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Theoretical Computer Science is blessed (or cursed?) with many open problems.
For some of these questions, such as the P vs NP problem, it seems like it could be
decades or more before they reach resolution. So, if we have no proof either way, what
do we assume about the answer? We could remain agnostic, saying that we simply
don’t know, but there can be such a thing as too much skepticism in science. For
example, Scott Aaronson once claimed [Aar10] that in other sciences P 6= NP would
by now have been declared a law of nature. I tend to agree. After all, we are trying
to uncover the truth about the nature of computation and this quest won’t go any
faster if we insist on discarding all evidence that is not in the form of mathematical
proofs from first principles.

But what other methods can we use to get evidence for questions in computational
complexity? After all, it seems completely hopeless to experimentally verify even a
non-asymptotic statement such as “There is no circuit of size 2100 that can solve 3SAT
on 10, 000 variables”. There is in some sense only one tool us scientists can use to
predict the answer to open questions, and this is Occam’s Razor. That is, if we want
to decide whether an answer to a certain question is Yes or No, we try to think of the
simplest/nicest possible world consistent with our knowledge in which the answer is
Yes, and the simplest such world in which the answer is No. If one of these worlds is
much nicer than the other, that would suggest that it is probably the true one. For
example, if assuming the answer to the question is “Yes” yields several implications
that have been independently verified, while we must significantly contort the “No”
world in order to make it consistent with current observations, then it is reasonable
to predict that the answer is “Yes”.

In this essay, I attempt to do this exercise for two fascinating conjectures for which,
unlike the P vs NP problem, there is no consensus on their veracity: Khot’s Unique
Games Conjecture [Kho02] and Feige’s Random 3SAT Hypothesis [Fei02]. This is
both to illuminate the state of the art on these particular conjectures, and to discuss
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the general issue of what can be considered as valid evidence for open questions in
computational complexity.

1 The Unique Games Conjecture

Khot’s Unique Games Conjecture (UGC) [Kho02] states that a certain approximation
problem (known as “Unique Games” or UG) is NP hard. I’ll define the UG problem
below, but one benefit of using Occam’s Razor is that we can allow ourselves to discuss
a closely related problem known as Small Set Expansion (SSE), which I find more
natural than the UG problem. The SSE problem can be described as the problem of
“finding a cult inside a social network”:1 you’re given a graph G over n vertices, and
you know that it contains a set S of at most, say, n/ log n vertices that is “almost
isolated” from the rest of the graph, in the sense that a typical member of S has
99% of its neighbors also inside S. The goal is to find S or any set S ′ of similar
size that is reasonably isolated (say having more than half of the neighbors inside it).
Formally, for every ε, δ > 0 and number k, the computational problem SSE(ε, δ, k) is
to distinguish, given a d-regular graph G = (V,E), between the case that there is a
set S ⊆ V with |S| ≤ |V |/k and with |E(S, S)| ≥ (1 − ε)d|S|, and the case that for
every S ⊆ V with |S| ≤ |V |/k, |E(S, S)| ≤ δd|S|. The following conjecture seems
very closely related to the unique games conjecture:

Conjecture 1 (Small Set Expansion Hypothesis (SSEH) [RS10]) For every ε, δ >
0 there exists k such that SSE(ε, δ, k) is NP-hard.

Almost all that I’ll say in this essay will hold equally well for the SSE and UG problems,
and so the reader can pretend that the Unique Games Conjecture is the same as the
Small Set Expansion Hypothesis without much loss in understanding. But for the sake
of accuracy and completeness, I’ll now define the Unique Games problem, and explain
some of its relations to the SSE problem. The UG problem is also parameterized by
ε, δ, k. The input for the UG(ε, δ, k) problem is a set of m equations on n variables
x1, . . . , xn over the alphabet [k] = {1, . . . , k}. Each equation has the form xi =
πi,j(xj), where πi,j is a permutation over [k]. The computational task is to distinguish
between the case that there is an assignment to the variables that satisfies at least
(1− ε)m equations, and the case that no assignment satisfies more than δm of them.
The formal statement of the Unique Games Conjecture is the following:

1I use the term “cult” since we’re looking for a set in which almost all connections stay inside.
In contrast, a “community” would correspond to a set containing a higher than expected number of
connections. The computational problem associated with finding such a “community” is the densest
k-subgraph problem [FPK01, BCC+10, BCV+12], and it seems considerably harder than either the
UG or SSE problems.
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Conjecture 2 (Unique Games Conjecture (UGC) [Kho02]) For every ε, δ >
0 there exists k such that UG(ε, δ, k) is NP-hard.

One relation between the UG and SSE problems is that we can always transform an
instance Ψ of UG into the graph GΨ on the vertex set V = [n]× [k] containing an edge
between the vertices (i, a) and (j, b) (for i, j ∈ [n] and a, b ∈ [k]) if and only if there
is an equation in Ψ of the form ai = πi,j(xj) with a = πi,j(b). Now, an assignment
σ ∈ [k]n to the variables of Ψ will translate naturally into a set Sσ ⊆ V (GΨ) of
n = |V |/k vertices containing the vertex (i, a) iff σi = a. It can be easily verified
that edges with both endpoints in Sσ will correspond exactly to the equations of Ψ
that are satisfied by σ. One can show that the UG problem has the same difficulty
if every variable in Ψ participates in the same number d of equations, and hence
the map Ψ 7→ GΨ transforms a UG(ε, δ, k) instance into an SSE(ε, δ, k) instance, and
in fact maps the “Yes case” of UG(ε, δ, k) into the “Yes case” of UG(ε, δ, k). Alas,
this is not a reduction from UG to SSE, because it can map a “No” instance of
UG into a “Yes” instance of SSE. In fact, the only reduction known between the
problems is in the other direction: Raghavendra and Steurer [RS10] showed that SSE
is no harder than UG and hence the UGC implies the SSEH. However, all the known
algorithmic and hardness results hold equally well for SSE and UG [RS09, RST10,
ABS10, BRS11, RST12, BBH+12], strongly suggesting that these problems have the
same computational difficulty. Hence in this essay I will treat them as equivalent.

Let us now turn to exploring how natural is the world where the UGC (or SSEH)
holds, versus the world in which it fails.

1.1 The “UGC true” world.

There is one aspect in which the world where the UGC is true is very nice indeed. One
of the fascinating phenomenons of complexity is the dichotomy exhibited by many
natural problems: they either have a polynomial-time algorithm (often with a low
exponent) or are NP-hard, with very few examples in between. A striking result of
Raghavendra [Rag08] showed that the UGC implies a beautiful dichotomy for a large
family of problems, namely the constraint-satisfaction problems (CSP). He showed,
that for every CSP P , there is a number αUG(P ) (which we’ll call the UG threshold
of P ), such that for every ε > 0, the problem of maximizing the satisfied constraints
of an instance of P can be approximated within αUG(P ) − ε in polynomial (in fact,
quasilinear [Ste10]) time, while if the UGC is true, then achieving an αUG(P ) + ε
approximation is NP hard.

This is truly a beautiful result, but alas there is one wrinkle in this picture: where
you might expect that in this dichotomy the hard problems would all be equally
hard, there is a subexponential algorithm for unique games [ABS10] showing that if
the UGC is true then some constraint satisfaction problems can be solved in time
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2n
ε

for some ε ∈ (0, 1). While those sub-exponential problems are asymptotically
hard, compared to “proper” NP-hard problems such as SAT, the input sizes when
the asymptotic hardness ‘kicks in” will be pretty huge. For example, for the Small
Set Expansion problem with the parameters above (99% vs 50% approximation), the

[ABS10] algorithm will take roughly 2n
1/10

steps which is pretty efficient for graphs
with up to 260 or so vertices.

In more qualitative terms, many hardness of approximation results for CSP’s actually
use quasilinear reductions from SAT [MR10], and so let us define the SAT threshold
of P to be the the smallest number αSAT(P ) for which achieving an αSAT(P ) + ε
approximation is NP-hard via a quasilinear reduction. In a “dream version” of the
UGC, one would expect that the NP hardness for UG would be via a quasilinear
reduction as well. Because Raghavendra’s result does in fact use quasilinear reduction,
this “dream UGC” would imply that αUG(P ) = αSAT(P ) for all P . In particular,
assuming the Exponential Time Hypothesis [IPZ01] (namely, the assumption that
SAT can’t be solved in 2o(n) time), the “dream UGC” implies that getting a better

than αUG(P ) approximation for P takes 2n
1−o(1)

time— essentially as much time as
taken by the brute force algorithm. However, the subexponential time algorithm for
UG rules out the possibility of the “dream UGC”, and shows that if the UGC is true,
then at least for some CSP’s the SAT threshold will be strictly larger than the UG
threshold, with a more gradual increase in the time to approximate the CSP as the
ratio ranges between these two thresholds, see Figure 1. Whether such a gradual
time/quality tradeoff is more or less beautiful than a sharp jump is in the eyes of the
beholder, but it does show that the “dichotomy” picture is more complex than what
it initially appears to be.

Raghavendra’s theorem is perhaps one reason to wish that the UGC was true, but how
does the UGC mesh with current knowledge? One obvious way in which the current
state of the art supports the conjecture is that we don’t know of any algorithm that
refutes it by solving the SSE or UG problems (or any other problem they have been
reduced to). However, by this we mean that there is no algorithm proven to solve
the problem on all instances. So there has been an ongoing “battle” between papers
showing algorithms that work for natural instances, and papers showing instances that
fool natural algorithms. For example, the basic semidefinite program (which is a nat-
ural analog of the Geomans-Williamson semidefinite program for Max-Cut [GW95])
solves the problem on random or expanding input graphs [AKK+08]. On the other
hand, it was shown that there are instances fooling this program [KV05] (and some
generalizations [RS09, KS09, KPS10]), along the way disproving a conjecture of Goe-
mans and Linial. The subexponential algorithm mentioned above actually runs much
faster on those instances [Kol10], and so for some time I thought it might actually be a
quasi-polynomial time algorithm. But it turned out there are instances (based on the
Reed-Muller code) that require it to take (almost) subexponential time [BGH+12].
Nevertheless, the latest round in this battle was won by the algorithmic side: it
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For every CSP P , we can achieve an approximation ratio α < αUG(P ) in 2n
o(1)

(in fact Õ(n)) time,

and it is believed (assuming the Exponential Time Hypothesis) that achieving approximation ratio

of α > αSAT(P ) takes 2n
1−o(1)

time, where αUG(P ) and αSAT(P ) are the UG and SAT thresholds

defined in Section 1.1. Generally speaking, we do not know the running time required for achieving

approximation ratios in the interval (αUG(P ), αSAT(P )) and it can range between the three scenarios

depicted above. However, the subexponential time algorithm for UG rules out the “dream UGC true”

picture for at least some CSP’s. Note that sometimes the UG threshold and SAT threshold coincide

(e.g., for 3SAT they both equal 7/8). For such CSP’s, regardless of whether the UGC is true, it is

believed that the time/ratio curve has a discontinuous jump from running time 2n
o(1)

to time 2n
1−o(1)

.

Figure 1: Possible running time exponent vs. approximation quality curves for a
constraint satisfaction problem.

turned out that all those papers showing hard instances utilized arguments that can
be captured by a sum of squares formal proof system, which implies that the stronger
“Sum-of-Squares”/“Lasserre” semidefinite programming hierarchy2 can solve them in
polynomial time [BBH+12]. The latest result also showed connections between the
SSE problem and the problems of optimizing hypercontractive norms of operators
(i.e., operators mapping `p into `q for q > p) and the injective tensor norm problem
that arises in quantum information theory.

1.2 The “UGC False” world.

While the Unique Games Conjecture can fail in a myriad of ways, the simplest world
in which it fails is that there is an efficient (say polynomial or quasipolynomial time)
algorithm for the SSE and UG problems. And, given current knowledge, the natural
candidate for such an algorithm comes from the “Sum-of-Squares” semidefinite pro-

2A semidefinite programming hierarchy is obtained by systematically strengthening a basic
semidefinite program with additional constraints. Such hierarchies are parameterized by a num-
ber r of rounds, and optimizing over the rth rounds of the hierarchy takes nO(r) time; see [CT10]
for a recent survey.
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gramming hierarchy mentioned above. Indeed, given that SSE is such a fairly natural
problem on graphs, it’s quite mind boggling that finding hard instances for it has
been so difficult. Contrast this with seemingly related problems such as densest k-
Subgraph, where random instances seem to be the hardest case. On the other hand,
we already know that random instances are not the hardest ones for SSE, so perhaps
those hard instances do exist somewhere and will eventually be found.

There is actually a spectrum of problems “in the unique games flavor” including
not just SSE and UG, but also Max-Cut, Balanced Separator and many others. The
cleanest version of the “UGC False” world would be that all of these are significantly
easier than NP-hard problems, but whether they are all equal in difficulty is still
unclear. In particular, while in the “UGC False” world there will be a 2n

o(1)
-time

approximation for some CSP’s beyond the UG threshold, even the qualitative behavior
of the running time/approximation ratio curve is not known (i.e., does it look like
the middle or rightmost scenario in Figure 1?).

1.3 A personal bottom line.

Regardless of whether the UGC is true, it has been an extremely successful conjecture
in that it led to the development of many new ideas and techniques that have found
other applications. I am certain that it will lead to more such ideas before it is
resolved. There are a number of ways that we could get more confidence in one of the
possibilities. Interestingly, both in the “UGC True” and “UGC False” worlds, our
current best candidate for the algorithm meeting the time/ratio curve is the “Sum
of Squares” semidefinite programming hierarchy. So, in my mind, finding out the
approximation quality for SSE of, say, polylog(n) rounds (corresponding to npolylog(n)

running time) of this hierarchy is a pivotal question. Finding instances that fool this
algorithm would go a long way toward boosting confidence in the “UGC True” case,
especially given that doing so would require using new ideas beyond sum-of-squares
arguments. Another way to support the UGC is to try to come up with candidate
NP-hardness reductions (even without analysis or assuming some gadgets that have
yet to be constructed) for proving it, or to show NP-hardness for problems such as
Max-Cut that are “morally close” to the UG/SSE questions. On this latter point,
there are some hardness results for problems such as 3LIN over the reals [KM11], Lp
subspace approximation [GRSW12], and subspace hypercontractivity [BBH+12] that
have some relation to the UG/ SSE, but whether they can be thought having “morally
equivalent” complexity to UG/ SSE is still very much in question. To get confidence
in the “UGC False” case we can try to show that a smallish number of rounds of the
sum-of-squares hierarchy can solve the SSE on a larger family of instances than what
is currently known. A pet question of mine is to show that this algorithm works on
all Cayley graphs over the Boolean cube. I think that showing this would require
ideas that may enable solving the general case as well. Indeed, my current guess is
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that the UGC is false and that the sum-of-squares algorithm does solve the problem
in a reasonable (e.g., quasipolynomial) time.

2 Feige’s Random 3SAT Hypothesis

Unlike Khot’s conjecture, Feige’s Hypothesis (FH) [Fei02] deals with average-case
complexity. While a counting argument easily shows that with high probability a
random 3SAT formula on n variables and 1000n clauses will not be (even close to)
satisfiable, the hypothesis states that there is no efficient algorithm that can certify
this fact. Formally, the conjecture is defined as follows:

Conjecture 3 (Feige’s Hypothesis, weak version3 [Fei02]) For every ε > 0, d ∈
N, and polynomial-time algorithm A that can output either “SAT” or “UNSAT” , it holds
that for sufficiently large n, either

• Pr[A(ϕ) = UNSAT] < 1/2, where ϕ is a random 3SAT formula with n variables
and dn clauses.

or

• There exists a formula ϕ on n variables such that there is an assignment satis-
fying ≥ 1− ε fraction of ϕ’s clauses, but A(ϕ) = UNSAT.

That is, any one-sided error algorithm for 3SAT (i.e., an algorithm that can some-
times say SAT on an unsatisfiable instance, but will never say UNSAT on a nearly
satisfiable one) will (wrongly) answer SAT on a large fraction of the input formu-
las. Feige’s hypothesis (and variants of similar flavor [Ale11, AAM+11]) have been
used to derive various hardness of approximation results. Applebaum, Wigderson
and I [ABW10] also used related (though not equivalent) assumptions to construct
a public-key cryptosystem, with the hope that basing cryptosystems on such com-
binatorial problems will make them immune to algebraic and/or quantum attaches.
While the conjecture was originally stated for 3SAT, in a recent manuscript with
Kindler and Steurer [BKS12] we show that it can be generalized to every constraint
satisfaction problem. Personally I find the k-XOR predicate (i.e., noisy sparse linear
equations) to be the cleanest version.

There is added motivation for trying to study heuristic evidence (as opposed to formal
proofs) for Feige’s hypothesis. Unlike the UGC, which in principle can be proven via a
PCP-type NP-hardness reduction of the type we’ve seen before, proving FH seems way

3I call this the weak version since Feige also phrased a version of the hypothesis with ε = 0.
However, I prefer the ε > 0 version as it is more robust and can be applied to other predicates such
as XOR.
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beyond our current techniques (even if we’re willing to assume standard assumptions
such P 6= NP , the existence of one-way functions, or even the hardness of integer
factoring). Thus if Feige’s hypothesis is true, our only reasonable hope is to show
that this holds is by a physics-like process of accumulating evidence, rather than by
a mathematical proof. Let us now try to examine this evidence:

2.1 The “FH True” world.

One natural way to refute Feige’s Hypothesis would be to show a 0.88 (worst-case)
approximation algorithm for 3SAT. This is an algorithm B that given a formula for
which an α fraction of the clauses can be satisfied, returns an assignment satisfying
0.88α of them. In particular, given as input a satisfiable formula, B must return an
assignment satisfying at least 0.88 fraction of the clauses. Thus, we can transform B
into a one-sided error algorithm A that answers SAT on an instance if and only if B
returns such a 0.88-satisfying assignment for it. Since in a random 3SAT formula, the
maximum fraction of satisfiable clauses is very close to 7/8 = 0.875, the algorithm A
would refute FH. However, H̊astad’s seminal result [H̊as01] shows that 3SAT doesn’t
have such a 0.88-approximation algorithm, hence giving at least some evidence for
the “FH True” world.

Feige showed that his hypothesis implies several other such hardness of approximation
results, including some not known before to hold under P 6= NP ; deriving such results
was Feige’s motivation for the hypothesis. But the connection also works in the other
direction: verifying the hardness-of-approximation predictions of FH can be viewed as
giving evidence to the “FH True” world, particulary when (as was the case in [Kho04])
the hardness of approximation results were obtained after Feige’s predictions.

Of course, these hardness of approximation results only relate to worst-case com-
plexity while the average-case problem could be potentially much easier. We do note
however that in many of these cases, these hardness results are believed to hold
even with respect to subexponential (e.g. 2o(n) or perhaps 2n

1−Ω(1)
) time algorithms.

While this doesn’t imply average-case hardness, it does mean that the set of hard
instances cannot be too small. Moreover, the most natural candidate algorithms to
refute Feige’s hypothesis— the same sum-of-squares relaxations mentioned above—
are known [Gri01, Sch08] not to succeed in certifying unsatisfiability of random in-
stances. Also, as Feige shows, this problem is related to random noisy 3XOR equa-
tions, which is a sparse version of the known and well studied Learning Parity with
Noise problem (see also discussion in [Ale11, ABW10]).

The world in which the generalized form [BKS12] of FH holds is particularly nice in
that there is a single algorithm (in fact, the same Goemans-Williamson semidefinite
program mentioned above) that achieves the optimal performance on every random
constraint-satisfaction problem. Indeed, if this generalized FH holds, it may very well
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be that at least random CSP’s display the dichotomy behavior in the sense that for
every CSP P , there is a value β(P ) such that given a random instance Ψ of P , one can
certify in polynomial time that the maximum fraction val(Ψ) of satisfied constraints

is at most β(P ) + ε, but certifying that val(Ψ) ≤ β(P )− ε requires 2n
1−o(1)

time.

2.2 The “FH False” world.

If Feige’s Hypothesis is false, then there should be an algorithm refuting it. No such
algorithm is currently known. This could be viewed as significant evidence for FH,
but the question is how hard people have tried. Random 3-SAT instances (and more
generally k-SAT or other CSP’s) are actually widely studied and are of interest to
physicists, and (with few hundred variables) are also part of SAT solving competitions.
But the instances studied are typically in the satisfiable regime where the number
of clauses is sufficiently small (e.g., less than ∼ 4.26n for 3-SAT) so solutions will
actually exist. The survey propagation algorithm [BMZ05] does seem to work very
well for satisfiable random 3SAT instances, but it does not seem to be applicable
in the unsatisfiable range. Survey propagation also seems to fail on other CSPs,
including k-SAT for k > 3 [ACO08].

While not known to be equivalent, there is a variant of FH where the goal is not
to certify unsatisfiability of a random 3SAT but to find a planted nearly satisfying
assignment of a random 3XOR instance. Such instances might be more suitable for
computational challenges (a la the RSA Factoring challenge) as well as SAT solving
competitions. It would be interesting to study how known heuristics fare on such
inputs.

2.3 A personal bottom line.

Unlike worst-case complexity, our understanding of average-case complexity is very
rudimentary. This has less to do with the importance of average-case complexity,
which is deeply relevant not just for studying heuristics but also for cryptography,
statistical physics, and other areas, and more to do with the lack of mathematical
tools to handle it. In particular, almost every hardness reduction we know of uses
gadgets which end up skewing the distribution of instances. I believe studying Feige’s
Hypothesis and its ilk (including the conjectures that solution-space shattering implies
hardness [ACO08]) offer some of our best hopes for more insight into average-case
complexity. I don’t know if we will be able to establish a similar web of reductions to
the one we have for worst-case complexity, but perhaps we can come up with meta-
conjectures or principles that enable us to predict where the line between easiness and
hardness will be drawn in each case. We can study the truth of such conjectures using
a number of tools, including not just algorithms and reductions but also integrality-
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gap proofs, physics-style analysis of algorithms, worst-case hardness-of-approximation
results, and actual computational experiments.

As for the truth of Feige’s Hypothesis itself, while it would be premature to use an FH-
based encryption to protect state secrets, I think the current (admittedly inconclusive)
evidence points in the direction of the hypothesis being true. It definitely seems as if
refuting FH would require a new and exciting algorithmic idea. With time, if Feige’s
Hypothesis receives the attention it deserves then we can get more confidence in its
veracity, or learn more about algorithms for average-case instances.

Parting thoughts

Theoretical Computer Science is sometimes criticized for its reliance on unproven
assumptions, but I think we’ll need many more of those if we want to get further
insights into areas such as average-case complexity. Sure, this means we have to live
with possibility that our assumptions turn out to be false, just as physicists have
to live with the possibility that future experiments might require a revision of the
laws of nature. But that doesn’t mean that we should let unconstructive skepticism
paralyze us. It would be good if our field had more explicit discussion of what kinds of
results can serve as evidence for the hardness or easiness of a computational problem.
I deliberately chose two questions whose answer is yet unclear, and for which there
is reasonable hope that we’ll learn new insights in the coming years that may upend
current beliefs. I hope that as such results come to light, we can reach a better
understanding of how we can predict the answer to questions for which we have yet
no proofs.
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