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The polynomial method and the adversary method are the two main tech-
niques to prove lower bounds on quantum query complexity, and they have
so far been considered as unrelated approaches. Here, we show an explicit re-
duction from the polynomial method to the multiplicative adversary method.
The proof goes by extending the polynomial method from Boolean functions
to quantum state generation problems. In the process, the bound is even
strengthened. We then show that this extended polynomial method is a spe-
cial case of the multiplicative adversary method with an adversary matrix
that is independent of the function. This new result therefore provides in-
sight on the reason why in some cases the adversary method is stronger than
the polynomial method. It also reveals a clear picture of the relation between
the different lower bound techniques, as it implies that all known techniques
reduce to the multiplicative adversary method.

1. Introduction

Polynomial and adversary methods. There are two main techniques to prove lower
bounds on quantum query complexity: the polynomial method [BBC+01, KŠdW07,
She11], based on bounding the degree of the function seen as a polynomial, and adversary
methods [BBBV97, Amb02, BS04, LM08, HNS08], based on bounding the change in a
progress function from one query to the next. In its original form [Amb02], the adversary
method bounds the additive change in the progress function, hence we will call it additive,
and the progress function is based on a matrix assigning positive weights to pairs of
inputs. The polynomial method and this original adversary method are not comparable.
Indeed, the original adversary method is limited by the “certificate complexity barrier”
[Zha05, ŠS06], that is, for total functions, ADV(f) ≤

√
C0(f)C1(f) where Cb(f) denotes

the certificate complexity of f for f(x) = b. It means that the original adversary method
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cannot prove lower bounds better than Ω(N1/2) for Element Distinctness. However,
Aaronson and Shi [AS04] were able to prove a Ω(N2/3) lower bound using the polynomial
method. On the other hand it is known that the adversary method can sometimes
give better lower bounds than the polynomial method, in [Amb06] Ambainis exhibits a
function with polynomial degree d and adversary bound Ω(d1.3).

Høyer, Lee and Špalek have extended the additive adversary method by allowing
negative weights in the matrix [HLŠ07], and have shown that the corresponding bound,
ADV±(f), breaks the certificate complexity barrier. For simplicity, we will from now on
refer to ADV±(f) as the additive adversary bound, implicitly allowing negative weights.

Recently, a series of works [FGG08, ACR+10, RŠ08, Rei11, LMR+11] culminated in
showing that this bound is tight in the bounded-error case for any function. However, this
fundamental result does not answer all the questions about quantum query complexity
as it suffers from two limitations. First, in some cases it is necessary to prove bounds
for very small success probabilities, a regime where ADV±(f) might not be tight. For
this reason, while the optimality of the additive adversary bound implies that quantum
query complexity satisfies a direct sum theorem, it cannot be used to prove a strong
direct product theorem, which requires to prove nontrivial bounds for exponentially
small success probabilities. Secondly, while the proof of optimality of ADV±(f) implies
that if a lower bound on the bounded-error quantum query complexity of a function can
be proved with any method, it can also be proved with ADV±(f), this reduction is not
constructive. Concretely, there are still examples of lower bounds that can be proved
using the polynomial method for which the optimal adversary matrix is unknown, a
typical example being the Collision problem [AS04].

Multiplicative adversary method. The first limitation has been overcome thanks to
the introduction of another adversary-type method. By formalizing an ad-hoc technique
proposed by Ambainis, de Wolf and Špalek [Amb05a, AŠdW06], Špalek designed a new
lower bound method which he called the multiplicative adversary method [Špa08], as
the idea is to bound the multiplicative change in the progress function for each query.
Ambainis et al. [AMRR11] later showed that the multiplicative bound is always at least
as strong as the additive one, and therefore also characterizes bounded-error quantum
query complexity. Moreover, the multiplicative adversary method can prove better lower
bounds for small success probability than the additive adversary method, and this was
used to prove a strong direct product theorem for quantum query complexity [LR12].

Quantum state generation. Even when we are only interested in the quantum query
complexity of functions, it is useful to also consider state generation problems: in that
case, instead of producing the output f(x) on input x, the algorithm is required to
prepare a quantum state |mx〉. Since unitary transformations independent of x may
be applied without any query to x, a quantum state generation problem is completely
defined by the Gram matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|. In the special case of computing

a function, M is a Boolean matrix. Thus every algorithm can be seen as generating a
Gram matrix M . If the algorithm is allowed some error ε, then the set of Gram matrices
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that are acceptable outputs for the algorithm can be bounded by a so-called output
condition. Different output conditions have been used before, for example, the original
adversary method [Amb02] was implicitly using a condition based on the L∞ norm,
while the adversary method with negative weights in [HLŠ07] was implicitly using the
factorization norm γ2. Realizing that different output conditions could be combined
with different (zero-error) lower bound methods was key to comparing the additive and
multiplicative adversary methods in [AMRR11]. More recently, Lee and Roland [LR12]
were able to characterize exactly the set of acceptable Gram matrices, hence providing
an optimal output condition (see Claim 4), which allowed them to prove a strong direct
product theorem for quantum query complexity. This also simplifies the study of lower
bounds techniques as it implies that the bounded-error quantum query complexity of
a problem can be studied by bounding the zero-error quantum query complexity of all
Gram matrices that define valid output states for the problem. As a consequence it is
sufficient to compare the zero-error bounds for two methods in order to compare them.

Our results. In this article, we tackle the second limitation by giving an explicit reduc-
tion from the polynomial method to the multiplicative adversary method. In order to
do so, we introduce yet another lower bound technique for quantum query complexity,
which we call the extended polynomial method (Definition 10 and Theorem 11) as it
can be seen as an extension of the polynomial method to Gram matrices. As the degree
of a Boolean function can be stated as the maximum index of its Fourier coefficients,
that is, deg(f) = max{|S| : 〈χS , f〉 6= 0}, we define the degree of a Gram matrix by the
maximum index k such that the Gram matrix has support on a Fourier vector |χS〉 with
|S| = k, that is, deg(M) = max{|S| : 〈χS |M |χS〉 6= 0}.

For Boolean functions, the polynomial and the extended polynomial bounds are equal
in the zero-error case. However, for the approximate case, the extended polynomial
method uses the tight output condition, and is therefore possibly stronger than the
polynomial method (Theorem 13).

We also compare the extended polynomial method to the multiplicative adversary
method. More particularly, we show that in the limit c→∞, where c is the maximum
multiplicative change in the progress function for one query, the multiplicative bound
tends to the extended polynomial method (Theorem 14). This proof is constructive, i.e.,
we give an explicit multiplicative adversary matrix for which we have the equality. It
might come as a surprise that this matrix does not depend on the problem: it is the
same adversary matrix for every function. Let us note that it was proved in [AMRR11]
that the multiplicative bound is stronger than the additive bound in the limit c → 1,
that is, at the other end of the possible range for c. This new result therefore completes
the picture of the relations between the different lower bound techniques in quantum
query complexity (see Figure 1), and shows in particular that all these methods reduce
to the multiplicative adversary method.
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Figure 1: Relations between the different methods to prove lower bounds for quantum query
complexity. An arrow from method A to method B implies that any lower bound
that can be proved with A can also be proved with B (i.e., B is stronger than A).
A solid blue arrow means that the reduction is constructive, i.e., we can obtain a
witness for B from a witness for A. ¬ [HLŠ07]  [AMRR11] ® [Rei11, LMR+11] ¯
[This article] ° The original additive and the polynomial methods are incomparable
[Zha05, ŠS06, AS04, Amb06]
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2. Preliminaries

2.1. Gram matrices and fidelity

Definition 1 (Density matrices and Gram matrices) A density matrix ρ is a positive
semidefinite matrix ρ � 0 such that tr(ρ) = 1. A normalized Gram matrix A is a
positive semidefinite matrix A � 0 such that A ◦ I = I, where ◦ denotes the Hadamard
(entry-wise) product.

Note that any positive semidefinite matrix A can be written as a Gram matrix in the
broader sense, i.e., there always exists a set of vectors {|ax〉} such that Axy = 〈ax|ay〉.
Here, the additional constraint A ◦ I = I means that we require those vectors to have
norm 1. Since all Gram matrices will be normalized in what follows, we will from now
on refer to normalized Gram matrices as simply Gram matrices.

Definition 2 (Fidelity, Hadamard product fidelity) The fidelity F(ρ, σ) between two den-
sity matrices ρ and σ is defined by:

F(ρ, σ) = tr
√√

ρ σ
√
ρ.

The Hadamard product fidelity FH(A,B) between two Gram matrices A and B is
defined by:

FH(A,B) = min
|u〉:‖|u〉‖=1

F(A ◦ |u〉〈u|, B ◦ |u〉〈u|).

The notation FH and the name Hadamard product fidelity1 are new to this article,
but this quantity has been proved to be the tight output condition for the quantum
query complexity in [LR12] (see Claim 4 below).

2.2. Quantum query complexity

Consider a Boolean function f : {0, 1}n → {0, 1}. In the black-box model, we are in-
terested in computing f(x) when x is given by an oracle Ox : |i, b〉 7→ (−1)b·xi |i, b〉.
We denote by Qε(f) the quantum query complexity of f , i.e., the minimum number
of queries to Ox necessary for any algorithm to output f(x) with error at most ε (see,
e.g., [BdW02]).

Note that our choice of oracle computes the bits of x in the phase. Another variant
of this model considers an oracle that computes the bits in a register, but these models
of query complexity are related by a factor at most 2, since a call to one type of oracle
can be simulated by at most two calls to the other type.

Even when we are only interested in the quantum query complexity of functions, it
is useful to also consider state generation problems [AMRR11, LMR+11]. In that case,
instead of producing the output f(x) on input x, the algorithm is required to prepare a

1The name is chosen by analogy to the Hadamard product trace norm γ2 (equivalent to the Hadamard
product operator norm and also called factorization norm), which for Hermitian matrices can be
written in the very similar form γ2(A) = max|u〉:‖|u〉‖≤1 ‖A ◦ |u〉〈u|‖tr.
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quantum state |mx〉 ∈ H. Since unitary transformations independent of xmay be applied
without any query to x, a quantum state generation problem is completely defined by
the Gram matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|. For a quantum state generation problem

specified by a Gram matrix M , we define two different notions of query complexity. The
coherent query complexity Qε(M) is the minimum number of queries to the register
oracle Ox necessary to generate a state |nx〉 ∈ H ⊗H′ such that <(〈nx|(|mx〉 ⊗ |0̄〉)) ≥√

1− ε, where H′ is the workspace of the algorithm, |0̄〉 ∈ H′ is a default state for this
workspace and <(z) denotes the real part of a complex number z. The non-coherent
query complexity Qnc

ε (M) is defined similarly, except that it is enough to prepare a state
|nx〉 ∈ H ⊗ H′ such that <(〈nx|(|mx〉 ⊗ |m′x〉)) ≥

√
1− ε, for an arbitrary set of states

|m′x〉 ∈ H′ (that is, the workspace does not have to be reset to its default state).
For a Boolean function f , let us define the {1,−1}-valued function ϕ : {0, 1}n →
{1,−1} : x 7→ (−1)f(x). There are two natural quantum state generation problems
associated to f , corresponding to the Gram matrices F =

∑
x,x′ δf(x),f(x′)|x〉〈x′| and

Φ =
∑

x,x′ ϕ(x)ϕ(x′)|x′〉〈x|, where δ is the Kronecker delta. Indeed, generating the Gram
matrix F non-coherently is exactly the same problem as computing f , and we therefore
have Qε(f) = Qnc

ε (F ), while generating the Gram matrix Φ coherently corresponds to
computing the function in the phase, i.e., we need to generate the state ϕ(x)|0̄〉. The
bounded-error complexities of these problems are closely related:

Claim 3 ([LR12]) Q(1−
√
1−ε)/2+ε/4(f) ≤ Qε(Φ) ≤ 2Q(1−

√
1−ε)/2(f).

This implies that to prove bounds on the bounded-error query complexity of f , it
is sufficient to prove bounds on the query complexity of the related quantum state
generation problem Φ, and this is precisely the approach that we will use in this article.

Another advantage of considering quantum state generation problems is that we can
study the bounded-error query complexity of a problem by bounding the zero-error
query complexity of all Gram matrices that define valid output states for the problem.
It follows from the following claim that this set of valid Gram matrices is characterized
by the Hadamard product fidelity:

Claim 4 ([LR12]) For any Gram matrix M and any ε ≥ 0, we have

Qε(M) = min
N
{Q0(N) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I}.

2.3. The polynomial method

Definition 5 (Approximate degree) For any ε ≥ 0, the approximate degree d̃egε(f) of
a function f : {0, 1}n → R is defined as:

d̃egε(f) = min
p
{deg(p) : ∀x ∈ {0, 1}n, |p(x)− f(x)| ≤ ε} ,

where the minimum is over n-variate polynomials p : Rn → R.

Theorem 6 (Polynomial method [BBC+01]) If f is a Boolean function, then Qε(f) ≥
Ω
(

d̃egε(f)
)

.
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In this article, we will use some basic Fourier analysis to relate degree of a function
with Gram matrices. For the sake of readability, we will identify a set S ⊆ {1, . . . , n}
with its characteristic vector S ∈ {0, 1}n: Si = 1 if and only if i ∈ S, and thus |S| can
be either the cardinal of the set S or the Hamming weight of the vector S.

Definition 7 (Fourier basis and Fourier coefficients) For any S ∈ {0, 1}n, let us define
|χS〉 = 1√

2n

∑
x(−1)S·x|x〉. For a function ϕ : {0, 1}n → R, define the (non-normalized)

state |ϕ〉 = 1√
2n

∑
x ϕ(x)|x〉. We define the S-th Fourier coefficient of ϕ as ϕ̂(S) =

〈χS |ϕ〉.
Let us note that the set {|χS〉}S is an orthonormal basis and that by definition, we

then have ϕ̂(S) = 1
2n
∑

x(−1)S.xϕ(x) and ϕ(x) =
∑

S(−1)S.xϕ̂(S), which are the usual
Fourier transform over the hypercube and its inverse. With these notations, we can also
write the degree of a function ϕ as deg(ϕ) = maxS{|S| : ϕ̂(S) 6= 0}.

2.4. The multiplicative adversary method

Let us consider a quantum algorithm generating the Gram matrix M with error at most
ε using T queries. Let |ψt

x〉 be the state of the algorithm right after the t-th query when
the input is x, and M t =

∑
x,x′〈ψt

x′ |ψt
x〉|x〉〈x′| be the corresponding Gram matrix. Note

that M0 = J and MT ≈ M (more precisely FH(MT ,M) ≥
√

1− ε). The basic idea of
all adversary methods is to design a Hermitian matrix W defining a progress function
W [M ] = tr[WM ] such that the initial valueW [J] is low and the final valueW [MT ] is high
(or vice versa), and then to bound the maximal change in the progress function for any
oracle call. Whereas the additive method bounds the difference |W [M t+1] −W [M t]|,
the multiplicative method bounds the ratio W [M t+1]/W [M t]. In this paper we use
the definition of the multiplicative adversary method given by [LR12] which is a slight
extension of the original multiplicative adversary method in [Špa08].

Definition 8 (Multiplicative adversary bound) Let M be a Gram matrix specifying a quan-
tum state generation problem and for all i ∈ {1, · · · , n}, Di =

∑
x,x′(−1)xi+x′i |x〉〈x′| the

action of the phase oracle on input i. Fix c > 1. The multiplicative adversary
bounds are:

MADVc
0(M) =

1

log c
max
W�0

{log tr[WM ] : tr[WJ] = 1, W ◦Di � cW ∀i} ,

MADVc
ε(M) = min

N

{
MADVc

0(N) : FH(N,M) ≥
√

1− ε, N � 0, N ◦ I = I
}
,

MADVε(M) = sup
c>1

MADVc
ε(M).

We call adversary matrix for MADVc
0(M) any matrix W such that tr[WJ] = 1 and

W ◦Di � cW for all i.

Remark. Let us note that the parameter c represents the maximum multiplicative
change in the progress function that can result from one query. Since, for any matrix

W � 0, the constraint W ◦Di � cW is always satisfied for c ≥
∥∥(W ◦Di)

1/2W−1/2
∥∥2,
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one could directly obtain the multiplicative bound MADV0 by optimizing over W and

taking c =
∥∥(W ◦Di)

1/2W−1/2
∥∥2. However, it is useful to define the bound MADVc

0

for fixed c as this can be expressed as a semidefinite program (see [LR12]), where the
objective value is optimized over W . The best bound on the quantum query complexity
is then obtained by maximizing the objective value over both W and c.

Theorem 9 (Multiplicative adversary [Špa08, LR12]) For any ε ≥ 0 and any Gram matrix
M , we have Qε(M) ≥ MADVε(M).

3. The extended polynomial method

We now extend the polynomial method from Boolean functions to Gram matrices.

Definition 10 (Extended polynomial bounds) Let M be a Gram matrix specifying a quan-
tum state generation problem. The extended polynomial bounds are

xpoly0(M) = max
S
{|S| : tr [|χS〉〈χS |M ] 6= 0},

xpolyε(M) = min
N

{
xpoly(M) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I

}
.

Theorem 11 (Extended polynomial method) For any ε ≥ 0 and any Gram matrix M ,
we have Qε(M) ≥ xpolyε(M).

Proof. We prove the statement for ε = 0 and the general case immediately follows from
Claim 4 and the definition of xpolyε(M). This proof actually considers the extended
polynomial method as an adversary method. Let us define the progress function

W [M t] = max
S

{
|S| : tr[|χS〉〈χS |M t] 6= 0

}
.

Since M0 = J = 2n|χ∅〉〈χ∅|, its initial value is W [M0] = 0. The final value is W [MT ] =
xpoly0(M). It suffices to show that one query increases the progress function by at most
one.

Let M t =
∑

iM
t
i be the Gram matrix just before the (t + 1)-th query, where M t

i is
the reduced Gram matrix corresponding to the part of the state where bit xi is queried
(see, e.g., [AMRR11] for details). Let k = W [M t] and note that by positivity, we have
tr[|χS〉〈χS |M t] = 0 if and only if tr[|χS〉〈χS |M t

i ] = 0 for all i. Therefore, we also have
W [M t

i ] ≤ k for any i.
After the query, the Gram matrix of the algorithm will be M t+1 =

∑
iM

t
i ◦Di. Let

us observe that for any matrix A, we have A◦Di = UiAU
†
i where Ui = U †i is the unitary

matrix Ui =
∑

x(−1)xi |x〉〈x|. In particular, |χS〉〈χS | ◦Di = |χS′〉〈χS′ | where S′ = S ∪{i}
if i 6∈ S and S′ = S \ {i} if i ∈ S.

For all S ∈ {0, 1}n, we get:

tr
[
|χS〉〈χS |(M t

i ◦Di)
]

= tr
[
(|χS〉〈χS | ◦Di)M

t
i

]
=
∑

T :|T |≤k

tr
[
(|χS〉〈χS | ◦Di)|χT 〉〈χT |M t

i

]
.
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This quantity is null for all S such that |S| > k + 1, therefore the progress function can
increase by at most one per query.

We have defined the extended polynomial method with the Fourier basis, but one
might wonder if choosing another basis could provide better bounds. It turns out that
this is not the case (the proof of this claim is deferred until Appendix A).

Claim 12 Let {Πk : 0 ≤ k ≤ K} be a set of orthogonal projectors such that

¬
∑

k Πk = IC2n ,

 tr(Π0J) = 2n,

® ∀i ∈ {1, . . . , n}, ∀l, k such that |l − k| > 1, tr[(Πl ◦Di)Πk] = 0.

Then, for any Gram matrix M , we have

Q0(M) ≥ xpoly0(M) ≥ max
k
{k : tr(ΠkM) 6= 0} .

Therefore, while any set of projectors provides a lower bound on quantum query
complexity, the best bound is achieved by the extended polynomial method, which cor-
responds to the special case K = n and Πk =

∑
S:|S|=k |χS〉〈χS |.

4. Relation between the polynomial and the extended
polynomial methods

In this Section, we compare the strength of the polynomial and the extended polyno-
mial methods. Let f be a Boolean function and Φ the Gram matrix corresponding to
computing f in the phase. By definition of the extended polynomial method, we have
that xpoly0(Φ) = deg(f). However the equality is lost in the approximate case:

Theorem 13 Let f be a Boolean function and Φ be the Gram matrix corresponding to
computing f in the phase. For any ε ≥ 0, we have

xpolyε(Φ) ≥ d̃egε/2(f).

Proof. We first show that xpoly can be written as an optimization problem over poly-
nomials. By definition, we have

xpolyε(Φ) = min
N

xpoly0(N), (1)

where the minimum is taken over positive semidefinite matrices N such that N ◦ I = I
and FH(N,Φ) ≥

√
1− ε.

Let us write Φ as a Gram matrix Φ =
∑

x,y〈ϕx|ϕy〉|y〉〈x|, where |ϕx〉 = (−1)f(x)|0〉.
Then, by the properties of the Hadamard fidelity [LR12], the minimum in Eq. (1) can
be taken over Gram matrices N =

∑
x,y〈ψx|ψy〉|y〉〈x| such that |ψx〉 is a unit vector

for any x and <(〈ϕx|ψx〉) ≥
√

1− ε for any x. Writing any unit vector |ψx〉 in the
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computational basis as |ψx〉 =
∑

i pi(x)|i〉, the minimum in Eq. (1) can equivalently be
taken over amplitudes pi(x), therefore

xpolyε(Φ) = min
(pi)

xpoly0

∑
x,y,i

p∗i (x) pi(y)|y〉〈x|

 ,

where the minimum is taken over complex functions pi : {0, 1} → C such that
∑

i |pi(x)|2 =
1 and (−1)f(x)<(p0(x)) ≥

√
1− ε.

Finally, we show that forN =
∑

x,y,i p
∗
i (x)pi(y)|y〉〈x|, we have xpoly0(N) = maxi(deg(pi)).

For all S ⊆ {1, . . . , n}, we have

〈χS |N |χS〉 =
∑
i,x,y

p∗i (x)pi(y)〈χS |y〉〈x|χS〉 = 2n
∑
i

|p̂i(S)|2,

where p̂i(S) are the Fourier coefficients of pi. This is nonzero only if there exists an i
such that deg(pi) ≥ k, hence xpoly0(N) = maxi(deg(pi)).

To summarize, this implies that for any Boolean function f with associated phase
matrix Φ, we have

xpolyε(Φ) = min
(pi)

max
i

(deg(pi)),

where the minimum is taken over a set of functions pi : {0, 1}n → R satisfying

1.
∑

i pi(x)2 = 1 for any x ∈ {0, 1}n,

2. (−1)f(x)p0(x) ≥
√

1− ε for any x ∈ {0, 1}n.

Optimizing over real polynomials instead of complex ones is without loss of generality,
since any complex polynomial pj can be replaced by two polynomials being the real and
the imaginary part of pj , and the condition

∑
i |pi(x)|2 = 1 would still be satisfied.

Let {pi} be a set of polynomials such that xpolyε(Φ) = maxi(deg(pi)) and satisfy-
ing the required conditions. In particular, we have

√
1− ε ≤ (−1)f(x)p0(x) ≤ 1 and

deg(p0) ≤ xpolyε(Φ). Setting p(x) = (1 − p0(x))/2, we have deg(p) = deg(p0) ≤
xpolyε(Φ) and

|p(x)− f(x)| ≤ 1−
√

1− ε
2

≤ ε

2
,

for any x, so that p witnesses that d̃egε/2(f) ≤ deg(p).

5. Relation with the multiplicative adversary method

In [AMRR11], it was shown that in the limit c→ 1, the multiplicative adversary bound
MADVc

0(M) is at least as strong as the additive adversary bound ADV±(M). Here, we
show that the extended polynomial bound can be obtained by taking the limit c→∞.
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Theorem 14 Let M be a Gram matrix, ε ≥ 0, T = xpolyε(M) and Π≥T =
∑

S:|S|≥T |χS〉〈χS |.
Moreover, let δ > 0 be such that tr[Π≥TN ] ≥ δ for any Gram matrix N such that
FH(N,M) ≥

√
1− ε.

Then, for any c > 1, we have

xpolyε(M)− n− log δ

log c
≤ MADVc

ε(M) ≤ xpolyε(M) +
n

log c
.

In particular, in the limit c→∞, we have

lim
c→∞

MADVc
ε(M) = xpolyε(M).

The general idea of the proof is to consider the multiplicative adversary matrix

W =
1

2n

∑
S

c|S||χS〉〈χS |

as a multiplicative adversary matrix. The lower bound then follows from the fact that in
the limit c→∞, the value of the progress function W [M ] = tr(WM) will be dominated
by the term in c|S| for the set S with the largest size |S| = k such that 〈χS |M |χS〉 6= 0,
which therefore corresponds to the degree of the matrix M . As for the upper bound, we
show that the matrix W becomes an optimal multiplicative adversary matrix in the limit
c → ∞. This can be shown by observing that one oracle call can only map a Fourier
basis state |χS〉 to another Fourier basis state |χS′〉 with |S′| = |S| ± 1 which implies
bounds on the elements of any possible multiplicative adversary matrix written in the
Fourier basis.

Proof. We prove it for the zero-error case, the general case follows immediately.
Consider the matrix W = 1

2n
∑

S c
|S||χS〉〈χS |. It is a valid adversary matrix for

MADVc
0(M) since tr[WJ] = 1 and ∀i ∈ {1, . . . , n}, W ◦ Di � cW . Let W ′ be an

optimal multiplicative adversary matrix for MADVc
0(M). Let us show that tr(WM) ≤

tr(W ′M) ≤ 2n tr(WM).
The first inequality is a direct consequence of the fact that W is an adversary matrix

for MADVc
0(M) and the definition of the multiplicative adversary bound.

To prove the second inequality, let us first show by induction on k = |S| that
〈χS |W ′|χS〉 ≤ 1

2n c
|S| for any set S. For k = 0, the condition tr[W ′J] = 1 is equiva-

lent to 〈χ∅|W ′|χ∅〉 = 1
2n .

Let us fix 0 ≤ k ≤ n, and assume that ∀S such that |S| = k, we have 〈χS |W ′|χS〉 ≤
1
2n c

k. Let S′ be a set of size k + 1 and decompose it into S′ = S ∪ {i}. Observe
first that 〈χS |W ′ ◦ Di|χS〉 = 〈χS |UiW

′Ui|χS〉 = 〈χS′ |W ′|χS′〉. Hence by sandwiching
W ′ ◦Di � cW ′ with |χS〉, we get 〈χS′ |W ′|χS′〉 ≤ c〈χS |W ′|χS〉 ≤ 1

2n c
|S|+1.

We can now proceed with the rest of the proof:

tr[W ′M ] =
∑
S

〈χS |W ′M |χS〉 =
∑
S,S′

〈χS |W ′|χS′〉〈χS′ |M |χS〉

≤
∑
S,S′

∣∣〈χS |W ′|χS′〉
∣∣ |〈χS′ |M |χS〉| .
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We now use the property that for any positive semidefinite matrix A, |Aij | ≤
√
AiiAjj ,

tr[W ′N ] ≤

(∑
S

√
〈χS |W ′|χS〉〈χS |M |χS〉

)2

.

Using the Cauchy-Schwarz inequality, we get:

tr[W ′M ] ≤ 2n
∑
S

〈χS |W ′|χS〉〈χS |M |χS〉 ≤
∑
S

c|S|〈χS |M |χS〉 = 2n tr[WM ].

We are now ready to conclude the proof. From tr(WM) ≤ tr(W ′M) ≤ 2n tr(WM),
we have by definition of MADVc

0(M)

log tr[WM ]

log c
≤ MADVc

0(M) ≤ n+ log tr[WM ]

log c
.

For T = xpolyε(M), we find from the first inequality

MADVc
0(M) ≥

log 1
2n c

T tr[Π≥TM ]

log c
= T +

log(tr[Π≥TM ])− n
log c

.

Similarly, from the second inequality, we have

MADVc
0(M) ≤

log
∑

S c
|S|〈χS |M |χS〉
log c

≤ T +
log
∑

S〈χS |M |χS〉
log c

= T +
n

log c
,

where we used the facts that 〈χS |M |χS〉 = 0 whenever |S| > T , and
∑

S〈χS |M |χS〉 =
tr[M ] = 2n.

We note that MADVc
ε(M) approaches its limiting value xpolyε(M) if c is large enough

compared to 2n/δ. In general, we cannot give a lower bound on δ in order to determine
how large c should be. However, for the special case of Boolean functions, and comparing
to the standard polynomial method, i.e., the approximate degree d̃egε(f), instead of
xpolyε(M), we can deduce such a general bound on how large c should be, based on the
following fact:

Fact 15 Let f be a Boolean function with approximate degree T = d̃egε(f) and p be a
polynomial such that

√
1− ε ≤ (−1)f(x)p(x) ≤ 1 for any x. Then, we have

∑
S:|S|≥T

|p̂(S)|2 ≥ ε2

2n
.

We present here a proof by contradiction, but there is also an alternative proof using
dual polynomials proposed to us by Špalek and reproduced in Appendix B.
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Proof. Assume towards contradiction that
∑

S:|S|≥T |p̂(S)|2 < ε2

2n , and let q(x) = (1 −
p(x))/2. Then, we have |q(x)− f(x)| ≤ ε/2 for all x and

∑
S:|S|≥T |q̂(S)|2 < ε2

4·2n by

assumption on p. Let q′(x) =
∑

S:|S|<T (−1)S·xq̂(S), so that deg(q′) < T and

∣∣q′(x)− q(x)
∣∣2 =

∣∣∣∣∣∣
∑

S:|S|≥T

(−1)S·xq̂(S)

∣∣∣∣∣∣
2

≤ 2n
∑

S:|S|≥T

|q̂(S)|2 < ε2

4

for all x, where we have used the Cauchy-Schwarz inequality. Therefore, |q′(x)− f(x)| <
ε for all x and the polynomial q′ witnesses that d̃egε(f) ≤ deg(q′) < T , a contradiction.

This fact implies that MADVc
ε(Φ) becomes at least as strong as d̃egε(f) as soon as c

is large compared to 2n/ε.

Lemma 16 Let f be a Boolean function with associated phase matrix Φ. Then, for any
c > 1, we have

MADVc
ε(Φ) ≥ d̃egε(f)− 2 · n− log ε

log c
.

Proof (sketch). Let W = 1
2n
∑

S c
|S||χS〉〈χS |. By definition of the multiplicative adver-

sary method, MADVc
ε(Φ) ≥ minN

log tr(WN)
log c where the minimum is taken over all Gram

matrices N such that FH(N,M) ≥
√

1− ε. We follow the same footsteps as in the
proof of Theorem 13: we express the Gram matrix N as N =

∑
x,y〈ψx|ψy〉|y〉〈x| and

parametrize the states |ψx〉 as |ψx〉 =
∑

i pi(x)|i〉. After relaxing the normalization
condition on the states |ψx〉, we obtain that

MADVc
ε(Φ) ≥ 1

log c
log min

p

1

2n

∑
S

c|S| |p̂(S)|2 ,

where the minimum is taken over all polynomials p : {0, 1}n 7→ R satisfying
√

1− ε ≤
(−1)f(x)p(x) ≤ 1 for any x ∈ {0, 1}n.

Let p be a polynomial achieving this minimum and T = d̃egε(f). Then, we have

MADVc
ε(Φ) ≥ 1

log c
log

(
1

2n

∑
S

c|S| |p̂(S)|2
)
≥ T −

n− log
(∑

S:|S|≥T |p̂(S)|2
)

log c
.

The lemma then follows from Fact 15.

6. Discussion and open questions

Strong connections have been known for quite some time between the approximate degree
of a function and its query complexity: they are polynomially related for all (total)
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functions for classical complexity [NS94] as well as for quantum complexity [BBC+01].
The latter is actually often equal to the approximate degree (at least up to a constant
factor) for many functions, including all symmetric functions and random functions.
With a large number of tight bounds proved using the polynomial method [BBC+01,
AS04, Amb05b, AdW12] to cite only a few, this method might even seem ubiquitous.
However, it is not always tight as in some rare cases the adversary method is known
to yield better bounds. By clarifying the relation between the polynomial method and
adversary bounds, this work provides some new insight on why this can be the case.

First, we showed that the polynomial method is a relaxation of a more general method
which we called the extended polynomial method. This has a particularly nice interpre-
tation when one wants to compute the value of a function in a register, i.e., the goal is to
prepare the state |f(x)〉.2 When error ε is allowed, measuring this register should yield
outcome f(x) with probability at least 1 − ε, that is, the probability p(x) of obtaining
outcome 1 should be close to 1 when f(x) = 1 and close to 0 when f(x) = 0. While
the polynomial method only considers the degree of the probability p(x), the extended
polynomial method considers the degree of all the amplitudes in the final state of the
algorithm, including the erroneous part. In terms of Gram matrices this corresponds to
relaxing the condition N ◦ I = I to N ◦ I � I.3

In general it is not known how large the gap between the polynomial and the extended
polynomial method can be. It appears to be larger by at least a factor two for some
functions. Indeed, Ambainis et al. improved the lower bound for random Boolean
functions from n/4− o(n) using the polynomial method, to n/2− o(n) (which is tight)
by bounding the degree of all amplitudes in the final state of the algorithm [ABSdW12]
(their argument can be seen as a special case of the extended polynomial method).

Secondly this provides a partial answer on how the multiplicative adversary method
MADVc varies with c. Indeed, while it was already known that MADVc→1

ε (f) ≥
ADV±ε (f), we have proved that MADVc→∞

ε (f) ≥ d̃egε(f), and in particular, MADVc→∞
0 (f) =

deg(f) in the zero-error case. This implies that the gap between MADV and MADVc→∞

can be at least polynomially large by considering the Ambainis function [Amb06], for
which the polynomial method fails to give a tight bound, contrary to the adversary
method. This gap might be explained by the fact that in the limit c → ∞, the eigen-
basis of the best adversary matrix is restricted to be the Fourier basis, while for smaller
values, other bases can provide better bounds.

To summarize our current knowledge, the situation is the following. On the one hand,
when c tends to one, the multiplicative adversary method is tight for bounded-error
([AMRR11]) but not for zero-error (e.g., for the OR function, there is a quadratic gap).

2This is the standard problem studied in most articles on quantum query complexity, even though some
recent works including this one have considered the problem of computing the function in the phase.
Recall that Claim 4 implies that both problems are equivalent.

3Note that with the relaxed condition N ◦ I � I, the matrix N does not have to be a normalized Gram
matrix anymore, in which case the Hadamard product fidelity is not defined. However, one can use
another output condition, for example γ2(N −M) ≤

√
2ε, where γ2 denotes the Hadamard product

trace norm. These output conditions are related up to a constant [LMR+11, LR12], so that it only
affects the lower bound by at most a constant factor for bounded-error query complexity.
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On the other hand, when c tends to infinity, the multiplicative method seems better
for zero-error as it proves the Ω(n) lower bound for OR, but it is not always tight
(Ambainis function). As for low success probability, it seems that taking c bounded
away from one provides an advantage, as shown in particular by the strong direct
product theorems proved using the multiplicative [Špa08, LR12] and polynomial meth-
ods [KŠdW07, She11].

This leaves open a few interesting questions about the behavior of the multiplicative
adversary method. Can we say more about the dependence of MADVc on c? Can we
improve the relation MADVc→1

ε (M) ≥ ADV±ε (M) to an equality in general? Can we
characterize the set of functions for which the (extended or not) polynomial method
does not provide a tight bound? Finally, does the multiplicative adversary method
characterize the quantum query complexity, i.e., is it tight for any error?
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[Špa08] Robert Špalek. The multiplicative quantum adversary. In Proceedings of
the 23rd Annual IEEE Conference on Computational Complexity, pages
237–248. IEEE Computer Society, 2008. arXiv:quant-ph/0703237, doi:
10.1109/CCC.2008.9. [1, 2.4, 9, 6]
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A. Proof of Claim 12

Claim 12 Let {Πk : 0 ≤ k ≤ K} be a set of orthogonal projectors such that

¬
∑

k Πk = IC2n ,

 tr(Π0J) = 2n,

® ∀i ∈ {1, . . . , n}, ∀l, k such that |l − k| > 1, tr[(Πl ◦Di)Πk] = 0.

Then, for any Gram matrix M , we have

Q0(M) ≥ xpoly0(M) ≥ max
k
{k : tr(ΠkM) 6= 0} .

Proof. Let {Π′k : 0 ≤ k ≤ K} be any set of projectors satisfying the three conditions in
Claim 12, and let S ′k be the subspace on which Π′k projects. Let Sk = span{|χS〉 : |S| =
k} be the subspace on which Πk =

∑
S:|S|=k |χS〉〈χS | projects. Finally, let S≤k =

⊕k
l=0 Sl

and S ′≤k =
⊕k

l=0 S ′l , and similarly for S>k and S ′>k, as well as for the corresponding
projectors Π≤k,Π

′
≤k,Π>k and Π′>k.

We are going to show that for all 0 ≤ k ≤ n, we have S≤k ⊆ S ′≤k, which directly
concludes the proof. We show it by induction on k.

For k = 0, the property  reads tr(Π′0|χ∅〉〈χ∅|) = 1, hence S0 = span{|χ∅〉} ⊆ S ′0.
Let us now fix 0 < k < n and assume that S≤k ⊆ S ′≤k. Since S≤k ⊆ S ′≤k ⊆ S ′≤k+1, it

is sufficient to prove that ∀S : |S| = k + 1, |χS〉 ∈ S ′≤k+1.
Fix S = S′ ∪ {i} such that |S| = k + 1. By property ®, we have

tr
[
(Π′l ◦Di)Π

′
m

]
= 0,

for any l,m such that |l −m| > 1. Summing this equation over 0 ≤ l ≤ k and k + 2 ≤
m ≤ K, we obtain that

tr
[
(Π′≤k ◦Di)Π

′
>k+1

]
= 0.
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Since, by assumption, we have S≤k ⊆ S ′≤k, this implies that

0 ≤ tr
[
(Π≤k ◦Di)Π

′
>k+1

]
≤ tr

[
(Π′≤k ◦Di)Π

′
>k+1

]
= 0,

We use the property that tr(AB) ≥ 0 if A and B are positive semidefinite to prove
the first inequality. Since all the terms in the decomposition Π≤k =

∑
T |χT 〉〈χT | are

positive semidefinite matrices, we have in particular that tr
[
(|χS′〉〈χS′ | ◦Di) Π′>k+1

]
= 0,

therefore,

tr
[
|χS〉〈χS |Π′>k+1

]
= 0.

Since Π′>k+1 + Π′≤k+1 = I by property ¬, we can conclude that tr
[
|χS〉〈χS |Π′≤k+1

]
= 1,

hence |χS〉 ∈ S ′≤k+1.

B. Alternative proof of Fact 15

Fact 15 Let f be a Boolean function with approximate degree T = d̃egε(f) and p be a
polynomial such that

√
1− ε ≤ (−1)f(x)p(x) ≤ 1 for any x. Then, we have

∑
S:|S|≥T

|p̂(S)|2 ≥ ε2

2n
.

In this appendix, we present an alternative proof of this fact, based on the notion of
dual polynomial:

Lemma 17 Let f : {0, 1}n → {0, 1} be a function with approximate degree T = d̃egε(f).
Then, there exists a polynomial d : {0, 1}n → R, called dual polynomial, such that

1.
∑

x |d(x)| = 1,

2.
∑

x d(x)f(x) ≥ ε,

3.
∑

x d(x)〈x|χS〉 = 0 for all S such that |S| < T .

Let us now prove the fact.

Proof of Fact 15. Let p be a polynomial achieving this minimum, and d be a dual poly-
nomial witnessing that d̃egε(f) = T . Defining the polynomial q as q(x) = 1−p(x)

2 , we
have p̂(S) = 2q̂(S) whenever |S| 6= 0, and |q(x) − f(x)| ≤ ε/2 by assumption on p.
Moreover, by definition of d, we have |d̂(S)| = 0 for |S| < T and |d̂(S)| ≤ 1 for any S,
so that ∑

S:|S|≥T

|p̂(S)|2 ≥ 4
∑

S:|S|≥T

|q̂(S)|2 ≥ 4
∑
S

∣∣∣d̂(S)
∣∣∣2 |q̂(S)|2 .
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Using the Cauchy-Schwarz inequality, we get

∑
S:|S|≥T

|p̂(S)|2 ≥ 4

2n

∣∣∣∣∣∑
S

d̂(S)q̂(S)

∣∣∣∣∣
2

=
4

2n

∣∣∣∣∣∑
x

d(x)q(x)

∣∣∣∣∣
2

.

Let us define e(x) = 2(q(x) − f(x))/ε which is such that |e(x)| ≤ 1 for any x. Since∑
x |d(x)| ≤ 1 and

∑
x d(x)f(x) ≥ ε, we have

∑
S:|S|≥T

|p̂(S)|2 ≥ 4

2n

∣∣∣∣∣∑
x

d(x)f(x) + (ε/2)
∑

d(x)e(x)

∣∣∣∣∣
2

≥ 4

2n
|ε− ε/2|2 =

ε2

2n
.
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