
Better Pseudorandom Generators from Milder Pseudorandom

Restrictions.

Parikshit Gopalan
MSR-SVC

Raghu Meka
IAS Princeton∗

Omer Reingold
MSR-SVC

Luca Trevisan
Stanford University

Salil Vadhan†

Harvard University

Abstract

We present an iterative approach to constructing pseudorandom generators, based on the
repeated application of mild pseudorandom restrictions. We use this template to construct
pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set
generator for width-3 branching programs, all of which achieve near-optimal seed-length even in
the low-error regime: We get seed-length Õ(log(n/ε)) for error ε. Previously, only constructions

with seed-length O(log3/2 n) or O(log2 n) were known for these classes with error ε = 1/poly(n).
The (pseudo)random restrictions we use are milder than those typically used for proving

circuit lower bounds in that we only set a constant fraction of the bits at a time. While such
restrictions do not simplify the functions drastically, we show that they can be derandomized
using small-bias spaces.

∗Supported in part by NSF grant DMS-0835373. Work done in part while the author was an intern at Microsoft
Research Silicon Valley.
†School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

salil@seas.harvard.edu. Supported in part by NSF grant CCF-1116616. Work done in part while on leave
as a Visiting Researcher at Microsoft Research Silicon Valley and a Visiting Scholar at Stanford University.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 123 (2012)

1 Introduction

1.1 Pseudorandom Generators

The theory of pseudorandomness has given compelling evidence that very strong pseudorandom
generators exist. For example, assuming that there are computational problems solvable in expo-
nential time that require exponential-sized circuits, Impagliazzo and Wigderson [IW97] have shown
that for every n, c and ε > 0, there exist efficient pseudorandom generators (PRGs) mapping a
random seed of length O(log(nc/ε)) to n pseudorandom bits that cannot be distinguished from
n uniformly random bits with probability more than ε, by any Boolean circuit of size nc. These
PRGs, which fool arbitrary efficient computations (represented by polynomial-sized Boolean cir-
cuits), have remarkable consequences for derandomization: every randomized algorithm can be
made deterministic with only a polynomial slowdown, and thus P = BPP.

These results, however, remain conditional on a circuit complexity assumption whose proof
seems far off at present. Since PRGs that fool a class of Boolean circuits also imply lower bounds
for that class, we cannot hope to remove the assumption. Thus unconditional generators are only
possible for restricted models of computation for which we have lower bounds.

Bounded-depth circuits and bounded-space algorithms are two models of computations for which
we know how to construct PRGs with O(logO(1)(n/ε)) seed length [Nis91, Nis92]. Known PRG con-
structions for these classes have found several striking applications including the design of stream-
ing algorithms [Ind06], algorithmic derandomization [Siv02], randomness extractors [Tre01], hash-
ing [CRSW11], hardness amplification [HVV06], almost k-wise independent permutations [KNR05],
and cryptographic PRGs [HHR06]. Arguably, constructing PRGs with the optimal O(log(n/ε)) seed
length for these classes are two of the outstanding open problems in derandomization.

Nisan [Nis92] devised a PRG of seed length O(log2 n) that fools polynomial-width branching
programs, the non-uniform model of computation that captures logspace randomized algorithms:
a space-s algorithm is modeled by a branching program1 of width 2s. Nisan’s generator has been
used by Saks and Zhou [SZ99] to prove that every randomized logspace algorithms can be simu-
lated in space O(log3/2 n), Nisan’s generator remains the best known generator for polynomial-width
branching programs (and logspace randomized algorithms) and, despite much progress in this area
[INW94, NZ96, RR99, Rei08, RTV06, BRRY10, BV10b, KNP11, De11], there are very few cases
where we can improve on Nisan’s twenty year old bound of O(log2 n) [Nis92]. For constant-width
regular branching programs, Braverman et al. [BRRY10] have given a pseudorandom generator
with seed length Õ((log n) · (log(1/ε))), which is Õ(log n) for ε = 1/polylog(n), but is no better
than Nisan’s generator when ε = 1/poly(n). Only for constant-width permutation branching pro-
grams and for width-2 branching programs has seed length O(log(n/ε)) been achieved, by Koucký,
Nimbhorkar, Pudlák [KNP11] and Saks and Zuckerman [SZ95], respectively. Remarkably, even for
width-3 branching programs we do not know of any efficiently computable PRG with seed length
o(log2 n). Recently, Sima and Zak [SZ11] have constructed hitting set generators (HSGs, which
are a weaker form of pseudorandom generators) for width-3 branching programs with optimal seed
length O(log n), for a large error parameter ε > 5/6.

In a different work, Nisan [Nis91] also gave a gives a PRG that ε-fools AC0 circuits of depth
d and size s using seed length O(log2d+6(s/ε)). For the special case of depth-2 circuits, that is,
CNFs and DNFs, the work of Bazzi [Baz09], simplified by Razborov [Raz09], provides a PRG of seed
length O(log n · log2(s/ε)), which has been improved to Õ(log2(s/ε)) by De et al. [DETT10]. For

1Space-bounded randomized algorithms are modeled by oblivious, read-once branching programs, which read the
input bits in a specified order and read each input bit only once. In this paper, all the references to “branching
programs” refer to “oblivious read-once branching programs.”

1

the restricted case of read-k DNFs and CNFs, De et al. (for k =1), and Klivans et al. [KLW10] (for
k constant) improve the seed length to O(log ε−1 · log s), which is optimal for constant ε, but it is
essentially no better than the bound for general CNFs and DNFs when ε is polynomial in 1/n.

The model of combinatorial rectangles is closely related to both bounded-width branching pro-
grams and read-once CNFs and are interesting combinatorial objects with a variety of applications
of their own [ASWZ96]. The problem of constructing PRGs for combinatorial rectangles is closely
related to the construction of small sample spaces that approximate the uniform distribution on
many multivalued random variables [EGL+98]: they can be seen as an alternate generalization
of the versatile notion of almost k-wise independent distributions on {0, 1}n to larger domains
[m]n. Versions of this problem where each coordinate is a real interval were first studied in
number theory and analysis [ASWZ96]. Subsequently there has been much work on this problem
[EGL+98, LLSZ97, ASWZ96, Lu02, Vio11]. A PRG with seed length O(log n+ log3/2(1/ε)) [Lu02]
is known for combinatorial rectangles; such a generator achieves the optimal seed length O(log n)

when ε ≥ 2−O(log2/3 n), but not for ε = 1/poly(n). It is known how to construct HSGs (which are a
weakening of PRGs) with seed length O(log(n/ε)) [LLSZ97].

Indeed, there are few models of computations for which we know how to construct PRGs with the
optimal seed length O(log(n/ε)) or even log1+o(1)(n/ε). The most prominent examples are bounded-
degree polynomials over finite fields [NN93, AGHP92, BV10a, Lov08, Vio08], with parities (which
are fooled by small-bias distributions [NN93]) as a special case, and models that can be reduced to
these cases, such as width-2 branching programs [SZ95, BDVY09].

In summary, there are several interesting models of computation for which a polylogarithmic
dependence on n and 1/ε is known, and the dependence on one parameter is logarithmic on its
own (e.g. seed length O(log n log(1/ε))), but a logarithmic bound in both parameters together has
been elusive. Finally, we remark that not having a logarithmic dependence on the error ε is often
a symptom of a more fundamental bottleneck. For instance, HSGs with constant error for width
4 branching programs imply HSGs with polynomially small error for width 3 branching programs,
so achieving the latter is a natural first step towards the former. A polynomial-time computable
PRG for CNFs with seed length O(log n/ε) would imply the existence of a problem in exponential
time that requires depth-3 circuits of size 2Ω(n) and that cannot be solved by general circuits of size
O(n) and depth O(log n), which is a long-standing open problem in circuit complexity [Val77].

1.2 Our Results

In this paper, we construct the first generators with seed length Õ(log(n/ε)) (where Õ() hides
polylogarithmic factors in its argument) for several well-studied classes of functions mentioned
above.

• PRGs for combinatorial rectangles. Previously, it was known how to construct HSGs with seed
lengthO(log(n/ε)) [LLSZ97], but the best seed length for PRGs wasO(log n+log3/2(1/ε)) [Lu02].

• PRGs for read-once CNF and DNF formulas. Previously, De, Etesami, Trevisan, and Tul-
siani [DETT10] and Klivans, Lee and Wan [KLW10] had constructed PRGs with seed length
O(log n · log(1/ε)).

• HSGs for width 3 branching programs. Previously, Sima and Zak [SZ11] had constructed
hitting set generators for width 3 branching programs with seed length O(log n) in case the
error parameter ε is very large (greater than 5/6).

2

As a corollary of our PRG for combinatorial rectangles we get improved hardness amplification in
NP by combining our results with those of Lu Tsai and Wu [LTW07] - we refer to Section 5 for
details2.

1.3 Techniques

Our generators are all based on a general new technique — the iterative application of “mild”
(pseudo)random restrictions.

To motivate our technique, we first recall H̊astad’s switching lemma [Ajt83, FSS84, H̊as86]: if we
randomly assign a 1−1/O(k) fraction of the variables of a k-CNF, then the residual formula on the
n/O(k) unassigned variables is likely to become a constant. Ajtai and Wigderson [AW85] proposed
the following natural approach to constructing PRGs for CNFs: construct a small pseudorandom
family of restrictions that: 1) makes any given CNF collapse to a constant function with high
probability; and 2) ensures that the CNF collapses to each constant function with the right proba-
bility as determined by the bias of the formula. Known derandomizations of the switching lemma
are far from optimal in terms of the number of random bits needed [AW85, AAI+01, GMR12].
We will show that, for read-once CNFs, such a pseudorandom restriction can be generated using
Õ(log(m/ε)) random bits.

We apply restrictions that only set a constant fraction of the variables at a time. The novel
insight in our construction is that although we cannot set all the bits at one go from a small-bias
distribution, we can set a constant fraction of bits from such a distribution and prove that the bias
of the formula is preserved (on average). Hence we use only Õ(log(m/ε)) truly random bits per
phase. While such mild random restrictions do not drastically simplify the formulas, we show that
in each phase a suitable measure of progress improves (e.g. most clauses will either be satisfied or
will have reduced width), implying that the formula collapses to a constant after O(log log(m/ε))
steps; and so the total randomness will be Õ(log(m/ε)). The idea of setting a few variables at
a time is inspired by a recent PRG for hashing balls into bins due to Celis, Reingold, Segev, and
Wieder [CRSW11].

We illustrate our technique below with a toy example.

A Toy Example. Consider a read-once CNF formula f of width w with m = 2w+1 clauses in
which the variables appear in order (aka the Tribes function of [BL85]). That is,

f(x) = f1(x1, . . . , xw) ∧ f2(xw+1, . . . , x2w) ∧ · · · ∧ fm(x(m−1)w+1, . . . , xmw)

where each fi is the OR function. f has constant bias and can be computed both by a combinatorial
rectangle and a width-3 branching program. De et al. showed that fooling this function with error
ε using small-bias spaces requires seed-length Ω(w log(1/ε)/ log log(1/ε)).

Assume we partition the input bits into two parts: x which contains the first w/2 variables of
each clause and y which contains the rest. Let x ◦ y denote the concatenation of the two strings.
We would like to show that for D a small-bias distribution and U the uniform distribution,∣∣∣∣ E

x∼D,y∼U
[f(x ◦ y)]− E

x∼U ,y∼U
[f(x ◦ y)]

∣∣∣∣ ≤ ε (1.1)

A naive approach might be to view setting y ∼ U as applying a random restriction with
probability 1/2. If this simplified the function f to the extent that it can be fooled by small-bias
spaces, we would be done. Unfortunately, this is too much to hope for; it is not hard to see that

2We thank an anonymous referee for pointing out this application.

3

such a random restriction is very likely to give another Tribes-like function with width w/2, which
is not much easier to fool using small bias than f itself.

Rather, we need to shift our attention to the bias function of f . For each partial assignment x,
we define the bias function F (x) as

F (x) = E
y∼U

[f(x ◦ y)]. (1.2)

We can now rewrite Equation (1.1) as∣∣∣∣ E
x∼D

[F (x)]− E
x∼U

[F (x)]

∣∣∣∣ ≤ ε (1.3)

Our key insight is that for restrictions as above, the function F is in fact easy to fool using a
small-biased space. This is despite the fact that F (x) is an average of functions f(x ◦ y) (by
Equation (1.2)), most of which are Tribes-like and hence are not easy to fool.

Let us give some intuition for why this happens. Since f(x ◦ y) =
∏m
i=1 fi(x ◦ y),

F (x) = E
y∼U

[f(x ◦ y)] =

m∏
i=1

E
y∼U

[fi(x ◦ y)] =

m∏
i=1

Fi(x),

where Fi(x) is the bias function of the ith clause. But note that over a random choice of y, fi(x) is
set to 1 with probability 1− 2−w/2 and is a clause of width w/2 otherwise. Hence

Fi(x) = E
y∼U

[fi(x ◦ y)] = 1− 1

2w/2
+
∨w/2j=1xw(i−1)+j

2w/2
.

As a consequence, over a random choice of x, we now have

Fi(x) =

{
1 w.p. 1− 2−w/2

1− 2−w/2 w.p. 2−w/2

Thus each Fi(x) is a random variable with Ex[Fi(x)] = 1 − 2−w and Varx[Fi(x)] ≈ 2−3w/2. In
contrast, when we assign all the variables in the clauses at once, each fi(x) behaves like a Bernoulli
random variable with bias 1 − 2−w. While it also has Ex[fi(x)] = 1 − 2−w, the variance is much
larger: Varx[fi(x)] ≈ 2−w. The qualitative difference between 2−3w/2 and 2−w is that in the former
case, the sum of the variances over all 2w+1 clauses is small (2−w/2), but in the latter it is more
than 1. We leverage the small total variance to show that small-bias fools F , even though it does
not fool f itself. Indeed, setting any constant fraction α < 1 of variables in each clause would work.

We now sketch our proof that small-bias spaces fool F . Let gi(x) = Fi(x) − (1 − 2−w) be Fi
shifted to have mean 0, so that Ex[gi(x)2] = Var[Fi(x)]. We can write

F (x) =

m∏
i=1

(
1− 2−w + gi(x)

)
=

m∑
k=1

ckSk(g1(x), . . . , gm(x)) (1.4)

where Sk denotes the kth elementary symmetric polynomial and ck ∈ [0, 1].3

3In the toy example we are currently studying, an alternative and simpler approach is to write Fi(x) = (1 −
2−w/2)1−hi(x), where hi(x) = ∨w/2

j=1xw(i−1)+j is the indicator for whether x already satisfies the i’th clause on its own.

Then F (x) =
∏

i Fi(x) expands as a power series in
∑

i(1− hi(x)− 2−w/2), and higher moment bounds can be used
to analyze what happens when we truncate this expansion. However, this expansion is rather specific to the highly
symmetric Tribes function, whereas we are able to apply the expansion in terms of symmetric polynomials much
more generally.

4

Under the uniform distribution, one can show that

E
x∼U

[|Sk(g1(x), . . . , gm(x))|] ≤

(
m∑
i=1

E
x∼U

[
gi(x)2

])k/2
≤ 2−wk/4.

Thus for k ≥ O((log n)/w), we expect each term in the summation in Equation (1.4) to be
1/poly(n). So we can truncate at d = O((log n)/w) terms and retain a good approximation under
the uniform distribution.

Our analysis of the small-bias case is inspired by the gradually increasing independence paradigm
of Celis et al. [CRSW11], developed in the context of hashing. Every monomial in the gi’s of degree
at most d depends on at most wd = O(log n) variables. A small-bias space provides an almost
O(log n)-wise independent distribution on the variables of x, so the gi(x)’s will be almost d-wise
independent. This ensures that polynomials in g1(x), . . . , gm(x) of degree at most d (such as
S1, . . . , Sd) will behave like they do under the uniform distribution. But we also need to argue that
the Sk’s for k > d have a small contribution to Ex∼D [F (x)].

Towards this end, we prove the following inequality for any real numbers z1, . . . , zm:

If |S1(z1, . . . , zm)| ≤ µ

2
and |S2(z1, . . . , zm)| ≤ µ2

2
, then |Sk(z1, . . . , zm)| ≤ µk.

The proof uses the Newton–Girard formulas (see [CLO07]) which relate the symmetric poly-
nomials and power sums. This lets us repeat the same truncation argument, provided that
S1(g1(x), . . . , gm(x)) and S2(g1(x), . . . , gm(x)) are tightly concentrated even under small-bias dis-
tributions. We prove this concentration holds via suitable higher moment inequalities.4

This lets us show that small bias fools F (x). By iterating this argument logw times, we get a
PRG for f with polynomially small error and seed-length O((log n)(logw)) = O((log n)(log log n)).

Read-Once CNFs. The case of general read-once CNFs presents several additional challenges.
Since we no longer know how the variables are grouped into clauses, we (pseudo)randomly choose
a subset of variables to assign using ε-biased spaces, and argue that for most clauses, we will not
assign few variables. Clauses could now have very different sizes, and our approximation argument
relied on tuning the amount of independence (or where we truncate) to the width of the clause. We
handle this via an XOR lemma for ε-biased spaces, which lets us break the formula into O(log log n)
formulae, each having clauses of nearly equal size and argue about them separately.

Combinatorial Rectangles. A combinatorial rectangle f : [W]m → {0, 1} is a function of the
form f(x1, . . . , xm) = ∧mi=1fi(xi) for some Boolean functions f1, . . . , fm. Thus, here we know which
parts of the input correspond to which clauses (like the toy example above), but our clauses are
arbitrary functions rather than ORs. To handle this, we use a more powerful family of gradual
restrictions. Rather than setting w/2 bits of each co-ordinate, we instead (pseudo)randomly re-
strict the domain of each xi to a set of size W 1/2. More precisely, we use a small-bias space to
pseudorandomly choose hash functions h1, . . . , hm : [W 1/2]→ [W] and replace f with the restricted
function f ′(z1, . . . , zm) = ∧mi=1(fi ◦ hi)(zi).

4These inequalities actually require higher moment bounds for the gi’s. We ignore this issue in this description
for clarity, and because we suspect that this requirement should not be necessary.

5

Width 3 Branching Programs. For width 3 branching programs, inspired by Sima and Zak [SZ11]
we reduce the task of constructing HSGs for width 3 to that of constructing HSGs for read-once CNF
formulas where we also allow some clauses to be parities. Our PRG construction for read-once CNFs
directly extends to also handle such formulas with parities (intuitively because small-bias spaces
treat parities just like individual variables). The first step of our reduction actually works for any
width d, and shows how to reduce the the task of constructing HSGs for width d to constructing
hitting set generators for width d branching programs with sudden death, where the states in the
bottom level are all assumed to be Reject states.

Organization. Section 2 gives some preliminaries on pseudorandomness. Section 3 develops our
main new technical tools for constructing sandwiching approximators for symmetric functions. We
prove an XOR Lemma for ε-biased spaces in Section 4.

Section 5 describes our PRG construction for combinatorial rectangles. The reduction from
hitting sets for width 3 branching programs to hitting sets for CNFs with parity is in Section 6.
The generator for read-once CNFs and for CNFs with parity are presented in Section 7 and Section 8
respectively.

2 Preliminaries

We briefly review some notation and definitions. We use x ∼ D to denote sampling x from a
distribution D. For a set S, x ∼ S denotes sampling uniformly from S. By abuse of notation,
for a function G : {0, 1}s → {0, 1}n we let G denote the distribution over {0, 1}n of G(y) when
y ∼ {0, 1}s. For a function f : {0, 1}n → R, we denote E[f] = Ex∼{0,1}n [f(x)].

Hitting Set Generators and Pseudorandom Generators.

Definition 2.1 (Hitting Set Generators). A generator G : {0, 1}r → {0, 1}n is an (ε, δ)-hitting set
generator (HSG) for a class C of Boolean functions if for every f ∈ C such that E[f] ≥ ε, we have
Ex∼G f(x) ≥ δ. We refer to r as the seed-length of the generator and say G is explicit if there is
an efficient algorithm to compute G that runs in time poly(n, 1/ε, 1/δ).

Typically, our hitting set generators will be (ε, δ) generators for some δ = poly(ε, 1/n). Given
two functions g, h : {0, 1}n → {0, 1} we say g ≤ h if g(x) ≤ h(x) for all x ∈ {0, 1}n. To prove that
G hits h, it suffices to show G hits some function g ≤ h.

Definition 2.2 (Pseudorandom Generators). A generator G : {0, 1}r → {0, 1}n is an ε-pseudorandom
generator (PRG) for a class C of Boolean functions if for every f ∈ C, |E[f]− EG[f(y)]| ≤ ε. We
refer to r as the seed-length of the generator and say G is explicit if there is an efficient algorithm
to compute G that runs in time poly(n, 1/ε). We say G ε-fools C and refer to ε as the error.

We shall make extensive use of small-bias spaces, introduced in the seminal work of Naor and
Naor [NN93]. Usually these are defined as distributions over {0, 1}n, but it is more convenient for
us to work with {±1}n.

Definition 2.3. A distribution D on {±1}n is said to be ε-biased if for every nonempty subset
I ⊆ [n], |Ex∼{±1}n [

∏
i∈I xi]| ≤ ε.

There exist explicit constructions of ε-biased spaces which can be sampled from with O(log n+
log(1/ε)) random bits [NN93]. These give efficient pseudorandom generators for the class of parity
functions.

6

Definition 2.4. Let 0 < α, δ < 1/2. We say a distribution on D on 2[n] is δ-almost independent
with bias α if I ← D satisfies the following conditions:

• For every i ∈ [n], P[i ∈ I] = α.

• For any distinct indices i1, . . . , ik ∈ [n] and b1, . . . , bk ∈ {0, 1}k,

P
[
∧kj=1(1(ij ∈ I) = bj)

]
=

k∏
j=1

P[1(ij ∈ I) = bj]± δ.

There exist explicit constructions of distributions in D as above which only need O(log n +
log(1/αδ)) random bits [NN93]. We will write I ← D(α, δ) for short whenever I is sampled from a
δ-almost independent distribution with bias α as above.

Sandwiching Approximators. One of the central tools we use is to construct sandwiching
polynomial approximations for various classes of functions. The approximating polynomials (P`, Pu)
we construct for a function f will have two properties: 1) low-complexity as measured by the “L1-
norm” of P`, Pu and 2) they “sandwich” f , Pu ≤ f ≤ Pu. The first property will be important to
argue that small-bias spaces fool the approximating polynomials and the second property will allow
us to lift this property to the function being approximated. We formalize these notions below. For
notational convenience, we shall view functions and polynomials as defined over {±1}n.

Definition 2.5. Let P : {±1}n → R be a polynomial defined as P (x) =
∑

I⊆[n] cI
∏
i∈I xi. Then,

the L1-norm of P is defined by L1[P] =
∑

I⊆[n] |cI |. We say f : {±1}n → R has δ-sandwiching
approximations of L1 norm t if there exist functions fu, f` : {±1}n → R such that

f`(x) ≤ f(x) ≤ fu(x) ∀x, E[fu(x)]− E[f`(x)] ≤ δ, L1(f`), L1(fu) ≤ t.

We refer to f` and fu as the lower and upper sandwiching approximations to f respectively.

It is easy to see that the existence of such approximations implies that f is δ + tε fooled by
any ε-biased distribution. In fact, as was implicit in the work of Bazzi [Baz09] and formalized in
the work of De et. al. [DETT10], being fooled by small-bias spaces is essentially equivalent to the
existence of good sandwiching approximators.

Lemma 2.6. [DETT10] Let f : {±1}n → R be a function. Then, the following hold for every
0 < ε < δ:

• If f has δ-sandwiching approximations of L1-norm at most δ/ε, then for every ε-biased dis-
tribution D on {±1}n, |Ex∼D[f(x)]− E[f]| ≤ δ.

• If for every ε-biased distribution D, |Ex∼D[f(x)] − E[f]| ≤ δ, then, f has (2δ)-sandwiching
approximations of L1-norm at most |E[f]|+ δ + (δ/ε)5.

5 De et al. actually show a bound of δ/ε on the L1 norm of the sandwiching approximators excluding their constant
term. But it is easy to see that the constant term of the approximators is bounded by |E[f]|+ δ.

7

Pseudorandom Generators for CNFs. A Conjunctive normal form formula (CNF) is a con-
junction of disjunctions of literals. Throughout we view CNFs as functions on {±1}n, where we
identify −1 with false and 1 with true. We say a CNF f = C1 ∧C2 ∧ · · · ∧Cm is a read-once CNF
(RCNF), if no variable appears (by itself or as is its negation) more than once. We call m the size
of f and the maximum number of variables in C1, . . . , Cm the width of f . We shall also use the
following results of [DETT10], [KLW10] which say that RCNFs with small number of clauses have
very good sandwiching approximators.

Theorem 2.7. Let f : {±1}n → {0, 1} be a RCNF with at most m clauses. Then, for every ε > 0,
f has ε-sandwiching polynomials with L1-norm at most mO(log(1/ε)).

Theorem 2.8. Let f : {±1}n → {0, 1} be a CNF with at most m clauses and width at most w.
Then, for every ε > 0, f has ε-sandwiching polynomials with L1-norm at most (m/ε)O(w logw).

3 Sandwiching Approximators for Symmetric Functions

For k ≥ 1, let Sk : Rm → R denote the kth elementary symmetric polynomial defined by

Sk(z1, . . . , zm) =
∑

I⊆[m],|I|=k

∏
i∈I

zi.

Our main result on sandwiching approximators for symmetric functions is the following:

Theorem 3.1. Let g1, . . . , gm : {±1}n → R be functions on disjoint sets of input variables and
σ1, σ2, . . . , σm be positive numbers such that for all i ∈ [m],

E[gi] = 0, L1[gi] ≤ t, E
x∼{±1}n

[(gi)
2k] ≤ (2k)2kσ2k

i for k ≥ 1.

Let σ2 = (
∑

i σ
2
i)/m and δ ∈ (0, 1) and ε, k > 0 be such that

mσ2 ≤ 1

log(1/δ)25
, k =

⌈
5 log(1/δ)

log(1/mσ2)

⌉
, ε =

δ4

(mt+ 1)2k
. (3.1)

Let P (x) =
∑m

i=0 ciSi(g1(x), . . . , gm(x)) be a symmetric multilinear function of the gis that computes
a bounded function P : {±1}n → [−B,B], with |ci| ≤ C for all i ∈ [m]. Then,

1. For every ε-biased distribution D, we have∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼D

[P (x)]

∣∣∣∣ ≤ O(B + C)δ.

2. P has O(B + C)δ sandwiching approximations of L1 norm O((B + C)(mt+ 1)2kδ−3).

As an illustration of this theorem, we state the following immediate corollary which formalizes
the argument for the toy example in the introduction.

Theorem 3.2. Let κ > 0 be a constant. Let g1, . . . , gm : {±1}n → [−σ, σ] be functions on disjoint
sets of input variables with E[gi] = 0, L1[gi] = O(1) and σ ≤ 1/m−1/2−κ. Let P : {±1}n → [−1, 1]
be a symmetric polynomial in gi’s of the form P (x) =

∑m
i=0 ciSi(g1, . . . , gm), with |ci| ≤ 1. Then,

for every δ ∈ (0, 1), with log(1/σ) ≥ Ωκ(log(1/δ)), P has δ-sandwiching polynomials of L1-norm at
most poly(1/δ).

8

To derive Theorem 3.2 from Theorem 3.1, observe that in the notation from Section 1.3, m =
2w+1, σ2 ≈ 2−3w/2 and all the other conditions hold.

In the rest of this section, we prove the first statement of Theorem 3.1. The second statement
follows from the first by Lemma 2.6. We first sketch the steps involved in the proof.

Let k, ε be as in the theorem and letD be a ε-biased distribution. Let P≤k ≡
∑k

i=0 ciSi(g1, . . . , gm).
We will prove the theorem by showing that P cannot distinguish the uniform distribution from D
by a series of inequalities:

E
x∼{±1}n

[P (g1(x), . . . , gm(x))] ≈δ E
x∼{±1}n

[P≤k(g1(x), . . . , gm(x))]

≈δ E
x∼D

[P≤k(g1(x), . . . , gm(x))]

≈δ E
x∼D

[P (g1(x), . . . , gm(x))] .

Of these, the second inequality will follow from the fact that L1[P≤k] = poly(1/δ) (this is not
too hard). The first inequality can be seen as a special case of the last inequality as the uniform
distribution is an ε-biased distribution for any ε. Much of our effort will be in showing the last
inequality.

To do this, we first show that there is an event E that happens with high probability under
any ε-biased distribution, and conditioned on which P≤k is a very good approximation for P . We
then prove the last inequality by conditioning on the event E and using Cauchy-Schwarz to bound
the error when E does not occur. The event E will correspond to |S1(g1, . . . , gm)|, |S2(g1, . . . , gm)|
being small, which we show happens with high probability using classical moment bounds. Finally,
we show that P≤k approximates P well if E happens by using the Newton-Girard Identities for
symmetric polynomials (see Lemma 3.6).

3.1 Proof of Theorem 3.1

Our first task will be to show that under the assumptions of the theorem, |
∑

i gi(x)| and |
∑

i gi(x)2|
are small with high probability. We do so by first bounding the k’th moments of these variables
and applying Markov’s inequality. For this we will use Rosenthal’s inequalities ([Ros72], [JSZ85],
[Pin94]) which state the following:

Lemma 3.3. For independent random variables Z1, . . . , Zm such that E[Zi] = 0, and all k ∈ N,

E

(m∑
i=1

Zi

)2k
 ≤ (2k)2k max

 m∑
i=1

E[Z2k
i],

(
m∑
i=1

E[Z2
i]

)k . (3.2)

For independent non-negative random variables Z1, . . . , Zm, and all k ∈ N,

E

(m∑
i=1

Zi

)k ≤ kk max

 m∑
i=1

E[Zki],

(
m∑
i=1

E[Zi]

)k . (3.3)

Lemma 3.4. For all integers k ≥ 2,

E
x∼{±1}n

(m∑
i=1

gi(x)

)2k
 ≤ (2k)4k

(
m∑
i=1

σ2
i

)k
(3.4)

E
x∼{±1}n

(m∑
i=1

(gi(x))2

)k ≤ (2k)3k

(
m∑
i=1

σ2
i

)k
(3.5)

9

Proof. Let Zi = gi(x), x ∼ {±1}n. Then, Zi’s are independent mean-zero variables. Now, by
Rosenthal’s inequality, Equation (3.2),

E

(∑
i

Zi

)2k
 ≤ (2k)2k max

∑
i

E[Z2k
i],

(∑
i

E[Z2
i]

)k
≤ (2k)2k max

∑
i

(2k)2kσ2k
i ,

(∑
i

4σ2
i

)k
≤ (2k)4k max

∑
i

σ2k
i ,

(∑
i

σ2
i

)k
= (2k)4k

(∑
i

σ2
i

)k
.

The second bound follows similarly by applying Rosenthal’s inequality,Equation (3.3), to the non-
negative random variables Z2

i = g2
i :

E

(∑
i

Z2
i

)k ≤ kk max

∑
i

E[Z2k
i],

(∑
i

E[Z2
i]

)k ≤ (2k)3k

(
m∑
i=1

σ2
i

)k
.

A consequence of Lemma 3.4 is the following:

Corollary 3.5. For all k ≥ 2, under any ε-biased distribution D,

E
x∼D

(m∑
i=1

g1

)2k
 ≤ (2k)4k(mσ2)k + ε(mt)2k (3.6)

E
x∼D

(m∑
i=1

g2
1

)k ≤ (2k)3k(mσ2)k + ε(mt2)k (3.7)

Proof. Note that for any function h : {±1}n → R, L1[h
k] ≤ (L1[h])k. Therefore, applying this

inequality to h ≡
∑

i gi, we get L1[(
∑

i gi)
2k] ≤ (mt)2k. The first inequality now follows from

Lemma 3.4 and Lemma 2.6. The second inequality follows similarly.

Next we show that |
∑

i gi|,
∑

i g
2
i being small implies the smallness in absolute value of

Sk(g1, . . . , gm) for every k ≥ 2. Note that there is no probability involved in this statement.

Lemma 3.6. Let z1, . . . , zm be real numbers that satisfy∣∣∣∣∣
m∑
i=1

zi

∣∣∣∣∣ ≤ µ,
m∑
i=1

z2
i ≤ µ2.

Then for every k ≥ 2 we have

|Sk(z1, . . . , zm)| ≤ µk.

10

Proof. To prove this lemma, we first bound the power sums Ek(z1, . . . , zm) which are defined as

Ek(z1, . . . , zm) =
m∑
i=1

zki .

Note that E1 = S1. We start by bounding Ek for k ≥ 2 using the Lk norm inequalities

|Ek(z1, . . . , zm)|
1
k ≤

(
m∑
i=1

|zi|k
) 1

k

≤

(
m∑
i=1

z2
i

) 1
2

= E2(z1, . . . , zm)
1
2

Hence we have |Ek(z1, . . . , zm)| ≤ µk.
The relation between the power sums and elementary symmetric polynomials is given by the

Newton-Girard identities (see [CLO07], Chapter 7.1 for instance) discovered in the 17th century.

Sk(z1, . . . , zm) =
1

k

k∑
i=1

(−1)i−1Sk−i(z1, . . . , zm)Ei(z1, . . . , zm). (3.8)

We use these to show by induction on k that |Sk| ≤ µk. For k = 2, we have

S2(z1, . . . , zm) =
1

2
(S1(z1, . . . , zm)2 − E2(z1, . . . , zm)) ≤ 1

2
(µ2 + µ2) ≤ µ2.

Assume we have proved the bound up to k − 1. Using the Newton-Girard formula,

|Sk(z1, . . . , zm)| ≤ 1

k

k∑
i=1

|Sk−i(z1, . . . , zm)||Ei(z1, . . . , zm)| ≤ 1

k

k∑
i=1

µk−iµi ≤ µk.

Let

P≤k(x) =
k∑
i=0

ciSi(g1, . . . , gm)

denote the truncation of P to degree k. We use the following bounds for P≤k.

Lemma 3.7. Let P,m, t, C,D be as in Theorem 3.1. If mσ2 ≤ 1
2 , then for every k ∈ N,

E
x∼D

[
P≤k(x)2

]
≤ 2C2 + ε · (mt+ 1)2k · C2. (3.9)

Proof. We observe that the symmetric polynomials S0 = 1, . . . , Sk on g1, . . . , gm are mutually
orthogonal under the uniform distribution, i.e., for i 6= j,

E
x∼{±1}n

[Si(g1(x), . . . , gm(x)) · Sj(g1(x), . . . , gm(x))] = 0.

For brevity, we shall omit writing out the argument x in the following. For i ≥ 1, we have

E
x∼{±1}n

[
Si(g1, . . . , gm)2

]
=
∑
|S|=i

∏
j∈S

E
x∼{±1}n

[
g2
j

]
≤

 m∑
j=1

E
x∼{±1}n

[g2
j]

i

≤ (mσ2)i.

11

Therefore, assuming that mσ2 ≤ 1/2,

E
x∼{±1}n

[
P≤k(g1, . . . , gm)2

]
=

k∑
i=0

c2
i E
x∼{±1}n

[
Si(g1, . . . , gm)2

]
≤ C2

k∑
i=0

(mσ2)i ≤ 2C2. (3.10)

Since L1[gj] ≤ t, we have

L1 [Si(g1, . . . , gm)] ≤
(
m

i

)
ti,

L1 [P≤k] ≤ C
k∑
i=0

(
m

i

)
ti ≤ C · (mt+ 1)k, and

L1
[
P 2
≤k
]
≤ L1 [P≤k]

2 ≤ C2 · (mt+ 1)2k.

Hence
E
x∼D

[P≤k(x)2] ≤ C2(2 + ε(mt+ 1)2k) ≤ 2C2 + ε · (mt+ 1)2k) · C2.

Setting Parameters. In Theorem 3.1, we choose

k =

⌈
5 log(1/δ)

log(1/mσ2)

⌉
which guarantees δ5/2 ≤ (mσ2)k ≤ δ5. By Equation (3.1) we have

mσ2 ≤ 1

log(1/δ)25
,

from which it follows that

k ≤ log(1/δ)

5 log log(1/δ)
, and (3.11)

(2k)4k ≤ 1

δ
. (3.12)

Finally, for all ε small enough so that ε · (mt+ 1)2k ≤ δ4, the following bounds will hold under the
assumptions of Theorem 3.1, by Corollary 3.5 and Lemma 3.7,

E
x∼D

[
P≤k(x)2

]
≤ 4C2, (3.13)

E
x∼D

(m∑
i=1

gi(x)

)2k
 ≤ (2k)4k(mσ2)k + ε(mt)2k ≤ 2δ4 (3.14)

E
x∼D

(m∑
i=1

gi(x)2

)k ≤ (2k)3k(mσ2)k + ε(mt)2k ≤ 2δ4. (3.15)

We now proceed to prove Statement (1) in Theorem 3.1, which we restate below with specific
constants.

12

Lemma 3.8. With the notation from Theorem 3.1, we have∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼D

[P (x)]

∣∣∣∣ ≤ (4B + 13C) · δ. (3.16)

Proof. We will show that under any ε-biased distribution D,

E
x∼D

[|P (x)− P≤k(x)|] ≤ (2B + 6C)δ. (3.17)

Note that U is ε-biased for ε = 0, so the above bound applies to it. We derive Equation (3.16) from
Equation (3.17) as follows:∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼D

[P (x)]

∣∣∣∣ ≤ ∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼{±1}n

[P≤k(x)]

∣∣∣∣+

∣∣∣∣ E
x∼{±1}n

[P≤k(x)]− E
x∼D

[P≤k(x)]

∣∣∣∣
+

∣∣∣∣ E
x∼D

[P≤k(x)]− E
x∼D

[P (x)]

∣∣∣∣ .
(3.18)

The first and last terms are bounded using Equation (3.17). We bound the middle term by

| E
x∼{±1}n

[P≤k(x)]− E
x∼D

[P≤k(x)]| ≤ ε · L1[P≤k(x)] ≤ ε · C · (mt+ 1)k ≤ Cδ4.

Equation (3.16) follows by plugging these bounds into Equation (3.18):∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼D

[P (x)]

∣∣∣∣ ≤ 2(2B + 6C)δ + Cδ4 ≤ (4B + 13C)δ.

We now prove Equation (3.17). Define a good event G ⊆ {±1}n containing those x for which
the following bounds hold: ∣∣∣∣∣

m∑
i=1

gi(x)

∣∣∣∣∣ ≤ δ 1
k ,

∣∣∣∣∣
m∑
i=1

(gi(x))2

∣∣∣∣∣ ≤ δ 2
k . (3.19)

For x ∈ G, P≤k(x) gives a good approximation to P (x). By Lemma 3.6, we have |S`(g1(x), . . . , gm(x))| ≤
δ`/k for all ` ≥ 2. Hence, for all x ∈ G

|P (x)− P≤k(x)| ≤
m∑

`=k+1

|c`S`(g1(x), . . . , gm(x))| ≤ C
m∑

`=k+1

δ`/k ≤ Cδ
∑
`≥1

δ`/k ≤ 2Cδ. (3.20)

We now bound the probability of ¬G using Markov’s inequality applied to a k’th moment bound
obtained from Equations (3.14) and (3.15):

Pr
x∼D

[∣∣∣∣∣
m∑
i=1

gi(x)

∣∣∣∣∣ ≥ δ1/k

]
= Pr

x∼D

∣∣∣∣∣
m∑
i=1

gi(x)

∣∣∣∣∣
2k

≥ δ2

 ≤ 1

δ2
E
x∼D

(m∑
i=1

gi(x)

)2k
 ≤ 2δ2,

Pr
x∼D

[∣∣∣∣∣
m∑
i=1

gi(x)2

∣∣∣∣∣ ≥ δ2/k

]
= Pr

x∼D

∣∣∣∣∣
m∑
i=1

gi(x)2

∣∣∣∣∣
k

≥ δ2

 ≤ 1

δ2
E
x∼D

(m∑
i=1

gi(x)2

)k ≤ 2δ2,

13

Let 1G(x) and 1¬G(x) denote the indicators of G and ¬G respectively. We have

E
x∼D

[1¬G(x)] ≤ Pr
x∼D

[∣∣∣∣∣
m∑
i=1

gi(x)

∣∣∣∣∣ ≥ δ1/k

]
+ Pr
x∼D

[∣∣∣∣∣
m∑
i=1

gi(x)2

∣∣∣∣∣ ≥ δ2/k

]
≤ 4δ2. (3.21)

Further,

E
x∼D

[|P (x)− P≤k(x)|] = E
x∼D

[|P (x)− P≤k(x)| · 1G(x)] + E
x∼D

[|P (x)− P≤k(x)| · 1¬G(x)] (3.22)

By Equation 3.20, we have

E
x∼D

[|P (x)− P≤k(x)| · 1G(x)] ≤ max
x∈G
|P (x)− P≤k(x)| ≤ 2Cδ (3.23)

To bound the second term,

E
x∼D

[|P (x)− P≤k(x)| · 1¬G] ≤ E
x∼D

[|P (x)| · 1¬G] + E
x∼D

[|P≤k(x)| · 1¬G]

≤ E
x∼D

[P (x)2]
1
2 E
x∼D

[1¬G]
1
2 + E

x∼D
[P≤k(x)2]

1
2 E
x∼D

[1¬G]
1
2

≤ B · 2δ + 2C · 2δ (3.24)

where we use the bounds

E
x∼D

[P (x)2] ≤ B2 (Since |P (x)| ≤ B)

E
x∼D

[P≤k(x)2] ≤ 4C2 (Equation (3.13))

E
x∼D

[1¬G] ≤ 4δ2. (Equation (3.21))

Plugging Equations (3.23) and (3.24) into Equation (3.22) we get Equation (3.17).

4 An XOR Lemma for ε-biased spaces

In this section, we prove an XOR Lemma that helps us show the existence of good sandwiching
approximators for the composition of a function on few variables with functions on disjoint sets of
variables, each of which have good sandwiching approximators. We call it an XOR lemma, since
one can view it as a generalization of Vazirani’s XOR lemma.

Theorem 4.1. Let f1, . . . , fk : {±1}n → [0, 1] be functions on disjoint input variables such that
each f i has ε-sandwiching approximations of L1 norm t. Let H : [0, 1]k → [0, 1] be a multilinear
function in its inputs. Let h : {±1}n → [0, 1] be defined as h(x) = H(f1(x), . . . , fk(x)). Then h
has (16kε)-sandwiching approximations of L1 norm 4k(t+ 1)k.

Proof. For S ⊆ [k] define the monomial

MS(x) =
∏
i∈S

f i(x)
∏
j 6∈S

(1− f j(x)).

Let f iu and f i` denote the upper and lower sandwiching approximations to f i. Then we have

f iu(x) ≥ f i(x), E
x∼{±1}n

[f iu(x)− f i(x)] ≤ ε.

1− f j` (x) ≥ 1− f j` (x), E
x∼{±1}n

[(1− f j` (x))− (1− f j(x))] ≤ ε.

14

Hence, if we define

MS
u (x) =

∏
i∈S

f iu(x)
∏
j 6∈S

(1− f j` (x)),

then we have

MS
u (x) ≥MS(x) ∀ x ∈ {±1}n,

L1[M
S
u] =

∏
i∈S

L1[f
i
u]
∏
j 6∈S

L1[1− f j`] ≤ (t+ 1)k.

We will show using a hybrid argument, that

E
x∼{±1}n

[MS
u (x)−MS(x)] ≤ 2kε.

For simplicity, we only do the case S = [k]. We define a sequence of polynomialsMS
u = M0,M1 . . . ,Mk =

MS where

Mi(x) =

i∏
j=1

f j(x)

k∏
j=i+1

f ju(x).

We now have

E
x∼{±1}n

[Mi(x)−Mi+1(x)] = E
x∼{±1}n

(f i+1
u (x)− f i+1(x)

)
·

i∏
j=1

f j(x) ·
k∏

j=i+2

f ju(x)

= E

x∼{±1}n

[
f i+1
u (x)− f i+1(x)

]
·

i∏
j=1

E
x∼{±1}n

[
f j(x)

]
·

k∏
j=i+2

E
x∼{±1}n

[
f ju(x)

]
≤ ε

i∏
j=1

1

k∏
j=i+2

(1 + ε) ≤ (1 + ε)k−i−1ε

where we use the facts that Ex∼{±1}n [f j] ≤ 1 and Ex∼{±1}n [f ju] ≤ Ex∼{±1}n [f j] + ε ≤ 1 + ε. We
now have

E
x∼{±1}n

[
MS
u (x)−MS(x)

]
≤

k−1∑
i=0

E
x∼{±1}n

[Mi(x)−Mi+1(x)]

≤ ε(1 + (1 + ε) · · · (1 + ε)k−1) ≤ 2kε.

To construct a lower-sandwiching approximator, we observe that∑
S⊆[k]

MS(x) =
∏
i∈[k]

(f i(x) + 1− f i(x)) = 1.

Hence if we define
MS
` (x) = 1−

∑
T 6=S

MT
u (x)

15

then

MS
` (x) ≤ 1−

∑
T 6=S

MT (x) = MS(x),

E
x∼{±1}n

[MS(x)−MS
` (x)] =

∑
T 6=S

MT
u (x)−MT (x) ≤ 4kε,

L1[M
S
`] ≤ 2k(t+ 1)k.

Finally, let 1S ∈ {0, 1}k denote the indicator vector of the set S. Since H is multilinear, we can
write

H(y) =
∑
S⊆[k]

H(1S)
∏
i∈S

yi
∏
j 6∈S

(1− yj)

where H(1S) ∈ [0, 1]. Hence

h(x) =
∑
S⊆[k]

H(1S)
∏
i∈S

fi(x)
∏
j 6∈S

(1− fj(x)) =
∑
S⊆[k]

H(1S)MS(x)

We define the polynomials

hu(x) =
∑
S⊆[k]

H(1S)MS
u (x), h`(x) =

∑
S⊆[k]

H(1S)MS
` (x).

It follows that

hu(x) ≥ h(x) ≥ h`(x)

E
x∼{±1}n

[hu(x)− h`(x)] ≤
∑
S⊆[k]

H(1S) E
x∼{±1}n

[MS
u (x)−MS

` (x)] ≤ 16kε,

L1[hu] ≤ 2k(t+ 1)k, L1[h`] ≤ 4k(t+ 1)k.

5 A PRG for Combinatorial Rectangles

We start by defining combinatorial rectangles (CRs).

Definition 5.1. A combinatorial rectangle is a function f : ({±1}w)m → {0, 1} of the form
f(x1, . . . , xm) =

∧m
i=1 fi(xi), where fi : {±1}w → {0, 1}, and each xi ∈ {±1}w.We refer to the fis

as the co-ordinate functions of f . We refer to m as the size6 of f and w as the width.

We construct an explicit PRG for CRs with seed-length Õ(logm+w + log(1/δ)). The previous
best construction due to Lu had a seed-length of O(logm+ w + log3/2(1/δ)) [Lu02].

Theorem 5.2. There is an explicit pseudorandom generator for the class of combinatorial rectan-
gles of width w and size m with error at most δ and seed-length O((logw)(log(m) +w+ log(1/δ)) +
log(1/δ) log log(1/δ) log log log(1/δ)).

6This is usually referred to as the dimension in the literature; we use this terminology for the CNF analogy.

16

Our generator uses a recursive sampling technique and we next describe a single step of this
recursive procedure. For this informal description suppose that δ = 1/poly(m), w = O(logm) and
let v = 3w/4. Fix a CR f : ({±1}w)m → {0, 1}.

Consider the following two-step process for generating a uniformly element x from ({±1}w)m.

• Choose a sequence of multi-sets S1, . . . , Sm ⊆ {±1}w each of size 2v by picking 2v elements
of {±1}w independently and uniformly at random.

• Sample xi ∼ Si and set x = (x1, . . . , xm).

This results in an x that is uniformly distributed over ({±1}w)m. We will show that the Ex[f(x)]
will not change much, even if the sampling in the first step can is done pseudorandomly using a
small-bias space for suitably small ε.

Our final generator is obtained by iterating the one-step procedure for T = O(log logm)) steps:
At step t we choose multi-sets St1 ⊆ St−1

1 , . . . , Stm ⊆ St−1
m each of cardinality exactly 2(3/4)tw using

small-bias. After T steps, we are left with a rectangle of width w = O(log logm). Such rectangles
can be fooled by ε-bias spaces where ε = 1/mO(log logm). The total randomness used over all the
steps is O((logm) · (log logm)).

5.1 Sandwiching Approximations for Bias Functions

In the following, let f be a CR of width w and coordinate functions f1, . . . , fm : {±1}w → {0, 1}.
We describe a restriction of f which reduces the width from w to v = 3w/4.

• For every a ∈ {±1}v, we sample string xa = (xa,1, . . . , xa,m) ∼ {{±1}w}m.

• For i ∈ [m], we define restricted co-ordinate functions fvi on inputs yi by fvi (yi) = f(xyi,i).

• Define the restricted rectangle fv : ({±1}v)m → {0, 1} on y1, . . . , ym by

fv(y1, . . . , ym) =

m∧
i=1

fvi (yi) (5.1)

Let x̄ ∈ {{±1}w}2v×m denote the matrix whose rows are indexed by a ∈ {±1}v, the columns by
i ∈ [m] and (a, i)’th entry is given by x̄[a, i] = xa,i ∈ {±1}w. Every such matrix defines a restriction
of f . We will show that if choosing x̄ from an ε-biased space for ε = 1/poly(m) suitably small, and
from the uniform distribution have almost the same effect on f . For i ∈ [m], let x̄[i] denote the
i’th column of x̄. For each coordinate function fi, define the sample average function

f̄i(x̄) =
1

2v

∑
a∈{±1}v

fi(xa,i) = E
a∼{±1}v

[fvi (a)] . (5.2)

Note that each f̄i only depends on column i of x̄. Define the bias function of x̄ as

F (x̄) =
m∏
i=1

f̄i(x̄) = E
y∼({±1}v)m

[fv(y)] . (5.3)

The main lemma of this section shows that this bias function can be fooled by small-bias spaces.

Lemma 5.3 (Main). Let F be as defined in Equation (5.3). Assume that δ < 1/4 and w ≤ log(1/δ),
v = 3w/4 ≥ 50 log log(1/δ). Then F (x) has δ-sandwiching approximations of L1 norm poly(1/δ).

17

We start by stating two simple claims.

Claim 5.4. For the sample average functions f̄i defined as in Equation (5.2), we have

L1(f̄i) ≤ L1(fi) ≤ 2w/2.

E
x̄∼U

[f̄i(x̄)] = E
z∼{±1}w

[fi(z)].

Proof. From Equation (5.2), it follows that

L1[f̄i] ≤
1

2v

∑
a∈{±1}v

L1[fi] = L1[fi] ≤ 2w/2

where the last inequality holds for any Boolean function on w input bits. The bound on the
expectation follows directly from Equation (5.2).

The justification for the name bias function comes from the following lemma.

Claim 5.5. For fv and F as defined in Equation (5.1) and Equation (5.3),

E
y∼({±1}v)m

[fv(y)] = F (x̄).

Proof. Note that

fvi (yi) =
∑

a∈{±1}v
1y=afi(xa,i),

hence E
y∼({±1}v)m

[fvi (y)] =
1

2v

∑
a∈{±1}v

fi(xa,i) = f̄i(x̄).

It follows that

E
y∼({±1}v)m

[fv(y)] = E
y∼({±1}v)m

[
m∧
i=1

fvi (yi)

]

= E
y∼({±1}v)m

[
m∏
i=1

fvi (y)

]

=
m∏
i=1

E
y∼({±1}v)m

[fvi (y)]

=
m∏
i=1

f̄i(x̄)

= F (x̄).

We will prove Lemma 5.3 by applying Theorem 3.1 to the functions gi : {{±1}w}2v → R defined
as follows: gi(x̄) = (f̄i(x̄)− pi)/pi,, where pi = Ea∼{±1}w [fi(x)]. (We assume pi 6= 0.)

We will need the following technical lemma, which helps us show that the functions gi satisfy
the moment conditions needed to apply Theorem 3.1. For brevity, let U denote ({±1}v)2v×m in
the remainder of this section.

18

Lemma 5.6. Let pi, gi,U be defined as above. We have Ex̄∼U [gi(x̄)2k] ≤ (2k)2kσ2k
i where

σ2
i =

(1−pi)
2vpi

for pi ∈ [2−v/10, 1/2],
2(1−pi)

2v for pi ∈ [1/2, 1− 2−v],
2

22v
for pi ∈ [1− 2−v, 1].

Proof. W start by bounding the moments of (f̄i(x̄)− pi). We have

2v(f̄i(x̄)− pi) =
∑

a∈{±1}v
(f(xa,i)− pi)

which is the sum of 2v i.i.d pi-biased random variables with mean 0. Hence we can apply Rosenthal’s
inequality (Equation (3.2)) to get

(2v)2k E
x̄∼U

[(f̄i(x̄)− pi)2k] ≤ (2k)2k max
(

2v((1− pi)2kpi + p2k
i (1− pi)), (2vpi(1− pi))k

)
Hence we have

E
x̄∼U

[gi(x̄)2k] =
1

p2k
i

E
x̄∼U

[(f̄i(x̄)− pi)2k]

≤ (2k)2k

(2v)2k
max

(
2v

((
1− pi
pi

)2k

pi + 1− pi

)
,

(
2v · 1− pi

pi

)k)

We will use the following bounds

2v

((
1− pi
pi

)2k

pi + 1− pi

)
≤

{
2v(1+k/5) for pi ∈ [2−v/10, 1/2].

2v+1(1− pi) for pi ∈ [1/2, 1].(
2v · 1− pi

pi

)k
≤
(
2v+1(1− pi)

)k
for pi ∈ [1/2, 1].

From this it follows that Ex̄∼U [gi(x̄)2k] ≤ (2k)2kσ2k
i where

σ2
i =

(1−pi)
2vpi

for pi ∈ [2−v/10, 1/2],
2(1−pi)

2v for pi ∈ [1/2, 1− 2−v],
2

22v
for pi ∈ [1− 2−v, 1].

Proof of Lemma 5.3. We first show the claim under the assumption that E[f] = p ≥ δ and later
show how to get around this assumption. Define the sets

S1 = {i : pi ∈ (0, 2−v/10]}, S2 = {i : pi ∈ (2−v/10, 1− 2−v]}, S3 = {i : pi ∈ (1− 2−v, 1]}.

For j ∈ [3], let Fj(x̄) =
∏
i∈Sj

f̄i(x̄) so that F (x̄) =
∏3
j=1 Fj(x̄). We will construct sandwiching

approximations for each Fj and then combine them via Theorem 4.1. We assume without loss of
generality that pi ≤ 1 − 2−w. Else, the i’th coordinate has bias 1 and can be ignored without
changing the rest of the proof.

19

Sandwiching F1. We show that L1[F1] is itself small. Observe that δ ≤ p =
∏m
i=1 pi ≤

∏
i∈S1

pi ≤
2−v|S1|/10, which implies that |S1| ≤ 10 log(1/δ)/v. Thus, by Claim 5.4,

L1[F1] ≤
∏
i∈S1

L1[f̄i] ≤ 2
w
2
|S1| ≤

(
1

δ

)5w/v

≤ 1

δ20/3
.

Sandwiching F2. Note that F2(x̄) =
∏
i∈S2

f̄i(x̄) =
∏
i∈S2

pi · (1 + gi(x̄)). Notice that F2 is a
symmetric polynomial in the gi’s, so we will obtain sandwiching polynomials for F2 by applying
Theorem 3.1 to gi’s. As before, δ ≤ p ≤

∏
i∈S2

pi ≤ (1 − 2−v)|S2|, so we have |S2| ≤ 2v log(1/δ).

Further we can write δ ≤ p ≤
∏
i∈S2

(1−(1−pi)) ≤ e−
∑

i∈S2
(1−pi), so that

∑
i∈S2

(1−pi) ≤ 2 log(1/δ).

By Lemma 5.6, we have Ex∼{±1}n [gi(x̄)2k] ≤ (2k)2kσ2k
i , where 2/2v ≤ σ2

i = (1−pi)/29v/10 for every
i ∈ S2. Hence, ∑

i∈S2

σ2
i =

∑
i∈S2

1− pi
29v/10

≤ 2 log(1/δ)

29v/10
≤ 1

log(1/δ)25
.

Hence Theorem 3.1 implies the existence of O(δ) (B = 1 and C =
∏
i∈S2

pi ≤ 1) sandwiching

approximations with L1 norm bounded by (mt+ 1)2k where

m = |S2| ≤ 2v log(1/δ) ≤ 25v/4, t ≤ 2w/2 ≤ 2v, k ≤ 5 log(1/δ)

log(1/
∑

i σ
2
i)
≤ 25 log(1/δ)

4v
.

which implies the L1 norm is bounded by poly(1/δ).

Sandwiching F3. We write

F3(x) =
∏
i∈S3

f̄i(x) =
∏
i∈S3

pi(1 + gi(x)).

Note that each i ∈ S3 satisfies 1 − pi ≥ 2−w, which implies that |S3| ≤ 2w+1 log(1/δ)). Let
σ2
i = 2/22v ≥ 1

2w . Then, by Lemma 5.6, Ex̄∼U [gi(x)k] ≤ (2k)2kσ2k
i and we have

∑
i∈S3

σ2
i ≤

2w+1 log(1/δ))

22v
≤ 1

23v/5
≤ 1

log(1/δ)25
.

By Theorem 3.1, F3 has O(δ) sandwiching approximations with L1 norm bounded by (mt + 1)2k

where

m ≤ 2w log(1/p) ≤ 23v/2,

t ≤ 2w/2 ≤ 2v,

k ≤ 5 log(1/δ)

log(1/
∑

i σ
2
i)
≤ 25 log(1/δ)

3v
.

which implies the L1 norm is bounded by poly(1/δ).

Sandwiching F . Since each Fj has O(δ) sandwiching approximations with L1 norm poly(1/δ),
by Theorem 4.1, F = F1F2F3 has O(δ) sandwiching approximations of L1 norm poly(1/δ).

20

Handling all values of E[f]. Finally, to get rid of the condition E[f] ≥ δ, assume that E[f] ≤ δ.
If E[f] = 0, f = 0 so there is nothing to prove. If E[f] > 0, every co-ordinate fi has at least one
satisfying assignment. We repeat the following procedure until the expectation exceeds δ: pick a
co-ordinate i which is not already the constant 1 function and add a new satisfying assignment to
i. Such a co-ordinate i exists because δ < 1. We repeat this until we get a rectangle f t such that
E[f t] ≥ δ. Denote the resulting sequence

f = f0 ≤ f1 · · · ≤ f t.

We claim that for every j,

E
x̄∼U

[f j(x)] ≤ E
x̄∼U

[f j+1(x)] ≤ 2 E
x̄∼U

[f j(x)].

The last inequality holds since at each step, we at most double the acceptance probability of the
chosen co-ordinate, and hence of the overall formula. Hence we have

E[f t] ≤ 2E[f t−1] ≤ 2δ.

We use the upper approximator for f t as the upper approximator for f and 0 as the lower approx-
imator. This gives sandwiching approximators with error at most 2δ and L1 norm poly(1/δ).

This completes the proof of the lemma.

5.2 A Recursive Sampler for Combinatorial Rectangles

We now use Lemma 5.3 recursively to prove Theorem 5.2. Our generator is based on a derandomized
recursive sampling procedure which we describe below. The inputs are the width w and the size m
of the rectangles we wish to fool and an error parameter δ ≤ 1/2w.

1. Let v0 = w, vj =
(

3
4

)j
w.

2. While vj ≥ 50 log log(1/δ) we sample x̄j ∈ {{±1}vj−1}2
vj×m according to an ε1-biased distri-

bution for ε ≤ (1/δ)c1 for some large constant c1.

3. Assume that at step t (where t = O(logw)), vt ≤ 50 log log(1/δ). Sample an input x̄t ∈
({±1}vt−1)m from an ε2-biased distribution where, for some large constant c2,

ε2 ≤ (1/δ)c2(log log(1/δ) log log log(1/δ)) .

We next describe how we use x = (x̄1, . . . , x̄t) to output an element of ({±1}w)m. For
k ∈ {1, . . . , t − 1} we denote by sk the recursive sampling function which takes strings x̄j ∈
{{±1}vj−1}2

vj×m for j ∈ {k + 1, . . . , t − 1} and x̄t ∈ ({±1}vt)m and produces an output string
sk(x̄k+1, . . . , x̄t) ∈ ({±1}vk)m. Set st−1(x̄t) ≡ x̄t. Fix k < t − 1 and let z = sk+1(x̄k+2, . . . , x̄t) be
already defined. To define sk, we will use z to look up entries from the matrix x̄k+1, so that the
i’th coordinate of sk will be the entry of x̄k+1 in the zi’th row and i’th column:

sk(x) ≡ sk(x̄k+1, . . . , x̄t) = ((x̄k+1)z1,1, (x̄k+1)z2,2, . . . , (x̄k+1)zm,m) ∈ ({±1}vk)m .

The above definition, though intuitive is a bit cumbersome to work with. It will be far easier
for analysis to fix the input combinatorial rectangle f : ({±1}w)m → {0, 1} and study the effect
of the samplers sk on f . Let f0 = f . Each matrix x̄j gives a restriction of f j−1: it defines

21

restricted co-ordinate functions f ji : {±1}vj → {0, 1} and a corresponding restricted rectangle
f j : {{±1}vj}m → {0, 1}. We only use the following property of the sjs:

f(s0(x)) = f1(s1(x)) · · · f t−1(st−1(x)). (5.4)

To analyze the last step, we use the following corollary that follows from [DETT10].

Corollary 5.7. Every combinatorial rectangle f : {{±1}v}m → {±1} is δ-fooled by ε-bias spaces

for ε = (m2v/δ)−O(v log v).

Proof. Each co-ordinate function fi can be expressed as a CNF formula with 2v clauses of width v.
Hence we can write f as a CNF formula with m2v clauses of width v. Now apply Theorem 2.8.

For brevity, in the following let

U = ({±1}v0)2v1×m × ({±1}v1)2v2×m × · · · × ({±1}vt−2)2vt−1×m × ({±1}vt−1)m ,

be the domain of x as defined in the generator construction.
Let Dj denote the distribution on U where x̄i are sampled from an ε-biased distribution for

i < j and uniformly for i ≥ j. Then, s0(D0) is the uniform distribution on {{±1}w}m whereas
s0(Dt) is the output of our Recursive Sampler.

Lemma 5.8. Let f : {{±1}w}m → {0, 1} be a combinatorial rectangle with width w and size m.
For distributions D0 and Dt defined above, we have∣∣∣∣ E

x∼D0
[f(s0(x))]− E

x∼Dt
[f(s0(x))]

∣∣∣∣ ≤ δ.
Proof. Let δ′ = δ/t. We will show by a hybrid argument that for all j ∈ {1, . . . , t}∣∣∣∣ E

x∼Dj−1
[f(s0(x))]− E

x∼Dj
[f(s0(x))]

∣∣∣∣ ≤ δ′. (5.5)

In both Dj−1 and Dj , x̄i is drawn from an ε-biased distribution for i < j, and from the uniform
distribution for i > j. The only difference is x̄j which is sampled uniformly in Dj−1 and from an
ε-biased distribution in Dj .

We couple the two distributions by drawing x̄i for i < j according to an ε-biased distribution.
By Equation (5.4), we get

E
x∼Dj−1

[f(s0(x))] = E
x∼Dj−1

[f j−1(sj−1(x))], E
x∼Dj

[f(s0(x))] = E
x∼Dj

[f j−1(sj−1(x))]

and our goal is now to show that∣∣∣∣ E
x∼Dj−1

[f j−1(sj−1(x))]− E
x∼Dj

[f j−1(sj−1(x))]

∣∣∣∣ ≤ δ′. (5.6)

Define the bias function F j−1 of the rectangle f j−1 as in Equation (5.3). The string x̄j defines
a restricted rectangle f j : {{±1}vj}m → {0, 1}. Applying Claim 5.5 we get

E
z∼({±1}vj)

m
[f j(z)] = F j−1(x̄j).

22

In both distributionsDj−1 andDj , x̄j+1, . . . , x̄t are distributed uniformly at random, hence sj(Dj−1) =
sj(Dj) ∼ ({±1}vj)m are uniformly distributed, and this variable is independent of x̄j . So we have

E
x∼Dj−1

[f j−1(sj−1(x))] = E
x̄j∼Dj−1

[
E

(x̄j+1...,x̄t)∼Dj−1
[f j(sj(x̄j+1, . . . , x̄t))]

]
= E

x̄j∼Dj−1
[F j−1(x̄j)],

E
x∼Dj

[f j−1(sj−1(x))] = E
x̄j∼Dj

[
E

(x̄j+1...,x̄t)∼Dj
[f j(sj(x̄j+1, . . . , x̄t))]

]
= E

x̄j∼Dj
[F j−1(x̄j)]

Thus it suffices to show that∣∣∣∣ E
x̄j∼Dj−1

[F j−1(x̄j)]− E
x̄j∼Dj

[F j−1(x̄j)]

∣∣∣∣ ≤ δ′
By Lemma 5.3, this holds true for j ≤ t− 1 provided that ε1 ≤ poly(1/δ′).

For j = t, note that this is equivalent to showing that ε2-bias fools the rectangle f t. By
Corollary 5.7, f t is δ′ fooled by ε2-biased spaces where

ε2 =

(
m2vt

δ′

)−O(vt log vt)

=

(
1

δ′

)O(log log(1/δ′) log log log(1/δ′))

.

Plugging these back into Equation (5.5), the error is bounded by t · δ′ ≤ δ.

To complete the proof of Theorem 5.2, we observe that the total seed-length is

s = O ((logw)(log(m2w/ε1) + log(m2w/ε2))

= O (logw (logm+ w + log(1/δ)) + log(1/δ) log log(1/δ) log log log(1/δ)) .

We next state an application of our PRG to hardness amplification in NP. Say that a Boolean
function f : {0, 1}n → {0, 1} is (ε, s)-hard if any circuit of size s cannot compute f on more
than a 1/2 − ε fraction of inputs. The hardness amplification problem then asks if we can use a
mildly hard function in a black-box manner to construct a much harder function. Following the
works of O’Donnell [O’D04] and Healy, Vadhan and Viola [HVV04], Lu, Tsai and Wu [LTW07]

showed how to construct (2−Ω(n2/3), 2−Ω(n2/3))-hard functions in NP from (1/poly(n), 2Ω(n))-hard
functions in NP. Their improvement comes from using the PRG for combinatorial rectangles of Lu
[Lu02] to partly derandomize the constructions of Healy, Vadhan and Viola. By using our PRG for
combinatorial rectangles, Theorem 5.2, instead of Lu’s generator in the arguments of Lu, Tsai and
Wu immediately leads to the following improved hardness amplification within NP.

Corollary 5.9. If there is a balanced function in NP that is (1/poly(n), 2Ω(n))-hard, then there
exists a function in NP that is (1/2n/poly(logn), 2n/poly(logn))-hard.

6 HSGs for Read-Once Branching Programs

In thsi section, we reduce the problem of constructing an HSG for width 3 branching programs to
the problem of HSG construction for CNF formulas which are allowed to have parity functions as
clauses. We start with some definitions.

A read-once branching program (ROBP) B of width d has a vertex set V partitioned into n+ 1
layers V0 ∪ · · · ∪ Vn where

1. V0 = {(0, 0)}.

23

2. Vt = {(t, i)}i∈[d] for t ∈ {1, . . . , n− 1}.

3. Vn = {(n, 1), (n, d)}.

The vertex (0, 0) is referred to as the Start state, while (n, 1) and (n, d) are referred to as Acc and
Rej, respectively. Each vertex in v ∈ Vt has two out-edges labeled 0 and 1, which lead to vertices
N0(v) and N1(v) respectively in Vt+1. We refer to the set of states {(t, 1)}nt=1 as the top level and
{(t, d)}nt=1 as the bottom level.

A string x ∈ {0, 1}n defines a path in V0 × · · · × Vn beginning at Start and following the
edge labeled xi from Vi. Let Path(x) = Path0(x), . . . ,Pathn(x) denote this sequence of states, i.e.,
Path1(x) = (0, 0), and Pathi+1(x) = Nxi(Pathi(x)). The string x is accepted if Pathn(x) = Acc.
Thus the branching program naturally computes a function f : {0, 1}n → {0, 1}. Let E[f] =
Ex∼{0,1}n [f(x)] = Prx[f(x) = 1].

Let BP(d, n) denote the set of all f : {0, 1}n → {0, 1} that can be computed by width d ROBPs.
Our hitting set generator for BP(3, n) uses a reduction to the problem of hitting CNF formulas
where clauses can be disjunctions of variables or parity functions.

Definition 6.1. Let CNF⊕(n) denote the class of read once formulas f : {0, 1}n → {0, 1} of the
form f = ∧mi=1Ti where each Ti is either a disjunction of literals or a parity function of literals and
the Tis are on disjoint variables.

Theorem 6.2. For every f ∈ BP(3, n) there is an integer k and g ∈ CNF⊕(n − k) such that
0k ◦ g−1(1) ⊆ f−1(1) and E[g] ≥ (E[f]/n)O(1).

Given this reduction, we get a HSG for BP(3, n) by using the PRG for CNF⊕ that we construct
in Theorem 8.2:

Theorem 6.3. For every ε > 0, there exists an explicit (ε, (ε/n)O(1))-HSG G : {0, 1}r → {0, 1}n
for BP(3, n) with a seed-length of O((log(n/ε)) · (log log(n/ε))3).

We remark that using similar techniques, we can also achieve a seed-length ofO((log n)(log(1/ε)))
which is better than the above bound for large values of ε. We defer the details of this to the full
version.

The reduction in Theorem 6.2 is carried out in three steps.

• The first step (for the sake of HSGs) reduces arbitrary width 3 programs to “sudden death”
width 3 programs, where the last state in every layer is a Rej state. (This step in fact works
for all widths.)

• The second step reduces “sudden death” width 3 programs to intersections of width 2 pro-
grams.

• The third step reduces intersections of width 2 programs to CNF⊕ formulae.

6.1 Reduction to Branching Programs with Sudden Death

Definition 6.4. A width d BP with sudden death is a BP where the bottom level states are all
Rej states. Formally this means N0((t, d)) = N1((t, d)) = (t + 1, d) for all t = 1, . . . , n − 1. Let
BPRej(d, n) denote the set of functions computable by such programs.

We reduce the problem of constructing hitting sets for width d BPs to for ones with sudden
death.

24

Theorem 6.5. For every f ∈ BP(d, n) there is an integer k and a g : {0, 1}n−k → {0, 1}, g ∈
BPRej(d, n) such that 0k ◦ g−1(1) ⊆ f−1(1) and E[g] ≥ E[f]2/2n.

We first setup some notation. For a vertex v ∈ V let p(v) denote the probability of reaching
Acc starting from v over a uniformly random choice of xi+1, . . . , xn. We call a state v ∈ V such
that p(v) = 0 a Rej state. We order states in Vt so that

p((t, 1)) ≥ p((t, 2)) · · · ≥ p((t, d)).

By definition,

p(v) =
1

2
(p(N0(v)) + p(N1(v))).

It follows that
E[f] = p((0, 0)) ≤ p((1, 1)) ≤ · · · ≤ p((n, 1)) = 1,

E[f] ≥ p((1, d)) ≥ p((2, d)) ≥ · · · ≥ p((n, d)) = 0

Observe that, if v ∈ Vj is such that p(v) ≤ µ, then p((i, d)) ≤ µ for all i ≥ j.

Lemma 6.6. Let B ∈ BP(d, n). Let R be a set of states such that p(v) ≤ µ ∀v ∈ R and let j be the
first layer such that R ∩ Vj 6= ∅. Let B′ be obtained from B by converting all states in R into Rej
states by redirecting the edges out of v ∈ R∩Vi, i ≥ j, to ((i+ 1, d)). Let p′(v) denote the accepting
probabilities of vertices in B′. Then for all v ∈ V , we have p′(v) ≥ p(v)− µ.

Proof. If p(v) ≤ µ the claim is trivial, so fix v such that p(v) > µ. Let R(x) denote the event that
we visit a vertex in R if we follow x from v in B and let u(x) denote the first vertex in R that is
visited by this path. Let Acc(x) denote the event that B accepts. We have

Pr
x

[R(x) ∧ Acc(x)] =
∑
r∈R

Pr
x

[u(x) = r ∧ Acc(x)]

=
∑
r∈R

Pr
x

[u(x) = r] · Pr
x

[Acc(x)|u(x) = r] ≤
∑
r∈R

Pr
x

[u(x) = r] · µ ≤ µ,

where we use Prx[Acc(x)|u(x) = r] = p(r) ≤ µ for all r ∈ R. But then

Pr
x

[Acc(x) ∧R(x)] = Pr
x

[Acc(x)]− Pr
x

[Acc(x) ∧R(x)] ≥ p(v)− µ.

Finally, note that if we accept x without ever reaching R in B, then x is also accepted by B′. Hence
p′(v) ≥ p(v)− µ.

Proof of Theorem 6.5. Let B be a branching program computing a function f so that E[f] ≥ ε.
Let i denote the first layer where p((i, d)) ≤ ε/2. Note that i ≤ n since p((n, d)) = 0. Every state
v up to layer i− 1 satisfies p(v) ≥ ε/2. Further, for every j ≥ i, p((i+ 1, d)) ≤ ε/2. Fix k = i− 2
and let v be the state in level i − 1 reached from Start on the string 0k. Consider the branching
program B′ of length n′ = n − k where we make v the new start state and keep the rest of the
program unchanged. The vertex set of B′ is V ′ = {v}∪n+1

j=i Vj and it computes f ′ : {0, 1}n′ → {0, 1}
such that

E
y∈{0,1}n′

[f ′(y)] = p(v) ≥ ε/2.

25

Thus, a random walk starting at v reaches the top level with probability at least ε/2 (since this
is a necessary condition for B′ to accept). For j ∈ {i, . . . , n − 1}, let q(j) denote the probability
that we reach the top level for the first time at layer j. So

n+1∑
j=i

q(j) ≥ ε/2.

Hence there exists j so that q(j) ≥ ε/2n.
We now make the following modifications to B′ to get a program B′′ which is a width d program

with sudden death:

• For t ∈ {i, . . . , j − 1} we convert the states (t, 1) into Rej states.

• For t ∈ {j, . . . , n+ 1} we convert the states (t, d) into Rej states.

We don’t need to add an additional layer for making these modifications since we are turning one
state in each layer to a Rej state.

It is clear that B′′ computes a function f ′′ ≤ f ′. Our goal is to show that B′′ accepts a large
subset of inputs accepted by B′. Indeed, we claim that

E
y∈{0,1}n′

[f ′′(y)] ≥ ε2

4n
.

We observe that the probability that a random walk starting at v reaches the top level for the
first time in layer j is the same in B′′ as in B′, hence it equals q(j) ≥ ε/2n. Further, using Lemma
6.6 (to the sub-program of B′ starting at (j, 1)) we claim that

p′′(j, 1) ≥ p′(j, 1)− ε/2 ≥ ε/2

where we use the fact that p′(j, 1) = p(j, 1) ≥ p(1, 1) ≥ ε. Note that the probability that B′′ accepts
is at least q(j)p′′(j, 1) ≥ ε2/4n, which comes from strings which reach state (j, 1) and then reach
Acc.

The theorem now follows by setting g ≡ f ′′. By definition, f ′′ ∈ BPRej(d, n− k) and

0k ◦ (f ′′)−1(1) ⊆ 0k ◦ (f ′)−1(1) ⊆ f−1(1).

6.2 From BPRej(3) to Intersections of BP(2)

We now reduce width 3 programs with sudden death to intersections of width 2 programs.

Theorem 6.7. Let f : {0, 1}n → {0, 1} be in BPRej(3, n). Then, there exists a function g :
{0, 1}n → {0, 1} that is an intersection of functions in BP(2, n) such that g ≤ f and if p = E[f],
then E[g] ≥ (p/2)13.

Throughout this section, we are given B ∈ BPRej(d, n) computing f : {0, 1}n → {0, 1}. Let Bad
denote the set of non-reject states that have an out-edge leading to a Rej state (which are all states
such that p(v) = 0). Further for each x ∈ {0, 1}n, let Bad(x) denote the number of Bad states
visited by x.

26

Lemma 6.8. We have
Pr

x∼{0,1}n
[Bad(x) ≥ t] ≤ 2−t+1.

Proof. Suppose that t ≥ 1. For i ∈ [n], let Yi denote the number of vertices in Bad visited by
Path(x) in the first i layers. Then, Yn = Bad(x). We claim that,

P[Yi = Yi+1 = Yi+2 = · · · = Yn |Yi,Pathi(x) ∈ Bad] ≥ 1/2. (6.1)

This is because, if Pathi(x) ∈ Bad, then with probability at least 1/2, Pathi+1(x) is a Rej state,
in which case Pathj(x) is a Rej state for every j ≥ i+ 1.

Further, if Yn ≥ t, then there must be an index i < n, where Yi ≥ t − 1, Pathi(x) ∈ Bad and
Yn > Yi (for instance i can be the least j such that Yj = t− 1). Therefore,

P[Yn ≥ t] = P[(∃i < n, Yi ≥ t− 1, Pathi(x) ∈ Bad) ∧ (Yn > Yi)]

= P[(∃i < n, Yi ≥ t− 1, Pathi(x) ∈ Bad)] · P[Yn > Yi |Yi,Pathi(x) ∈ Bad]

≤ 1

2
· P[(∃i < n, Yi ≥ t− 1, Pathi(x) ∈ Bad)] ≤ 1

2
· P[Yn ≥ t− 1],

where the last two inequalities follow from Equation (6.1) and the fact that Yi’s are non-decreasing.
The claim now follows by induction.

Corollary 6.9. Let Prx∼{0,1}n [f(x) = 1] = p. Then

E
x∼f−1(1)

[Bad(x)] = E
x∼{0,1}n

[Bad(x)|f(x) = 1] ≤ 2 log(2/p).

Proof. We have

Pr
x

[Bad(x) ≥ t|f(x) = 1] =
Prx[(Bad(x) ≥ t) and (f(x) = 1)]

Prx[f(x) = 1]
≤ 1

2t−1p
.

Let t∗ = log(2/p). We then bound

E
x
[Bad(x)|f(x) = 1] =

∑
t≥0

t · Pr
x

[Bad(x) = t|f(x) = 1]

≤ t∗ +
∑
t>t∗

t · P
x
[Bad(x) = t|f(x) = 1]

≤ t∗ +
∑
t>t∗

t

2t−1p

= t∗ +
2

p
·
(

(t∗ + 1)

2t∗
+

1

2t∗

)
= 2 log(1/p) + 2 ≤ 2 log(2/p).

The rest of our argument is specific to d = 3. We restrict our attention to the accepting strings
x ∈ f−1(1). For each vertex v ∈ V let q(v) = Prx∼f−1(1)[v ∈ Path(x)]. Each layer t has three states
(t, 1), (t, 2) and (t, 3) ∈ Rej. We assume that q((t, 1)) ≥ q((t, 2)) ≥ q(t, 3) = 0 (since accepting
strings never visit a Rej state). We first bound the probability mass on states in the set Bad.

Lemma 6.10. We have ∑
v∈Bad

q(v) = E
x∼f−1(1)

[Bad(x)].

27

Proof. We have ∑
v∈Bad

q(v) =
∑
v∈Bad

Pr
x∼f−1(1)

[x visits v] = E
x∼f−1(1)

[Bad(x)],

by linearity of expectations.

We partition the set Bad based on the value of q(v):

Bads =

{
v ∈ Bad : q(v) <

1

4

}
,Badl =

{
v ∈ Bad : q(v) ≥ 1

4

}
.

By Lemma 6.10 and Corollary 6.9 it follows that |Bad`| ≤ 8 log(2/p).

Lemma 6.11. We have
Pr

x∼f−1(1)
[Path(x) ∩ Bads = ∅] ≥ (p/2)4.

Proof. Since for all t, q((t, 1)) ≥ 1/2 we have (t, 1) 6∈ Bads. Sort the vertices in Bads according to
layer, so that Bads = {(t1, 2), . . . , (tw, 2)}. We have

Pr
x∼f−1(1)

[Path(x) ∩ Bads = ∅] =
w∏
i=1

Pr
x∼f−1(1)

[(ti, 2) 6∈ Path(x)|(t1, 2), . . . , (ti−1, 2) 6∈ Path(x)].

Note that if (ti−1, 2) 6∈ Path(x) then (ti−1, 1) ∈ Path(x). Hence conditioning on not visiting
(t1, 2), . . . , (ti−1, 2) is the same as conditioning on visiting (t1, 1), . . . , (ti−1, 1). Further, conditioning
on visiting (t1, 1), . . . , (ti−1, 1) is the same as conditioning on (ti−1, 1). Therefore,

Pr
x∼f−1(1)

[(ti, 2) ∈ Path(x)|(t1, 1), . . . , (ti−1, 1) ∈ Path(x)] = Pr
x∼f−1(1)

[(ti, 2) ∈ Path(x)|(ti−1, 1) ∈ Path(x)]

≤
Prx∼f−1(1)[(ti, 2) ∈ Path(x)]

Prx∼f−1(1)[(ti−1, 1) ∈ Path(x)]

≤ q(ti, 2)

q(ti−1, 1)
≤ 4

3
· q((ti, 2)),

because q(ti−1, 1) = 1− q(ti−1, 2) ≥ 3/4. Hence we have

Pr
x∼f−1(1)

[Path(x) ∩ Bads = ∅] =

w∏
i=1

Pr[(ti, 2) 6∈ Path(x)|(ti−1, 1) ∈ Path(x)]

=

w∏
i=1

(1− 4q((ti, 2))

3
) ≥ e−2(

∑w
i=1 q((ti,2))) ≥ (p/2)4

where we used the fact that for z ≤ 1/4, (1− 4z/3) ≥ e−2z and
∑

v∈Bads q(v) ≤ 2 log(2/p).

We are now ready to prove Theorem 6.7.

Proof of Theorem 6.7. Observe that by the above claim, we can replace vertices in Bads by Rej
vertices, and get a new program B′ such that B′ ≤ B and E[B′] ≥ p · (p/2)4 ≥ (p/2)5. Lastly, we
handle the vertices in Badl, which currently have transitions to Rej. Assume that these vertices
are v1, . . . , vj and that they read variables xi1 , . . . , xij . There exists a fixing ai1 , . . . , aij of these
variables such that the probability of acceptance of B′ over the remaining variables is at least

28

(p/2)5. Let B′(a) denote the program obtained by hardwiring these values in B′. Now consider
the program B′′ = B′(a) ∧ (xi1 = ai1) ∧ · · · ∧ (xij = aij), then B′′ ≤ B′ and

E[B′′] ≥ (p/2)5 · 1

2|Bad
l|
≥ (p/2)13,

since |Badl| ≤ 8 log(2/p).
We only need to argue that B′(a) and hence B′′ is an intersection of width 2 branching pro-

grams. Note that B′(a) is a width 2 program but with Rej states for every vertex in Bads =
{(t1, 2), . . . , (tw, 2)}. But we can view B′(a) as an intersection of branching programs B′i for
i ∈ {1, . . . , w − 1}, where B′i has start state (ti, 1) and accept state (ti+1, 1). This completes
the proof of the claim.

6.3 Reducing intersections of BP(2) to CNF⊕

We now perform the final step in our sequence of reductions to prove Theorem 6.2.

Theorem 6.12. Let f : {0, 1}n → {0, 1} be an intersection of width 2 BPs on disjoint sets of inputs,
i.e., f = f1∧f2∧· · ·∧fm, where each fi ∈ BP(2, n). Then, there exists a CNF⊕ g : {0, 1}n → {0, 1}
such that, g ≤ f and E[g] ≥ E[f]O(1).

We use the following characterization of width 2 branching programs as decision lists due to
Saks and Zuckerman [SZ95] and Bshouty, Tamon and Wilson [BTW98]. For a set S ⊆ [n], let
And(S) denote all functions of the form ∧jyj where j ∈ S and yj ∈ {xj , x̄j}. We define Or(S) and
XOR(S) similarly. Note that all these classes contain the constant functions.

Theorem 6.13 ([SZ95, BTW98]). Let f ∈ BP(2) be computed by a read-once, width 2 branching
program that reads variables xS for S ⊆ [n]. Then f is computable by a decision list Lf of the
following form.

• Lf reads variables xV for some V ⊂ S of size k.

• There are k+1 leaves denoted L1, . . . Lk+1, where Lj is labeled by a function `j ∈ XOR(S\V)7

We order V according to how variables are read by Lf and use V j to denote the indices of the
first j variables. The condition that x reaches Lj is given by a function in gj ∈ And(V j). We say
that Lj accepts x if gj(x) = 1 and `j(x) = 1

We derive two consequences of Theorem 6.13.

Lemma 6.14. Let f be as in Theorem 6.13. If E[f] ≥ 5/6, then there exists g ∈ Or(V) such that
g ≤ f and E[g] ≥ E[f]9.

Proof. Let E[f] = 1− ε for ε ≤ 1
6 . Note that

ε =
k+1∑
j=1

2−j Pr[`j(x) = 0]

Consider the smallest j such that `j is not the constant 1 function. Since `j ∈ XOR(S \V) and
`j 6= 1, `j rejects with probability at least 1/2, hence ε ≥ 2−j−1.

7A decision list is a decision tree where the left child of every node is a leaf labeled by one of the functions `j . On
an input x, the output is computed by traversing the tree until a leaf is reached and outputting the value computed
by the function at the leaf.

29

The condition that x reaches one of L1, . . . , Lj−1 is given by g ∈ Or(V j−1). Since `1 ≡ `2 ≡
· · · ≡ `j−1, we have that g ≤ f and E[g] = 1 − 2−j+1 ≥ 1 − 4ε. Since ε ≤ 1/6, the inequality
(1− 4ε) ≥ (1− ε)9 holds.

Lemma 6.15. Let f be as in Theorem 6.13. There exist h1 ∈ And(V) and h2 ∈ XOR(S \ V) such
that if we define h = h1 ∧ h2 then h ≤ f and E[h] ≥ E[f]/3.

Proof. Let Lj be the highest leaf in Lf which is not labeled 0. Set h1 = gj and h2 = `j . It is easy
to see that

Pr
x

[h(x) = 1] = Pr
x

[Lj accepts x] ≥ 1

3
Pr
x

[f(x) = 1].

We now prove Theorem 6.12.

Proof of Theorem 6.12. Let f = f1 ∧ f2 ∧ · · · ∧ fm, where fi ∈ BP(2, n). Let p = E[f]. Then, for
I = {i : E[fi] < 5/6}, |I| < log6/5(1/p). For i /∈ I, let gi be the function obtained from Lemma 6.14
and for i ∈ I, let hi be the function obtained from Lemma 6.15. Let g = (∧i/∈Igi)∧ (∧i∈Ihi). Then,
clearly g ∈ CNF⊕, g ≤ f and

E[g] =
∏
i/∈I

E[gi] ·
∏
i∈I

E[hi] ≥
∏
i/∈I

E[fi]
9 ·
∏
i∈I

(E[fi]/3) ≥ p9 · p · 1

3|I|
≥ p14.

6.4 HSG for BP(3, n)

We now combine the previous sections to prove Theorems 6.2, 6.3.

Proof of Theorem 6.2. Follows immediately from combining Theorem 6.5, 6.7, 6.12.

Proof of Theorem 6.3. Let f ∈ BP(3, n) with E[f] ≥ ε. Let g, k be as given by Theorem 6.2 applied
to f so that E[g] ≥ δ = (ε/n)c. Let G′ : {0, 1}s → {0, 1}n be a PRG for CNF⊕ with error at most
δ/2. By Theorem 8.2, there exists an explicit G′ with seed-length s = O(log(n/ε) · (log log(n/ε))3).

Define, G : {0, 1}logn+s → {0, 1}n as follows:

• Sample r ∼ [n] and y ∼ {0, 1}s.

• Output r 0s followed by the first n− r bits of G′(y).

We claim that G is a (ε, (ε/n)c+1)-HSG for BP(3, n).
Assume that we guess r = k correctly, which happens with probability 1/n. G then simulates

g on the string G′(y). Since, E[g] ≥ δ,

P
y∈{0,1}s

[
g(G′(y)) = 1

]
≥ E[g]− δ/2 ≥ δ/2.

Therefore,
Pr

k,y∈{0,1}s
[f(G(y)) = 1] ≥ δ/2n.

The theorem now follows.

30

7 PRGs for Read-Once CNFs

We construct a PRG for read-once CNFs (RCNFs) with a seed-length of O((log n) · (log log n)2) and
error 1/poly(n). As mentioned in the introduction, previously, only generators with seed-length
O(log2 n) were known for error 1/poly(n). Besides being of interest on its own, this construction
will play an important role in our HSG for width 3 branching programs. Our main construction
and its analysis are similar in spirit to what we saw for combinatorial rectangles and will be based
on Theorem 3.1.

Theorem 7.1. For every ε > 0, there exists an explicit PRG G : {0, 1}r → {±1}n that fools all
RCNFs on n-variables with error at most ε and seed-length r = O((log(n/ε)) · (log log(n/ε))3).

The core of our construction will be a structural lemma that can be summarized as follows:
The bias function of a random restriction of f where each variable has a small constant probability
of being set has small L1-norm sandwiching approximators.

Along with the structural lemma we shall also exploit the fact that for any RCNF, randomly
restricting a constant fraction of the inputs simplifies the formula significantly: with high probability
a size m RCNF upon a random restriction has size at most poly(log n) ·mγ , where γ < 1 is a fixed
constant. Theorem 7.1 is then proved using a recursive construction, where we use the above
arguments for O(log log n) steps.

7.1 Sandwiching Approximators for Bias Functions

For a function f : {±1}n → [0, 1], a subset I ⊆ [n] and x ∈ {±1}I , define fI(x) : {±1}I → [0, 1] by

fI(x) = E
y∈u{±1}[n]\I

[f(x ◦ y)],

where x ◦ y denotes the appropriate concatenation: (x ◦ y)i = xi if i ∈ I and (x ◦ y)i = yi if i /∈ I.
We call fI the “bias function” of the restriction (x, I).

We will show that for a RCNF f , and I chosen in an almost k-wise independent manner, the
bias function fI has small L1-norm sandwiching approximators with very high probability (over the
choice of I).

Lemma 7.2 (Main). There exists a constant α and c > 0 such that the following holds for every
ε > 0 and δ < (ε/n)c. Let f : {±1}n → {0, 1} be a RCNF and I ∼ D(α, δ). Then, with probability
at least 1− ε, fI has ε-sandwiching approximators with L1-norm at most

L(n, ε) = (n/ε)c(log log(n/ε))2 .

Proof. Let f = C1 ∧C2 ∧ · · · ∧Cm. By abuse of notation, we will let Ci denote the set of variables
appearing in Ci as well. In our analysis we shall group the clauses based on their widths. Let
β = 1 + 1/6.

We first handle the case where f has bias at least ε, i.e., P[f(x) = 1] ≥ ε. Let W` =
c1 log log(n/ε) and Wu = log2m for c1 a constant to be chosen later. Let f` be the RCNF containing
all clauses of width less than W` and fu the RCNF containing all clauses of width at least Wu. Let
T = logβ(Wu/2W`). For w ∈ WB ≡ {bW`β

rc : 0 ≤ r ≤ T}, let fw be the RCNF containing all
clauses with width in [w, βw). Then,

f ≡ f` ∧ (∧w∈WB
fw) ∧ fu. (7.1)

31

We will show that each of the functions f`, fw, fu have good sandwiching approximators. We
then use Theorem 4.1 to conclude that f has good sandwiching approximators. The claim for f`
follows immediately from Theorem 2.7. The main challenge will be in analyzing fw (the analysis
for fu is similar). To show that fw has good sandwiching approximators, we shall appeal to
Theorem 3.2.

Observe that as f has bias at least ε, the number of clauses of width at most w in f is at most
2w log(1/ε). We will repeatedly use this fact. Let ε1 = ε/poly(n, 1/ε) to be chosen later.

Sandwiching f`. As each clause in f` has width at most W`, the number of clauses in f` is at most
m` ≤ 2W` log(1/ε) ≤ (log(n/ε))c1+1. Thus, by Theorem 2.7, f` has ε1-sandwiching approximators

of L1-norm at most m
O(log(1/ε1))
` = (log(n/ε))O(log(1/ε1)). As L1-norm does not increase under

averaging over a subset of the variables, it follows that (f`)I has ε1-sandwiching polynomials with
the same L1 norm bound:

(f`)I has ε1-sandwiching approximators with L1-norm at most (log(n/ε))O(log(1/ε1)). (7.2)

Sandwiching fw. Fix a w ∈ WB. Note that fw has mw < 2βw log(1/ε) clauses. Without loss of
generality, suppose that fw = C1 ∧ C2 ∧ · · · ∧ Cmw . Let I ∼ D(α, δ).

Let J ⊆ [mw] be the set of all good clauses, J = {j : |Cj ∩ I| ≤ w/3}. Decompose fw = f ′w ∧ f ′′w,
where f ′w = ∧j∈JCj . We first show that (f ′w)I has good sandwiching approximators. We then show
that f ′′w has a small number, poly(log(n/ε)), of clauses with high probability over I. The intuition
for the first step is that if each |Cj ∩ I| is small, then the randomness in the remaining variables
damps the variance of the bias function fI enough to guarantee existence of good sandwiching
approximators via Theorem 3.2. For the second step, intuitively, as I picks each element with
probability at most α, we expect |Cj ∩ I| to be about α|Cj | < α(βw)� w/3. Thus, the probability
that |Cj ∩ I| is more than w/3 should be small so that the total number of bad clauses is small
with high probability.

For brevity, suppose that f ′w = C1 ∧ · · · ∧Cm′ and let wj = |Cj | ∈ [w, βw). For x ∈ {±1}I , and
j ∈ [m′], define g′j : {±1}I → [−1, 1] by

g′j(x) =

{
−1/2wj if x satisfies Cj ∩ I
1/2|Cj\I| − 1/2wj otherwise

.

Then, for pj = 1− 1/2wj ,

(f ′w)I(x) =
∏
j∈J

(
(1− 1/2wj)− g′j(x)

)
=
∏
j∈J

(
pj − g′j(x)

)
=

∏
j∈J

pj

 ·∏
j∈J

(
1−

g′j(x)

pj

)
.

Let gj(x) = g′j(x)/pj . Then,

(f ′w)I(x) =
∏
j∈J

pj ·
∏
j∈J

(1− gj(x)).

By expanding the above expression we can write (f ′w)I(x) =
∑m′

k=1 ckSk(g1, . . . , gm′) where the
coefficients ck are at most 1 in absolute value. We will show that g1, . . . , gm′ satisfy the conditions
of Theorem 3.2.

32

Clearly, g1, . . . , gm′ are on disjoint subsets of x. Note that g′j(x) ∈ [−1/22w/3, 1/22w/3]. Hence,

as pj ≥ 1/2, gj(x) ∈ [−σ, σ] for σ = 2/22w/3. Now, as w ≥ c1 log log(1/ε), m′ ≤ 2βw log(1/ε) ≤
2(β+1/c1)w. Thus, for c1 > 12,

σ =
2

22w/3
≤ 1

(m′)1/2+1/12
.

Finally, note that each gj has L1-norm at most 2. This is because any clause, and hence g′j , has
L1-norm at most 1. Therefore, the functions gj satisfy the conditions of Theorem 3.2. Thus,

(f ′w)I has ε1-sandwiching approximators with L1-norm at most poly(1/ε1). (7.3)

We are almost done, but for (f ′′w). We will show that with high probability over I, (f ′′w) has
O(log(n/ε)) clauses. To do so we will follow a standard argument for showing large deviation
bounds using bounded independence.

For i ∈ [w] and j ∈ [mw], let Xij be the indicator variable that is 1 if the variable corresponding
to the i’th literal in the j’th clause of fw is included in I and 0 otherwise. Let

X = Sk
(
Sw/3(X11, X21, . . . , Xw1), . . . , Sw/3(X1mw , X2mw , . . . , Xwmw)

)
.

Then, for any k,
P[size(f ′′w) ≥ k] ≤ E[X].

To see this observe that whenever size(f ′′w) ≥ k, X is at least 1. Let us first calculate this expectation
when the variables Xij are truly independent. In this case, as mw ≤ 2w log(1/ε), and each clause
has at most βw variables,

E[X] =

(
mw

k

)
·
(
βw

w/3

)
· αwk/3

≤ 2w ·
(
βe log(1/ε)

k

)k
· (8α)wk/3.

Therefore, for α = 1/32 and k = c2 max(log(n/ε)/w, 1) for c2 sufficiently large, E[X] ≤ ε/2n.
Now, as the actual variables Xij are δ-almost independent, and the polynomial defining X has at

most
(
mw

k

)
·
(βw
w/3

)
terms, the expectation for I ∼ D can be bounded by

E[X] ≤ ε

2 log n
+ δ ·

(
mw

k

)
·
(
βw

w/3

)
=

ε

2n
+ δ · 2O(wk) ≤ ε

n
,

for δ ≤ (ε/n)c for c a sufficiently large constant. Combining the above equations and applying
Theorem 2.7, we get that with probability at least 1 − ε/n, (f ′′w) has ε1-sandwiching polynomials
with L1-norm at most

kO(log(1/ε1)) = (log(n/ε))O(log(1/ε1)).

Therefore, from Equation (7.3) and Theorem 4.1, with probability at least 1− ε/n,

(fw)I has O(ε1)-sandwiching approximators with L1-norm at most (log(n/ε))O(log(1/ε1)). (7.4)

33

Sandwiching fu: A careful examination of the argument for fw reveals that we used two main
properties: there are at most 2βw log(1/ε) clauses in fw and every clause has length at least w. Both
of these are trivially true for fu with w = Wu. Thus, the same argument applies. In particular,
with probability at least 1− ε/n,

(fu)I has O(ε1)-sandwiching approximators with L1-norm at most (log(n/ε))O(log(1/ε1)). (7.5)

Now, observe that

fI(x) = (f`)I(x) · (fu)I(x) ·
∏

w∈WB

(fw)I(x).

Therefore, we can apply Theorem 4.1. In particular, by Equations 7.2, 7.4, 7.5, and a union bound,
for b = |WB|+ 2 = O(log log n) we have: with probability at least 1− ε, fI has (16bε1)-sandwiching
polynomials with L1-norm at most

4b ·
(

(log(n/ε))O(b log(1/ε1))
)

= (1/ε1)O((log log(n/ε))2) .

The lemma now follows by setting ε1 = ε/nO(1).

Handling Small Bias Case. We now remove the assumption that E[f] ≥ ε. Suppose E[f] ≤ ε.
Consider the formula f ′ obtained from f by removing clauses in f until the first time E[f ′] exceeds
ε. Then, f ≤ f ′ and ε ≤ E[f ′] ≤ 2ε (as each clause has probability at most 1/2 of being false).
We can use the upper approximator for f ′ as an upper approximator for f and constant zero as a
lower approximator. This completes the proof of lemma.

7.2 Restrictions Simplify RCNFs

We next argue that for restrictions (x, I) where (x, I) are chosen from almost-independent distribu-
tions as in the previous section, RCNFs simplify significantly and in particular have few surviving
clauses with very high probability.

Let I ∼ D(α, δ) be as in Lemma 7.2 and x ∼ D be chosen from a δ1-biased distribution with
δ1 = 1/poly(n). We will show that fixing the variables in I according to x will make the number
of clauses drop polynomially. Let α, β be the constants from Lemma 7.2.

Lemma 7.3. There exists constants c2, γ > 0 such that the following holds for δ, δ1 < (ε/n)c2. Let
I ∼ D(α, δ) and x ∼ D where D is a δ1-biased distribution on {±1}n. Let f : {±1}n → {0, 1} be a
RCNF with E[f] ≥ ε. Let g : {±1}[n]\I → {0, 1} be the RCNF obtained from f by fixing the variables
in I to x. Then, with probability at least 1− ε over the choice of (x, I), g is a RCNF with at most
(log(n/ε))c2 ·m1−γ clauses.

Proof. As in the proof of Lemma 7.2, we shall do a case analysis based on the width of the clauses.
Let f`, fw, fu and WB be as in Equation (7.1). Note that the number of clauses in f` is at most
2W` log(1/ε) = poly(log(n/ε)). We will now reason about each of the fw’s for w ∈ WB. The
argument for fu is similar and is omitted.

Let fw have mw clauses, where mw > 8 log(1/ε), otherwise there is nothing to prove. Without
loss of generality, suppose that fw = C1 ∧ C2 ∧ · · · ∧ Cmw and wj = |Cj |. Let Yj be the indicator
variable that is 1 if Cj survives in g (i.e., is not fixed to be true) and 0 otherwise. We first do the
calculations assuming that the variables in x and I are truly independent and later transfer these
bounds to the almost independent case.

34

Observe that P[Yj = 1] = (1−α/2)wj ≤ (1−α/2)w. Let M,k < M be parameters to be chosen
later. Then, as in the proof of Lemma 7.2,

P

∑
j

Yj > M

 · (M
k

)
≤ E [Sk(Y1, . . . , Ymw)] ≤

(
mw

k

)
·
(

1− α

2

)wk
.

Here, the first inequality follows from observing that if
∑

j Yj > M , then Sk(Y1, . . . , Ym2) is at least(
M
k

)
. Therefore,

P

∑
j

Yj > M

 ≤ (mwe

M

)k
·
(

1− α

2

)wk
.

Now, setting M = m1−γ
w (e log(1/ε)) for a sufficiently small constant γ and using the fact that

mw < 2βw log(1/ε), it follows that

P[
∑
j

Yj > M] ≤
(

(2− α)2βγ

2

)wk
< 2−Ω(wk),

for γ a sufficiently small constant. Thus, for k = c3 max(log(n/ε)/w, 1) and c3 a sufficiently large
constant, P[

∑
j Yj > M] < ε/2n. Now, as in the proof of Lemma 7.2, transferring the above

calculations to the case of almost independent distributions only incurs an additional error of

err = (δ + δ1) ·
(
mw

k

)
· 2βw = (δ + δ1) · poly(n, 1/ε).

Therefore, for δ, δ1 < (ε/n)c
′

for a sufficiently large constant c′, we get P[
∑

j Yj > M] < ε/n.
Hence, by a union bound over w ≥W`, with probability at least 1− ε, the number of surviving

clauses in g is at most

size(f`) + (e log(1/ε)) ·
∑
w∈WB

m1−γ
w ≤ poly(log n) + (e log(1/ε)) · |B|γ · (

∑
w

mw)1−γ <

poly(log n) + (e log(1/ε)) · |B|γ ·m1−γ ,

where the first inequality follows from the power-mean inequality. The claim now follows.

In our recursive analysis we will also have to handle RCNFs that need not have high acceptance
probabilities. The following corollary will help us do this.

Corollary 7.4. Let constants c2, γ and δ, δ1, I ∼ D(α, δ), x ∼ D be as in Lemma 7.3. Let f :
{±1}n → {0, 1} be a RCNF, and let g : {±1}[n]\I → {0, 1} be the RCNF obtained from f by fixing
the variables in I to x. Then, with probability at least 1 − ε over the choice of (x, I), there exist
two RCNFs g`, gu of size at most (log(n/ε))c2 ·m1−γ such that g` ≤ g ≤ gu and E[gu]− E[g`] ≤ ε.

Proof. If E[f] ≥ ε/2, the claim follows from Lemma 7.3. Suppose E[f] ≤ ε/2. Let f ′ be the formula
obtained from f by throwing away clauses until E[f ′] exceeds ε/2. Then, ε/2 ≤ E[f ′] ≤ ε. Let
g′ be the RCNF obtained from f ′ by restricting the variables in I to x. The claim now follow by
applying Lemma 7.3 to f ′ and setting g` ≡ 0 and gu ≡ g′.

35

7.3 A Recursive PRG Construction for RCNFs

We now use Lemmas 7.2 and 7.3 recursively to prove Theorem 7.1. The main intuition is as follows.
Let ε = 1/poly(n). Lemma 7.2 ensures that with high probability over the choice of I, fI is

fooled by small-bias spaces with bias n−O((log logn)2) which can be sampled from usingO((log n)(log log n)2)
random bits. Note that I can be sampled using O(log n) random bits.

Consider any fixed I ⊆ [n] and x ∈ {±1}I . We wish to apply the same argument to f(x,I) :

{±1}[n]\I → {0, 1} to pick another set I1 ⊆ [n] and x1 ∈ {±1}I1 and so on. The saving factor will be
that most of the clauses in f will be determined by the assignment to x. In particular, by Lemma 7.3,
with probability 1− 1/poly(n), f(x,I) has at most Õ(n1−γ) clauses. By repeating this argument for
t = Oγ(log log n) steps we will get a RCNF with at most poly(log n) clauses, which can be fooled
directly. The total number of random bits used in this process will be O((log n)(log logn)3).

Fix ε > 0 and let constants α, c be as in Lemma 7.2. Let D(α, δ) be a δ-almost independent
distribution on 2[n] with bias α. Finally, let D(δ1),D(δ2) denote δ1-biased and δ2-biased distribu-
tions on {±1}n respectively for δ1, δ2 to be chosen later. Let T = C log logn for C to be chosen
later. Consider the following randomized algorithm for generating a string z ∈ {±1}n.

• For t = 1, . . . , T , generate independent samples z1, . . . , zT ∼ D(δ1) and J1, . . . , JT ∼ D(α, δ).

• Let I1 = J1 and It = Jt \
(
∪t−1
r=1Ir

)
for 2 ≤ t ≤ T . This is equivalent to sampling It from a

δ-almost independent distribution with bias α from the set of subsets of as yet “uncovered”
elements [n] \ ∪t−1

r=1Ir.

• Let xt = (zt)It . This is equivalent to sampling xt using a δ1-biased distribution over {±1}It .

• Let I = ∪Tt=1It and x = x1 ◦x2 ◦ · · · ◦xT ∈ {±1}I be the appropriate concatenation: for i ∈ I,
(xi) = (xt)i if i ∈ It.

• Let y ∼ D(δ2). The final generator output is defined by

G(z1, . . . , zT , J1, . . . , JT , y) = z, where zi = xi if i ∈ I and zi = yi otherwise. (7.6)

To analyze our generator we first show that the restriction (x, I) preserves the bias of RCNFs.
Let L(n, ε) be the bound from Lemma 7.2.

Lemma 7.5. For x, I defined as above, with probability at least 1 − ε T over the choice of I, for
every RCNF f : {±1}n → {0, 1},∣∣∣∣Ex [fI(x)]− E

y∈u{±1}I
[fI(y)]

∣∣∣∣ < δ1 · L(n, ε) · T + 2 ε T.

Proof. We will prove the claim by a hybrid argument. For j ≤ T , let yj ∼ {±1}Ij and let Dj denote
the distribution of x1 ◦ x2 ◦ · · · ◦ xj ◦ yj+1 ◦ · · · ◦ yT (the concatenation is done as in the definition
of x). Note that Dj−1 and Dj differ only in the j’th concatenation element, xj , yj . Further, D0 is
uniformly distributed on {±1}I and DT is the distribution of x. We will show that with probability
at least 1− ε, over the choice of I,∣∣∣∣ E

a∼Dj−1
[fI(a)]− E

a∼Dj
[fI(a)]

∣∣∣∣ < δ1 · L(n, ε),

36

We couple the distributions Dj−1 and Dj by drawing xi for i < j and let Ij = ∪r≤jIr. Now, as
yj+1, . . . , yT are chosen uniformly at random,

E
a∼Dj−1

[fI(a)] = E
[
fIj (x

1 ◦ · · · ◦ xj−1 ◦ xj)
]
,

E
a∼Dj

[fI(a)] = E
[
fIj (x

1 ◦ · · · ◦ xj−1 ◦ yj)
]
.

Consider any fixing of the variables x1, . . . , xj−1 and I1, . . . , Ij−1 and let g : {±1}[n]\∪r<jIr →
{0, 1} be the RCNF obtained from f under this fixing. Then, by Lemma 7.2, gIj is fooled by
small-bias spaces: with probability 1− ε over the choice of Ij ,∣∣∣∣E

xj

[
gIj (x

j)
]
− E
yj

[
gIj (y

j)
]∣∣∣∣ ≤ δ1 · L(n, ε).

Combining the above three equations, we have with probability at least 1− ε over Ij ,∣∣∣∣ E
a∼Dj−1

[fI(a)]− E
a∼Dj

[fI(a)]

∣∣∣∣ =
∣∣E [fIj (x1 ◦ · · · ◦ xj−1 ◦ xj)

]
− E

[
fIj (x

1 ◦ · · · ◦ xj−1 ◦ yj)
]∣∣

=

∣∣∣∣ E
x1,...,xj−1

E
xj

[
gIj (x

j)
]
− E
x1,...,xj−1

E
yj

[
gIj (y

j)
]∣∣∣∣

≤ E
x1,...,xj−1

[∣∣∣∣E
xj

[
gIj (x

j)
]
− E
yj

[
gIj (y

j)
]∣∣∣∣] ≤ δ1 · L(n, ε).

The claim now follows by taking a union bound for j = 1, . . . , T .

We are now ready to prove our main PRG construction. The idea is to combine Lemmas 7.3,
7.5. For (x, I) chosen as in Lemma 7.5 we do not change the bias of the restricted function, on
the other hand by iteratively applying 7.3 we can show that the resulting restricted RCNF has
(log n)O(log logn) clauses and hence is fooled by n−O((log logn)2)-biased distributions.

Proof of Theorem 7.1. Let I, x, y, z be as defined in Equation (7.6). Fix a RCNF f : {±1}n →
{0, 1}. Let g : {±1}[n]\I → {0, 1} be the RCNF obtained by from f by fixing the variables in I to
x. Let I ′ = [n] \ I. Note that

fI(x) = E
y′∼{±1}I′

[
g(y′)

]
. (7.7)

We next argue that g is fooled by small-bias spaces with high probability over the choice of
x, I. Observe that g can be viewed as obtained from f by iteratively restricting f according
to (x1, I1), (x2, I2), . . . , (xT , IT) and all of these are independent of one another. Therefore, by
Corollary 7.4 and a union bound, with probability at least 1 − ε · T , g has O(εT)-sandwiching
RCNFs g`, gu of size at most

M = (log(n/ε))c2T ·m(1−γ)T = (log(n/ε))O(log logn),

for T = C log log n and C a large constant. Hence, by Theorem 2.7, g`, gu are ε-fooled by δ2-biased
distributions for δ2 = M−O(log(1/ε)). As g`, gu sandwich g, it follows that g is O(εT)-fooled by
δ2-biased distributions. As the above is true with probability at least 1 − ε T over the choice of
(x, I), by taking expectation over (x, I) we get (y is δ2-biased)

E
x,I

[∣∣∣∣∣Ey [g(y)]− E
y′∼{±1}I′

[
g(y′)

]∣∣∣∣∣
]

= O(εT). (7.8)

37

Combining Equations 7.7, 7.8, we get

P[f(z) = 1] = E
x,I

[
E
y
[g(y)]

]
= E

x,I

[
E

y′∼{±1}I′

[
g(y′)

]]
±O(εT)

= E
x,I

[fI(x)]±O(εT).

Finally, note that for any I ⊆ [n],

P
z′∼{±1}n

[f(z′) = 1] = E
x′∼{±1}I

[fI(x
′)].

Combining the above two equations with Lemma 7.5, we get∣∣∣∣P[f(z) = 1]− P
z′∼{±1}n

[f(z′) = 1]

∣∣∣∣ ≤ ∣∣∣∣Ex,I [fI(x)]− E
x′∼{±1}I

[fI(x
′)]

∣∣∣∣+O(εT)

≤ δ1 · L(n, ε) +O(εT).

Therefore, by setting δ1 = ε/L the above error is at most O(εT). The number of bits used by
the generator is

T (bits needed for x1, I1) + (bits needed for y) = T ·O(log n+ log(1/δ1)) +O(log n+ log(1/δ2))

= O((log(n/ε)) · (log log(n/ε))3).

The theorem now follows by rescaling ε = ε′/c′(log log n) for a large constant c′.

8 A PRG for CNF⊕

We construct a PRG for the class of CNF⊕. The generator will be the same as in Theorem 7.1. The
analysis will also be similar and in fact follow easily from Theorem 7.1. To do this, we shall use
the following simple claim.

Lemma 8.1. Let f : {±1}n → {0, 1} be a conjunction of parity constraints on n variables. Then,
f has L1-norm at most 1.

Proof. Let S1, S2, . . . , Sm be the subsets defining the parity constraints in f . Then,

f(x) =

m∏
j=1

(
1−

∏
i∈Sj

xi

2

)
.

The lemma now follows.

Theorem 8.2. For every ε > 0, there exists an explicit PRG G : {0, 1}r → {±1}n that fools all
CNF⊕ formulas on n-variables with error at most ε and seed-length r = O((log(n/ε))·(log log(n/ε))3).

Proof. LetG be the generator from Theorem 7.1. We will show thatG fools CNF⊕ as well. This does
not follow in a black-box manner from Theorem 7.1, but we will show analogues of Theorem 2.7,
Lemma 7.2 and Lemma 7.3 hold so that the rest of the proof of Theorem 7.1 can be used as is.

Let f : {±1}n → {0, 1} be a CNF⊕ of size m. Let f = g ∧ h, where g has all the parity
constraints of f and h the clauses.

38

First observe that by Lemma 8.1 and Theorem 2.7, a similar statement holds for f . Let P`, Pu
be the ε-sandwiching approximators for h as guaranteed by Theorem 2.7. Then, P ′` := g · P`,
P ′u = g · Pu are ε-sandwiching approximators for f and the L1-norm of P ′` (P ′u) is bounded by the
L1-norm of P` (Pu) by Lemma 8.1.

Note that for any subset I ⊆ [n], gI : {±1}I → {0, 1} is a constant function. Therefore,
fI(x) = cI ·hI(x), where cI ≤ 1. Thus, by applying Lemma 7.2 to h, we get an analogous statement
for f .

Finally, we show an analogue of Lemma 7.3. Suppose that f has acceptance probability at least
ε. Then, g has at most log2(1/ε) clauses. Therefore, by Lemma 7.3 applied to h, we also get a
similar statement for f with a slightly worse constant of c′2 = c2 + 1. By arguing as in the proof of
Corollary 7.4, we get a similar statement for f .

Examining the proof of Lemma 7.1 shows that given the above analogues of Theorem 2.7,
Lemma 7.2 and Lemma 7.3, the rest of the proof goes through. The theorem follows.

References

[AAI+01] Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven
Rudich, Reducing the complexity of reductions, Computational Complexity 10 (2001),
no. 2, 117–138.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta, Simple construction
of almost k-wise independent random variables, Random Struct. Algorithms 3 (1992),
no. 3, 289–304.

[Ajt83] Miklos Ajtai, Σ2
1-formula on finite structures, Ann. Pure. Appl. Logic 24 (1983), 1–48.

[ASWZ96] Roy Armoni, Michael E. Saks, Avi Wigderson, and Shiyu Zhou, Discrepancy sets and
pseudorandom generators for combinatorial rectangles, FOCS, 1996, pp. 412–421.

[AW85] Miklós Ajtai and Avi Wigderson, Deterministic simulation of probabilistic constant
depth circuits (preliminary version), FOCS, 1985, pp. 11–19.

[Baz09] Louay M. J. Bazzi, Polylogarithmic independence can fool DNF formulas, SIAM J.
Comput. 38 (2009), no. 6, 2220–2272.

[BDVY09] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff, Pseudorandomness
for width 2 branching programs, Electronic Colloquium on Computational Complexity
(ECCC) 16 (2009), 70.

[BL85] Michael Ben-Or and Nathan Linial, Collective coin flipping, robust voting schemes and
minima of banzhaf values, FOCS, IEEE Computer Society, 1985, pp. 408–416.

[BRRY10] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff, Pseudorandom generators
for regular branching programs, FOCS, 2010, pp. 40–47.

[BTW98] Nader H. Bshouty, Christino Tamon, and David K. Wilson, On learning width two
branching programs, Inf. Process. Lett. 65 (1998), no. 4, 217–222.

[BV10a] Andrej Bogdanov and Emanuele Viola, Pseudorandom bits for polynomials, SIAM J.
Comput. 39 (2010), no. 6, 2464–2486.

39

[BV10b] Joshua Brody and Elad Verbin, The coin problem and pseudorandomness for branching
programs, FOCS, 2010, pp. 30–39.

[CLO07] D.A. Cox, J.B. Little, and D. O’Shea, Ideals, varieties, and algorithms: an introduction
to computational algebraic geometry and commutative algebra, Undergraduate texts in
mathematics, no. v. 10, Springer, 2007.

[CRSW11] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder, Balls and bins: Smaller
hash families and faster evaluation, FOCS, 2011, pp. 599–608.

[De11] Anindya De, Pseudorandomness for permutation and regular branching programs, IEEE
Conference on Computational Complexity, IEEE Computer Society, 2011, pp. 221–231.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani, Improved pseudo-
random generators for depth 2 circuits, APPROX-RANDOM, 2010, pp. 504–517.

[EGL+98] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic, Efficient
approximation of product distributions, Random Struct. Algorithms 13 (1998), no. 1,
1–16.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser, Parity, circuits, and the
polynomial-time hierarchy, Mathematical Systems Theory 17 (1984), no. 1, 13–27.

[GMR12] Parikshit Gopalan, Raghu Meka, and Omer Reingold, DNF sparsification and fast ap-
proximate counting, 2012, To appear in CCC.

[H̊as86] Johan H̊astad, Almost optimal lower bounds for small depth circuits, STOC, 1986,
pp. 6–20.

[HHR06] Iftach Haitner, Danny Harnik, and Omer Reingold, On the power of the randomized
iterate, Advances in Cryptology—CRYPTO ‘06 (C. Dwork, ed.), Lecture Notes in Com-
puter Science, Springer-Verlag, 2006.

[HVV04] Alexander Healy, Salil P. Vadhan, and Emanuele Viola, Using nondeterminism to am-
plify hardness, STOC, 2004, pp. 192–201.

[HVV06] , Using nondeterminism to amplify hardness, SIAM J. Comput. 35 (2006), no. 4,
903–931.

[Ind06] Piotr Indyk, Stable distributions, pseudorandom generators, embeddings, and data
stream computation, J. ACM 53 (2006), no. 3, 307–323.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson, Pseudorandomness for network
algorithms, STOC, 1994, pp. 356–364.

[IW97] Russell Impagliazzo and Avi Wigderson, P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma, STOC, 1997, pp. 220–229.

[JSZ85] W. B. Johnson, G. Schechtman, and J. Zinn, Best constants in moment inequalities for
linear combinations of independent and exchangeable random variables, The Annals of
Probability 13 (1985), no. 1, pp. 234–253.

[KLW10] Adam R. Klivans, Homin K. Lee, and Andrew Wan, Mansour’s conjecture is true for
random DNF formulas, COLT, 2010, pp. 368–380.

40

[KNP11] Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák, Pseudorandom generators for
group products: extended abstract, STOC (Lance Fortnow and Salil P. Vadhan, eds.),
ACM, 2011, pp. 263–272.

[KNR05] Eyal Kaplan, Moni Naor, and Omer Reingold, Derandomized constructions of k-wise
(almost) independent permutations, 9th International Workshop on Randomization and
Computation (RANDOM), 2005, pp. 354–365.

[LLSZ97] Nathan Linial, Michael Luby, Michael E. Saks, and David Zuckerman, Efficient con-
struction of a small hitting set for combinatorial rectangles in high dimension, Combi-
natorica 17 (1997), no. 2, 215–234.

[Lov08] Shachar Lovett, Unconditional pseudorandom generators for low degree polynomials,
STOC, 2008, pp. 557–562.

[LTW07] Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu, Improved hardness amplification in np,
Theor. Comput. Sci. 370 (2007), no. 1-3, 293–298.

[Lu02] Chi-Jen Lu, Improved pseudorandom generators for combinatorial rectangles, Combi-
natorica 22 (2002), no. 3, 417–434.

[Nis91] Noam Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11 (1991),
no. 1, 63–70. MR MR1112275 (92g:68055)

[Nis92] Noam Nisan, Pseudorandom generators for space-bounded computation, Combinatorica
12 (1992), no. 4, 449–461.

[NN93] Joseph Naor and Moni Naor, Small-bias probability spaces: Efficient constructions and
applications, SIAM J. Comput. 22 (1993), no. 4, 838–856.

[NZ96] Noam Nisan and David Zuckerman, Randomness is linear in space, J. Comput. Syst.
Sci. 52 (1996), no. 1, 43–52.

[O’D04] Ryan O’Donnell, Hardness amplification within np, J. Comput. Syst. Sci. 69 (2004),
no. 1, 68–94.

[Pin94] Iosif Pinelis, Optimum bounds for the distributions of martingales in banach spaces, The
Annals of Probability 22 (1994), no. 4, pp. 1679–1706 (English).

[Raz09] Alexander Razborov, A simple proof of Bazzis theorem, ACM Trans. Comput. Theory
1 (2009), no. 1, 3:1–3:5.

[Rei08] Omer Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (2008),
no. 4, Art. 17, 24. MR MR2445014

[Ros72] Haskell P. Rosenthal, On the span in Lp of sequences of independent random vari-
ables. II, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability., Univ. California Press, 1972, pp. 149–167.

[RR99] Ran Raz and Omer Reingold, On recycling the randomness of states in space bounded
computation, STOC, 1999, pp. 159–168.

41

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan, Pseudorandom walks in regular di-
graphs and the RL vs. L problem, Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC ‘06), 21–23 May 2006, pp. 457–466.

[Siv02] D. Sivakumar, Algorithmic derandomization via complexity theory, IEEE Conference
on Computational Complexity, 2002, p. 10.

[SZ95] Michael Saks and David Zuckerman, 1995, Unpublished manuscript.

[SZ99] Michael E. Saks and Shiyu Zhou, BPHSPACE(S) ⊆ DSPACE(S3/2), J. Comput. Syst.
Sci. 58 (1999), no. 2, 376–403.

[SZ11] Jiŕı Śıma and Stanislav Zák, Almost k-wise independent sets establish hitting sets for
width-3 1-branching programs, CSR, 2011, pp. 120–133.

[Tre01] Luca Trevisan, Extractors and pseudorandom generators, J. ACM 48 (2001), no. 4,
860–879.

[Val77] Leslie G. Valiant, Graph-theoretic arguments in low-level complexity, Mathematical
foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977),
Springer, Berlin, 1977, pp. 162–176. Lecture Notes in Comput. Sci., Vol. 53. MR
MR0660702 (58 #32067)

[Vio08] Emanuele Viola, The sum of d small-bias generators fools polynomials of degree d, IEEE
Conference on Computational Complexity, 2008, pp. 124–127.

[Vio11] , Randomness buys depth for approximate counting, FOCS, 2011, pp. 230–239.

42

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

