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Abstract

We investigate the complexity of the syntactic isomorphism problem of CNF Boolean
Formulas (CSFI): given two CNF Boolean formulas ϕ(a1, . . . , an) and ϕ(b1, . . . , bn)
decide whether there exists a permutation of clauses, a permutation of literals and a
bijection between their variables such that ϕ(a1, . . . , an) and ϕ(b1, . . . , bn) become syn-
tactically identical. We first show that the CSFI problem is polynomial time reducible
to the graph isomorphism problem (GI) and then we show that GI is polynomial time
reducible to a special case of the CSFI problem (MCSFI) that is CSFI-complete and
also GI-complete, thus concluding that the syntactic isomorphism problem for CNF
Boolean formulas is GI-complete. Finally we observe that the same results hold when
considering DNF Boolean formulas (DSFI).

Keywords: Boolean isomorphism, complexity theory, graph isomorphism, Boolean for-
mulas, semantic isomorphism, syntactic isomorphism.

1 Introduction

A Boolean function of arity n f = f(x1, . . . , xn) is a function f : {0, 1}n → {0, 1}. The
truth table of a Boolean function fully specifies the function but it does not provide any
information about its syntactic representation; on the opposite side, a Boolean formula is a
syntactic representations of a Boolean function but such representation is not unique since
each Boolean function may be represented by a set of Boolean formulas. Calling equivalent
the Boolean formulas that represent the same function, we have that a Boolean function
is defined by a Boolean formula modulo logical equivalences.

Given two Boolean formulas F and G, representing respectively the Boolean functions
f and g, the Formula Equivalence (FE) problem is to decide whether they are semantically
(or logically) equivalent (i.e., if and only if each model of F is a model of G and vice versa,
or, in other terms, f = g [11]), that is F ≡ G [14].

Given two Boolean functions, represented by the Boolean formulas F and G defined
over the variables set {x1, ...., xn}, a semantic isomorphism λ is a permutation of the
variables of G such that G becomes logical equivalent to F i.e. such that F ≡ G ◦ λ =
G(λ(x1), ...., λ(xn)). For example the Boolean formulas x ∧ ¬y and ¬x ∧ y are semanti-
cally isomorphic, since we can swap x and y in the first formula to get the second, but
they are not semantically equivalent (it suffices to build the truth table in order to see
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this). The problem of deciding whether two Boolean formulas are semantically isomorphic
is called the Formula Isomorphism (FI) problem [1, 2]. From the definitions of Formula
Equivalence and Formula Isomorphism problems it follows that two semantically equiv-
alent Boolean formulas are also semantically isomorphic since the semantic equivalence
relationship preserves the semantic isomorphism.

The Formula Isomorphism problem has been widely studied by Agrawal and Thierauf
showing that, though FI is in Σ2P, i.e. the second level of the polynomial hierarchy, it
cannot be Σ2P-complete unless the polynomial time hierarchy collapses [1, 2]. In Thier-
auf’s work [14], where the author considers several problems related to equivalence and
isomorphism, it is shown that Graph Isomorphism (GI) is polynomial time reducible to
FI.

A different notion from the semantic isomorphism is the syntactic isomorphism, i.e.
a permutation λ of the variables {x1, ...., xn} of G such that it becomes syntactically
identical to F , i.e., F = G ◦ λ = G(λ(x1), ...., λ(xn)). It is straightforward to verify that
each syntactic isomorphism is also a semantic isomorphism, since it is a permutation of
variables that leads two Boolean formulas to be equivalent, but not the converse. By
definition, we have that literals are variables and negated variables, terms are conjunction
of literals and clauses are disjunction of literals. Recalling that each Boolean function can
be represented as a disjunction of terms, called disjunctive normal form (DNF), or as a
conjunction of clauses, called conjunctive normal form (CNF), we say that two Boolean
formulas represented in CNF (or DNF) are syntactically isomorphic if and only if they can
be written in identical way under a suitable permutation of variables. literals and clauses
(terms); e.g., the Boolean formulas, x∧¬y and ¬x∧ y are syntactical isomorphic since we
can swap x and y in the first formula, and we can permute the two literals, getting ¬x∧y.

In this paper we focus on the Syntactic Isomorphism of CNF Boolean Formulas (CSFI):
given two CNF Boolean formulas ϕ(a1, . . . , an) and ϕ(b1, . . . , bn), decide whether there
exist a permutation of clauses, a permutation of literals, and a bijection between their
variables such that ϕ(a1, . . . , an) and ϕ(b1, . . . , bn) become syntactically identical. We
prove that this problem is GI-complete: in particular, we i) show that the CSFI problem
is polynomial time reducible to the graph isomorphism problem (GI) and ii) show that a
special case of the CSFI problem, limited to monotone formulas (MCSFI), is both CSFI-
complete and GI-complete; combining these results it holds that the syntactic isomorphism
problem of CNF Boolean formulas is GI-complete.

The end results of our findings are twofold. First, the GI-completeness of CSFI sup-
ports the existence of a “graph theoretic independent” isomorphism class, as already
observed by Fortin [8] about the Term Equality Problem (TEP) [3]; furthermore, it is
interesting to observe that CSFI represents a special (and easier) case of TEP and, as a
consequence of our results, TEP reduces to CSFI. The CSFI problem is peculiar amongst
the graph isomorphism-complete problem in that i) it regards a subclass of Boolean for-
mulas and so it is not defined in terms of a graph theoretic problem, ii) it is a special case
of a more general isomorphism problem that is FI; therefore all GI-complete problems
(either of a graph theoretic nature or not) can be reduced to a subset of FI.

Second, our result increases, in some sense, the similarities between the Formula Iso-
morphism and the Graph Isomorphism problems:

1. a) If GI is NP-complete, then the polynomial hierarchy collapses to its second level
[13].

b) If FI is NPNP-complete, then the polynomial hierarchy collapses to its third
level [1].
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2. a) The counting version of GI can be reduced to its decision version [12].

b) The counting version of FI can be reduced to its decision version [1].

3. a) GI ≡p CSFI, that is poly-time reducible to its monotone case MCSFI [this
paper].

b) FI is poly-time reducible to its monotone case [10].

Thus, in addition to the similarities regarding noncompleteness and counting versions
of each problem [1, 2], thanks to the results proved in this paper, we can deduce that both
FI and CSFI are polynomial time reducible to their monotone special case.

This paper is organized as follows: in the next section we provide the necessary back-
ground, whilst our main result is discussed in Section 3.

2 Preliminaries and problems definitions

In this section we provide the necessary background and definitions of the problems con-
sidered. We begin, from [9], with the already mentioned

Definition 1 (Graph Isomorphism (GI)) Given two undirected graphs G1 = (V1, E1)
and G2 = (V2, E2), are G1 and G2 isomorphic, i.e. is there a bijection f : V1 → V2 such
that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2?

A well known example of a GI-complete problem is the following [4]:

Definition 2 (Bipartite Graph Isomorphism (BGI)) Given two undirected bipartite
graphs G1 = (V1,W1, E1) and G2 = (V2,W2, E2), are G1 and G2 isomorphic, i.e. are
there two bijections f : V1 → V2 and g : W1 → W2 such that (u, v) ∈ E1 if and only if
(f(u), g(v)) ∈ E2?

We also consider, from [7], the following:

Definition 3 (Matrix Isomorphism (MI)) Given two n ×m matrices A and B with
entries respectively a(i,j) and b(i,j) ( 1 ≤ i ≤ n, 1 ≤ j ≤ m ) defined over an integers set Σ,
the Matrix Isomorphism (MI) problem is to determine whether there exists an isomorphism
between the matrices, i.e. a permutation of the rows of A σr and a permutation of the
columns of A σc such that a(σr(i),σc(j))=b(i,j) .

We remind that other relevant GI-complete problems concern the isomorphisms of
finite automata, hypergraphs, and context-free grammars [15]. We can now formally
introduce

Definition 4 (CNF Syntactic Formula Isomorphism (CSFI)) Given two Boolean
formulas in CNF:

ϕ(a1, ..., an) =
m
∧
c=1

(
2n
∨
l=1
α(c,l)

)
=
(
α(1,1)∨, ...,∨α(1,2n)

)
∧, ...,∧

(
α(m,1)∨, ...,∨α(m,2n)

)

ϕ(b1, ..., bn) =
m
∧
c=1

(
2n
∨
l=1
β(c,l)

)
=
(
β(1,1)∨, ...,∨β(1,2n)

)
∧, ...,∧

(
β(m,1)∨, ...,∨β(m,2n)

)
the syntactic isomorphism problem of CNF Boolean formulas (CSFI) is to decide

whether there exists a permutation of the clauses σc and a permutation of the literals
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σl in ϕ(a1, ..., an) and a bijection f between their variables such that ϕ(a1, ..., an) and
ϕ(b1, ..., bn) may be written in the same way i.e.:

m
∧
c=1

(
2n
∨
l=1
f(α(σc(c),σl(l)))

)
=

m
∧
c=1

(
2n
∨
l=1
β(c,l)

)
As an example, considering the following formulas defined over the variables set {x, y, z}∪

{a, b, c} :
ϕ(z, y, x) = (¬z ∨ z) ∧ (y ∨ x) ∧ (z ∨ ¬y ∨ ¬x)

ϕ(a, c, b) = (a ∨ b) ∧ (¬a ∨ c ∨ ¬b) ∧ (¬c ∨ c)

a possible solution consists in the following bijection f = {〈y, a〉, 〈x, b〉, 〈z, c〉} and a
suitable permutations of σc and σl.

Recalling that a Boolean formula is said to be monotone if it does not contain any
negation, the following problem can be seen as a special case of CSFI, in which there are
no negated variables.

Definition 5 (Monotone CNF Syntactic Formula Isomorphism (MCSFI))
Considering two Boolean monotone formulas in CNF, the syntactic isomorphism problem
for CNF monotone Boolean formulas (MCSFI) is the CSFI problem restricted to CNF
monotone formulas.

3 CSFI is GI-complete

Before presenting our main result, we need to prove few lemmas that describes some
relationship between the problems defined in the previous section. In particular, the
combination of these lemmas allows us to provide the following results:

CSFI ≤p MI {−1,0,1,2} ≤p GI ≤p BGI ≡p MI {0,1} ≡p MCSFI ≤p CSFI

from which we can derive that CSFI is GI-complete.

Lemma 1 The matrix isomorphism problem between matrices with entries defined over
the integers set Σ = {0, 1} is GI-complete.

Proof. We prove the above lemma by showing that it holds both BGI ≤p MI {0,1}
and MI {0,1} ≤p BGI :

1. BGI ≤p MI {0,1}: by definition two graphs G1 and G2 whose adjacency matrices
are respectively A1 and A2, are isomorphic if and only if there exists a permutation
matrix P such that A2 = PA1P

−1 [6].

2. MI {0,1} ≤p BGI : each binary matrix M1 corresponds to a bipartite graph G1 whose
adjacency matrix A1 is:

A1 =

(
0 M1

MT
1 0

)
Where MT

1 is the transpose of M1. Is simple to verify that two binary matrices M1 and
M2 are isomorphic if and only if the respective bipartite graph, whose adjacency matrices
is build upon the showed reduction, are isomorphic. So, it holds BGI ≡p MI {0,1}. 2
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Theorem 1 CSFI is deterministic polynomial time reducible to MI (i.e., CSFI ≤p MI ).

We first provide the reduction, whilst its correctness hinges on Lemma 2 and Lemma 3.
Reduction. Each CNF formula can be represented by a matrix whose n rows represent

variables, belonging or not to the literals of each clause, and whose m columns represent
clauses, and entries are defined over the set of integers Σ = {−1, 0, 1, 2} such that the
generic entry a(i,j) at the i-th row and the j-th column may be:

• 0 if the i-th variable does not belong to the literals of the j-th clause, neither positive
nor negated.

• 1 if the i-th variable belongs to the literals of the j-th clause.

• -1 if the i-th negated variable belongs to the literals of the j-th clause.

• 2 if both the i-th negated and the i-th non negated variables belong to the literals
of the j-th clause.

For the previous example, we have:

ϕ(z, y, x) =

2 0 1
0 1 −1
0 1 −1

 ϕ(a, c, b) =

1 −1 0
0 1 2
1 −1 0


Such a matrix can be built in deterministic polynomial time from ϕ since there are

exactly n×m entries to place in the matrix where n is the cardinality of the variables set
and m is the cardinality of the clauses set.

In order to prove the theorem we divide it in two distinct lemmas.

Lemma 2 If two CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) are syntactically isomorphic
then the respective matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)], built upon the mentioned
reduction, are isomorphic:

(ϕ(x1, ..., xn), ϕ(y1, ..., yn)) ∈ CSFI ⇒ (M [ϕ(x1, ..., xn)],M [ϕ(y1, ..., yn)]) ∈ MI

Proof. We can see that each permutation of clauses in ϕ(x1, ..., xn) corresponds to a
column permutation in M [ϕ(x1, ..., xn)] and each permutation of literals, present or not in
the clauses of ϕ(x1, ..., xn) , corresponds to a row permutation ofM [ϕ(x1, ..., xn)].Moreover,
when ϕ(x1, ..., xn) is syntactically isomorphic to ϕ(y1, ..., yn) then the matrix of this iso-
morphism, by construction, matches with M [ϕ(y1, ..., yn)] . So deciding if two CNF for-
mulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) are syntactically isomorphic corresponds to decide if,
permutating rows and columns of M [ϕ(x1, ..., xn)] , we can switch from M [ϕ(x1, ..., xn)]
to M [ϕ(y1, ..., yn)]. But deciding if there exist row and column permutations between two
matrices, with entries defined over an integers set, such that the two matrices coincide, is
a special case of the MI problem (case with entries defined over the set Σ = {−1, 0, 1, 2}
). 2

Lemma 3 If two matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)], built respectively from
the CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) upon the showed reduction, are isomorphic
then the CNF formulas ϕ(x1, ..., xn) and ϕ(y1, ..., yn) are syntactically isomorphic:

(ϕ(x1, ..., xn), ϕ(y1, ..., yn)) ∈ CSFI ⇐ (M [ϕ(x1, ..., xn)],M [ϕ(y1, ..., yn)]) ∈ MI
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Proof. Suppose that the two matrices M [ϕ(x1, ..., xn)] and M [ϕ(y1, ..., yn)] are isomor-
phic, then, by definition, it exists a row and column permutation in M [ϕ(x1, ..., xn)] such
that it coincides with M [ϕ(y1, ..., yn)]. Since, by the showed reduction, each matrix with
entries over the integers set Σ = {−1, 0, 1, 2} corresponds to a CNF formula and vice
versa, we have that, each column permutation in M [ϕ(x1, ..., xn)] corresponds to a clause
permutation in ϕ(x1, ..., xn) and each row permutation in M [ϕ(x1, ..., xn)] corresponds to
a permutation of literals, present or not in the clauses of ϕ(x1, ..., xn), and when the two
matrices coincide then, by construction, the respective CNF formulas are syntactically
isomorphic (they are written in identical way except a bijection between their variables).
So, deciding if there exist row and column permutations in M [ϕ(x1, ..., xn)] such that
it coincides with M [ϕ(y1, ..., yn)] is equivalent to decide if there exists a permutation of
clauses and literals and a bijection of variables in ϕ(x1, ..., xn) such that it is syntactically
isomorphic to ϕ(y1, ..., yn). 2

Theorem 2 The MI problem, between two matrices MA and MB whose entries are defined
over the integers set Σ = {−1, 0, 1, 2}, is deterministic polynomial time reducible to GI
(i.e., MI {−1,0,1,2} ≤p GI ).

Reduction. Each n ×m matrix of a MI instance, between two matrices MA and MB

whose entry are defined over the integers set Σ = {−1, 0, 1, 2} , can be represented with a
graph G = (V,A) built as follow (see Figure 1 for an example of the construction):

• Set of vertices V = {R ∪ C ∪ E ∪ S ∪X} where:

– R = {r1, ...., rn} is the set of rows.

– C = {c1, ..., cm} is the set of columns.

– X is the set of 3 vertices used to build 2 cliques of degrees 1 and 2 each of which
identifies, respectively, the set of columns and the set of rows.

– E = {(1, 1), (1, 2), ..., (m,n)} is the set of ordered pairs (i, j) that represents
the coordinates of each generic entry a(i,j) positioned at the i-th row and j-th
columns.

– S is the set of 18 vertices used to build 4 cliques of degrees 3,4,5, and 6 each of
which codifies, respectively, the integers numbers: −1,0,1, and 2.

• Set of edges A obtained linking the following vertices:

– every vertex ri is linked to the pairs (i, j) and is linked to the clique of degree
2 in order to represent the membership of ri to the set of rows.

– every vertex cj is linked to the pairs (i, j) and is linked to the clique of degree
1 in order to represent the membership of cj to the set of columns.

– every vertex (i, j) is linked to the clique of degree k if and only if the entry a(i,j)
is codified by the clique of degree k.

It is simple to verify that each vertex (i, j) is linked to the clique corresponding to
the codified number as specified in the matrix and so the built graph matches the whole
relational structure of the matrix. Two examples of reductions from isomorphic matrices
are shown in Figure 1; vertices are labelled for clarity. We note that the corresponding
graph can be built in polynomial time from the matrix MA.

In order to prove the theorem we divide it in two distinct lemmas.
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Figure 1: An example of the reduction used in the proof of Theorem 2

Lemma 4 If two matrices MA and MB, with entries defined over the integers set Σ =
{−1, 0, 1, 2}, are isomorphic then the corresponding graphs G[MA] and G[MB], built fol-
lowing the shown reduction, are isomorphic:

(MA,MB) ∈ MI {−1,0,1,2} ⇒ (G[MA], G[MB]) ∈ GI

Proof. If MA and MB are isomorphic then they are the same matrix modulo row and
column permutations. We can see that each permutation of rows and each permutation of
columns in the matrix MA corresponds, respectively, to a permutation of vertices aligned
with the rows and to a permutation of vertices aligned with the columns in G[MA] and
when an isomorphism between MA and MB exists, then the graph of the matrix of this
isomorphism, by construction, is isomorphic to G[MB]. But permutating vertices aligned
with rows and/or columns in G[MA] generate graphs isomorphic to G[MA]. So deciding if
two matrices MA and MB, whose entries are defined over the integers set Σ = {−1, 0, 1, 2}
, are isomorphic corresponds to deciding if the two graphs G[MA] and G[MB], built upon
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the shown reduction, are isomorphic. 2

Lemma 5 If two graphs G[MA] and G[MB], built respectively from the matrices MA and
MB upon the shown reduction, are isomorphic then the matrices MA and MB are isomor-
phic:

(MA,MB) ∈ MI {−1,0,1,2} ⇐ (G[MA], G[MB]) ∈ GI

Proof. It is straightforward to see that, when the graphs G[MA] and G[MB] are
isomorphic, then, since by construction each graph represents the whole relational struc-
ture of a matrix, the two matrices MA and MB from which they were built, have to be
isomorphic. 2

Theorem 3 MI {0,1} between two binary matrices MA and MB is deterministic polynomial
time reducible to MCSFI (i.e., MI {0,1} ≤p MCSFI ).

Reduction. As seen in Theorem 1, each CNF formula can be represented by a matrix
whose entries are defined over an integers set and vice versa. More formally, each CNF
monotone formula can be represented as a matrix in which rows represents the variables
and columns represents the clauses and matrix entries are defined over the integers set
Σ = {0, 1} such that the generic entry a(i,j) positioned at the i-th row and j-th column is:

• 0 if the i -th literal is not presents in the j -th clause

• 1 if the i -th literal is present in the j -th clause

Example: the binary matrix A1 =

1 0 1
0 1 1
1 1 0

 corresponds to the CNF monotone for-

mula defined over the variables set {z, y, x} :

ϕ(z, y, x) = (z ∨ x) ∧ (y ∨ x) ∧ (z ∨ y)

Note that such a CNF formula can be built in polynomial time from a n ×m matrix
since there are at most n×m literals to place in each formula.

As we did for the previous theorems, we divide the proof in two distinct lemmas.

Lemma 6 If two binary matrices MA and MB are isomorphic then the respective CNF
monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn), built upon the showed reduction, are
syntactically isomorphic:

(MA,MB) ∈ MI ⇒ (ϕ(a1, ..., an), ϕ(b1, ..., bn)) ∈ MCSFI

Proof. As seen, each rows permutation in MA corresponds to literals permutation
in ϕ(a1, ..., an) and each columns permutation in MA corresponds to clauses permutation
in ϕ(a1, ..., an) and moreover, when MA is isomorphic to MB then the CNF monotone
formula of this isomorphism will matches, by construction, with ϕ(b1, ..., bn) unless for
a variables bijection. So, deciding if two binary matrices MA and MB are isomorphic
is equivalent to decide if permutating literals and clauses of ϕ(a1, ..., an), and using a
variables bijection, we can switch from ϕ(a1, ..., an) to ϕ(b1, ..., bn) but this problem is, by
definition, the syntactic isomorphism problem between CNF monotone formulas. 2
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Lemma 7 If two CNF monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn), built respectively
from the matrices MA and MB following the above reduction, are syntactically isomorphic
then the two binary matrices MA and MB are isomorphic:

(MA,MB) ∈ MI ⇐ (ϕ(a1, ..., an), ϕ(b1, ..., bn)) ∈ MCSFI

Proof. Suppose that the two CNF monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn)
are isomorphic, then, by definition, there exist literal and clause permutations in ϕ(a1, ..., an)
and a variables bijection such that it is syntactically identical to ϕ(b1, ..., bn). Since, by the
shown reduction, each matrix corresponds to a CNF monotone formula and vice versa,
we have that, by construction, each clauses permutation in ϕ(a1, ..., an) corresponds to
columns permutation in MA and each literals permutation in ϕ(a1, ..., an) corresponds to
rows permutation in MA, and when the two CNF formulas are syntactically isomorphic
then the respective binary matrices coincides. For the above reasons, deciding if, unless a
variables bijection, there exists clauses and literals permutation in ϕ(a1, ..., an) such that
it is syntactically isomorphic to ϕ(b1, ..., bn) is equivalent deciding if there exists a rows
and columns permutation in MA so that it is isomorphic to MB. 2

As seen, each binary matrix can be regarded as a CNF monotone formula and vice
versa, hence using the same argument as in Theorem 1 it is simple to prove the following:

Corollary 1 MCSFI between two monotone formulas ϕ(a1, ..., an) and ϕ(b1, ..., bn) is de-
terministic polynomial time reducible to MI {0,1} (i.e., MCSFI ≤p MI {0,1}).

Therefore we have:

Corollary 2 MI {0,1} ≡p MCSFI .

Since MI {0,1} is GI-complete we have:

Corollary 3 MCSFI is GI-complete.

We can now present our main result.

Theorem 4 CSFI is GI-complete.

Proof. Combining the results from Lemma 1 through Corollary 2, we can state the
following:

CSFI ≤p MI {−1,0,1,2} ≤p GI ≤p BGI ≡p MI {0,1} ≡p MCSFI ≤p CSFI

Hence, CSFI is GI-complete. 2

4 Conclusion

In this paper we have shown that the CSFI problem is graph isomorphism complete.
This result is interesting first because CSFI is one of the few GI-complete problems that
are not of a graph theoretic nature. Second, it allows to extend the similarities between
the Formula Isomorphism and the Graph Isomorphism problems, already observed [1, 2].
In particular, we have shown that GI is equivalent to the problem of testing syntactic
isomorphism for monotone CNF Boolean Formulas (MCSFI), as FI is equivalent to the
problem of testing semantic isomorphism of monotone Boolean Formulas [10].
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Finally, let us observe that our result easily extends to the syntactic isomorphism of
DNF Boolean Formulas. In fact, it is simple to verify that, for the commutativity of the
operators AND and OR, identical theorems can be proved when the Boolean formula is
in disjunctive normal form (DNF), since analogously to Theorem 1, we can replace each
CNF formula with a DNF formula, that can be associated to a matrix whose columns
represent terms and rows represent variables.
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[13] Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci. 37(3),
312–323 (1988)

[14] Thierauf, T.: The computational complexity of equivalence and isomorphism prob-
lems. Springer-Verlag, Berlin, Heidelberg (2000)

[15] Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism prob-
lem. Journal of Mathematical Sciences 29, 1426–1481 (1985)

10

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


