
A Derandomized Switching Lemma and an Improved

Derandomization of AC0

Luca Trevisan∗ TongKe Xue†

September 12, 2012

Abstract

We describe a new pseudorandom generator for AC0. Our generator ε-fools circuits of depth
d and size M and uses a seed of length Õ(logd+4M/ε). The previous best construction for d ≥ 3
was due to Nisan, and had seed length O(log2d+6M/ε). A seed length of O(log2d+Ω(1)M) is
best possible given Nisan-type generators and the current state of circuit lower bounds; Seed
length Ω(logdM/ε) is a barrier for any pseudorandom generator construction given the current
state of circuit lower bounds. For d = 2, a pseudorandom generator of seed length Õ(log2M/ε)
was known.

Our generator is based on a “pseudorandom restriction” generator which outputs restrictions
that satisfy the conclusions of the H̊astad Switching Lemma and that uses a seed of polyloga-
rithmic length.

1 Introduction

Bounded-depth circuits are one of the few general models of computation for which unconditional
constructions of pseudorandom generators have been known with sub-linear seed length, beginning
with the work of Ajtai and Wigderson [AW85].

Although logarithmic seed length and polynomial time derandomization are open problems even for
depth-2 circuits, the Nisan generator [Nis91] provides a quasi-polynomial derandomization of AC0.
Nisan’s generator, when instantiated to be pseudorandom with accuracy ε against circuits of depth d
and size M has seed length O(log2d+6M/ε). In the depth-2 case, Bazzi’s Theorem [Baz07] provides
a generator of seed length O(log2M/ε · log n); by working with small-bias distributions instead
of bounded-independence distributions, and by adapting Razborov’s proof of Bazzi’s Theorem
[Raz09], De et al. [DETT10] devise a generator of seed length Õ(log2M/ε). Braverman [Bra09]
extended Bazzi’s Theorem to any depth, showing that bounded-independence distributions are
pseudorandom for AC0, but, unlike the d = 2 case, Braverman’s result does not improve the seed
length of Nisan’s generator.

We devise a pseudorandom generator of seed length Õ(logd+4M/ε).
∗trevisan@stanford.edu. Computer Science Department, Stanford University. This material is based upon work

supported by the National Science Foundation under grant No. CCF 1161812 and by the US-Israel Binational Science
Foundation under grant no. 2010451.
†tkxue@tkxue.org. Computer Science Department, Stanford University. This material is based upon work sup-

ported by the National Science Foundation under grant No. CCF 1161812.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 116 (2012)

Our Proof

Our result follows by the construction of a pseudorandom restriction generator that uses a seed
of length Õ(log4M/ε) to assign values to a p = 1/O(logd−1M/ε) fraction of the bits of the n-bit
string that we want to generate. The generator is such that, for every circuit C of size M and depth
d, fixing a subset of the inputs of the circuit according to the pseudorandom restriction changes
the acceptance probability of the circuit, on average, by at most ε. By picking O(p−1 log n/ε)
independent pseudorandom restrictions, we will (with probability at least 1−ε) have an assignment
to all the variables; such an assignment is generated using Õ(logd+4M/ε) random bits and ε ·
logd−2M/ε-fools the circuit.

H̊astad proved that a truly random restriction in which one fixes a 1 − p fraction of variables,
where p = 1/O(logd−1M/ε), has a high probability of turning the circuit into a decision tree of
depth logM . We prove that the same is true with a restriction that can be generated using a
seed of length Õ(log4M/ε). Now, it seems that we could get a pseudorandom generator of seed
length Õ(log4M/ε) simply by fixing a 1 − p fraction of variables according to our pseudorandom
restriction and then the remaining variables according to a small-bias distribution, which is known
to fool small decision trees. Unfortunately, our pseudorandom restriction does simplify the circuit,
as a truly random restriction does, but we are not able to show that the restriction also preserves the
acceptance probability of the circuit; in fact, some instantiations of our pseudorandom restriction
generator can be shown to severely distort the acceptance probability of some circuits.

We can, however, make the following observations. First, the conclusion of our derandomized
Switching Lemma holds also if we select the variables to restrict according to our generator, and
then assign truly random variables to them. This means that the following distribution fools the
circuit: (1) select a set S of approximately (1− p) · n variables using our pseudorandom restriction
generator; (2) assign values to the variables in S randomly; (3) assign values to the variables not in
S according to a small-bias generator. This also means that if we (1) select a set S of approximately
(1−p) ·n variables using our pseudorandom restriction generator; (2) assign values to the variables
not in S according to a small-bias generator, then we pseudorandomly restrict approximately pn
variables in a way that preserves the acceptance probability of the circuit, as desired.

In order to devise a pseudorandom projection generator that turns a bounded-depth circuit into
a small decision tree, it is sufficient to construct a pseudorandom projection generator that turns
a depth-2 circuit into a small decision tree, as in H̊astad’s Switching Lemma, and then apply the
generator independently a constant number of times. Toward the goal of building a pseudorandom
restriction generator that satisfies the H̊astad Switching Lemma, it is sufficient to use a pseudo-
random generator that fools a class of statistical test powerful enough to test whether a given
restriction does turn a given CNF into a bounded-depth decision tree. This is by itself a very diffi-
cult task, but H̊astad’s proof shows that, with high probability, not only the CNF is turned into a
small decision tree by the restriction, but also that a small decision tree (which we call a canonical
decision tree) computing the restricted formula can be computed efficiently by a relatively simple
algorithm. Furthermore, in order to check if the canonical decision tree has bounded depth, we can
perform a case-analysis over all possible long computational paths, and check if the path is part
of the canonical decision tree. The latter property can be checked by a small depth-2 circuit, and
so we able to show that any pseudorandom generator that fools depth-2 circuits (in particular, the
generator of [DETT10], of seed Õ(log2M/ε)) can be used to construct pseudorandom restrictions
that match the H̊astad Switching Lemma.

2

Barriers to Further Progress

The best known lower bound for AC0 circuit remains H̊astad’s lower bound, establishing that the

parity function requires depth-d circuits of size 2Ω(n
1

d−1). Without improving H̊astad’s result, every
pseudorandom generator construction for AC0 must have seed length Ω(logdM/ε). This is due
to the following well-known reduction: suppose that G : {0, 1}` → {0, 1}2` is 1/2s-pseudorandom
for circuits of size M and depth d. Then the problem of deciding if a given string in {0, 1}2` is
a possible output of the generator cannot be decided by circuits of size M and depth d + 1. (If
there were a circuit C of size M and depth d+ 1 deciding such a problem, then the output of the
circuit is either the AND or the OR of ≤ M wires, each being the result of the computation of a
circuit of size ≤M and of depth ≤ d; because of the pseudo randomness of G, each of these wires
has approximately the same probability of carrying a 1 if the circuit is given a random string or
a random output of the generator; the circuit, however, accepts with very low probability in the
former case and with probability one in the latter case, which causes a contradiction.)

Without new circuit lower bounds, seed length log2d+Ω(1)M is a barrier for pseudorandom generator
constructions in the framework of Nisan and Wigderson. In such a framework, when constructing
a pseudorandom generator for circuits of size M and depth d, one starts from an exponential-time
computable function f : {0, 1}t → {0, 1} which is hard on average for circuits of size about M2

and depth d + 1; then one uses the function to devise a pseudorandom generator of seed length
about t2/ logM . The seed length t2/ logM is determined by the use of combinatorial designs in the
construction, and it is best possible given known lower bounds on combinatorial designs. With the
current circuit lower bound results, we have t = logd+Ω(1)M and so the seed length is log2d+Ω(1)M .

Other Applications of Pseudorandom Restrictions

The recent work of Impagliazzo, Meka and Zuckerman [IMZ12] and of Gopalan et al. [GMR+12]
also relies on pseudorandom restrictions. The work of Gopalan et al. [GMR+12] applies pseudo-
random restrictions to read-once CNF formulas, and the restrictions both simplify the formula (by
reducing the number of clauses) and preserve the acceptance probability – we are able to construct
pseudorandom restriction generators that satisfy either requirement, but not both at the same time.
The use of pseudorandom restrictions in [IMZ12] is more similar to ours, although the restrictions
are composed in a different way.

2 Preliminaries

In this section we state H̊astad’s switching and provide some related definitions.

Definition 1 (CNFs) An m-clause t-CNF is a boolean formula F =
∧m
i=1Ci, where each clause

Ci is a disjunction of at most t literals, and a literal is either a variable or a negated variable.

Definition 2 (Restriction, Selection, Assignment) A restriction to a set of variables
x1, ..., xn is a string ρ ∈ {0, 1, ∗}n.

If ρi = ∗ then we refer to xi as being unrestricted, otherwise we refer to xi as being assigned.

If F is a boolean formula over x1, ..., xn then the restricted formula F/ρ is the formula over the
unrestricted variables obtained by assigning xi ← ρi for all ρi 6= ∗.

3

It will be convenient to specify a restriction ρ as a pair (θ, β), where θ ∈ {∗,�}n is a selection and
β ∈ {0, 1}n is an assignment, and ρi = ∗ if θi = ∗ and ρi = βi if θi = �.

Definition 3 (Random Selections) We denote by Dp the p-biased probability distribution over
selections θ, such that θi = ∗ with probability p independently for each i. When p is a power of
1/2, we will think of the process of sampling a random element of Dp as the process of sampling
a uniformly random bit string τ ∈ {0, 1}n log2 1/p and then assigning θi = ∗ if τj = 1 for all
(i− 1) log2 1/p < j ≤ i log2 1/p, and θi = � otherwise.

If ρ1 and ρ2 are two restrictions, then we denote by ρ1 ◦ ρ2 the application of ρ1 followed by the
application of ρ2. That is, if ρ := ρ1 ◦ ρ2, then ρ(xi) = ρ1(xi) if ρ1(xi) 6= ∗, and ρ(xi) = ρ2(xi)
otherwise.

A decision tree is a tree in which each internal node is labeled by a variable and each leaf is labeled by
a boolean value. A decision tree defines the computation of a boolean function by traversing down
the tree, picking the branch by examining the variable and the value assigned to the variable. Every
boolean function can be computed by a decision tree. The canonical decision tree of a restricted
boolean formula is the decision tree constructed via a simple greedy procedure as described below.

Definition 4 We denote by cdtree(F, ρ) the canonical decision tree of a CNF F = C1 ∧ ...∧Cm
with respect to a restriction ρ, defined as follows:

• if F is empty, return leaf(1)
• if C1/ρ ≡ 0, return leaf(0)
• if C1/ρ ≡ 1, return cdtree((∧mi=2Ci)/ρ)
• otherwise let S be the set of ∗-ed variables in C1/ρ

– create a depth |S| decision tree by considering all assignments σ to F
– for each σ, attach cdtree(C/ρσ) at the leaf corresponding to σ

Lemma 5 (Hastad Switching Lemma) Let F be a t-CNF, p > 0, s > 0, and ρ = (θ, β) be a
random restriction where θ is sampled from Dp and β is chosen uniformly at random.

Then

Pr
p

[depth(cdtree(F, ρ)) > s] ≤ (5pt)s .

In order to find a pseudorandom distribution of restrictions that has a high probability of reducing
CNFs to small depth decision trees, we need to study the complexity of determining, for a fixed
F and a given ρ, whether the canonical decision tree of F/ρ has small depth. A distribution that
is able to fool tests which perform such a computation will satisfy the conclusion of the switching
lemma. We start by describing a certificate of the fact that the canonical decision tree of F/ρ is
not shallow, namely a long computational path which must be included in the canonical tree.

In general, a computational path in a decision tree is a sequence of pairs (xi, bi) where xi is a variable
name and bi is a boolean value. In the canonical decision tree of a CNF formula, the variables are
always read in a particular pattern: namely, the computation can be seen as a sequence of phases,
where in each phase the decision tree queries a subset of the variables in one of the clauses of the
formula. We represent (prefixes of) such paths in the following way.

4

Definition 6 (Segment, Path) A segment is a triplet (ai, Si, σi), where ai is the index of clause
Cai, Si is a subset of the variables in the clause Cai, σi ∈ {0, 1}|Si| is an assignment to the variables
in Si, the sets Si are disjoint, and a1 < a2 < · · · < ak. (A segment represents a clause expanded
in H̊astad’s construction of the canonical decision tree, with Si being the ∗-ed variables in Cai). A
path is a list of segments. The length of a path is the sum of |Si| over all its segments. Notice
that every computational path of cdtree(F, ρ) can be represented as a path according to the above
definition. Furthermore, if there is a path of length more than s in cdtree(F, ρ) then there is a
prefix of that computational path of length ≥ s+ 1 and ≤ s+ t according to the above definition.

3 A Derandomized Switching Lemma

Recall that if F is a set of functions f : {0, 1}n → {0, 1} and D is a distribution over {0, 1}n, then
we say that D ε-fools F if

∀f ∈ F .| P
x∼D

[f(x) = 1]− P
x∼Un

[f(x) = 1]| ≤ ε

where Un is the uniform distribution. We show that every distribution that fools CNFs can be used
to select pseudorandom restrictions that obey a version of H̊astad’s switching lemma.

Lemma 7 (Main Lemma) Let F be a M -clause t-CNF over n variables, p = 2−q be a positive
parameter, D be a distribution over {0, 1}(q+1)n that ε0 fools all M2t·(q+1)-clause CNFs. Then

Pr
(θ,β)∼D

[depth(cdtree(F|θ,β)) > s] < 2s+t+1(5pt)s + ε0 · 2(s+1)(2t+logM)

Proof: We begin by proving the following fact.

Claim 8 Let z = ((Ca1 , S1, σ1), . . . , (Cak
, Sk, σk)) be a path as in Definition 6. Then we claim that

there is a CNF Gz with ≤ 2(q+1)·tM clauses such, that for every restriction ρ ∈ {0, 1}(q+1)·n, G(ρ)
is satisfied if and only if z is a prefix of a computational path of the canonical decision tree of F|ρ.

Proof: For j = 1, . . . , k, define the restriction γj as the composition of the restrictions S1 ← σ1,
. . . , Sj ← aj . To prove the claim, observe that z is a prefix of a computational path in cdtree(F|ρ)
if and only if the following conditions are true:

• For each i = 1, . . . , a1− 1, ρ satisfies the clause Ci, meaning that ρ assigns at least one literal
in Ci to a value that makes the literal (and hence the clause Ci) true;

• The variables left unrestricted by ρ in Ca1 are precisely the variables in Si; furthermore, the
literals restricted by ρ in Ca1 are all given values that contradict the literals, and γ1 satisfies
Ca1 ;

• For each i = a1 + 1, . . . , a2 − 1, ρ ◦ γ1 satisfies the clause Ci;

• The variables left unrestricted by ρ ◦ γ1 in Ca2 are precisely the variables in S2; furthermore,
the literals restricted by ρ in Ca2 are all given values that contradict the literals, and γ2

satisfies Ca2 ;

. . .

5

• For each i = ak−1 + 1, . . . , ak − 1, ρ ◦ γk−1 satisfies the clause Ci;

• The variables left unrestricted by ρ◦γk−1 in Cak
are precisely the variables in Sk; furthermore,

the literals restricted by ρ ◦ γk−1 in Cak
are all given values that contradict the literals.

That is, we have once condition for each of the ak ≤ M clauses C1, . . . , Cak
, and the condition on

clause Ci is only a function of the values of ρ on the t variables appearing in Ci (recall that we are
thinking of z as fixed); in the representation of ρ as a bit string that we use, the value of ρ on one
variable is determined by q+ 1 bits, and so the condition on clause Ci is a function of t · (q+ 1) and
it can be expressed as a CNF with ≤ 2t·(q+1) clauses. This concludes the proof of the claim. �

For a CNF F and a restriction ρ, we have that cdtree(F|ρ) has depth > s if and only if there is a
path z (in the sense of Definition 6) that is of length bigger than s (and, without loss of generality,
at most s + t) which occurs as a prefix of a computational path of cdtree(F|ρ). The number of
syntactically correct minimal paths z = ((Ca1 , S1, σ1), . . . , (Cak

, Sk, σk)) of length between s + 1
and s + t (minimal, in this context, means that ((Ca1 , S1, σ1), . . . , (Cak−1

, Sk−1, σk−1)) has length
≤ s) is at most M s+1 · 3t·(s+1), because we have k ≤ s + 1 (the minimality condition and the fact
that the sets S1, . . . Sk−1 are non-empty implies k − 1 ≤ s) and there are

(
M
k

)
≤Mk ≤M s+1 ways

of choosing the clauses Ca1 , . . . , Cak
, and there are at most 3kt ≤ 3(s+1)·t ways of choosing the sets

Si and the assignments σi. Let Z be the set of all syntactically correct minimal paths of length
between s+ 1 and s+ t.

Finally, let occur(T, z) be 1 if the path z occurs as a prefix of a computational path in the tree T .
Because of the claim that we proved above, and the pseudo randomness assumption that we have
on D, we conclude that for every path z ∈ Z,

Pr
ρ∼D

[occur(cdtree(F|ρ), z)] ≤ Pr
ρ∼U(q+1)·n

[occur(cdtree(F|ρ), z)] + ε0 (1)

We are now ready to bound the probability that cdtree(F|ρ) has depth bigger than s when ρ is
chosen from the distribution D.

Pr
ρ∼D

[depth(cdtree(F|ρ)) > s]

= Pr
ρ∼D

[∃z ∈ Z.occur(cdtree(F|ρ), z) = 1]

≤ E
ρ∼D

∑
z∈Z

occur(cdtree(F|ρ), z)

=
∑
z∈Z

Pr
ρ∼D

[occur(cdtree(F|ρ), z) = 1]

Using (1), we have ∑
z∈Z

Pr
ρ∼D

[occur(cdtree(F|ρ), z) = 1]

≤
∑
z∈Z

(
Pr

ρ∼U(q+1)·n
[occur(cdtree(F|ρ), z) = 1] + ε0

)

≤ E
ρ∼U(q+1)·n

[∑
z∈Z

occur(cdtree(F|ρ))

]
+ ε0 · |Z|

6

≤ 2s+t · (5pt)s + ε0 · 3(s+1)·t ·M s+1

where the last inequality uses the bound of H̊astad’s switching lemma and the fact that, for each
restriction ρ, if the tree cdtree(Fρ) has depth at most s then it contains zero paths from Z¡ and
if it has depth more than s then it contains at most 2s+t paths from Z. �

In our applications, we will consider a distribution of random restrictions ρ = (θ, β) where the
selection θ is sampled from a pseudorandom distribution, but the assignment β is sampled uniformly
at random. Lemma 7 applies to such distributions as well because of the following observation.

Fact 9 Let X be a distribution over {0, 1}n1 that ε-fools m-clause CNFs. Consider the distribution
D over {0, 1}n1+n2 obtained by sampling an n1-bit string according to X and then concatenating
an n2-bit string chosen uniformly at random. Then D ε-fools m-clause CNFs.

Proof: Let F be an m-clause CNF over n1 + n+ 2 variables. Then we have∣∣∣∣ Pr
(a,b)∼D

[F (a, b) = 1]− Pr
(a,b)∼Un1+n2

[F (a, b) = 1]
∣∣∣∣

=

∣∣∣∣∣ E
b∼Un2

[Pr
a∼X

[F (a, b) = 1]]− E
b∼Un2

[Pr
a∼Un1

[F (a, b) = 1]]

∣∣∣∣∣
=

∣∣∣∣∣ E
b∼Un2

[Pr
a∼X

[F (a, b) = 1]− Pr
a∼Un1

[F (a, b) = 1]]

∣∣∣∣∣
≤ E

b∼Un2

∣∣∣∣ Pr
a∼X

[F (a, b) = 1]− Pr
a∼Un1

[F (a, b) = 1]
∣∣∣∣

≤ ε

�

4 Derandomizing AC0

We will use the following pseudorandom generator construction.

Theorem 10 ([DETT10]) There is a polynomial time pseudorandom generator of seed length
Õ(log2M/ε) that is ε-pseudorandom for M -clause CNFs.

By repeated application of the Main Lemma as in Hastad’s work we have:

Theorem 11 (Derandomized Switching Lemma for AC0) Let C be a size M , depth d cir-
cuit, and p = 2−q a positive parameter. Then there exists a pseudorandom selection generator G0

of seed length d · Õ(q2 log2 M
ε0

) such that:

• Pr
θ′←G0,β←U

[depth(cdtree(C/θ′β)) > s] < M
(

2s+logM+1 · (10p logM)s + ε0 · 2(s+1)·3 logM)
)

7

• Each variable has probability at least pd−1/40 chance of being starred in θ′.
• Furthermore, a generator with the same seed length and properties exist which outputs both a

selection and restriction.

Proof: [Sketch] As in H̊astad’s proof, we construct G0 as follows: we run d iterative pseudorandom
selections using the generator of [DETT10] in each iteration to produce a qn-bit string that is ε0-
pseudorandom for CNFs of size M · 2(logM)·(q+1). As proved in the previous section, the pair θ′, β
obtained by sampling a restriction θ′ via such a generator and an assignment β uniformly at random
is a (q + 1)n-bit string that is also ε0-pseudorandom for CNFs of size M · 2(logM)·(q+1). For the
first iteration, we use parameter 1/40. With high probability, after the restriction, all the surviving
bottom gates of the circuit have fan-in at most logM . For the remaining d − 1 iterations, we use
parameter 2p, and at each iteration the derandomized switching lemma, applied with t = logM ,
implies that (with high probability) each of the gates one level up from the bottom perform a
computation that can be also performed by a logM -depth decision tree, and hence both by a
logM -CNF and a logM -DNF, and we use this fact to switch AND gates to OR gates or viceversa,
and to reduce by one the depth of the circuit. �

Theorem 12 Let C be a size M , depth d circuit and ε > 0 be a positive parameter. There is a
pseudorandom restriction generator G1 of seed length d · Õ(log4 M

ε) such that

• |Prρ←G1,x←Un [Cρ(x) = 1]− Pry←Un [C(y) = 1]| < ε
• Each variable has probability at least p = 1/(40d+1 · logdM) of being assigned by ρ.

Proof: We first make the following observation: if θ is a selection, θc is the complementary
selection (that is θ(xi) = ∗ ⇔ θc(xi) = �) and if β and x are assignments, then

C(θ,β)(x) = C(θc,x)(β)

because in both cases we are assigning the variables starred in θ according to x and the remaining
variables according to β.

Consider the generator G0 from Theorem 11 instantiated with parameters p := 1
40 logM , s :=

2 logM/4ε and ε0 that we will fix later. Then we have

Pr
θ←G0,x←Un

[depth(cdtree(C(θ,x))) > s] ≤M · 2 · 2s ·M · 4−s + ε0 ·M · 2(s+1)·3·logM < ε

if we pick ε0 = 2−O(log2M/ε).

Now, whenever Cθ,x is computable by a depth-s decision tree, then we have that if β is sampled
from an s-wise independent distribution B then

Pr
β←B

[Cθ,x(β) = 1] = Pr
y←Un

[Cθ,x(y) = 1]

so we have ∣∣∣∣ Pr
θ←G0,x←Un,β←B

[Cθ,x(β) = 1]− Pr
θ←G0,x←Un,y←Un

[Cθ,x(y) = 1]
∣∣∣∣ ≤ ε

8

but note that

Pr
θ←G0,x←Un,y←Un

[Cθ,x(y) = 1] = Pr
y←Un

[C(y) = 1]

and that

Pr
θ←G0,x←Un,β←B

[Cθ,x(β) = 1] = Pr
θ←G0,β←B,x←Un,

[Cθc,β(x) = 1]

The theorem now follows by taking G1 to be the generator that select θ from G0 with the above
described parameter and β from a 2 logM/4ε-wise independent distribution, and outputs (θc, β).
The seed length required to construct β is just O(logM/ε · log n), and the seed length required to
construct θ is Õ(log4M/ε). �

Theorem 13 For every M , d, ε, there is a polynomial time computable ε-pseudorandom generator
for circuits of size M and depth d, whose seed length is Õ(logd+4M/ε).

The theorem follows by iteratively appling T := p−1 log 2n
ε independent pseudorandom restrictions

from G1, each with parameter ε/2T . The probability there remains an unfixed variable is at most
ε/2, and the overall error caused by the restrictions is at most ε/2.

Acknowledgements

We thank Or Meir for insightful discussions and Russell Impagliazzo for explaining the intuition
behind the arguments in [IMZ12].

References

[AW85] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant-
depth circuits. In Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science, pages 11–19, 1985. 1

[Baz07] Louay Bazzi. Polylogarithmic independence can fool DNF formulas. In Proceedings of
the 48th IEEE Symposium on Foundations of Computer Science, pages 63–73, 2007. 1

[Bra09] Mark Braverman. Poly-logarithmic independence fools AC0 circuits. Technical Report
TR09-011, Electronic Colloquium on Computational Complexity, 2009. 1

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudo-
random generators for depth 2 circuits. In APPROX-RANDOM, pages 504–517, 2010.
1, 2, 7, 8

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings
of the 53rd IEEE Symposium on Foundations of Computer Science, 2012. 3

9

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In Proceedings of the 53rd IEEE Symposium on Foundations of Computer
Science, 2012. 3, 9

[Nis91] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 12(4):63–70,
1991. 1

[Raz09] Alexander Razborov. A simple proof of bazzi’s theorem. ACM Trans. Comput. Theory,
1(1):1–5, 2009. 1

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

