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Abstract

We study several problems in which an unknown distribution over an unknown population
of vectors needs to be recovered from partial or noisy samples, each of which nearly completely
erases or obliterates the original vector. For example, consider a distribution p over a population
V ⊆ {0, 1}n. A noisy sample v′ is obtained by choosing v according to p and flipping each
coordinate of v with probability say 0.49 independently. The problem is to recover V, p as
efficiently as possible from noisy samples. Such problems naturally arise in a variety of contexts
in learning, clustering, statistics, computational biology, data mining and database privacy,
where loss and error may be introduced by nature, inaccurate measurements, or on purpose.
We give fairly efficient algorithms to recover the data under fairly general assumptions.

Underlying our algorithms is a new structure we call a partial identification (PID) graph for
an arbitrary finite set of vectors over any alphabet. This graph captures the extent to which
certain subsets of coordinates in each vector distinguish it from other vectors. PID graphs yield
strategies for dimension reductions and re-assembly of statistical information.

The quality of our algorithms (sequential and parallel runtime, as well as numerical stability)
critically depends on three parameters of PID graphs: width, depth and cost. The combinatorial
heart of this work is showing that every set of vectors posses a PID graph in which all three
parameters are small (we prove some limitations on their trade-offs as well). We further give an
efficient algorithm to find such near-optimal PID graphs for any set of vectors.

Our efficient PID graphs imply general algorithms for these recovery problems, even when loss
or noise are just below the information-theoretic limit! In the learning/clustering context this
gives a new algorithm for learning mixtures of binomial distributions (with known marginals)
whose running time depends only quasi-polynomially on the number of clusters. We discuss
implications to privacy and coding as well.
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1 Introduction

Recovery of information from lossy or noisy data is common to many scientific and commercial
endeavors. In this work we introduce a new structure we call a partial identification (PID) graph
that helps in solving such recovery problems.

The use of IDs, features of individuals that uniquely identify them in a given population, is
ubiquitous. Fingerprints and retinal scans, or simply names and addresses, are useful for identifying
people. In other populations, various appropriate subsets of features are used1. In some populations,
however, some IDs may be too long, and thus too expensive to maintain, e.g., when storage is
limited. In these cases, partial IDs can be used: instead of a long list of features per individual,
we can maintain a shorter list that is more efficient. This efficiency has a cost, as it may introduce
ambiguity and “imposters.” PID graphs represent the imposter-structure of a given choice of PIDs.

We provide fairly efficient algorithms for recovery and clustering of information from lossy/noisy
data. These algorithms use PID graphs to identify useful local sub-systems of a given system, and
combine local pieces of information to a global one. The complexity of our algorithms crucially
depends on the PID graphs they use. A substantial part of our algorithms, therefore, is a procedure
that builds efficient PID graphs.

Roadmap. As the introduction is long, here is a roadmap to it. In section 1.1 we give intuition
and formally define population recovery problems, samplers and our main results. In section 1.2 we
explain why a simpler “distribution recovery” problem is sufficient to solve. Sections 1.3 and 1.4
respectively explain how parameters of PID graphs control our algorithms, and how to efficiently
achieve good parameters. Section 1.5 extensively discusses our work in various contexts which
considered similar problems and methods.

1.1 Recovery problems

Let us start with two scenarios that motivate the kind of problems we consider in this paper. We
then formulate them more precisely.

Recovery from lossy samples. Imagine that you are a paleontologist, who wishes to determine
the population of dinosaurs that roamed the Earth before the hypothetical meteor made them
extinct. Typical observations of dinosaurs consist of finding a few teeth of one here, a tailbone of
another there, perhaps with some more luck a skull and several vertebrae of a third, and rarely
a near complete skeleton of a fourth. Each observation belongs to one of several species. Using
these fragments, you are supposed to figure out the population of dinosaurs, namely, a complete
description of (say) the bone skeleton of each species, and the fraction that each species occupied
in the entire dinosaur population. Even assuming that our probability of finding the remains of a
particular species, e.g. Brontosaurus, is the same as its fraction in the population, the problem is
clear: while complete features identify the species, fragments may be common to several. Even with
knowledge of the complete description of each type (which we a-priori do not have), it is not clear

1It will be clear that in the settings we consider, hashing and related techniques are irrelevant, and one has to use
actual features of individuals.
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how to determine the distribution from such partial descriptions. A modern-day version of this
problem is analyzing the partial Netflix matrix, where species are user types, features are movies,
and each user ranked only relatively few movies.

Recovery from noisy samples. Imagine you are a social scientist who wants to discover behav-
ioral traits of people and their correlations. You devise a questionnaire where each yes/no question
corresponds to a trait. You then obtain a random sample of subjects to fill the questionnaire. Many
of the traits, however, are private, so most people are unwilling to answer such questions truthfully,
fearing embarrassment or social consequences if these are discovered2. To put your subjects at ease
you propose that instead of filling the questionnaire truthfully, they fill it randomly: as follows: to
each question, they flip the true answer with probability 0.49, independently of all others. This
surveying method (typically applied when there is one question of interest) is known as “random-
ized response” and was initiated by Warner [26]. Is privacy achieved? Can one recover the original
truthful information about the original sequences of traits and their distribution in the population?
Observe that typical samples look very different than the sequences generating them. Indeed, can
one synthesize sensitive databases for privacy by publishing very noisy versions of their records?

These examples illustrate some of the many settings in which lossy or noisy samples of concrete
data is available, and from which one would like to efficiently recover a full description of the
original data. Losses and noise may be an artifact of malicious or random actions, and the entity
attempting recovery may be our friends or foes. We formalize below the general setting and show
that, surprisingly, accurate recovery is possible, as long as samples bear minimal correlation with
some data item. This is achieved even when both the dimension (number of “attributes”) and the
population size (number of “clusters”) are large!

1.1.1 Definitions and results

Fix an alphabet Σ, integer parameters n, k and an accuracy parameter α > 0. Assume, as in the
examples above, there is a population of vectors V ⊆ Σn of size (at most) k, and a probability
distribution π on the population V . In the following, we shall not know π or even V , but rather
only get lossy or noisy samples to them. Our goal will be to fully recover both V and π.

The population recovery problem (PRP) is to (approximately) reconstruct V and π, up to the
accuracy parameter α. Namely, given independent lossy or noisy samples, find a set V ′ containing
every element v ∈ V for which π(v) > α, and a distribution π′ on V ′ such that for every v ∈ V ′ we
have |π(v)− π′(v)| < α.

We start by focusing on two processes for generating samples (which we will later generalize):
lossy sampling and noisy sampling. This type of recovery problem was first formulated in [5], for
the model of lossy sampling.

Lossy samples. Let 0 < µ < 1. A µ-lossy sample v′ is generated randomly as follows. First, an
element v ∈ V is picked at random with probability π(v). Then, independently at random, every

2A possibly worse scenario is when looking for information concerning medical conditions, where leakage of the
truth may cause one to lose medical insurance.
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coordinate vi of v is replaced by the symbol “?” (assumed not to be in Σ) with probability 1− µ,
and is left untouched with probability µ. The result is v′. For example, a 0-lossy sample is a vector
of question marks, and a 1-lossy sample gives full access to V .

Noisy samples. Let −1 < ν < 1, and for simplicity assume Σ = {0, 1}. A ν-noisy sample v′ is
generated as follows. First, an element v ∈ V is picked at random with probability π(v). Then,
independently at random, every bit vi of v is flipped with probability (1− ν)/2, and left untouched
with probability (1 + ν)/2. The result is v′. For example, a 0-noisy sample is a uniform random
vector from the discrete cube (regardless of V, π).

The nature of the recovery problem, namely, that we only have access to samples, requires that
we allow algorithms to err with some small probability δ > 0. The main question we study is “for
which noise/loss parameters is there an efficient reconstruction algorithm, hopefully that runs in
time polynomial in all other parameters |Σ|, n, k, 1/α, log(1/δ)?”

It is not hard to see that, in the noisy model, if ν = 0 it is information theoretically impossible
to solve the recovery problem. If ν = o(1) then it is impossible to solve the recovery problem in
time polynomial in k, e.g., consider the case of distinguishing all even-weight strings from all odd-
weight strings of length n = log k. Similarly, for µ = 0 the lossy recovery problem is information
theoretically impossible, and for µ = o(1) it is impossible to solve it in time polynomial in k.

In all other cases, namely when µ, ν > 0 are constants, we design algorithms for these two
problems, which run in time polynomial in |Σ|, n, 1/α, log(1/δ) and klog k. The exponent of the
polynomial depends logarithmically on 1/µ, 1/ν, respectively. The question of reducing the depen-
dence on k to polynomial is the main open problem. We now state the main results, starting with
the lossy case and then describing the noisy case.

Theorem 1.1. Let 0 < µ < 1. There is an algorithm that, given an integer k, α > 0, 0 < δ < 1 and
µ, runs in time poly(|Σ|, n,1/α,log(1/δ),klog k) and solves the recovery problem for an n-dimensional
database of size k over Σ, given µ-lossy samples, with error α and probability at least 1− δ.

Independence of erasures of different coordinates is not necessary for the algorithm stated in
the theorem to perform well. Indeed, the algorithm works as long as every set of size at most log k
coordinates has a non-negligible probability (say β) of having no question marks. The running time
in this case may be slowed down by a factor of poly(1/β). For example, as long as the question
marks are (log k)-wise independent, we have 1/β = (1/µ)log k = poly(k).

In [5] a completely different algorithm was given for the lossy case, which is fully polynomial in
all parameters including k, but works only as long as µ > 0.365. For smaller values of µ, however,
exponential running time could not be ruled out. The motivation in [5] was DNF-learning in the
restriction access PAC learning model (defined there). Via their reduction the above theorem
implies a learning algorithm for all µ > 0.

Corollary 1.2. For any fixed 0 < µ < 1, there is an algorithm that, given k, n, α, δ, learns n-variate
DNF formulas of size k in the restriction access model with3 µ-lossy samples and probability at least
1− δ in time poly(n,1/α,log(1/δ),klog k).

3In the notation of [5], µ-lossy samples are called “set distribution Indµ.”
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Our main result for recovery from the noisy samples is similar to the lossy one.

Theorem 1.3. Let 0 < ν < 1. There is an algorithm that, given an integer k, α > 0 and 0 < δ < 1
and ν, runs in time poly(n,1/α,log(1/δ),klog k) and solves the recovery problem for an n-dimensional
database of size k over Σ = {0, 1} with ν-noisy samples, error α and probability at least 1− δ.

For n > log k, there is an algorithm that runs in time poly(n,(1/α)log k, (1/ν)log k,log(1/δ),klog2 k)
and performs the same task even without knowing the noise parameter4.

The study of recovering information from noisy samples appears already in the work of Kearns,
Mansour, Ron, Rubinfel, Schapire and Sellie [19]. There it is called “learning mixtures of hamming
balls” and two algorithms are presented. One with a similar running time to our algorithm, but
that only guarantees small divergence, that is, the population V is not reconstructed exactly but
only up to hamming distance roughly

√
n. A second that basically guarantees small statistical

distance, but runs in time exponentially in k.
With an appropriate definition of noise, one can generalize this theorem too to every alphabet

Σ. Moreover, it can also be generalized to the case that a different (but known) noise probability is
applied in every coordinate. As in the lossy case, we do not need the full independence of the noise
but only (log k)-wise independence. We do, however, require knowledge of the noise parameter ν
(or at least some polynomially good estimate of it).

More general samplers. A third sampler one can consider is a hybrid sampler combining the
lossy and noisy ones. In the hybrid model, a sample is generated by first erasing all but a µ
fraction of the coordinates, and then flipping each one of the remaining coordinates with probability
(1− ν)/2. A fourth sampler is a noisy sampler where every coordinate i is flipped with probability
(1−νi)/2 that depends on i. Even in these more complex situations we can achieve the same bounds
on recovery (in general knowledge of the noise model is required for our algorithm to perform well).
In fact, when proving the above theorems, we consider even a more general type of samplers that
we define in Section 3.1 below.

Our algorithms use the following strategy. Due to the partial, distorted and inconsistent informa-
tion provided by samples, we focus on small windows (subsets of coordinates). The strategy consists
of two phases. In the first phase, we collect statistics for many judiciously chosen windows. This
phase may be viewed as a collection of dimension reductions of the original problem. Since windows
are small (of logarithmic size), we can afford running time that is exponential in the window size,
and so we can get pretty accurate information for each of the chosen windows. However, as many
vectors may agree on their projection on a small window, we need to “decouple” the statistics thus
obtained. This is done in the second phase, where special care is needed to control accumulation
of errors. The implementation of this strategy is guided by a PID graph. To build the PID graph
though, we need to know the underlying population (which is actually part of what we want to
learn in PRP). So, we should first explain why we can assume knowledge of the population (but
not of the underlying distribution).

4Specifically, the distribution p is unique in that for every other distribution p that is far from p and for every
noise parameter ν, the distribution on samples that p, ν yield is far from the one produced by p, ν. For n = log k,
there is no such uniqueness.
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1.2 Recovery when vectors are known

The distribution recovery problem (DRP) is a sub-problem of PRP, in which the set V of vectors in
the population is actually given to the algorithm, and the only problem is estimating the unknown
probability distribution π on V .

An important reduction provided in [5] shows that PRP can be efficiently reduced to DRP: if
from V we can deduce π, we can find V as well5. In other words, we may assume V is known even
though it is not! This somewhat counter-intuitive statement has a very simple proof and moreover
is quite general. It works for all uniform samplers of V , in particular, the ones we discussed above.
We note that it is very similar in spirit to the prefix constructions in other learning settings, such
as [10, 15]. For completeness (and since it is not stated in this generality in [5]), we state it here
and provide the formal definition of a uniform sampler and a proof sketch in the appendix.

For uniform samplers, solving PRP is as easy as solving n DRPs, as the following theorem shows
(it is proved in Section 4). In the reduction, there is no need to consider probability of success,
but setting an error probability δ/n for the DRP solver yields an error probability δ for the PRP
solver by a union bound.

Theorem 1.4 ([5]). There is an algorithm that, for every uniform sampler (in particular the lossy,
noisy and hybrid samplers) f and parameters Σ,k,n,α, makes n oracle calls to a DRP algorithm
using f and parameters Σ,k,i,α/2 for every i ∈ [n], and if all n calls produce a correct answer, the
algorithm solves PRP.

We are, therefore, left with solving DRP from lossy and noisy samples. That is, we can assume
we know V and only need to estimate π. The approach taken here, which is very different than
that of [5], is to first efficiently construct a “succinct” representation for vectors in V . To motivate
it, let us first observe that DRP is much easier if the number n of “features” of an individual was
small, say n ≤ O(log k) where |V | = k. This allows us to use algorithms that run in exponential
time in n. The following proposition states that exponential running time suffices for solving the
problem (and, in fact, for a more general family of samplers; see Section 3.1 for details).

Proposition 1.5. DRP can be solved in both sample models in time exponential in n.

How can we make use of the proposition when n is large (as it typically is)? For this we
introduce a generic way to reduce the dimension: use PID graphs.

1.3 Dimension reductions and PID graphs

At this point V is available to us and we can preprocess it. Our approach is to pick, for every
individual v ∈ V , a small representative set of features Sv ⊆ [n], of size |Sv| ≤ log k. Then, solve
DRP on the window Sv, ignoring all other coordinates, in time poly(k) using the lemma above. For
a vector v and a set S, denote by v[S] the restriction of v to the entries in S. If v[Sv], the pattern of
v in coordinates Sv, uniquely identifies v in V (namely it is an ID), then we directly get an estimate
of π(v). Unfortunately, such short IDs do not exist for all vectors in a general populations V . For

5In follow-up work, Impagliazzo [12] shows that to recover only (a super-set of) V , but not π, can be done in
polynomial time from lossy samples and quasi-polynomial time from noisy ones.

5



some vectors v the pattern on Sv is shared by other imposters u ∈ V . Thus the set Sv is only a
partial ID (PID) for v, and the statistics obtained from the DRP solver on Sv counts the total mass
of π of all imposters u of v. Recovering π from this information is clearly a linear system. This
linear system is not always invertible, so we first need to ensure that it is. But, even when it is
invertible, recall that we only have estimates, and inverting the system can exponentially blow up
the accuracy parameter.

To study the cost of this computation, it is natural to capture “imposter relations” in a graph.
A PID graph G = G(V,S) is defined for any set of vectors V ⊆ Σn and any set of PIDs S = {Sv ⊆
[n] : v ∈ V }. The vertices of G are the elements of V . Directed edges go from every vertex v to
every imposter u of v, namely, u 6= v such that u[Sv] = v[Sv].

The set of imposters I(v) of v contains v itself and all vertices u such that (v, u) is an edge in
G. Let p(v) =

∑
u∈I(v) π(u). When G is acyclic, as we will ensure, the linear system expressing p

in terms of π is triangular. So, knowing p, we can compute π by backwards substitution. But, as
we shall only have an approximation p′ of p, we need to ensure that the initial error of p′ is small
enough so that accumulated error in π′ will be small as well.

The accumulation of errors in this computation is affected by depth(G), the length of the longest
directed path in it. This motivates using a graph G of smallest possible depth. The depth also
dominates the running time of any parallel algorithm for this task. This is a secondary reason for
minimizing the depth.

Depth is just a crude parameter controlling error accumulation. A more precise one is cost(G),
defined recursively for acyclic G according to its topological order by cost(v) = 1 on every sink v
in G, and

cost(v) = 1 +
∑

u∈I(v):u6=v

cost(u).

Note that cost(v) is simply the number of directed paths (of all lengths) emanating at v. Define

cost(G) = max{cost(v) : v ∈ V }.

Trivially,
cost(G) ≤ |V |depth(G).

As we already explained, the runtime of solving each dimension-reduced DRP problem on Sv is
exponential in |Sv|. This aspect is capture by the width of G,

width(G) = max{|Sv| : v ∈ V }.

We conclude by showing how the runtime of the full DRP algorithm depends on these three
parameters.

Theorem 1.6. Let G be a PID graph for a population V of size |V | = k.

• Given G, the distribution recovery problem with accuracy α > 0 for V can be solved, with
probability at least 1− δ, using µ-lossy samples in time T = poly(nk|Σ| log(1/δ)/α) · cost(G) ·
(1/µ)width(G). Moreover, it can be solved in parallel using T processors in time depth(G) ·
poly log T .
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• Given G, the distribution recovery problem with accuracy α > 0 for V can be solved, with
probability at least 1 − δ, using ν-noisy samples in time T = poly(nk log(1/δ)/α) · cost(G) ·
(1/ν)width(G). Moreover, it can be solved in parallel using T processors in time depth(G) ·
poly log T .

1.4 Efficient PID graphs

We are now faced with constructing, for any population V , a PID graph with the smallest possible
width and depth (and cost). Minimizing only one of these parameters is easy; considering the
following examples will help getting some intuition.

To minimize depth, pick Sv = [n] for all v. Since these PIDs are actually IDs, there are no
imposters and the depth is zero. The width, however, is n, which would lead to an exponential
time algorithm. Note that if we insist on IDs, the width may have to be n, e.g. when V consists
of all unit vectors ei as well as the all zeros vector 0̄. While each ei has an ID of size one, the only
ID for the vector 0̄ is [n].

On the other extreme, let us see how we can easily make the width at most logarithmic. In
this case, however, the depth is possibly k, which again leads to an exponential running time (due
to error-accumulation). First observe6 that in any V , there must be at least one member v with
an ID Sv of size at most log |V |. We can now remove v from the population, and consider the set
Ṽ = V \ {v}. We can now find a vector ṽ which has a short ID in Ṽ . Even though Sṽ is an ID of
ṽ in Ṽ , the vector v may still be an imposter of ṽ in V . Continuing in this fashion results in a set
of PIDs, each of which has size at most log k, but may yield a graph of depth k. Indeed, if our set
of vectors V is simply all n + 1 vectors of the form 1i0n−i, then all PIDs thus obtained have size
at most 1, but their graph is a path of length n + 1. This graph happens to have small cost, but
similar examples in which the cost is exponential can be given as well.

We prove that width, depth (and thus cost) can simultaneously be made small. Moreover, we
can find such PIDs efficiently.

Theorem 1.7. There is an algorithm that, given V of size k, runs in time poly(k), and finds a PID
Sv for every v in V so that the corresponding PID is so that width(G) ≤ log k and depth(G) ≤ log k.
Specifically, cost(G) ≤ klog k.

Theorems 1.1 and 1.3 follow immediately from the above theorems. (There is actually one
piece missing in the proof of Theorem 1.3: how to estimate ν without knowing it? See Section 3.3
for more details.) Observe that finding the smallest possible ID for a given v in V is exactly the
hyper-graph vertex-cover problem which is NP-hard to compute.

It would be preferable to obtain short PIDs whose graph has a polynomial upper bound on
the cost. Such a bound would automatically yield a polynomial running time for our algorithms.
Unfortunately, such a bound can not be obtained.

Proposition 1.8. For every k there is a databases V of size k over Σ = {0, 1} so that every PID
graph for V of width at most O(log k) has super-polynomial cost, at least kΩ(log log k).

6Indeed, to find such v, Sv take the left-most (non-constant) coordinate in [n], and keep only vectors in V that
have the least popular value in this coordinate. Now do it again, and again, until you are left with only one vector
v. This process chose at most log |V | coordinates, which serve as an ID for v.
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This example shows that in order to solve DRP in polynomial time new ideas are required. We
note, however, that for most databases V , the cost of a PID graph is much smaller. So, for an
“average input” our algorithm runs faster.

1.5 Discussion and related work

Our work addresses situations in which a database of vectors in high dimension undergoes heavy
obliteration and needs to be recovered. We consider situations where noise or loss are close to
the information-theoretic limit; slightly increasing their levels completely destroys all information
about the original data. We, nevertheless, provide (reasonably) efficient algorithms that completely
recover all the data with arbitrary high probability. Improving the efficiency (e.g. to be polynomial
in k) and relaxing the assumptions (e.g. the knowledge of noise level) are the obvious next steps
to make these results more useful in practice.

In this section we discuss our results and our methods in comparison to similar ones in the
literature. There are numerous works dealing with a wide variety of recovery from lossy and noisy
information, and we can’t hope to survey them all. These arise in various fields, and sometimes
with different motivations, assumptions and terminology, and we try to relate them to ours. The
partitions to topics below are somewhat arbitrary and certainly overlapping.

Learning. The population recovery problem from lossy samples was introduced in [5]. It arose
naturally from the analysis of PAC-learning algorithms in a general non-black-box learning frame-
work they introduced, called restriction access. Here we introduced noisy (and more general)
sample-models. The algorithms we describe suggest that the restriction access model can be gen-
eralized to allow noise as well as loss. We note that our recovery algorithms are very different than
the ones in [5].

Other works in which a set of vectors (in this case, representing high Fourier coefficients of a
function given by an oracle) is discovered from samples include the famous algorithms for learning
decision trees and DNFs [10, 15, 13]. These works differ in several aspects; in particular, membership
queries are allowed, as opposed to only samples from the distribution.

Clustering. One natural way to view the noisy model is as follows. The unknown vectors v in our
database are k cluster centers, and the noise generates a mixture of binomial distributions around
these centers, with unknown mixture coefficients determined by π. This problem was considered
when the binomial noise is unknown, and [27, 4, 9] give algorithms to learn such mixtures. A
different closely related problem is the well-studied learning mixtures of Gaussians problem (see
[18] and references therein). The most crucial difference between these works and ours is that
we assume to know the binomial distributions around the cluster, and previous works do not.
This is, of course, less general, but allows us to achieve a better dependence on k, the number
of centers. For example, previous algorithms are polynomial only for constant k, but ours is
polynomial even for k polynomial in 2

√
logn. Another difference is that in the Gaussian noise

model the distribution is continuous and the vectors naturally reside in high dimensional Euclidean
space, whereas the binomial noise is discrete and vectors reside in high dimensional combinatorial
cube. The Gaussian distribution is spherically symmetric and Euclidean space allows projections
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in all directions, whereas in the Boolean case symmetry is restricted and allows only projection on
coordinates.

Codes. Yet another, quite different view of our result is as a surprising robustness of repetition
codes. Imagine the following way to encode a multi-set of k binary vectors of length n: simply
make many (say m) copies of each. We show that this simple repetition code tolerates the following
vicious kind of attack. First, the km vectors are arbitrarily permuted. Next, in each vector, a
random 99% of the coordinates are erased (replaced by question marks). Finally, the surviving
bits are each flipped with probability 49%. It is not clear that this leaves enough information to
recover the original data. We show that for rate m = poly(n, klog k), recovery is not only information
theoretically possible but can be performed in polynomial time. Of course, determining the minimal
rate for which this is possible is an intriguing question (relevant to the next item as well).

Privacy. Resolving the conflict between individual privacy in large databases and their usability
for statistical, medical and social research is an important research area. Again, we can do no
justice to the volumes of work on the subject, and we resort to generalities. One general principle
that is used is to obliterate individual records and perturb the data by applying to it random
noise of some form, while allowing access to some statistics or aggregate information of reasonable
quality. In most settings under consideration, a family of queries to the database is allowed, and
then noise can be applied to the data itself, or to the result of the query, or to both (see examples
in [20, 21, 3, 25, 2, 7, 8, 6] and their many references). An important part of these works includes
defining notions of individual privacy, finding mechanisms which ensure privacy under general
families of queries and/or proving that no such mechanisms exist for other families of queries. Most
impossibility results are about noise applied to query answers, as e.g. in [7] who show how (almost
all) the database can be recovered if the noise is not sufficiently high to be practically useless. Our
work has a similar flavor, and shows that under some (quite general) conditions, information can
be recovered from highly noisy data. Thus it may be viewed as another general impossibility result
for privacy of databases. Yet it seems that the same result may be viewed positively when applied
to the privacy of questionnaires; it suggests that individuals who are asked to answer sensitive
questions can be allowed to honestly answer each, then randomly flip each answer with probability
(say) 0.49 (thus providing complete deniability). Our algorithms can process such noisy collection
of questionnaires and completely recover the prevailing patterns of honest answers.

Dimension reduction. High dimension of data is often considered a curse for efficient algo-
rithms. Often the best known (or even best possible) running time is exponential in the dimension.
One common remedy used in numerous algorithms for such data is dimension reduction. The most
famous one is the Johnson-Lindenstrauss reduction [14], showing that a random linear projection
of k points in Euclidean space to a subspace of dimension O(log k) nearly preserves all their pair-
wise Euclidean distances. Similar reductions in many settings and problems allow much faster
processing of the data in the lower-dimensional space, and then “lifting” the solution to the orig-
inal space, often losing something in its quality. Typically, reductions are random, and are done
once (though there are exceptions to both: sometimes reductions move to a subspace determined
by some top singular eigenvectors, and e.g. in the aforementioned Gaussian mixtures learning,
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many 1-dimensional projections are used). Also in our algorithms we use many different dimension
reductions, projecting the data onto very different small subsets of the coordinates. But for the
problems we deal with random projections are useless in general, and judicious choice is needed to
guarantee all properties of our PID graphs.

Identification. Unique identifiers, IDs for short, are prevalent for people, animals, cars, com-
puters and even clothing and food items today. Often these IDs are artificial additions to the
individuals, like driver licenses and barcodes. But sometimes such additions are impossible or
inconvenient. Another possibility is to let IDs consist of a genuine subset of the features of the
individual. One example is fingerprints and retinal scans used for people. A second one is data
records in databases, which typically have their IDs being a single key feature of a record. When
space is not an issue, or when the data is structured in advance to have short IDs, the use of unique
IDs is easy and fully justified. But in situations where the set of individuals is unstructured, short
IDs for every individual, distinguishing it from all others may not always be possible. In this paper
we introduce the idea of using partial IDs, or PIDs, which are subsets of features per individual that
may not distinguish it completely from all others, but in which some control is available about its
set of imposters. In this work we had specific requirements (arising from analyzing our algorithms)
from our set of PIDs, and we could satisfy them all with very short PIDs (even when no short IDs
exist). In different settings one may need different properties, and we just put forth the possibility
that PIDs may be of use elsewhere. A particular setting of large collections of unstructured (and
noisy/lossy) set of sequences one may consider are those arising in computational biology, e.g. from
some sequencing or phylogeny of large collections of large molecules like DNA and proteins. Is there
any use of PIDs for the algorithmic problems such data gives rise to? A related work is [16] where
certain small-dimensional witnesses are used to study phylogenetic mixtures.

Reconstruction. Reconstruction problems various settings abound, and we just mention a few.
The famous graph reconstruction conjecture of Kelly and Ulam (see e.g. [24]), now open for half a
century, states that an unlabeled n-vertex graph is always uniquely defined by its (unordered multi-
set of) n induced subgraphs obtained by removing each of the vertices. A far less famous but very
intriguing is Mossell’s subsequence problem [22] arising from computational biology [11], asking
if an n-bit sequence is uniquely identified (with, say, a noticeable gap of 1/n) by the probability
measure on it subsequences, obtained by independently removing each symbol with probability
1/2 (and removing the gaps!). Both problems are information theoretic about reconstruction of
data from lossy models different than the ones considered here, which seem difficult even if we
allow inefficient algorithms! A different reconstruction problem, in which efficiency is important, is
Blum’s junta learning problem, which can be cast as a recovery from a noisy model different than
ours.

1.6 Organization

The technical part of paper essentially has two parts. The first part, Section 2, contains the
full discussion of PID graphs: their construction with good parameters, and a tradeoff showing
near optimality of the parameters we achieve. The second part, Section 3, contains our recovery
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algorithms and their analysis. In Section 4, the final part of the paper, we explain the reduction
from DRP to PRP.

2 PID graphs

In this section we study PID graphs. We first describe our main result, an efficient algorithm for
constructing PID graphs of logarithmic width and depth for any set of vectors. As noted, these
bounds only imply a quasi-polynomial upper bound on the cost. We next describe a set of vectors
for which any logarithmic width PID graph has super-polynomial cost.

Our construction of an efficient PID graph is iterative: Start with a PID graph of logarithmic
width in a similar fashion to as described in Section 1.4. Then, iteratively improve it. Each iteration
consists of some local improvement based on the procedure “extend” below. Finally, when no more
extensions are possible, the overall structure is (perhaps surprisingly) as desired.

We start with setting some useful notation. Fix a set V ⊆ Σn of size |V | = k. We construct
PIDs Sv for the vectors v ∈ V by an iterative procedure, and so we redefine the set of imposters
I(v, S) with respect to any subset S ⊆ [n] to explicitly depend on S. As before it is the set of all
u ∈ V (including v itself) which have the same pattern on S as v does, namely

I(v, S) = {u ∈ V : u[S] = v[S]}.

By convention, v[∅] = u[∅] for all v, u.

2.1 Extension of a PID

A key procedure in the algorithm is a “greedy extension” of a PID: For v ∈ V and S ⊆ [n], we
seek to successively add coordinates to S which shrink the number of imposters by a factor of 2,
as long as we can. Formally, this procedure Extend(v, S) produces a superset of S and is defined
recursively as follows (in extend V is a fixed set of vector that the procedures knows).
Extend

Input: A vector v ∈ V and a set S ⊆ [n].

Recursion base: Let J be the set of i in [n] \ S so that

|I(v, S ∪ {i})| ≤ |I(v, S)|/2.

If J = ∅, output
Extend(v, S) = S.

Recursive step: Otherwise, let7 i = min J , and compute

Extend(v, S) = Extend(v, S ∪ {i}).
7Any choice of i in J will do. Minimum is chosen for concreteness.
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Call S maximal for v if Extend(v, S) = S. A simple but crucial claim summarizes the properties
of this procedure.

Claim 2.1 (Properties of extension). For every v ∈ V and S ⊆ [n], if T = Extend(v, S) then

• S ⊆ T ,

• |I(v, T )| ≤ |I(v, S)| · 2|S|−|T |,

• T is maximal for v, and

• If u 6= v and u ∈ I(v, T ), then T is not maximal for u.

Proof. The first property follows as we just add coordinates. The second as we halve the size with
each addition of i. The third by the halting definition. The forth follows as T is maximal for v,
and since any imposter u 6= v has some coordinate i 6∈ T for which ui 6= vi: |I(u, T ∪ {i})| ≤
|I(v, T )| − |I(v, T ∪ {i})| < |I(v, T )|/2.

Let us give some intuition for the algorithm constructing the PID graph before formally de-
scribing it. Our algorithm will perform many such Extend sub-routines. We initialize it by setting
Sv = Extend[v, ∅] for all v. Then we repeatedly and judiciously choose a vector u and a subset S
(not necessarily its PID), and assign the new Su to be Extend(u, S). We insist that whenever we
activate Extend(v, S), we have |I(v, S)| ≤ k2−|S|. This guarantees that each Sv during the running
of the algorithm, and especially the final ones, has size at most log k and so the graph produced
has small width.

To take care of the depth we ensure that eventually, for every v, every imposter u 6= v has a
PID Su that is strictly larger than Sv. Thus along every directed path PID-size increases, and as
it has maximum value log k, no path can be longer than log k. This condition also ensure that no
cycles exist in the graph. The main question is how to ensure this “monotonicity” property (which
certainly does not hold initially). The answer is simple: fix it whenever it is violated. Specifically,
as long as some imposter u 6= v in I(v, Sv) with |Su| ≤ |Sv| exists, replace Su with Extend(u, Sv).
The properties of extension in the claim above guarantee a new Su which is longer than the current
Sv (and also longer than the previous Su).

This fixings continue as long as necessary, so all we need to argue is termination and efficiency.
The overall PID-size strictly increases with every such step. Since their total size cannot exceed
k log k by the width bound, we get a k log k upper bound on the number of invocations of Extend.
The bound on the running time of the algorithm easily follows8.

We now formally define the algorithm and analyze it.
PID construction algorithm

Input: A set V ⊆ Σn.

Initialize: For every v ∈ V set Sv = Extend(v, ∅).
8An obvious implementation gives a running time of (n + k)2poly log k. It would be interesting to find a near-

linear-time implementation.
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Iterate: While there exists v and u 6= v with u ∈ I(v, Sv) and |Su| ≤ |Sv| set

Su = Extend(u, Sv).

Output: The set of final PIDs Sv and their graph G.

Theorem 2.2. The algorithm above terminates in at most k log k iterations, and produces a PID
graph G with width(G) ≤ log k and depth(G) ≤ log k (and so also cost(G) ≤ klog k).

The theorem follows from the following claim, that summarizes the invariants maintained by
the algorithm, and conclusions from them. The invariants follow from the properties of Extend in
Claim 2.1 above, and can be easily proved by induction on the iterations of the algorithm.

Claim 2.3 (Properties of the PID algorithm).

• If u 6= v in V were chosen in some iteration, then |Extend(u, Sv)| > |Sv| ≥ |Su|.

• The total length of PIDs,
∑

v∈V |Sv|, strictly increases at every iteration.

• For every v ∈ V and every Sv that is obtained while the algorithm runs, 1 ≤ |I(v, Sv)| ≤
2−|Sv | · |V |. Specifically, the size of Sv never exceeds log k.

• The total length of PIDs never exceeds k log k.

• The algorithm halts after at most k log k iterations.

• Let G be the PID graph the algorithm computed. Then, along every path the size of the
corresponding PIDs strictly increases.

2.2 A costly set of vectors

We now describe, for every constant C, an example of a database |V | of size k so that every PID
graph for V of width at most C log k has cost at least kΩ(log log(k)/ log(2C)). This set of vectors is
very simple, it consists of all n-bit vectors of (appropriately) bounded Hamming weight.

Proof of Proposition 1.8. First, fix some parameters: Let C ≥ 1, m be a large integer, and n =
dDme for D = 20C2. The set V consists of all vector in {0, 1}n of (Hamming) weight at most m.
The size of V is therefore

|V | = k =
∑
j≤m

(
n

j

)
≤ (2eD)m ≤ D2m.

Let G be a PID graph for V of width at most C log k ≤ (2C logD)m ≤ n/2−m.
For any choice of PIDs, for every ` < m, and for every vector v of weight `, the number of

imposters at level ` + 1 of v is at least n − ` − C log k ≥ n/2 (at worst Sv is disjoint from the 1’s
of v). The number of paths starting at the all zero vector is, therefore, at least (n/2)m. So, since
m ≥ Ω(log(k)/ log(2C)),

cost(G) ≥ (n/2)m ≥ 2Ω(m logn) ≥ kΩ(log log(k)/ log(2C)).
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3 Recovery algorithms

In this section we describe two distribution recovery algorithms, for lossy and for noisy samples
(and also remark on recovery from the hybrid model combining loss and noise). That is, we prove
Theorem 1.6. In both cases, there is some known database V and we wish to estimate a probability
distribution π on it, using random imperfect samples. We assume that the algorithms get a PID
graph G of V , and specifically a PID Sv for all v in V .

The two algorithms for the two cases share a two-phase structure: an estimation phase and an
aggregation phase. In the estimation phase, the PID graph is used to extract a list of quantities
that are useful to estimate, and these estimations are obtained. In the aggregation phase, the
estimations obtained are numerically combined into an estimation of π.

We now discuss the two phases in more detail. Both use the PID graph G, and specifically will
estimate π by first estimating an auxillary vector p, which for every v in V is defined by

p(v) =
∑
u∈I(v)

π(u),

where I(v) is the set of imposters of u in G. We shall see how all parameters of the PID graph,
width, depth and cost affect the performance of these two phases.

In the estimation phase, the algorithm obtains an (L∞) estimate p′ of p. As we shall see, these
estimates amount to solving k distribution recovery problems in small dimension (at most width(G)),
by projecting the data to the coordinates of each of the PIDs Sv. As width(G) ≤ log k, these recovery
algorithms can afford to use time exponential in the dimension! Computing p′ from lossy samples
in this regime is simple, and uses only the well-known Hoeffding bound. Computing p′ from noisy
samples, even in this regime, is more elaborate (and, in fact, a-priori may be impossible). In both
cases, a simple parallel implementation of the algorithm is possible. In both cases, the quality of
the approximation p′ of p needed (which determines running time and number of samples) follows
from the discussion of the aggregation phase below.

In the aggregation phase, the estimate p′ of p, is used to compute an estimate π′ of π. Clearly, the
vector p is obtained from π by a linear transformation: there exists a k× k real matrix M = M(G)
so that

p = Mπ.

Since G is acyclic, the matrix M is triangular with 1’s on the diagonal: π can be computed from p
by back substitution using induction on the structure of G,

π(v) = p(v)−
∑

u∈I(v):u6=v

π(u). (3.1)

This process is easily parallelized, and can be seen to take exactly depth(G) rounds. The main
issue is, of course, that we do not have p available but rather an approximation p′ of it. A
priori such a matrix M may have exponentially small condition number (in k), and thus may
require exponentially good approximation p′ of p, which will, in turn, cause the first phase to
require exponentially many samples. We show, however, that the error aggregation depends only
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on cost(G). Lemma 3.1 below states that using p′ instead of p in (3.1) above yields an estimate π′

satisfying ∥∥π − π′∥∥∞ ≤ cost(G)
∥∥p− p′∥∥∞ . (3.2)

Specifically, we only need to estimate p up to an additive factor α/cost(G) in order to get an α
approximation of π. When G has cost klog k, as we achieve, such estimates can be obtained in
quasi-polynomial running time (instead of exponential).

Summarizing, the high-level description of the algorithms is:
Recovery algorithm

Input: A database V ⊆ Σn and a PID graph G for V .

Estimation: Obtain a (α/cost(G))-estimate p′ of p.

Aggregation: Compute π′ = M−1p′, using (3.1) according to the topological order on G.

Output: The estimate π′ of a distribution π on V .

We note that cost(G) can be easily computed, and in many cases it can be much smaller than
the worst-case super-polynomial one.

We now formally discuss the two phases. In the estimation phase (which is the only phase that
depends on the underlying sampler), we consider each sampler model separately. The aggregation
phase is the same for both.

3.1 The estimation phase

We now show how both algorithms compute an estimate p′ of p: for every v in V , it will hold that

Pr[|p(v)− p′(v)| ≥ ε] ≤ δ,

with
ε = α/cost(G)

(a simple union bound implies that this estimate jointly holds for all v, with high probability).
In Section 1.2 of the introduction we intuitively explained how each of the lossy and noisy cases

are handled when n is small. In this section we unify the two, and actually define and analyze a
much more general sampler that extends both. This generality also helps to understand the essence
of this phase of the algorithm.

A general sampler. We start by describing a general sampling procedure over Σn
2 , given a

distribution π on Σn
1 . As we shall explain, the lossy and noisy cases are specific instances of it.

The sampler is determined by n stochastic transition matrices T1, . . . , Tn, each in RΣ1×Σ2 . These
n matrices and π define a distribution on samples v′ in Σn

2 . First, choose v according to π. Then,
for each i in [n], if vi = σ1 in Σ1, then v′i is random: it is σ2 in Σ2 with probability (Ti)σ1,σ2 .
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Let us consider the lossy and noisy cases. In both cases, all transition matrices T1, . . . , Tn are
the same. In the lossy case, Σ1 = Σ and9 Σ2 = Σ∪ {?}. The transition matrix in every coordinate
Tloss is

(Tloss)σ1,σ2 =


µ σ2 = σ1,
1− µ σ2 =?,
0 otherwise.

In the noisy case, Σ1 = Σ2 = {0, 1} and the transition matrix in every coordinate is

Tnoise =

[
T0,0 T0,1

T1,0 T1,1

]
=

[
(1 + ν)/2 (1− ν)/2
(1− ν)/2 (1 + ν)/2

]
. (3.3)

A simple generalization yields, e.g., a noise model where each coordinate i in [n] is perturbed with
a different probability (1− νi)/2. As we shall see, our algorithm works in this case as well.

Minimal singular value. Clearly, not all samplers allow recovery of π. The crucial property
of T1, . . . , Tn that allows recovery is the following. For each transition matrix T , let ms(T ) be the
minimal singular value of T , that is, the minimal square-root of an eigenvalue of the symmetric
matrix T tT , with T t the transposition of T . For example, in the lossy case, T tlossTloss = µ2I + (1−
µ)2J with J the all-one matrix, so

ms(Tloss) = µ.

In the noisy case, Tnoise is symmetric, and

ms(Tnoise) = min{1, ν} = ν.

Define
ms(T1, . . . , Tn) = min{ms(Ti) : i ∈ [n]}.

Recovery is possible only when ms(T1, . . . , Tn) > 0, and from now on we assume that. For both the
lossy model and the noisy model, the corresponding ms is a constant bounded away from zero.

The estimation algorithm and its analysis. We now move to describe our algorithm for
estimating p using a general sampler defined by T1, . . . , Tn. Start by obtaining a set V ′ of size

t = poly
(
cost(G), 1/α, log(1/δ), (|Σ1||Σ2|/ms(T ))width(G)

)
of random samples V ′ = {v′1, . . . , v′t}. The exact value of t will be determined later on. For each
v ∈ V , use the PID Sv to perform dimension reduction on this sample to estimate p(v). These
computations can all be done in parallel. Fix v in V , and denote S = Sv. We describe how to
estimate p(v).

The transition matrix of vectors on the coordinates S is the tensor product T = T (S) = ⊗i∈STi.
That is, for v1 in ΣS

1 and v2 in ΣS
2 , the number Tv1,v2 is the probability of seeing v2 given that v1

was chosen (using π). Observe

ms(T ) ≥ ms(T1, . . . , Tn)s ≥ ms(T1, . . . , Tn)width(G).

9Recall ? 6∈ Σ.
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For every v2 in ΣS
2 , let q(v2) be the probability that v2 is the output of the sampler (when

restricted to entries in S). Since ms(T1, . . . , Tn) > 0, there is a unique r so that

q = Tr.

What is r? The number r(v1), for every v1 in ΣS
1 , is the probability that a vector v that is chosen

according to π is so that v[S] = v1. Specifically,

p(v) = r(v[S]).

In other words, we just wish to estimate one entry in r.
The vector q can be easily approximated: for each v2 in ΣS

2 , set

q′(v2) =
|{v′ ∈ V ′ : v′[S] = v2}|

|V ′|
,

the fraction among the given samples of the pattern v2. The vector q′ is a good estimate of its
expectation q = E q′. Let r′ be the unique vector so that

q′ = Tr′

(it can be efficiently computed using q′, T , in time polynomial in t). Set

p′(v) = r′(v[S]).

We are almost ready to conclude. Using Hoeffding’s bound, for t as claimed,

Pr
[∥∥q − q′∥∥

2
≥ ε ·ms(T )

]
≤ δ.

Since q − q′ = T (r − r′), if ‖q − q′‖2 ≤ ε ·ms(T ), then ‖r − r′‖2 ≤ ε. So, overall

Pr
[
|p(v)− p′(v)| ≥ ε

]
≤ Pr

[∥∥r − r′∥∥
2
≥ ε
]
≤ δ,

as required.
The following summarizes this part of the algorithm.

Estimation phase

Input: A vector v with a PID S = Sv ⊆ [n], a transition matrix T = T (S) with ms(T ) > 0, and
samples generated by π and T .

Statistics: Obtain an (ε ·ms(T ))-estimate q′ of q.

Linear algebra: Compute r′, the unique vector so that q′ = Tr′.

Output: The estimate p′(v) = r′(v[S]).

Comments. A (somewhat) more efficient procedure that is based on Hamming distances, in the
spirit of [5], is also applicable in this case.

The same algorithm works also when the sampling procedure is only width(G)-wise independent,
since all calculations are based on local data (concerning sets of entries of size at most width(G)).
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3.2 The aggregation phase: error bounds

The only part that is missing is a bound on the increase in error. Let M be the matrix defined by
the PID graph G for V as above. That is, p = Mπ means

p(v) =
∑
u∈I(v)

π(u).

We prove the following estimate on the increase of error M−1 can cause.

Lemma 3.1. For any vector w, ∥∥M−1w
∥∥
∞ ≤ cost(G) ‖w‖∞ .

The lemma clearly implies (3.2).

Proof. Denote w′ = M−1w. We in fact prove that for every v ∈ V ,∣∣w′v∣∣ ≤ cost(v) ‖w‖∞ .

This follows by induction on the structure of G. When v is a sink in G, we have w′v = wv, so the
claim holds. Otherwise, since w = M−1w′, we have wv =

∑
u∈I(v)w

′
u. So, by induction,

∣∣w′v∣∣ =

∣∣∣∣∣∣wv −
∑

u∈I(v):u6=v

w′u

∣∣∣∣∣∣ ≤ ‖w‖∞
1 +

∑
u∈I(v):u6=v

cost(u)

 = cost(v) ‖w‖∞ .

3.3 Unknown noise parameter

So far, we have always assumed knowledge of the noise and lose parameters. For lossy samples, this
assumption can be easily removed by estimating the probability in which question marks appear. In
the noisy case, it is less obvious how to remove this assumption. We now explain how to accomplish
that.

The key observation is that any noise operation makes a sparse distribution (i.e. with support-
size at most k) highly non-sparse (i.e. full support). This distinction is, of course, only possible
due to assumption n > log k. Our algorithm can be thought of as “de-noising” a distribution. So,
going over all noise options, and de-noising according to all of them, the only sparse distribution
should be obtained for the true noise parameter. This is indeed what happens.

Consider a population V ⊂ {0, 1}n of size |V | = k, and a distribution p on V . Let

m = blog kc+ 1

and let V ⊂ {0, 1}n be the projection of V to the first m coordinates, and let p be the distribution
on {0, 1}m that is the projection of p to the first m coordinates.

Our goal is to estimate the noise parameter ν given random noisy samples. That is, given an
accuracy parameter β > 0, compute, w.h.p., a number ν ′ so that |ν ′ − ν| ≤ β. The running time
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we shall achieve is (C/(νβ))m, for C > 0 a large constant. To use ν ′ in the recovery algorithm, we
need β to be smaller than αk− log k. This determines the overall running time.

We describe an algorithm that uses a lower bound on ν. Namely, our algorithm will get as
input a number ν0 so that ν ≥ ν0. This assumption can be easily removed (without increasing the
running time by much) by trying values for ν0 in {1, 1/2, 1/4, . . .} until finding one that works.

For ν ≥ 0, let T (ν) be the ν-noise operator on {0, 1}m, as defined in Section 3.1 (the tensor
power of the matrix defined in (3.3)). That is, we get access to samples distributed according to q,
for

q = T (ν)p.

Finding noise

Estimation: Set
ε = (cν0β)m,

for a fixed small constant c > 0 so that the following holds. Obtain (in time polynomial in
poly(1/ε), with high probability, by collecting samples, as in Section 3.1) an estimate q′ of q
so that

q′ = q + e

satisfies
‖e‖∞ ≤ ε

2.

Enumerating options: Consider the following optional noise parameters: for every 0 ≤ ` ≤
O(log(1/ν0)/ε2), set

ν` = ν0(1 + ε2)` ≤ 1

and
p` = T (1/ν`)q

′.

Let Λ be the set of ` so that p` is close to a probability distribution, that is, there is a
distribution r` so that ‖p` − r`‖∞ ≤ ε.

Making a decision: Define the sparsity of p` as the number of v ∈ {0, 1}m so that p`(v) > ε.
Choose `′ in Λ so that p`′ has minimal sparsity among all ` in Λ, and output

ν ′ = ν`′ .

(If Λ is empty, abort.)

So far the algorithm. It remains to prove correctness: w.h.p.10, the running time is bounded as
claimed, and when the algorithm terminates, the set Λ is not empty, and

ν/ν ′ ∈ [1− β, 1 + β].

We shall use the following simple properties of the noise operator.

10That is, when the assumed bound on the norm of e holds. The same holds for “w.h.p.” below.
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Lemma 3.2.

1. The noise operator yields a group representation: T (ν)T (ν ′) = T (νν ′) for every ν, ν ′ > 0, and
T (1) is identity.

2. Let 0 ≤ γ ≤ 1. The minimal entry in the matrix T (1− γ) is (γ/2)m. The maximal entry in
the matrix T (1− γ) is 1.

3. Let ν > 1. The maximal entry in the matrix T (ν) is νm.

We first show that a good estimate for ν yields a sparse distribution.

Claim 3.3. Let ν̃ be the smallest noise in {ν`} that is at least ν. Let ˜̀ be so that ν̃ = ν˜̀ and let

p̃ = p˜̀. Then, w.h.p., ‖p̃− p‖∞ ≤ ε. Specifically, ˜̀ is in Λ and the sparsity of p̃ is at most k.

Proof. Observe

p̃ = p+ (T (ν/ν̃)− I)p+ T (1/ν̃)e, (3.4)

where I is the identity matrix. By Lemma 3.2,

‖T (1/ν̃)e‖∞ ≤ (1/ν0)mε2 ≤ ε/2.

By choice of ν̃,

‖T (ν/ν̃)− I‖∞ ≤
∣∣∣∣1− (1− ε2)

2

∣∣∣∣ ≤ ε/2.
We now show that noise parameters that are far from the true ν yield non-sparse distributions.

Claim 3.4. Let ν̃, ˜̀, p̃ be as above. Let ˆ̀ in Λ be so that ν̂ = νˆ̀ admits

ν̃/ν̂ 6∈ [1− β/2, 1 + β/2].

Let p̂ = pˆ̀. Then, w.h.p., the sparsity of p̂ is larger than k.

Proof. By definition T (ν̃)p̃ = T (ν̂)p̂. There are two cases to consider. The first is that ν̃ > ν̂.
In this case, all entries of T (ν̂/ν̃) are at least (β/4)m and at most 1. Since ˆ̀ ∈ Λ, all entries of
p̃ = T (ν̂/ν̃)p̂ are at least (β/4)m − 2mε ≥ ε. But this is false due to Claim 3.3. So this case can
not happen. The second case is ν̂ > ν̃. Since ˜̀∈ Λ, similarly to the first case, the sparsity of p̂ is
full.

So, since `′ was chosen to have minimal sparsity,

ν̃/ν ′ ∈ [1− β/2, 1 + β/2].

Overall,
ν/ν ′ = (ν/ν̃) · (ν̃/ν ′) ∈ [1− β, 1 + β].
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4 A reduction between PRP and DRP

We now explain how to reduce PRP to DRP under quite general conditions, that is, we sketch the
proof of the following theorem.

Theorem 4.1 (Theorem 1.4 restated). There is an algorithm that, for every uniform sampler (in
particular the lossy, noisy and hybrid sampler) f and parameters Σ,k,n,α, makes n oracle calls to
a DRP algorithm using f and parameters Σ,k,n,α/2, and if all n calls produce a correct answer,
the algorithm solves PRP.

We start by formally defining uniform samplers. A uniform sampler is clearly more general
than the two above (which acts independently in each coordinate). It includes many others, for
example ones in which every vector generates a different distribution, as used in some clustering
and learning mixtures of distributions, e.g. [18].

Definition. A sampler f is a length preserving11 map from Σ∗ to probability distributions on Σ∗.
A sample v′ ∈ Σ is generated by a sampler f and a distribution π on Σn by sampling v according
to π and sampling v′ according to f(v). A sampler f is uniform if for every π on Σn and every
t ≤ n, the following diagram is commutative: denoting by Pt the projection onto coordinates in [t],

π
Pt−−−−→ Pt(π)yf yf

v′
Pt−−−−→ v′′

That is, the following two processes produce the same distribution on samples v′′ in Σt: (i) Choose
v according to π, and choose v′′ according to f(Pt(v)). (ii) Choose v according to π, choose v′

according to f(v), and set v′′ = Pt(v
′).

Here is an example for the sampler in the case of ν-noisy samples: For every v ∈ {0, 1}n,
the distribution f(v) is that of v ⊕ w ∈ {0, 1}n, where w1, . . . , wn in {0, 1} are i.i.d. so that

Ew1 = (1− ν)/2.

Proof idea of Theorem 1.4. The algorithm for solving PRP reconstructs V going column-by-column
by “extending and removing”:

Let V ′1 = Σ. By projecting the unknown V to the first coordinate we get a PRP problem with
V ′1 = Σ1. The underlying distribution π1 on Σ1 is so that π1(σ) is the cumulative weight of π on
vectors whose first entry is σ. The uniformity of the sampler implies that given a sample v′ to PRP
on V , by projecting to the first coordinate, we can generate a legal query to PRP on V1. Using
oracle access, compute π′1 = ADRP (V ′1). If the DRP algorithm worked, π′1 is a good approximation
of π1. Let V1 be the subset of V ′1 after removing its non-useful part: V1 is the set of all symbols σ
in V ′1 so that π′1(σ) ≥ α/2.

Continue inductively: for t > 1, let V ′t be the extension of Vt−1 by Σ, V ′t = Vt−1 × Σ. Using
oracle access and due to uniformity of sampler (as above), compute π′t = ADRP (V ′t ), using only the

11For every n, the sampler f maps v ∈ Σn to a distribution f(v) on Σn.
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first t entries of the random samples to PRP on V . Let Vt be the set of all vectors v in V ′t so that
π′t(v) ≥ α/2.

Finally, output Vn and π′n.

5 Future work

This work introduce algorithms for certain recovery problems of databases from highly noisy sam-
ples. Our algorithms run in quasi-polynomial time (in the worst case: the running time depends
on the underlying database and in many cases is far more efficient). We do not know if polyno-
mial time algorithms for these problems exist, and for which noise parameters. The first question
towards understanding the complexity of this recovery problem is the information theoretic one:
Does a polynomial number of samples suffice to accurately estimate the underlying distribution in
the worst case, even if one does not care about computational complexity. If positive, this answer
may then lead to a polynomial time algorithm for every database.

Key ingredients in our solution are PIDs and PID graphs. Specifically, we give an efficient
construction of a PID graph of width and depth log k for any database of size k. The cost of the
constructed PID graph is thus at most klog k, which basically implies the quasi-polynomial time
upper bound on the running time of the recovery algorithms. We also prove that the cost of a PID
graph of width log k can not, in general, be smaller than klog log k. Understanding the smallest cost
of a logarithmic-width PID graph remains an open question. The super-polynomial lower bound
also suggests that a faster algorithm will necessarily need to go beyond PIDs.

The type of recovery problems we consider here are, in a sense, the simplest non-trivial ones.
There are several natural and more general recovery problems. We mention two out of many
possible. One is a noisy recovery problem where every coordinate has a different unknown noise
parameter. A more challenging second variant is the following. Think of V as centers around
which noise occurs. Assume that around every center there is a different noise distribution. Can
(or under what conditions) the distribution on centers be accurately estimated using (known or
unknown) different-noise-per-center samples? Such a result will be closer in spirit to what is known
for Gaussian noise.
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