-multilinear ABP. If |F| ≥ poly(D,n, r), then C has
a poly(D,n, r)-explicit hitting set, of size ≤ poly(D,n, r)O(lgD).

Next, we consider the model of non-commutative ABPs (see Section 4). Raz and Shpilka [RS05]
gave a polynomial time white-box PIT algorithm for this model and we obtain a quasi-polynomial
time black-box PIT algorithm. The evaluation points in our hitting set are vectors of (D+1)×(D+1)
matrices for ABPs of depth D. We explain this choice in Section 4. In contrast to the above two
results, this result for non-commutative ABPs makes no assumption about the variable ordering,
and thus still holds under permutation of the variables.

Theorem (Corollary 4.7, Black-box PIT for non-commutative ABPs). Let NC be the set of n-
variate non-commutative polynomials computable by width r, depth D ABPs. If |F| ≥ poly(D,n, r),
then NC has a poly(D,n, r)-explicit hitting set over (D + 1) × (D + 1) matrices, of size ≤
poly(D,n, r)O(lgD).

Saxena [Sax08] defined the model of diagonal circuits (see Section 5 for definition) in an attempt
to capture some of the complexity of depth-4 circuits. Relying on the algorithm of [RS05], Saxena
obtained a polynomial time white-box PIT algorithm for this model (for a certain setting of the
parameters). Saha, Saptharishi and Saxena [SSS11], with the essentially same techniques, later
extended Saxena’s white-box results to the so-called semi-diagonal model. Simultaneously and
independently of our work, Agrawal, Saha and Saxena [ASS12] gave a black-box PIT algorithm
for semi-diagonal depth-4 circuits that runs in quasi-polynomial time in the runtime of the known
white-box algorithm, and works over fields of large characteristic.

Using our main theorem and a new reduction from diagonal circuits to read-once oblivious ABPs
(Lemma 5.8) we obtain a PIT algorithm for diagonal circuits that runs in time quasi-polynomial in
the white-box algorithm given by Saxena. Further, we do so over any characteristic in a unified way.
As with our result on non-commutative ABPs, this result makes no assumptions about variable
order. With essentially no modification, we obtain similar results for semi-diagonal circuits.

Theorem (Theorem 5.11, Black-box PIT for semi-diagonal circuits). Let F be a field of arbitrary
characteristic. Let SDC be the set of n-variate polynomials computable by semi-diagonal depth-
4 circuits, that is, of the form Φ =

∑
i∈[k]mi(~x) · P ei,1i,1 · · ·P

ei,ri
i,ri

, where mi(~x) is a monomial of
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degree ≤ d,
∏ri
j=1(1 + ei,j) ≤ e and Pi,j is a sum of univariate polynomials of degree ≤ d. Then if

|F| ≥ poly(n, k, d, e) then SDC has a poly(n, k, e, d)-explicit hitting set of size ≤ poly(n, d, k, e)O(lgn).

Klivans and Shpilka [KS06] gave a polynomial-time learning algorithm for read-once oblivious
ABPs2, given membership and equivalence queries. That is, they give a deterministic algorithm
that can learn an unknown f computed be a small read-once oblivious ABP, given a oracle that
evaluates f (“membership query”), as well an oracle such that for any hypothesis h computed by
a small read-once oblivious ABP with h 6= f , the oracle returns an evaluation point ~x such that
h(~x) 6= f(~x) (“equivalence query”). Membership queries can be implemented deterministically
given black-box access to f , and equivalence queries can be implemented using random queries.
That is, by appealing to the Schwartz-Zippel algorithm, distinguishing h 6= f can be done using
random evaluations.

Our above results construct hitting sets for read-once oblivious ABPs, and as these are closed
under subtraction (that is, for equivalence queries, h− f is also a small read-once oblivious ABP),
our hitting set will always contain a distinguishing evaluation for h and f , if h 6= f . Thus, we
can derandomize the equivalence queries needed for [KS06]. Further, our results on set-multilinear
ABPs, non-commutative ABPs and semi-diagonal depth-4 circuits, all rely on reductions to read-
once oblivious ABPs, and these reductions also hold in the learning setting. We omit further details,
and state the following result.

Theorem 1.5 (Extension and Derandomization of [KS06]). There is a deterministic polynomial-
time learning algorithm from membership and equivalence queries that can learn each of the follow-
ing models: read-once oblivious ABPs, set-multilinear ABPs, non-commutative ABPs and semi-
diagonal depth-4 circuits. In the first three models the algorithm outputs an hypothesis from the
same class as the unknown function, but in the case of semi-diagonal depth-4 circuits the outputted
hypothesis is a read-once oblivious ABP. Given such query access, the running time of the algorithm
is polynomial in the size3 of the underlying branching program or circuit.

Furthermore, such membership and equivalence queries can be implemented in randomized-
polynomial time, or in deterministic quasi-polynomial time, for any of the classes mentioned above.

1.3 Related work

In [Mul12] Mulmuley studies the problem of derandomizing Noether’s normalization lemma.
Roughly, this lemma says that, for an algebraically closed field K and a projective variety
V ⊂ P (Ks) (P (Ks) is the projective space over Ks) of dimension n, if we pick a linear trans-
formation Ψ : Ks → Km at random for m > n, then Ψ will be well-defined on V . Furthermore,
for any v ∈ V the set Ψ−1(Ψ(v)) ∩ V , for such a random Ψ, is finite. The complexity theoretic
question associated with the lemma, is given the set of polynomials defining V , how to explicitly
construct the map Ψ. In fact, even given Ψ, it is not clear how to verify that it satisfies the required
properties. In his paper Mulmuley considers two explicit varieties. The one that is related to di-
agonal circuits is the coordinate ring K[V ] of a polynomial representation V of G = SLm(K). An
equivalent formulation of Noether’s normalization lemma says that there exists a set S ⊆ K[V ]G

(where K[V ]G is the subring of G-invariants in K[V ]) consisting of poly(n) homogeneous invari-
ants such that K[V ]G is integral over the subring generated by S. Again, a random choice of S
has the required property, but deterministic construction of such a small S is not known (nor an

2The terminology used in [KS06] is that of learning by multiplicity automata, but these are completely equivalent
to read-once oblivious ABPs, as shown in [KS06].

3For convenience here, we define the “size” of a semi-diagonal depth-4 circuit to be some poly(n, k, e, d), using the
notation of Theorem 5.11, even though the actual circuit could be much smaller.
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efficient way of certifying whether a given S is good, see [Mul12] for a more detailed discussion).
Theorem 1.1 of [Mul12] shows that black-box derandomization of PIT for diagonal circuits implies
derandomization of Noether’s lemma in the sense that one can construct such a set S efficiently.
Moreover, Mulmuley views this connection as an evidence that derandomization of black-box PIT
of even diagonal circuits is a hard problem. To support this view [Mul12] mentions that, currently,
the best deterministic algorithms are doubly exponential in n.4

In contrast to this view, our Theorem 5.9 implies that for the variety studied in [Mul12] the set
S can be constructed in quasi-polynomial time. Thus, instead of looking at the results in [Mul12]
as indicating hardness of PIT, we suggest to view them as offering algorithms for several problems
of giving explicit constructions.

Theorem 1.2 of [Mul12] gives derandomization of Noether’s normalization lemma under certain
assumptions such as EXP containing a function with a sub-exponential lower bound, or assuming
that EXP is not contained in MA and that the generalized Riemann hypothesis holds. In both cases
the implied running time is at least quasi-polynomial so our result achieves this without further
assumptions.

It is interesting to note that to get a quasi-polynomial sized hitting set for depth-3 diagonal
circuits one does not need our new result and in fact, such a hitting set can be constructed using
the techniques of Shpilka and Volkovich [SV09].

The reader is encouraged to read [Mul12] to learn more on this connection.

While the work of Raz and Shpilka [RS05] establishes a white-box PIT algorithm for non-
commutative ABPs, the black-box PIT question for this model is more intricate since one cannot
immediately apply the usual Schwartz-Zippel algorithm over non-commutative domains. How-
ever, Bogdanov and Wee [BW05] showed how, leveraging the ideas in the Amitsur-Levitzki theo-
rem [AL50], one can reduce non-commutative black-box PIT questions to commutative black-box
PIT questions. By then appealing to Schwartz-Zippel, they give the first randomized algorithm for
non-commutative PIT. They also discussed the possibility of derandomizing their result and raise a
conjecture that if true would lead to a hitting set of size ≈ slog2 s for non-commutative ABPs of size
s. Our Theorem 4.6 gives a hitting set of size ≈ slog s and does not require unproven assumptions.

In particular, their conjecture asked about the minimal size of an ABP required to computed
a polynomial identity of n × n matrices. Recall that a polynomial identity of matrices is a non-
zero polynomial f(~x) such that no matter which n × n matrices we substitute for the variables
xi, f evaluates to the zero matrix. Our work bypasses this conjecture, in that we more directly
translate the non-commutative polynomial into a (set-multilinear) commutative polynomial. Our
construction consists of (D + 1) × (D + 1) strictly-upper-triangular matrices for depth D non-
commutative ABPs. It is also not hard to see that there is a non-commutative formula of depth
D + 1 which is a polynomial identity for the space of (D + 1) × (D + 1) strictly-upper-triangular
matrices. Thus, our result is tight in that it also illustrates that if we go just one dimension up
above what is obviously necessary then we can already construct a hitting set.

In [AMS10], Arvind, Mukhopadhyay and Srinivasan gave a deterministic black-box algorithm
for identity testing of sparse non-commutative polynomials. The algorithm runs in time polynomial
in the number of variables, degree and sparsity of the unknown polynomial. This is similar to the
running time achieved in the commutative setting for sparse polynomials (see e.g., [BOT88, KS01])
and in particular it is better than our quasi-polynomial time algorithm. On the other hand our
algorithm is more general and works for any non-commutative polynomial that is computed by a

4More accurately, the doubly-exponential bound is for a general variety V . Because of the reduction to PIT there
is a single exponential time algorithm for the specific varieties that he is considering.
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small ABP.
We note that in the aforementioned [AMS10], the authors showed how to deterministically

learn sparse non-commutative polynomials in time polynomial in the number of variables,
degree and sparsity. In contrast, for such polynomials our deterministic algorithm requires
quasi-polynomial time. For general non-commutative ABPs [AMS10] also obtained a deter-
ministic polynomial time learning algorithm, but here they need to have the ability to query
the ABP also at internal nodes and not just at the output node. Our deterministic algorithm
runs in quasi-polynomial time but it does not need to query the ABP at intermediate computations.

In a previous paper [FS12] we gave a hitting set of quasi-polynomial size for the class of depth-3
set-multilinear polynomials. That result is mostly subsumed by the generality of Theorem 3.23,
but the previous work has a better dependence on some of the parameters. More importantly, it is
interesting to note that the proof in [FS12] is also based on the same intuitive idea of preserving
dimension of linear spaces while reducing the number of variables, but in order to prove the results
in this paper we had to take a different approach. At a high level the difference can be described
as follows. We now summarize the algorithm of [FS12]. First the case of degree 2 is solved. In
this case the tensor is simply a bilinear map. For larger D, the algorithms works by first reducing
to the bivariate case using the Kronecker substitution xi ← xn

i
for i ≤ D/2 and xi+D/2 ← yn

i
for

1 ≤ i ≤ D/2. Appealing now to the bivariate case, we can take y to be some multiple of x, and
then undo the Kronecker substitution (and applying some degree reduction) to recover a tensor
on D/2 variables. If we try to implement this approach with ABPs then we immediately run into
problems, as the previous work requires that the layers of the ABP are commutative, in that we
can re-order the layers. While this is true for depth-3 set-multilinear computation, it is not true
for general ABPs. To generalize the ideas to general ABPs, this work respects the ordering of the
layers in the ABP. In particular, while the previous work had a top-down recursion, this work
follows a bottom-up recursion. We merge variables in adjacent levels of the ABP and then reduce
the degree of the resulting polynomial using an (algebraic rank) extractor. We do this iteratively
until we are left with a univariate polynomial. Perhaps surprisingly, this gives a set that is simpler
to describe as compared to the hitting set in [FS12]. On the other hand, if we restrict ourselves to
set-multilinear depth-3 circuits then the hitting set of [FS12] is polynomially smaller than the set
that we construct here.

Independently and simultaneously with this work, Agrawal, Saha and Saxena [ASS12] ob-
tained results on black-box derandomization of PIT for small-depth set-multilinear formulas,
when the partition of the variables into sets is unknown. They obtained a hitting set of size
exp((2h2 log(s))h+1), for size s formulas of multiplicative-depth h. We note that their model is
both stronger and weaker compared to the models that we consider here. On the one hand, this
model does not assume knowledge of the partition of the variables, whereas our model assumes
this knowledge. On the other hand, they only handle small-depth formulas, and indeed, the size
of their hitting grows doubly-exponentially in the depth, whereas our results handle arbitrary
set-multilinear formulas, according to their definition, if we know the partition, and the size of
the hitting set grows quasi-polynomially with the depth5. Using their results for set-multilinear
formulas, Agrawal, Saha and Saxena [ASS12] also give a quasipolynomial-sized hitting set for
semi-diagonal circuits over large characteristic fields. Our results, in particular our extension of
Saxena’s [Sax08] duality to all fields, can help extend the results of [ASS12] to small characteristics

5Their definition of set-multilinear formulas is actually that of a pure formula (see [NW96]). It is not hard to
see that pure formulas form a sub-model of the set-multilinear ABPs we examine in this paper. That is, the usual
transformation from formulas to ABPs can be done preserving set-multilinearity.
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as well.

We also mention that in [JQS09, JQS10] Jansen, Qiao and Sarma studied black-box PIT in
various models related to algebraic branching programs. Essentially, all these models can be cast
as a problem of obtaining black-box PIT for read-once oblivious branching programs where each
variable appears on a small number of edges. Their result gives a hitting set of size (roughly)
nO(k log(k) log(n)) when k is an upper bound on the number of edges that a variable can label and the
ABP is of polynomial size. In comparison, our Theorem 3.22 gives a hitting set of size nO(log(n))

and works for k = poly(n) (as long as the size of the ABP is polynomial in n). Our techniques
are very different from those of [JQS09, JQS10], which basically follow the proof technique of [SV09].

This work fits into the research program of derandomizing PIT, in particular derandomiz-
ing black-box PIT. However, for many of the models of algebraic circuits studied, there are cor-
responding boolean circuit models for which derandomization questions can also be asked. In
particular, for a class C of boolean circuits, we can seek to construct a pseudorandom generator
G : {0, 1}s → {0, 1}n for C, such that for any circuit C ∈ C on n inputs, we have the ε-closeness of dis-
tributions C(G(Us)) ≈ε C(Un), where Uk denotes the uniform distribution on {0, 1}k. Nisan [Nis92]
studied pseudorandom generators for space-bounded computation, and for space S computation
gave a generator with seed length s = O(lg2 S). Impagliazzo, Nisan and Wigderson [INW94] later
gave a different construction with the same seed length. Randomized space-bounded computation
can be modeled with read-once oblivious (boolean) branching programs, and these generators apply
to this model of computation as well. Our work, at its core, studies read-once oblivious (algebraic)
branching programs, and we achieve a quasi-polynomial-sized hitting set, and can thus be viewed
as having a “seed length” of O(lg2 S) for ABPs of size S. Aside from the similarities in the state-
ments of these results, there are some similarities in the high-level techniques as well. Indeed, an
interpretation by Raz and Reingold [RR99] argues that the [INW94] generator for space-bounded
computation can be seen as recursively partitioning the branching program, using an (boolean) ex-
tractor to recycle random bits between the partitions. Similarly, in our work, we use an (algebraic
rank) extractor between the partitions. At present, it is unclear if there are formal (or further
informal) connections between the boolean pseudorandom generators and black-box PIT.

2 Notation

We write [n] to denote {1, . . . , n}, and JnK to denote {0, . . . , n − 1}. We write 1P to denote the
indicator function for the set/event P . We use t to denote a disjoint union.

Matrices and vectors will most often be indexed starting at zero. In observance of this indexing
scheme, we will write SJnK to denote n-dimensional vectors with entries in S, and will write SJnK×JmK

to denote matrices of size n×m with entries in S. Indexing from 1 (as done in Section 5) will be
indicated by the use of [n] as opposed to JnK. We denote I for the identity matrix, whose dimension
will always be clear from the context. For a matrix M , we will write Mi,• to denote the i-th row of
M , and M•,j to denote the j-th column, where i and j are indexed from zero. Given a bit vector
~b ∈ {0, 1}JnK, we write bi for the i-th bit of ~b, where i is indexed from zero.. When n = 0, we use λ
to denote the empty string in {0, 1}J0K, and thus for n ≥ 0, |{0, 1}JnK| = 2n.

Given a vector of polynomials ~f ∈ F[~x]n and an exponent vector ~α ∈ Nn, we write ~f ~α for
fα1
1 · · · fαnn .

We write M ∈ F[~x]JrK×JrK to indicate that M is an r×r matrix, with entries in F[~x]. The (total)
degree of M , written deg(M), is defined as the maximum degree of its entries. Given a collection of
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matrices M ⊆ FJrK×JrK, spanM denotes the span of these matrices, in the vector space FJrK×JrK ≡
FJr2K. Given M ⊆ FJrK×JrK and N ⊆ FJrK×JrK, we define M · N := {MN : M ∈ M, N ∈ N}.
Given a polynomial f ∈ F[~x], we write C~x~α(f) to denote the coefficient of ~x~α in f . For a matrix
M ∈ F[~x]JrK×JrK, we write C~x~α(M) to denote the r × r F-matrix, with the C~x~α operator applied to
each entry. When we write “f ∈ F[~x][~y]”, we will treat f as a polynomial in the variables ~y, whose
coefficients are polynomials in the variables ~x, and correspondingly will write C

~y~β
(f) to extract the

polynomial in ~x that is the coefficient of the monomial ~y
~β in f . Given a polynomial f (in F[~x] or

in the non-commutative F{~x}), we write Hk(f) for the homogeneous part of f of degree k.
If Mi ∈ FJrK×JrK for i ∈ JDK, then we write

∏
i∈JDKMi for the non-commutative multiplication

M0 · · ·MD−1, with the understanding that the multiplication proceeds left to right, starting at
the lower index of the product (i = 0) and ending at the higher index (D − 1). When this non-
commutative product is indexed over the range {0, 1}JdK, we order the product by the lexicographic
order on {0, 1}JdK, where the least-significant bit is the rightmost bit.

3 Hitting Set for Read-Once Oblivious ABPs

In this section, we construct a hitting set for read-once oblivious ABPs. To make the questions
more amenable to study, we give the following normal form for read-once oblivious ABPs.

Lemma 3.1. Let A be a width ≤ r, depth D, individual degree < n read-once oblivious ABP,
computing a polynomial f ∈ F[x0, . . . , xD−1]. Then for i ∈ JDK, there are matrices Mi ∈ F[xi]

JrK×JrK

of degree < n such that

f(~x) =

 ∏
i∈JDK

Mi(xi)


(0,0)

.

Conversely, any such function can be computed by a width r, depth D, read-once oblivious ABP.

Proof. ABP =⇒ matrices: Identify the nodes in the i-th layer of A with a subset of JrK × {i}, so
that the nodes of A are identified with a subset of JrK × JD + 1K and the source is 0 × 0 and the
sink is 0×D. Then, define the matrices Mi such that the entry (Mi)`,`′ takes the label of the edge
(` × (i − 1), `′ × i). Note that such a label is a univariate polynomial in xi of degree < n. It is
straight-forward to see that f is computed by this matrix product.

matrices =⇒ ABP: This is similar to the above.

Thus, instead of talking about such ABPs, we will be discussing products of matrices
∏
iMi(xi).

For induction purposes we will not be restricting ourselves to the (0, 0)-th entry, but will consider
the full matrices. Such products naturally correspond to multi-source multi-sink ABPs. With this
normal form in mind, we can give the proof overview.

3.1 Proof overview

At a high level, our hitting set can be viewed as a repeated application (in parallel) of a “derandom-
ized Kronecker product”. That is, the usual Kronecker product allows us to merge two variables
(that is, we merge x and y by taking y ← xm for large enough m) of a polynomial without losing any
information. Once a single variable remains, one can resort to full-interpolation of this univariate
polynomial. However, this generic transformation rapidly increases the degree of the polynomial
and thus the final interpolation step requires too many evaluations to yield a good hitting set.
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For our hitting set, we first observe that in an read-once oblivious ABP each layer has its own
variable, so merging two variables in adjacent layers results in the merging of the two layers in the
ABP. We then give a degree-reduction procedure for the results of such merges. That is, given two
adjacent layers of our ABP, M(x) ∈ F[x]JrK×JrK and N(y) ∈ F[y]JrK×JrK, we first set y ← xn (where
degM,N < n) to obtain M(x)N(y) ≈ M(x)N(xn), where the right-hand term is of degree ≈ n2.
We then construct f, g ∈ F[z] of degree < r2 such that M(x)N(xn) ≈M(f(z))N(g(z)), where the
degree of the right-hand term is now ≈ nr2. Thus we have that M(x)N(y) ≈ M(f(z))N(g(z)),
and we have only increased the degree by ≈ r2. As r, the dimension of the matrices (and the width
of the ABP), stays constant throughout this merging process, one can repeat this merging process
and have the degree of the polynomial scale linearly with the number of mergings. To then fully
leverage this idea, we show that pairs of variables can be merged in parallel.

To discuss our degree-reduction process, we first need to state what it means for “M(x)N(xn) ≈
M(f(z))N(g(z))”. In the Kronecker substitution, this equivalence typically means that there is a
bijection between monomials. We will not use that notion, and instead will us a problem-specific
notion, related to linear algebra. Specifically, for each α, β ∈ F, the matrix M(α)N(β) is some linear
transformation FJrK → FJrK. Ranging over all α and β, we get a space of such transformations,
which we extend by linearity to a vector space of transformations. Crucially, the polynomial
M(x)N(y) is zero iff this vector space is zero. More generally, we will show that this linear space
of transformations captures essentially all we need to know about the polynomial M(x)N(y). Our
degree reduction lemma (using the Kronecker substitution, and then doing the degree reduction)
finds two curves f, g ∈ F[z] of degree < r2 such that the space of linear transformations induced
by M(x)N(y) is the same as the space of linear transformations induced by M(f(z))N(g(z)). It
follows then that M(x)N(y) ≈ M(f(z))N(g(z)), and so we have merged two variables without
increasing the degree too much.

To find such curves, we use a (seeded) rank extractor. That is, the n2 matrices defined by
the coefficients of M(x)N(y) live in a r2-dimensional space, so we seek to map these n2 vectors to
a smaller space while preserving rank. Gabizon and Raz [GR05] established such a lemma, and
our prior work [FS12] improved the parameters in their lemma. Crucially, these rank extractors
have the form such that the maps they define correspond to polynomial evaluations. Thus, these
extractors establish (for most values of the seed) an explicit small set of evaluation points where
the span of M(x)N(y) is preserved. By creating curves that through these points, we obtain the
desired f and g for our degree reduction.

3.2 Derandomized Kronecker Product for the Span of an ABP

We will begin the formal statements of this section by giving lemmas on the span of matrices, and
how preserving the span of linear transformations can be used for PIT. We begin by showing that
the span of ABPs can be preserved in a recursive fashion.

Lemma 3.2. Let M,M′ ⊆ FJrK×JrK and N ,N ′ ⊆ FJrK×JrK, such that spanM = spanM′ and
spanN = spanN ′. Then span(M·N ) = span(span(M) · span(N )) and span(M·N ) = span(M′ ·
N ′).

Proof. As M · N ⊆ span(M) · span(N ) we see that span(M · N ) ⊆ span(span(M) · span(N ))
by linearity. To show the other direction, consider any A ∈ span(span(M) · span(N )). Then
A =

∑
i ci(

∑
j ai,jMj)(

∑
k bi,kNk), for Mj ∈ M and Nk ∈ N . Thus, by bilinearity of the matrix

product, A =
∑

i,j,k ciai,jbi,kMjNk, where MjNk ∈M·N , and thus A ∈ span(M·N ), yielding the
first claim.
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The second claim follows from the first, by observing that span(M · N ) = span(span(M) ·
span(N )) = span(span(M′) · span(N ′)) = span(M′ · N ′).

We will use this as follows. By Lemma 3.1 we can restrict our attention to matrix-valued
functions of the form f(~x) =

∏
i∈JDKMi(xi), and we work in this level of generality for ease of

induction. As such, f defines a space of matrices A by evaluating the polynomial on all possible
inputs. Crucially for PIT, we see that span(A) is zero iff f is zero. By breaking the matrix product
in f into variable disjoint left- and right-halves (each on ≈ D/2 variables), we can see that this
space of matrices factorizes into A = A0 · A1, corresponding to the evaluations of the separate
halves of the ABP. Now, because these halves are variable disjoint, we can in parallel find smaller
spaces of matrices such that span(A′c) = span(Ac) for c ∈ {0, 1}. From the above lemma, we
now see that span(A) = span(A′0 · A′1). The operation “A′0 · A′1” squares the number of matrices
under consideration, so to complete the picture we “derandomize” this Kronecker product to yield
a “small” family of matrices A′ such that span(A) = span(A′). It follows then that PIT of the
original function f reduces to testing each matrix in A′ for non-zeroness, which will correspond to
fully interpolating a univariate polynomial.

To implement the above program, our main challenge is to thus construct the derandomized
Kronecker product. To do so, our next lemma shows that the span of a layer of an read-once
oblivious ABP can be viewed either as the span of the evaluations of that layer, or of the (finite)
number of (matrix-valued) coefficients of that layer. We will use both characterizations of the span
of a layer.

Lemma 3.3. Let M ∈ F[x]JrK×JrK. Then for any set S ⊆ F with |S| > deg(M), span{M(α)}α∈S =

span{Cxi(M)}deg(M)
i=0 .

Proof. ⊆: Note that M(α) =
∑deg(M)

i=0 Cxi(M) · αi, and thus is in span{Cxi(M)}deg(M)
i=0 , for any α.

⊇: Let d = deg(M) + 1. As the span of a set of vectors is monotonic, it suffices to prove
the claim when |S| = d. Recall that polynomial interpolation shows that the map FJdK → FJdK

defined by mapping degree < d polynomials to their evaluations on S is a bijective linear map. It
follows that for any 0 ≤ i < d, there is a set of constants {ai,α}α∈S such that for any polynomial
f ∈ F[x] of degree < d, Cxi(f) =

∑
α∈S ai,αf(α). Applying this relation entry-wise we obtain

Cxi(M) =
∑

α∈S ai,αM(α), and thus Cxi(M) ∈ span{M(α)}α∈S . Varying this over all i yields the
result.

We now cite a dimension reduction lemma that shows how we can map a vector space of rank
≤ r, in a large ambient dimension n, to a vector space of the same rank in an ambient dimension
r (and thus, is a “rank extractor”). A lemma of this sort was first established by Gabizon and
Raz [GR05]. That lemma would also work for us, but the version we cite has slightly better
parameters.

Lemma 3.4 ([FS12]). Let 1 ≤ s ≤ r ≤ n. Let M ∈ FJnK×Jr′K be of rank s, for r′ ≥ s. Let K be
a field extending F, and let ω ∈ K be an element of order ≥ n. For α ∈ K define Aα ∈ KJrK×JnK

by (Aα)i,j = (ωiα)j. Then there are ≤ nr −
(
r+1
2

)
< nr values α ∈ K such that the first s rows of

AαM have rank < s.

We now apply this dimension reduction to read-once oblivious ABPs, by observing that even
though the result M(x)N(xn) of the Kronecker product induces a linear space of transformations
most naturally parameterized by the ≈ n2 coefficients of this polynomial (as in Lemma 3.3), each
transformation is an r × r matrix, and so this linear space of transformations more naturally lives
in an r2-dimensional vector space. Thus, by applying dimension reduction, we make a first step in
getting a derandomized Kronecker product.
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Lemma 3.5. Let M ∈ F[x]JrK×JrK, N ∈ F[y]JrK×JrK be of degree < n. Let ω be an element of order
≥ n2. Then, for any α ∈ F,

span{Cxiyj (M(x)N(y))}i,j∈JnK ⊇ span{M(ω`α)N((ω`α)n)}`∈Jr2K

and except for < n2r2 values of α,

span{Cxiyj (M(x)N(y))}i,j∈JnK = span{M(ω`α)N((ω`α)n)}`∈Jr2K

Proof. ⊇: This follows from the same reasoning used in Lemma 3.3, in that M(ω`α)N((ω`α)n) =∑
i,j∈JnK Cxiyj (M(x)N(y)) · (ω`α)i+nj , and thus the evaluations of M(x)N(y) are in the span of the

coefficients of M(x)N(y).
⊆: Consider the matrix C ∈ FJn2K×Jr2K defined so that Ci+nj,• := Cxiyj (M(x)N(y)), where we

flatten r × r matrices into r2-dimensional vectors. Observe, that as in the Kronecker substitution,
the map (i, j)→ i+nj is a bijection JnK2 → Jn2K, and thus the rows of C are exactly the coefficients
of M(x)N(y), and thus span{Cxiyj (M(x)N(y))}i,j∈JnK = row-span(C).

Taking Aα ∈ FJr2K×Jn2K as defined in Lemma 3.4, the lemma shows that except for < n2r2 values
of α, we have that rank(AαC) = rank(C). Recall that (Aα)`,i+nj = (ω`α)i+nj , which implies that

(Aα)`,•C =
∑
i,j∈JnK

Cxiyj (M(x)N(y)) · (ω`α)i+nj = M(ω`α)N((ω`α)n),

and thus span{M(ω`α)N((ω`α)n)}`∈Jr2K = row-span(AαC). Since row-span(C) ⊇ row-span(AαC),
it follows that if rank(C) = rank(AαC), then row-span(C) = row-span(AαC). As Lemma 3.4 shows
there are < n2r2 many α for which rank(C) > rank(AαC), and thus there are < n2r2 many α for
which row-span(C) 6= row-span(AαC), yielding the claim.

The above result shows how to choose evaluation points for the two matrices M and N such
that the span is preserved. However, by itself this does not lead naturally to recursion. Rather,
we would like to take M(x)N(y) and produce a pair of curves f, g ∈ F[z] satisfying M(x)N(y) ≈
M(f(z))N(g(z)), such that we can apply recursion and merge the variable z with other variables.
To do this, it is enough that f and g pass through all of the evaluation points for M and N
in the above lemma, as then this captures the desired span of linear transformations. To create
these curves, we need the following definition of the Lagrange interpolation polynomials, which
will be featured in our hitting set. Note that these appeared in the prior work of Shpilka and
Volkovich [SV09], who also used them in a somewhat similar fashion.

Definition 3.6. Fix s, and distinct βi ∈ F, for i ∈ JsK. Then the Lagrange interpolation
polynomials (with respect to s and the βi’s) are the unique polynomials p` ∈ F[t] of degree
< s such that p`(βi) = 1i=` for all i, ` ∈ JsK.

We now use these polynomials to construct curves passing through the evaluation points shown
in Lemma 3.5, to yield a reduction of a two-layer read-once oblivious ABP to a one-layer read-once
oblivious ABP. We will phrase the result more generally, so that we can apply induction.

Lemma 3.7. For i ∈ JDK, let Mi ∈ F[x]JrK×JrK, Ni ∈ F[y]JrK×JrK be of degree < n, and fi ∈ F[x],
gi ∈ F[y] be of degree ≤ m. Let ω ∈ F be an element of order ≥ (Dnm)2. Let βj ∈ F with j ∈ Jr2K
be distinct, and let p` be the corresponding Lagrange interpolation polynomials with respect to r2

13



and the βj’s. Then, except for < (Dnmr)2 values of α, we have

span

 ∏
i∈JDK

Mi(fi(x)) ·
∏
i∈JDK

Ni(gi(y))


x,y∈F

⊆ span

 ∏
i∈JDK

Mi

 ∑
`∈Jr2K

fi(ω
`α)p`(z)

 · ∏
i∈JDK

Ni

 ∑
`∈Jr2K

gi((ω
`α)Dnm)p`(z)


z∈F

.

Proof. Define R(x) :=
∏
i∈JDKMi(fi(x)), so that R ∈ F[x]JrK×JrK is of degree < Dnm, and define

T (y) :=
∏
i∈JDKNi(gi(y)), so that T ∈ F[y]JrK×JrK of degree < Dnm. As ω has order ≥ (Dnm)2,

Lemma 3.5 implies that except for < (Dnmr)2 values of α,

span{Cxiyj (R(x)T (y))}i,j∈JDnmK = span{R(ω`α)T ((ω`α)Dnm)}`∈Jr2K . (3.8)

As ω ∈ F has order ≥ (Dnm)2, it follows that |F| ≥ (Dnm)2, so that applying Lemma 3.3 twice
(first to the variable x, then to the variable y) we have that

span{R(x)T (y)}x,y∈F = span{Cxiyj (R(x)T (y))}i,j∈JDnmK . (3.9)

Now denote

U(z) :=
∏
i∈JDK

Mi

 ∑
`∈Jr2K

fi(ω
`α)p`(z)

 and V (z) :=
∏
i∈JDK

Ni

 ∑
`∈Jr2K

gi((ω
`α)Dnm)p`(z)

 ,

which are both elements of F[z]JrK×JrK of degree < Dnr2. Then by construction of the Lagrange
interpolation polynomials, we see that U(β`) = R(ω`α) and V (β`) = T ((ω`α)Dnm), and thus by
linearity

span{R(ω`α)T ((ω`α)Dnm)}`∈Jr2K ⊆ span{U(z)V (z)}z∈F . (3.10)

Putting equations (3.8), (3.9), and (3.10) together yields the claim.

Remark 3.11. In the above lemma it is tempting to ask for the “⊆” to be an “=”, for in PIT
applications we wish to avoid causing a zero polynomial to become a non-zero polynomial (or
in this case, avoid causing a zero-dimensional span becoming higher-dimensional). However, the
proof does not give this in general, as inserting the p`(z) polynomial outside the functions fi and
gi allows us to potentially evaluate the matrices Mi and Ni at points possibly outside the range of
the polynomials fi and gi, seemingly allowing the dimension to increase.

Nevertheless, this lemma is enough for constructing a hitting set, as the resulting span is still
inside that of

∏
iMi(xi) ·

∏
iNi(yi), which is ultimately the polynomial whose span we are trying

to replicate. In such applications, we will start off (by induction) with fi and gi such that

span

 ∏
i∈JDK

Mi(fi(x)) ·
∏
i∈JDK

Ni(gi(y))

 = span

 ∏
i∈JDK

Mi(xi) ·
∏
i∈JDK

Ni(yi)

 ,

and so as the “⊆” in Lemma 3.7 nests between the two terms in this equality, we will in fact get
“=” in the lemma in this case, so will not turn zero polynomials into non-zero polynomials.
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3.3 The Generator for Read-Once Oblivious ABPs

In this section we construct the hitting set for read-once oblivious ABPs. The hitting set is more
naturally presented as a generator, which we now define. See also the survey [SY10] for more on
generators.

Definition 3.12. Let C be a class of circuits computing polynomials on n variables. A polynomial
map G : FJtK → FJnK is a generator for C if for every polynomial f computed by a circuit in C,
f ≡ 0 iff f ◦ G ≡ 0.

Given a generator G, one can show that G(St) is a hitting set for C as long as |S| is polynomially
large in the relevant parameters. We present this formally in Lemma 3.21. Given this relation to
hitting sets, we now proceed to the construction of our generator, and then prove the requisite
properties.

Construction 3.13. Let n, r ≥ 1, d ≥ 0, and D = 2d. Let F be a field of size |F| > (Dnr3)2 and
let ω ∈ F be of order ≥ (Dnr2)2. Let βi ∈ F with i ∈ Jr2K be distinct, and let p` ∈ F[t] be the
Lagrange interpolation polynomials with respect to r2 and the βi’s.

We define a polynomial map Gd : FJd+1K → FJDK as follows. We index the inputs to Gd by the
variables αi for i ∈ Jd+ 1K, and index the outputs of Gd by bit-vectors ~b ∈ {0, 1}JdK, so that we write
G
d,~b

for the output associated with ~b.
Define,

G
d,~b

:=
∑

`0,...,`d−1∈Jr2K

∏
i∈JdK

(
(1− bi) · p`i−1

(ω`iαi) + bi · p`i−1
((ω`iαi)

2inr2)
)
· p`d−1

(αd) , (3.14)

where we abuse notation and define p`−1(t) = t. In particular,

G
0,~b

:= p`−1(α0) = α0. (3.15)

We now establish properties of this construction. We first prove an easy lemma that gives an
upper bound on the degrees of the variables αi in G.

Lemma 3.16 (Bounding the degree). Assume the setup of Construction 3.13. Let ~b ∈ {0, 1}JdK.

• For i ∈ JdK, degαi(Gd,~b(~α)) ≤ Dnr4.

• For i = d, degαd(Gd,~b(~α)) ≤ r2 ≤ Dnr4.

Proof. Recall that deg(p`i) ≤ r2 (even for p`−1 , as r ≥ 1). Also, recall that 2i ≤ D, for i ∈ Jd+ 1K.
There are two cases, 0 ≤ i < d and i = d. For 0 ≤ i < d, we see that degαi(Gd,~b) ≤ deg(p`i−1

) ·
2inr2 ≤ Dnr4. For i = d, we see that degαd(Gd,~b) ≤ deg(p`d−1

) ≤ r2 ≤ Dnr4, as D,n, r ≥ 1.

The next lemma demonstrates the recursive structure of G.

Lemma 3.17 (The recursive structure). Assume the setup of Construction 3.13. For~b ∈ {0, 1}Jd−1K,
bd−1 ∈ {0, 1}, and ~α denoting the variables αi for i ∈ Jd− 1K,

G
d,~bbd−1

(~α, αd−1, αd) =

{∑
`d−1∈Jr2K Gd−1,~b(~α, ω

`d−1αd−1)p`d−1
(αd) if bd−1 = 0∑

`d−1∈Jr2K Gd−1,~b(~α, (ω
`d−1αd−1)

Dnr2/2)p`d−1
(αd) else

.
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Proof. This claim follows from the definitions, with some rearrangement of terms.

G
d,~bbd−1

(~α, αd−1, αd)

=
∑

`0,...,`d−1∈Jr2K

∏
i∈JdK

(
(1− bi) · p`i−1

(ω`iαi) + bi · p`i−1
((ω`iαi)

2inr2)
)
· p`d−1

(αd)

=
∑

`d−1∈Jr2K

∑
`i∈Jr2K
i∈Jd−1K

∏
i∈Jd−1K

(
(1− bi) · p`i−1

(ω`iαi) + bi · p`i−1
((ω`iαi)

2inr2)
)

·
(

(1− bd−1) · p`d−2
(ω`d−1αd−1) + bd−1 · p`d−2

((ω`d−1αd−1)
2d−1nr2)

)
· p`d−1

(αd)

=
∑

`d−1∈Jr2K

((1− bd−1) · Gd−1,~b(~α, ω
`d−1αd−1) + bd−1 · Gd−1,~b(~α, (ω

`d−1αd−1)
2d−1nr2) · p`d−1

(αd)

=

{∑
`d−1∈Jr2K Gd−1,~b(~α, ω

`d−1αd−1)p`d−1
(αd) if bd−1 = 0∑

`d−1∈Jr2K Gd−1,~b(~α, (ω
`d−1αd−1)

Dnr2/2)p`d−1
(αd) else

We now show that the generator can be efficiently computed.

Lemma 3.18 (Efficiency). Assume the setup of Construction 3.13. For ~b ∈ {0, 1}JdK, G
d,~b

:

FJd+1K → FJDK is computable by a depth d + 1, width r2, read-once oblivious ABP6 in the vari-
ables ~α, of degree ≤ Dnr4.

Proof. For i ∈ Jd+ 1K, and c ∈ {0, 1} define Ai,c ∈ F[αi]
Jr2K×Jr2K, by

(Ai,0)`i−1,`i(αi) := p`i−1
(ω`iαi), (Ai,1)`i−1,`i(αi) := p`i−1

((ω`iαi)
2inr2)

for `i−1, `i ∈ Jr2K, where `−1 and `d are ranged over as well, and p`−1 is still the identity polynomial.
Then we have that

G
d,~b

(~α) =
∑

`0,...,`d−1∈Jr2K

∏
i∈JdK

(
(1− bi) · p`i−1

(ω`iαi) + bi · p`i−1
((ω`iαi)

2inr2)
)
· p`d−1

(αd)

=
∑

`−1=`d=0
`0,...,`d−1∈Jr2K

∏
i∈JdK

(
(1− bi) ·Ai,0(αi)`i−1,`i + bi ·Ai,1(αi)`i−1,`i)

)
·Ad,0(αd)`d−1,`d

=

∏
i∈JdK

((1− bi) ·Ai,0(αi) + bi ·Ai,1(αi))

 ·Ad,0(αd)


0,0

by the properties of matrix multiplication. By Lemma 3.1 we see that this matrix product can be
computed by a width r2, depth d+ 1, read-once oblivious ABP, and the degree bound follows from
Lemma 3.16.

We now turn to proving that our construction is indeed a generator for read-once oblivious
ABPs. In particular, we first show the generator preserves span.

6That is, we are constructing a generator for read-once oblivious ABPs, and each coordinate is computed by an
read-once oblivious ABP on many fewer variables. It is unclear at the moment whether this is amenable to recursion,
since read-once oblivious ABPs are not closed under composition.
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Lemma 3.19 (Span preserving). Assume the setup of Construction 3.13. Let M~b
∈ F[x~b]

JrK×JrK

for ~b ∈ {0, 1}JdK be of degree < n. Then, denoting ~α for the vector of variables α0, . . . , αd,

span

 ∏
~b∈{0,1}JdK

M~b

(
x~b
)

~x∈FJDK

= span

 ∏
~b∈{0,1}JdK

M~b

(
G
d,~b

(~α)
)

~α∈FJd+1K

. (3.20)

Proof. We prove the claim by induction on d.

d = 0: Observe that for d = 0, {0, 1}JdK = {λ}, where λ is the empty string. Further, we have
that G0,λ : F→ F is simply the identity map, by definition of p`−1 . Thus, Equation 3.20 is stating
that,

span{Mλ(xλ)}xλ∈F = span{Mλ(G0,λ(α0))}α0∈F = span{Mλ(α0)}α0∈F

and is thus trivially true.

d > 0: We will split the span into the multiplication of two different spans, and then appeal to
Lemma 3.7 to merge these two spans.

Specifically, denote

M :=

 ∏
~b∈{0,1}JdK

M~b

(
x~b
)

~x∈FJDK

and for c ∈ {0, 1} denote

Mc :=

 ∏
~b∈{0,1}Jd−1K

M~bc

(
x~bc
)

~x∈FJD/2K

.

Similarly, for c ∈ {0, 1}, and ~α being the vector of variables αi for i ∈ Jd− 1K, denote

M′ :=

 ∏
~b∈{0,1}JdK

M~b

(
G
d,~b

(~α, αd−1, αd)
)

~ααd−1αd∈FJd+1K

and

M′c :=

 ∏
~b∈{0,1}Jd−1K

M~bc

(
G
d−1,~bc (~α, αd−1)

)
~ααd−1∈FJdK

.

It follows from definition thatM =M0 ·M1, and by induction, we have that spanMc = spanM′c.
Thus, Lemma 3.2 implies that spanM = span(span(M′0) · span(M′1)) = span(M′0 ·M′1). Observe
that spanM′ ⊆ spanM = span(M′0 · M′1), so the claim will follow from showing that span(M′0 ·
M′1) ⊆ spanM′.

We now show that span(M′0 · M′1) ⊆ spanM′. We will prove this claim for each fixed value
of the variables ~α. Thus, the matrices in each of M′c are parameterized only by the variable αd−1.
Further, each matrix in M′c is the product of D/2 matrices each of the form M(f(αd−1)), for
M ∈ F[αd−1]

JrK×JrK of degree < n and f ∈ F[αd−1] of degree ≤ r2 (where the degree bound is by
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Lemma 3.16). As the order of ω is ≥ (Dnm)2, and |F| ≥ (Dnmr)2 (taking m = r2) we can apply
Lemma 3.7 to see that there is some7 value α̂d−1 ∈ F such that

span

 ∏
~b∈{0,1}Jd−1K

M~b0

(
G
d−1,~b0 (~α, αd−1)

)
·

∏
~b∈{0,1}Jd−1K

M~b1

(
G
d−1,~b1 (~α, αd−1)

)
αd−1∈F

⊆ span

 ∏
~b∈{0,1}Jd−1K

M~b0

 ∑
`d−1∈Jr2K

G
d−1,~b0

(
~α, ω`d−1α̂d−1

)
p`d−1

(αd)


·

∏
~b∈{0,1}Jd−1K

M~b1

 ∑
`d−1∈Jr2K

G
d−1,~b1

(
~α, (ω`d−1α̂d−1)

Dnr2/2
)
p`d−1

(αd)


αd∈F

and rewriting this via Lemma 3.17,

= span

 ∏
~b∈{0,1}Jd−1K,c∈{0,1}

M~bc

(
G
d,~bc

(~α, α̂d−1, αd)
)

αd∈F

⊆ span

 ∏
~b∈{0,1}Jd−1K,c∈{0,1}

M~bc

(
G
d,~bc

(~α, αd−1, αd)
)

αd−1,αd∈F

.

Thus taking this for each ~α we get span(M′0 · M′1) ⊆ spanM′, implying spanM′ = spanM as
desired.

The next lemma concludes that the span-preservation property shows that we indeed have a
generator, and can thus construct a hitting set.

Lemma 3.21. Assume the setup of Construction 3.13. Let M~b
∈ F[x~b]

JrK×JrK for ~b ∈ {0, 1}JdK be

of degree < n, and let f(~x) =
(∏

b∈{0,1}JdK M~b
(x~b)

)
0,0

. Let S ⊆ F, with |S| ≥ Dn2r4. Then f ≡ 0

iff f ◦ Gd ≡ 0 iff f |Gd(Sd+1) ≡ 0.

Proof. As f is the (0, 0)-entry of the matrix product
∏
b∈{0,1}JdK M~b

(x~b), and this projection operator
is linear, we see that Equation 3.19 implies that span{f(~x)}~x∈FJDK = span{f(Gd(~α))}~α∈FJd+1K , and
as these spans are simply constant multiples of the output of f , we see that f ≡ 0 iff f ◦ Gd ≡ 0.
Next, we observe that for i ∈ Jd+ 1K, degαi(f ◦ Gd) < Dn2r4 using that f has individual degrees
< n, and invoking the degree bound in Lemma 3.16. Thus, by basic (multivariate) polynomial
interpolation, f ◦ Gd ≡ 0 iff (f ◦ Gd)|Sd+1 ≡ 0 iff f |Gd(Sd+1) ≡ 0.

We can now prove our main theorem.

Theorem 3.22 (PIT for read-once oblivious ABPs). Let C be the set of polynomials f : FJDK → F
computable by a width r, depth D, individual degree < n read-once oblivious ABP. If |F| ≥ (2Dnr3)2,
then C has a poly(D,n, r)-explicit hitting set, of size ≤ (2Dn2r4)dlgDe+1.

7Lemma 3.7 shows that there are < (Dnmr)2 = D2n2r6 possible bad values of α̂d−1, but in Lemma 3.21 we show
that there are “really” only Dn2r4 many bad values. It is unclear at present how to directly improve Lemma 3.7 to
reflect this better bound.
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Proof. By Lemma 3.1, any such read-once oblivious ABP computes a polynomial f expressible as
f(~x) = (

∏
i∈JDKMi(xi))(0,0), where Mi(xi) ∈ F[xi]

JrK×JrK is of degree < n. Further, we can round D

up to 2dlgDe, and by setting Mi(xi) = I for i ≥ D (ie. padding the product with identity matrices
in new variables), we get that f(~x) = (

∏
i∈J2dlgDeKMi(xi))0,0.

We now show that there is some element ω ∈ F of order ≥ (2dlgDenr2)2, that can be found in
poly(D,n, r)-time. As there at most d elements such that xd = 1 in F, it follows that there are at
most < (2Dnr2)4 many non-zero elements of order < (2Dnr2)2, so any enumeration of non-zero
elements in F will find such an element of large order, if (2Dnr2)4 < |F|. If (2Dnr2)4 ≥ |F|, then
recalling that the multiplicative group of a finite field F is cyclic, we see there is an element g ∈ F
of order |F| − 1 ≥ (2Dnr3)2− 1 ≥ (2dlgDenr3)2 (using that 2D > 2dlgDe), and thus an enumeration
can also find such an ω. Similarly, we can find r2 distinct βi, and can find some set S ⊆ F of size
2dlgDen2r4. With ω, the βi’s and S, we see then, by Lemma 3.21, that Gd(SdlgDe+1) is a hitting
set for f and has the desired size. Further, for any fixed ~s ∈ SdlgDe+1, Gd(~s) can be computed in
poly(D,n, r) time as each coordinate is computed by a small ABP, as shown in Lemma 3.18.

We note that Theorem 3.23 is an immediate corollary.

Theorem 3.23 (PIT for set-multilinear ABPs). Let ~X = ti∈JDK ~Xi where ~Xi = {xi,j}j∈JnK be a

known partition. Let C be the set of set-multilinear polynomials f(ti∈JDK ~Xi) : FJnDK → F computable
by a width r, depth D, set-multilinear ABP. If |F| ≥ (2Dnr3)2, then C has a poly(D,n, r)-explicit
hitting set, of size ≤ (2Dn2r4)dlgDe+1.

Proof. By the degree bounds, the Kronecker map xi,j ← xji induces a bijection among the mono-
mials, and takes the original set-multilinear ABP to an read-once oblivious ABP, where we replace
the set of variables ~Xi with the single (new) variable xi. Structurally, this is still an width r, depth
D ABP, and as we index from zero, the individual degrees are < n. Appealing to Theorem 3.22
gives the result.

4 Non-commutative ABPs

In this section, we show how to do black-box identity testing of non-commutative ABPs in quasi-
polynomial time. A non-commutative ABP is structurally the same as defined in Definition 1.1,
but we now do not assume the variables commute. Formally, it is an ABP over the ring F{~x}, of
polynomials in non-commuting variables. Nisan [Nis91] first explored this model, noting that any
commutative polynomial f can be computed non-commutatively (for example, by the complete
monomial expansion) and thus non-commutative models of computation form a restricted class of
computation we can explore. In the same work, he proved the first exponential lower bounds in
the non-commutative ABP model for the (commutative) determinant and permanent polynomials.
Later, Raz and Shpilka [RS05] gave a polynomial time PIT algorithm in the white-box model for
this class.

In both of the above works, non-commutativity can be seen as “syntactic” in the sense that
one can treat the variables as formally non-commutating free variables, and one doesn’t seek to
substitute values for these variables. However, black-box PIT of non-commutative polynomials in
F{~x} by definition requires such a substitution. Such a substitution will occur in some ring R
that is an F-algebra (that is, there is a (commutative) ring homomorphism8 F → R). Clearly, R

8We need this homomorphism to make sense of how elements of F act on elements of R. That is, when evaluating
a non-commutative polynomial f in F{~x} on elements of R, we replace the coefficients in f with their images under
this homomorphism.
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must be non-commutative in order to witness the non-identity xy− yx in F{~x}. Trivially, we could
choose “R = F{~x}” and get a black-box PIT algorithm that only requires a single query, but this
simply pushes the complexity of the problem into the operations in R. That is, one would want
the black-box PIT queries to be efficiently implementable given white-box access to the circuit. As
such, it seems natural to ask that R is a finite dimensional F-vector space, and that the number
of dimensions is polynomial in the relevant parameters. Further, another natural restriction is to
take R = FJmK×JmK, the algebra of matrices9, and that is what we do here.

However, once we have moved from evaluations in F{~x} to evaluations in R, there is the concern
that we have lost information, in that f ∈ F{~x} could vanish on all possible evaluations over R.
Note that this is also a problem in the commutative case, as in the standard example of the
polynomial x2 − x ∈ F2[x] which vanishes over the field F2. In the case of matrices, which is the
ring we shall work over, there are such identities given by the Amitsur-Levitzki theorem [AL50]:
the polynomial

∑
σ∈S2m

sgn(σ)
∏
i∈J2mKAσ(i), where S2m is the symmetric group on 2m elements,

vanishes on every choice of m×m matrices Ai, over any field.
However, recall that in the commutative case, (multivariate) polynomial interpolation states

that for a polynomial f ∈ F[~x] of (total) degree < d, f cannot vanish on all evaluations over F as
long as |F| ≥ d. Extending this, the Schwartz-Zippel lemma shows that if |F| � d then f has a very
low probability of vanishing on a random evaluation over F. This result, applied via a union bound
in a probabilistic argument, shows that efficient black-box PIT is (existentially) possible for small
ABPs. In almost direct analogy, the Amitsur-Levitzki theorem shows that polynomials of (total)
degree < 2m in F{~x} cannot be identities over FJmK×JmK. Bogdanov and Wee [BW05] observed
that this result, in combination with the Schwartz-Zippel lemma, show that if |F|,m � d then a
non-commutative polynomial f has a very low probability of vanishing on a random evaluation over
FJmK×JmK. And thus, as in the commutative case, this establishes existence of small hitting sets for
non-commutative polynomials computed by small ABPs. Given this existence argument, we now
proceed to construct quasi-polynomial sized, explicit hitting sets, for non-commutative ABPs.

We proceed in a fashion similar to Bogdanov and Wee [BW05], by giving a family of ma-
trices with entries consisting of commutative variables, such that any non-zero non-commutative
polynomial f over these matrices induces a non-zero family of commutative polynomials over the
commutative variables. Further, we show that if f is computable by a small non-commutative
ABP, then the resulting commutative polynomials are computable by small set-multilinear ABPs.
We can then appeal to the hitting set for this class of polynomials, shown in Theorem 3.23. We
first illustrate the construction of our matrices.

Construction 4.1. Define ϕ : F{xi}i∈JnK → F[xi,j ]i∈JnK,j∈N to be the unique F-linear map defined
by ϕ(1) = 1, and

ϕ(xi1xi2 · · ·xid) := xi1,1xi2,2 · · ·xid,d .

For i ∈ JnK, D ≥ 0, define the upper-triangular matrix Xi,D ∈ (F[xi,j ]j∈N)JD+1K×JD+1K by

(Xi,D)k,` :=

{
xi,` if k + 1 = `

0 else
.

Define the vector ~XD := (Xi,D)i∈JnK.

9The relevant homomorphism F→ FJmK×JmK maps a 7→ aI, where I is the identity matrix.
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Thus, pictorially, we have that the matrices Xi,D look as follows.

Xi,D =



0 xi,1 0 0 · · · 0
0 0 xi,2 0 · · · 0

0 0
. . .

. . .
...

...
0 0 · · · 0 xi,D−1 0
0 0 · · · 0 0 xi,D
0 0 · · · 0 0 0


.

These matrices are quite similar to the matrices used in [BW05] (see their Lemma 3.2), but they
achieve a smaller dimension (in fact, matching the best possible, as seen by the Amitsur-Levitzki
theorem). However, their construction does not seem to give the reduction to set-multilinear
computation that we need. We now establish properties of our construction. In particular, we
relate the evaluations of f on the matrices Xi, to the commutative polynomial ϕ(f).

Lemma 4.2. Assume the setup of Construction 4.1. Let f ∈ F{xi}i∈JnK be a non-commutative
polynomial. For D ≥ ` ≥ 0,

(f( ~XD))0,` = ϕ(H`(f)) .

Proof. By F-linearity (of ϕ, H`(•), and (•)0,`), it is enough to prove the claim for monomials
f(~x) = xi1xi2 · · ·xid for any d ≥ 0. For d = 0, the only monomial is the identity matrix I, for which
the claim is clear.

Now consider d > 0. Observe that

(Xi1 · · ·Xid)0,` =
∑

`0=0,`d=`
`1,...,`d−1∈JD+1K

(Xi1)`0,`1(Xi2)`1,`2 · · · (Xid)`d−1,`d

and by construction, we see that if `j−1 + 1 6= `j then (Xi,j)`j−1,`j = 0, and so,

=
∑

`0=0,`d=`
`1,...,`d−1∈JD+1K

`j−1+1=`j

(Xi1)`0,`1(Xi2)`1,`2 · · · (Xid)`d−1,`d

=†

{
xi1,1 · · ·xid,d d = `

0 else

= ϕ(H`(xi1 · · ·xid))

as desired, where (†) follows from the observation that the only way a sequence of length d+ 1 can
start at 0 and end at `, increasing 1 at each step, is if d = `, and `j = j.

We now use this to give the black-box reduction from non-commutative polynomials to set-
multilinear polynomials.

Lemma 4.3. Assume the setup of Construction 4.1. Let f ∈ F{xi}i∈JnK be a non-commutative

polynomial of degree ≤ D. Then for each ` ∈ JD + 1K, the (commutative) polynomial (f( ~XD))0,`
is set-multilinear, and f ≡ 0 iff for all ` ∈ JD + 1K, (f( ~XD))0,` ≡ 0. Consequently, f ≡ 0 iff

f( ~XD) ≡ 0.
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Proof. As deg(f) ≤ D, it is clear that f ≡ 0 iff for all ` ∈ JD + 1K, H`(f) ≡ 0. Further, we see
that ϕ is a bijection, so H`(f) ≡ 0 iff ϕ(H`(f)) ≡ 0, and that ϕ applied to any homogeneous
non-commutative polynomial yields a set-multilinear polynomial. Finally, we use Lemma 4.2 to see
that ϕ(H`(f)) ≡ 0 iff (f( ~XD))0,` ≡ 0. It follows then that f(~x) ≡ 0 iff f( ~XD) ≡ 0.

Thus, this lemma says that to do black-box PIT of non-commutative polynomials, it is enough
to do black-box PIT of set-multilinear polynomials, in order to hit each of the (f( ~XD))0,`. However,

in order for this reduction to be useful, we must show that (f( ~XD))0,` is not only set-multilinear,
but is also computed by a small computational device, as otherwise no small hitting set may exist.

In the most general model, that of non-commutative circuits, it is not clear there is a simple
bound on the complexity of (f( ~XD))0,` in terms of the complexity of f , as circuits have no global
“order” in the computation. That is, in a non-commutative circuit each multiplication is ordered,
and this local order is fixed by the circuit. However, as parts of the circuit may be reused, a
partial computation in the circuit can appear in many different parts of the final computation.
Concretely, in the circuit of the repeated squaring computation ((x)2)2, we cannot assign “x→ xi”
in any way compatible with the fact that ϕ(x4) = x1x2x3x4. Thus, it is not clear how to convert a
non-commutative circuit for f into a circuit for ϕ(H`(f)).

However, for weaker models of computation such as ABPs, there is such an notion of ordering
as each multiplication proceeds from the source to the sink, in a single direction. This allows us
to relate the ABP complexity of a (non-commutative) polynomial f to the ABP complexity of the
(commutative) set-multilinear polynomial ϕ(H`(f)). To do so, we first cite the following lemma,
implicit in Nisan [Nis91] (see also Lemma 2 in Raz-Shpilka [RS05]10).

Lemma 4.4 (Nisan, [Nis91]). Let f ∈ F{~x} be a non-commutative polynomial computed by a non-
commutative ABP of depth D and width r. Then for11 1 ≤ ` ≤ D, H`(f) is12 computed by a
non-commutative ABP of depth ` and width ≤ r(D+ 1). Further, each edge in this ABP is labeled
with a homogeneous linear form.

We now show that for ABPs as the above lemma outputs (those with only homogeneous linear
forms on the edges) there is a clear connection between the ABP complexity of f and ϕ(f).

Lemma 4.5. Let f ∈ F{~x} be a non-commutative polynomial computed by an ABP A, whose edges
are labelled with homogeneous linear forms. Let A′ be the ABP with the same structure as A, but for
each edge from layer j − 1 to layer j with label

∑
i∈JnK aixi, we replace the label with

∑
i∈JnK aixi,j.

Then A′ computes ϕ(f), and A′ is a set-multilinear ABP.

Proof. By linearity, it is enough to prove the claim for a single path in the ABP A. The path
computes the product of its labels, and thus yields the product of linear forms

g =
∏
j

∑
i∈JnK

ai,jxi =
∑
ik∈JnK

(
∏
j

aij ,j)(
∏
j

xij ) .

Similarly, the same path in A′ computes∏
j

∑
i∈JnK

ai,jxi,j =
∑
ik∈JnK

(
∏
j

aij ,j)(
∏
j

xij ,j)

10In fact, the version that we use is slightly stronger than the version in [RS05], but the proof is the same and the
only difference is that we use a less wasteful analysis, which is obvious from the proof there.

11The case when ` = 0 does not fit into this technicalities of this lemma, so will be treated separately in what
follows.

12In fact, these ABPs can efficiently computed given the original ABP, but we do not use this fact.
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which equals ϕ(g) by linearity, as desired. Finally, we see that the edges from layer j − 1 to layer
j only involve the variables x•,j , so the ABP is indeed set-multilinear.

Combining the above results, we can now give the full reduction.

Theorem 4.6. Assume the setup of Construction 4.1. Let H be a hitting set for set-multilinear
(commutative) polynomials with the (known) variable partition tj∈JDK{xi,j}i∈JnK computed by set-

multilinear ABPs of width ≤ r(D+ 1) and depth ≤ D. Define H′ ⊆ (FJD+1K×JD+1K)JnK by replacing
each evaluation point in H with the corresponding evaluation point defined by the matrices ~XD.
Then H is a hitting set for non-commutative ABPs of width r and depth D.

Proof. Let f be computed by a non-commutative ABPs of width r and depth D. Then, by
Lemma 4.3, f ≡ 0 iff for all ` ∈ JD + 1K, the set-multilinear polynomial (f( ~XD))0,` ≡ 0. If

` = 0, then we can observe that as the Xi are strictly upper-triangular, it happens that (f( ~XD))0,0
is constant for any setting of ~XD (and in fact equals the constant term of f), so it is then clear
that (f( ~XD))0,0 ≡ 0 iff (f( ~XD))0,0| ~XD∈H′ ≡ 0 as |H′| > 0.

If ` > 0 then we use Lemma 4.2 and Lemma 4.3 to see that (f( ~XD))0,` = ϕ(H`(f)) is a set-
multilinear polynomial, and Lemma 4.4 and Lemma 4.5 imply that ϕ(H`(f)) is computed by a width
≤ rD, depth ≤ D set-multilinear ABP, and thus (f( ~XD))0,` ≡ 0 iff (f( ~XD))0,`| ~XD∈H′ ≡ 0.

Plugging in our hitting set for set-multilinear ABPs from Theorem 3.23, we obtain the following
corollary.

Corollary 4.7 (PIT for non-commutative ABPs). Let NC be the set of n-variate non-commutative
polynomials computable by width r, depth D ABPs. If |F| ≥ (2(D + 1)5nr4)2, then NC has a
poly(D,n, r)-explicit hitting set over (D+ 1)× (D+ 1) matrices, of size ≤ (2(D+ 1)4n2r3)dlgDe+1.

Remark 4.8. The use of (D+ 1)× (D+ 1) strictly upper-triangular matrices in the above results is
optimal, in the sense that if we used m×m strictly upper-triangular matrices for m < D+ 1 then
no such result is possible, as any such matrix X has XD = 0, and the monomial xD is computable
by a depth D ABP.

5 Diagonal Circuits

The model of diagonal circuits was first defined by Saxena [Sax08] in order to better understand
depth-4 circuits. Much previous PIT research focused on small-depth circuits with restricted top
fan-in. In contrast, the diagonal model allows unbounded top fan-in, but each multiplication gate
only has few distinct factors (but the factors can have high multiplicity).

To ease reading we shall make use of the following shortened notation. Given a vector ~e ∈ Nn,
we denote |~e|1 := e1 + · · ·+ en, |~e|∞ = maxi ei, |~e|× =

∏
i∈[n](1 + ei), and ~e ! = e1! · · · en!.

For depth-3 diagonal circuits, each multiplication gate has the form ~̀(~x)~e, for affine linear forms
`i, where |~e|× is bounded by poly(n). Saxena’s techniques also extend to the case when the `i are
sum of univariate polynomials, which is the depth-4 diagonal circuit model. We now give a formal
definition.

Definition 5.1 (Diagonal Circuits). A diagonal depth-4 circuit has the form Φ =
∑k

i=1 Ψi,

where each product gate Ψi is of the form Ψi = ~P~eii , and each Pi,j(~x) is a sum of univariate
polynomials, Pi,j =

∑n
m=1 gi,j,m(xm). The syntactic degree of the polynomial computed by the

circuit is s-deg(Φ) = maxi deg(Ψi), where deg(Ψi) =
∑

j ei,j deg(Pi,j) (i.e. the syntactic degree of
Φ is the maximal degree of a multiplication gate Ψi in Φ).
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Saxena [Sax08] proved the following theorem, establishing a white-box PIT algorithm for diag-
onal depth-4 circuits.

Theorem 5.2 (Saxena, [Sax08]). There is a deterministic algorithm that, given as input a diagonal
depth-4 circuit Φ, runs in time poly(nk · s-deg(Φ),maxi∈[k] |~ei|×) and decides whether Φ ≡ 0.

We give a black-box PIT algorithm for diagonal depth-4 circuits whose running time is quasi-
polynomial in the runtime established by Saxena. Saxena gave a white-box reduction from diagonal
depth-4 circuits to non-commutative PIT over algebras, and claimed that the Raz-Shpilka [RS05]
algorithm can be extended to handle this case. Our result uses a poly-time black-box reduction
from diagonal depth-4 circuits to read-once oblivious ABPs. We follow Saxena’s duality idea, but
“pull” the complexity of the algebras he works with into the ABP itself. We can then apply our
hitting sets on read-once oblivious ABPs, which incurs the quasi-polynomial overhead.

Our reduction will be based on the duality idea of Saxena [Sax08] (see his Lemma 2). However,
the prior duality statements were cumbersome over fields of positive characteristic. Saxena [Sax08]
only alluded briefly to this case, and later Saha, Saptharishi and Saxena [SSS11] gave a description,
arguing that duality holds if one can move from Zp to ZpN for some large N . This is not suitable for
black-box reductions, as we cannot change the characteristic in a black-box way. Thus, we develop
a unified duality statement that works for all fields, and also works in the black-box setting. This
duality improves on that of Saxena [Sax08] by examining individual degree as opposed to total
degree, and using this technical improvement we can extend the result to positive characteristic by
using the Frobenius automorphisms.

We will denote the exponential power series as exp(x) =
∑

`≥0
x`

`! , and the truncated exponential

by bexpce(x) =
∑e

`=0
x`

`! . Further, recall our meaning, stated in Section 2, for extracting coefficients
of polynomials, and its meaning when we take coefficients “over F[~x][~y]” (as opposed to “ over
F[~x, ~y]”).

We first establish duality over Q, treating the coefficients ~c of our polynomials as formal vari-
ables.

Lemma 5.3 (Duality over Q). Let Ψ = ~P~e ∈ Z[~x,~c], where Pj(~x,~c) =
∑

m gj,m(xm,~c). Then,
taking coefficients in Q[~x,~c][~z],

1

~e !
Ψ = C~z~e

∏
m

∏
j

bexpcej

∑
j

gj,m(xm,~c)zj

 . (5.4)

Proof. We will work over the power series QJ~x,~c, ~zK. In particular, for f ∈ Q[~x,~c], we have the
identity

1

e!
f(~x,~c)e = Cze exp(f(~x,~c)z) .

Note that this is a formal identity, that is, there is no notion of convergence needed as each coefficient
in the power series of exp(f(~x,~c)z) is the sum of finitely many non-zero terms. It follows then that

1

~e !
Ψ =

∏
j

C
z
ej
j

exp(Pj(~x,~c)zj) = C~z~e
∏
j

exp(Pj(~x,~c)zj)

using the identity exp(f + g) = exp(f) exp(g), which formally holds in QJ~x,~c, ~zK,

= C~z~e exp

∑
j

Pj(~x,~c)zj

 = C~z~e exp

∑
j

∑
m

gj,m(xm,~c)zj


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reversing the order of summation,

= C~z~e exp

∑
m

∑
j

gj,m(xm,~c)zj


= C~z~e

∏
m

∏
j

exp (gj,m(xm,~c)zj)

and now discarding terms of degree > ej in zj , as that do not affect the coefficient of ~z~e,

= C~z~e
∏
m

∏
j

bexpcej (gj,m(xm,~c)zj)

Even though the above proof used the exponential function, which has no exact analogue in
positive characteristic, the final statement is just one of polynomials, and thus transfers to any
field of sufficiently large characteristic. In particular, the characteristic must be > |~e |∞, the
maximum exponent. We now transfer this duality to any field. We will abuse notation and treat
the characteristic zero case as working over characteristic p, where p =∞. Note that the “base-∞”
expansion of any integer is just that integer itself, followed by zeroes.

Lemma 5.5 (Duality over any F). Let F be a field of characteristic p (for characteristic zero, we
abuse notation and use p =∞). Let Ψ = ~P~e ∈ F[~x], where Pj(~x) =

∑
m gj,m(xm).

Write ej in its base-p expansion, so that ej =
∑

k∈JnjK aj,kp
k with aj,k ∈ JpK. Denote Qj,k(~x) :=∑

m gj,m(xm)p
k

and ~Q~a :=
∏
j

∏
kQ

aj,k
j,k . Then, ~P~e = ~Q~a and

1

~a!
~Q~a = C~z~a

∏
m

∏
j,k

bexpcaj,k

∑
j,k

gj,m(xm)p
k
zj

 , (5.6)

and |~a|× ≤ |~e|×.

Proof. ~P~e = ~Q~a: This follows from the Frobenius automorphism, that (x+y)p
k

= xp
k

+yp
k

for any
k ≥ 0, in any field of characteristic p. That is,

~P~e =
∏
j

P
ej
j =

∏
j

P

∑
k∈JnjK aj,kp

k

j =
∏
j

∏
k

P
aj,kp

k

j =
∏
j

∏
k

(P p
k

j )aj,k

=
∏
j

∏
k

(∑
m

gj,m(xm)

)pkaj,k

by the Frobenius automorphism,

=
∏
j

∏
k

(∑
m

gj,m(xm)p
k

)aj,k
=
∏
j

∏
k

Q
aj,k
j,k = ~Q~a .

(5.6): Note that the identity of Lemma 5.3 only involves rational numbers whose denominators
≤ |~e|∞, the maximum exponent. Thus, as |~a|∞ < p by construction, Lemma 5.3 is also an identity
over Zp[~x,~c] when applied with the exponent vector ~a, and any g polynomials. In particular, we can
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substitute values for the constants ~c, implying that we can take the g polynomials to be polynomials
in ~x with constants from any field extending Zp, such as F. Thus, the identity can be applied to
~Q~a over F, yielding the result.
|~a|× ≤ |~e|×: As |~e|× =

∏
j(1 + ej) and |~a|× =

∏
j

∏
k∈JnjK(1 + aj,k), it is sufficient to prove that∏

k(1 + ak) ≤ 1 + e, for e =
∑

k akp
k with ak ∈ JpK. To see this, first define T := {e′ : 0 ≤ e′ ≤ e}

and note that |T | = 1 + e. Second, let S = {e′ : e′ =
∑

k a
′
kp
k, 0 ≤ a′k ≤ ak}. Observe that S ⊆ T ,

and |S| =
∏
k(1 + ak), so

∏
k(1 + ak) = |S| ≤ |T | = 1 + e.

To use this lemma, we first need a structural result about ABPs. In this lemma we broaden
the notion of an ABP to have arbitrary labels from a commutative ring R[~x], and will specialize
this to our setting later.

Lemma 5.7. Let A be an layered ABP of depth D and width ≤ r, with edge labels in R[~z] for some
commutative ring R, computing an n-variate polynomial f ∈ R[~z]. Then for any ~e ∈ Nn, there is
an ABP A′, with edge labels in R, of depth D and width ≤ r · |~e|× computing C~z~e(f).

Further, the edge labels between layers i − 1 and i in A′ occur as coefficients of the edge labels
between layers i− 1 and i in A.

Proof. Define S := {~a : ~0 ≤ ~a ≤ ~e,~a ∈ Nn}, where we impose the natural partial order on Nn.
Clearly |S| = |~e|×. Index the nodes in A by [r]× JD + 1K, so that the i-th layer in A consists of the
nodes [r]× {i}. Define the nodes of A′ to be [r]× S × JD + 1K, so that the i-th layer of A′ consists
of the nodes [r]× S × {i}.

For each edge (v× (i−1), v′× i) in A with label g ∈ R[~z], and each ~a,~a′ ∈ S with ~a ≤ ~a′, define
the edge label (v×~a× (i− 1), v′×~a′× i) to be C~z~a′−~a(g). Letting the source of A be denoted s× 0,

and the sink denotes t×D, we define the source of A′ to be s×~0× 0 and the sink to be t×~e×D.
After removing nodes that belong to no source-sink path, it is clear that A′ is a layered ABP, with
depth D, width ≤ r · |~e|×. Further, the edge labels between layers i− 1 and i in A′ are coefficients
of the edge labels between layers i− 1 and i in A as desired. It remains to show that A′ computes
as desired, which follows from an induction on layers. Specifically, one can see that the paths from
the source of A′ to v × ~a × i compute C~z~a(fv×i), where fv×i is the polynomial computed by the
paths from the source in A to v × i.

We now apply this structural result, along with Saxena’s dual form, to show that depth-4
diagonal circuits can be computed by small read-once oblivious ABPs.

Lemma 5.8. Let F be any field. Let f(x1, . . . , xn) be computed by a diagonal circuit Φ =
∑k

i=1 Ψi,

where Ψi = ~P~eii . Denote the syntactic degree of f to be s-deg(f) = maxi s-deg(Ψi). Then there is an
read-once oblivious ABP A computing f with variable order x1 < · · · < xn, with depth n and width
≤ k ·maxi∈[k] |~ei|× such that the edges in A are labeled with polynomials with degrees ≤ s-deg(f).

Proof. Let p denote the characteristic of F, with the convention that p =∞ for characteristic zero
fields. By the dual form, Lemma 5.5, we have that for each i,

Ψi = ~ai! · C~z~ai (fi)

where ~ai is the base-p expansion of ~ei (and |~ai|× ≤ |~ei|×), fi ∈ F[~x][~z], and fi is a product of n
terms, where the j-th term only involves xj amongst the ~x variables. It follows that fi can be
computed using a width-1, depth-n ABP in F[~x][~z], where the labels from layer j − 1 to j only
involve xj amongst all ~x variables.
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Applying Lemma 5.7 to fi, taking R = F[~x], we see (after a scalar multiplication by ~ai!) that
Ψi is computable by an ABP Ai, which depth n, and width ≤ |~ai|× ≤ |~ei|×. Further, Lemma 5.7
establishes that the labels in Ai from layer j − 1 to layer j come from the labels (by taking
coefficients) on the edges from layer j − 1 to layer j in the ABP computing the product fi in
F[~x][~z]. Thus, we see that the labels from layer j − 1 to layer j in Ai are polynomials in xj , and
have degree at most s-deg(Ψi), and thus Ai is an read-once oblivious ABP.

Now, observe that the read-once oblivious ABPs for the Ψi can be summed by merging all
sources and merging all sinks, and that the resulting ABP A is read-once oblivious, as the variable
ordering of ~x is consistent amongst the Ai. It follows that A has the desired properties.

As the above lemma is constructive, it follows that white-box access to f implies white-box
access to the read-once oblivious ABP A, and thus we could run the white-box algorithm of Raz-
Shpilka [RS05] to derive a white-box PIT algorithm, in order to rederive Saxena’s result (over any
field). However, as we also have black-box PIT algorithms for read-once oblivious ABPs (and the
above uses the fixed variable order x1 < · · · < xn), and the above reduction does not need access to
f , we can combine these results to deduce the following black-box PIT result for diagonal depth-4
circuits.

Theorem 5.9 (Black-box PIT for diagonal circuits). Let F be a field of arbitrary characteristic.
Let DC be the set of n-variate polynomials computable by diagonal depth-4 circuits, that is, of the
form Φ =

∑
i∈[k]

~P~eii , where |~ei|× ≤ e and Pi,j is of degree ≤ d. Then if |F| ≥ (2ndk3e4)2 then DC
has a poly(n, k, e, d)-explicit hitting set of size ≤ (2nd2k4e6)dlgne+1.

Proof. From Lemma 5.8 we get that any Φ ∈ DC can be computed by an read-once oblivious ABP
on variable order x1 < · · · < xn, of depth n, width ≤ ke, with each edge label being a univariate of
degree ≤ s-deg(Ψ). Noting that s-deg(~P~eii ) ≤ |~ei|1 · d < |~ei|× · d, we invoke Theorem 3.22 to finish
the claim.

Remark 5.10. We remark here that the concurrent work of Agrawal, Saha and Saxena [ASS12]
also obtain a quasi-polynomial hitting set for diagonal depth-4 circuits (when they assume each
product gate is over a constant number of factors), but only over large characteristic, as they
rely on the duality statements of Saxena [Sax08] (and later exposited by Saha, Saptharishi, and
Saxena [SSS11]) which only hold over large characteristic. Over small characteristic, [Sax08] and
[SSS11] gave more cumbersome duality statements working over prime-power characteristic, and
[ASS12] do not extend their work to this case.

Our duality statements work any characteristic, and as such can show that the work of [ASS12]
also implies results for diagonal circuits over any characteristic. In particular, instead of using
Lemma 5.5 to construct an ABP, one can interpolate the coefficient ~z~e in Lemma 5.5, and this
can be done in depth-3, although the resulting formula is inherently larger than the resulting ABP
would be.

5.1 Semi-diagonal Depth-4 circuits

In Saha, Saptharishi, and Saxena [SSS11] the model of semi-diagonal depth-4 circuits was intro-
duced as a small extension of diagonal depth-4 circuits. The modification is that one is allowed to
multiply each product gate Ψi = ~P~e by an arbitrary monomial. [SSS11] used that the duality result
of Saxena [Sax08] can also be shown to work in this setting. The concurrent work of Agrawal, Saha
and Saxena [ASS12] thus present their results for semi-diagonal depth-4 circuits, as opposed to
just diagonal depth-4 circuits. For ease of comparison, we also state our result for this model. As
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multiplication by a single monomial in Lemma 5.5 preserves the variable disjoint product structure
(but increases the degree), it follows that we can still convert semi-diagonal circuits to read-once
oblivious ABPs, as stated in Lemma 5.8. Thus, as the details are the same, we conclude the
following result.

Theorem 5.11 (Black-box PIT for semi-diagonal circuits). Let F be a field of arbitrary charac-
teristic. Let SDC be the set of n-variate polynomials computable by semi-diagonal depth-4 circuits,
that is, of the form Φ =

∑
i∈[k]mi(~x)~P~eii , where mi(~x) is a monomial of degree ≤ d, |~ei|× ≤ e and

Pi,j is of degree ≤ d. Then if |F| ≥ (4ndk3e4)2 then SDC has a poly(n, k, e, d)-explicit hitting set
of size ≤ (8nd2k4e6)dlgne+1.

6 Discussion

This work closes some gap in our understanding of white-box PIT vs. black-box PIT by transferring
algorithms that used the partial derivative technique to the black-box world. The recent work of
[ASS12] made another significant step by considering set-multilinear formulas (of small depth)
where the partition is unknown. It will be very interesting to try and combine these two works to
obtain a PIT algorithm for set-multilinear ABPs when the underlying partition is not known.

Another interesting goal is to truly close the gap between white-box and black-box. Specifically,
all black-box algorithms for the models studied in this paper (as well as in [ASS12]) run with a
quasi-polynomial overhead over the run-times of the corresponding known white-box algorithms.
Ideally, this overhead could be made polynomial.
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