
Computing Bounded Path Decompositions in Logspace

Shiva Kintali∗ Sinziana Munteanu †‡

Abstract

We present a logspace algorithm to compute path decompositions of bounded pathwidth
graphs, thus settling its complexity. Prior to our work, the best known upper bound to compute
such decompositions was linear time [Bod96, BK96]. We also show that deciding if the pathwidth
of a graph is at most a given constant is L-complete. Besides being of fundamental interest, our
results represent an important step to gain a better understanding of the complexity of Graph
Isomorphism of bounded pathwidth graphs.

1 Introduction

Wagner [Wag37] introduced simplicial tree decompositions. The notions of treewidth and tree
decomposition were introduced (under different names) by Halin [Hal76]. Robertson and Seymour
[RS86] reintroduced these concepts in their seminal work on graph minors. Roughly speaking, the
treewidth of an undirected graph measures how close the graph is to being a tree. Let G(V,E)
denote a simple undirected graph with n vertices labeled arbitrarily from 1 to n. For a subset
V ′ ⊆ V , G[V ′] denotes the subgraph of G induced by the vertices of V ′.

Definition 1.1. (Tree decomposition, Treewidth) A tree decomposition of a graph G(V,E) is a
pair D = ({Xi | i ∈ I}, T (I, F)) where {Xi | i ∈ I} is a collection of subsets of V (called bags) and
T (I, F) is a tree such that

•
⋃
i∈I Xi = V . (TD-1)

• for all edges (u, v) ∈ E, there is an i ∈ I with u, v ∈ Xi. (TD-2)

• for all i, j, k ∈ I, if j is on the path from i to k in T ,
then Xi ∩Xk ⊆ Xj . (TD-3)

The width of a tree decomposition D is maxi∈I |Xi| − 1. The treewidth of a graph G, denoted
by tw(G), is the minimum width over all tree decompositions of G. The elements of I are called
the nodes of the tree T .

Besides playing a crucial role in structural graph theory, treewidth also proved to be very useful
in algorithmic graph theory. Several problems that are NP-hard on general graphs are solvable
in polynomial time (some even in linear time) on graphs with bounded treewidth (also known

∗Department of Computer Science, Princeton University, Princeton, NJ 08540. Email : kintali@cs.princeton.edu
†Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213. Email : smuntean@cs.cmu.edu
‡This work was done while the author was at Princeton University.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 126 (2012)

as partial k-trees). These problems include hamiltonian cycle, graph coloring and vertex cover.
Courcelle’s theorem [Cou90] states that for every monadic second-order (MSO) formula φ and for
every constant k there is a linear time algorithm that decides whether a given logical structure of
treewidth at most k satisfies φ.

Recently, Elberfeld, Jakoby and Tantau [EJT10] proved a logspace version of Courcelle’s theo-
rem, thus showing that several MSO properties of partial k-trees can be decided in logspace. They
also presented a logspace algorithm to compute tree decompositions of bounded treewidth graphs.
Unfortunately their techniques are not applicable to compute path decompositions of bounded
pathwidth graphs. Bounded pathwidth graphs are a natural subset of bounded treewidth graphs.
Pathwidth, defined as follows, measures how close a graph is to being a path.

Definition 1.2. (Path decomposition, Pathwidth) A path decomposition of a graph G(V,E) is a
sequence P = (Y1, Y2, . . . , Ys) of subsets of V , such that

•
⋃

1≤i≤s Yi = V (PD-1)

• for all edges (u, v) ∈ E, there is an i, 1 ≤ i ≤ s, with u, v ∈ Yi (PD-2)

• for all i, j, k with 1 ≤ i < j < k ≤ s : Yi ∩ Yk ⊆ Yj (PD-3)

The width of a path decomposition P is maxi∈I |Yi| − 1. The pathwidth of a graph G, denoted by
pw(G), is the minimum width over all path decompositions of G.

In this paper, we present a logspace algorithm to compute path decompositions of bounded
pathwidth graphs. Our techniques are completely different from those of [EJT10]. However, in
our main algorithm we first use the algorithm of [EJT10] to compute a tree decomposition with
an underlying tree of height O(logn). We then show how to convert this tree decomposition into a
path decomposition. Since the input graph G has bounded pathwidth (say k), its treewidth is at
most k. More generally, our algorithm can start with any graph of treewidth at most l and decide
whether the pathwidth of G is at most k, and if so, compute a path decomposition of width at
most k. We also show that deciding if the pathwidth of a graph is at most a given constant is
L-complete. Our main theorem is as follows:

Theorem 1.3. For all constants k, l ≥ 1, there exists a logspace algorithm that, when given a
graph G of treewidth ≤ l, decides whether the pathwidth of G is at most k, and if so, finds a path
decomposition of G of width ≤ k in logspace.

Prior to our work, the best known upper bound to compute such decompositions was linear
time [Bod96, BK96]. Bodlaender and Kloks [BK96] presented a polynomial time algorithm for
computing path decompositions of bounded treewidth graphs. This result played a crucial part in a
later paper of Bodlaender [Bod96] giving a linear time algorithms to compute tree decompositions
and path decompositions of bounded pathwidth graphs. This in-turn played a crucial role in
Courcelle’s Theorem.

Since bounded treewidth graphs can have pathwidth as large as Ω(logn), our techniques cannot
be directly applied to achieve a logspace algorithm to compute path decompositions of bounded
treewidth graphs. This is one of the main open problems arising from our work.

One of the main motivations behind our work is to gain better understanding of the complexity
of Graph Isomorphism of bounded pathwidth graphs. Due to lack of space, we present the details of
this motivation in the appendix. Of course, computing bounded path decompositions in logspace
is of independent interest too. We believe that the techniques in our paper, combined with those
of [EJT10], can be applied to settle the complexity of computing other graph width parameters.

2

2 Overview of our algorithm

Our algorithm is based on Bodlaender-Kloks’ polynomial time algorithm for computing path de-
compositions of bounded treewidth graphs. We first give an overview of their algorithm.

Assume we are given a tree decomposition of the input graph G. Let the underlying tree of this
decomposition be T . Every node of T has a bag containing at most constant number of vertices of
G. We convert this tree decomposition into a nice tree decomposition. We root the tree T at an
arbitrary node of T . Define Gp to be the subgraph of G rooted at p, the subgraph of G induced by
the vertices in the nodes of the subtree of T rooted at p.

We perform a bottom-up traversal of T . If the current node p is a leaf, then Gp has a constant
number of vertices and hence its path decompositions can be found in constant time. Otherwise,
we extend the path decompositions of the subgraphs of G rooted at the children of the current node
p, to a path decomposition of the subgraph of G rooted at p. This is done by a brute-force search
over all the “local” separators of the graph G. The information about these separators is available
in the bags of p and the children of p.

We now explain how this search can be done in polynomial time. By property PD-3, the vertices
in Gp that are not in Xp do not belong to the nodes of T that remain to be explored, i.e. the only
nodes they belong to are nodes of the subtree of T rooted at p. So the number of such vertices in
any bag of a path decomposition of Gp offers sufficient “local” information and the labels of these
vertices can be disregarded. This motivates the use of the following data structures. We define the
interval model of a path decomposition Y to be the path decomposition of the subgraph ofG induced
by Xp, obtained by removing the consecutive duplicate bags of a path decomposition Y ′, where Y ′

is obtained by intersecting every bag of Y with Xp. The path decomposition Y is split into a chain
of subpaths, so that all the bags in the same subpath have the same intersection with Xp. Taking
the cardinality of each of these bags, we obtain the list of Y , a sequence of integer sequences. To
reduce the size of these lists, we define the typical list of a list y, obtained by repeatedly eliminating
all the integers, except for the first and last ones, of every nondecreasing subsequence of y. Hence,
we associate to each path decomposition, a characterisctic, a pair containing its interval model and
its typical list.

We then consider all the path decompositions of Gp and associate to p all their characteristics.
To reduce the number of characteristics at each node, we define an ordering on the path decompo-
sitions and eliminate all the characteristics of path decompositions for which there exists a smaller
path decomposition. We define the resulting set of characteristics to be FS(p), the full set of char-
acteristics at p. Another way to view the full set of characteristics is as a set X of fingerprints of
path decompositions such that whenever there exists a path decomposition, there exists a (possibly
different) path decomposition with a fingerprint in X.

We now present a high-level description of our algorithm. We first use an algorithm of
[EJT10] to compute a tree decomposition of the input graph. The underlying tree (say T) of this
tree decomposition has height O(logn). This plays a very crucial role in several subroutines of our
algorithm. We then perform a logspace bottom-up traversal of T , using an algorithm of Lindell
[Lin92]. We give a brief description of Lindell’s algorithm in the appendix. If the current node p
is a leaf, then Gp has a constant number of vertices and hence its path decompositions can be found
in constant space. Otherwise, we show that the above polynomial-time algorithms (computing the
full set of characteristics at the current node p from the full set of characteristics at the children of
p) can be implemented in logspace. Observe that when p has two children, say q and r, both FS(q)
and FS(r) are needed to compute FS(p) and that we need to retain FS(q) when performing the

3

traversal of the subtree of T rooted at r. Since the depth of T is O(log n), we design a technique
to reduce the space required to store FS(q) from logspace to constant space. We represent all the
vertices in a bag of an interval model by their rank in an ordering of the vertices of Xp. In the course
of the traversal, we store the relabelings of the full set of characteristics of all smaller children of
the explored vertices for which we have not already computed their full set of characteristics. We
recompute the original full set of characteristics at each node when needed, i.e. when computing
the full set of characteristics at its parent.

We associate to each node p, a unique path decomposition, which we call the characteristic path
decomposition. We now perform another bottom-up traversal of T and compute for each current
node p, the gap list g(p) at p, the list of the number of bags between consecutive integers in the
typical list of the characteristic path decomposition. However, performing this traversal would give
to an O(log2 n) algorithm, since g(p) requires logspace and the depth of T is O(log n). Note that
when p has two children, say q and r, we need to retain g(q) when traversing the subtree of T
rooted at r. To obtain a logspace algorithm, we observe that the gap list at the root of T is the
sum of lists, each computable only from the nodes on a root-to-leaf path of T . This observation
plays a crucial role to achieve our intended logspace upper bound.

By property PD-3 of a path decomposition, all the bags containing a vertex form a connected
subpath and hence to specify all the bags containing a vertex, it is enough to specify the first and
last bag containing it. Therefore, a path decomposition is completely determined by specifying for
each vertex, the first and last bag containing it. We define the left endpoint of a vertex at a node
to be the index of the first bag containing it in the characteristic path decomposition at that node
and we similarly define the right endpoint to be the index of the last bag containing it. We iterate
the vertices of G and for each current vertex v, we compute its left and right endpoints at the
root. By symmetry, it is enough to show that the left endpoint can be computed in logspace. The
algorithm is similar to the algorithm for computing the gap list, except that the left endpoint of
v at the root is the minimum of the left endpoints of v in the path decompositions associated to
every root-to-leaf path of T.

We now give a more detailed description of our algorithm, in which we include references
to our definitions and theorems. We first use an algorithm of Elberfeld, Jakoby and Tantau [EJT10]
to compute a tree decomposition D′ of G in logspace.

Theorem 2.1. (Elberfeld, Jakoby and Tantau [EJT10]) For every constant l ≥ 1, there is a
logspace algorithm that given graph G determines whether tw(G) ≤ l, if so, outputs a width-l
rooted tree decomposition D′ = ({Xi | i ∈ I ′}, T ′(I ′, F ′)) of G. Moreover, T ′ is a binary tree of
height O(logn).

In Section 4, we define a nice tree decomposition (see Definition 4.1) and then give a logspace
algorithm to transform D′ into a nice tree decomposition D = ({Xi | i ∈ I}, T (I, F)) (Theorem
4.2). We define each node of D to be one of the following types: start, forget, introduce or join
node (see Definition 4.3). Let root be the root node of D, v ∈ V (G) and p ∈ I. By the definition of
a nice tree decomposition, every node of D has at most two children. If p has one child, we denote
its child by q. If p has two children, we denote its children by q and r. We distinguish between q
and r by the lexicographic ordering of their labels.

In Section 5, we give a logspace algorithm to compute FS(root), the full set of characteristics
at the root node of T . Since FS(root) 6= ∅ if and only if pw(G) ≤ k, once we have shown that
FS(root) can be computed in logspace, we have solved the decision version of the problem. The

4

results in Section 5.3 - Section 7.2 contribute to the “constructive” part of the solution, in which we
show that a path decomposition can be found in logspace. For each node p, we define the full set of
characteristics at p, denoted by FS(p) (see Definition 3.11). In Section 5.1, we show how to compute
in logspace FS(p), given the full set of characteristics at the children of p. This is done separately
based on the type of the node p. We call the procedures for achieving this ComputeStartFS,
ComputeForgetFS, ComputeIntroduceFS and ComputeJoinFS. These procedures are the
same as the corresponding polynomial-time procedures of [BK96]. We show that they can be im-
plemented in logspace. In Section 5.2, we give a logspace algorithm to compute FS(root) (Theorem
5.15). This uses Lindell’s tree traversal algorithm [Lin92], the logspace procedures of the previous
section and a logspace relabeling procedure. In Section B, we give an overview of Lindell’s tree
traversal algorithm. The relabeling procedure reduces the space required to store a bag with con-
stant number of vertices from logarithmic to constant (Lemma 5.13) by changing the label of each
vertex to its rank in an ordering of the vertices in the bag (see Definition 5.12). In Section 5.3, we
give a logspace algorithm to compute a unique characteristic at each node. For any descendant p′ of
p and any characteristic Cp ∈ FS(p), we define the descendant characteristic dc(p, p′, Cp) of p at p′

(see Definition 5.16) and then give a logspace procedure ComputeDescendantCharacteristic
for computing it (Theorem 5.17). The unique characteristic C∗p will be the descendant characteristic
at p of the lexicographically smallest characteristic in FS(root) (see Definition 5.18).

In Section 6, we give a logspace algorithm for computing the gap list at the root, an auxiliary
data structure useful for computing the path decompositions. We define the characteristic path
decomposition at p, denoted by CP(p) (see Definition 6.1) and we define the gap list at p, denoted
by g(p) (see Definition 6.2). In Section 6.1, we see how to compute in logspace g(p), given the
gap lists at the children of p. This is done separately depending on the type of the node p.
We call the procedures for achieving this ComputeStartGapList, ComputeForgetGapList,
ComputeIntroduceGapList and ComputeJoinGapList. In Section 6.2, we give a logspace
algorithm that computes g(root) (Theorem 6.8). This follows from the fact that g(root) is the sum
of lists, each computable only from the nodes on a path from a leaf to the root (Theorem 6.7).

In Section 7, we give a logspace algorithm for computing the endpoints of a vertex at the
root. We define l(p, v) and r(p, v) to be the left and right endpoints of v at p (see Definition 7.1).
In Section 7.1, we give a logspace algorithm for computing l(p, v), given the left endpoints of v
at the children of p. This is done separately depending on the type of the node p. We call the
procedures for achieving this ComputeStartLeftEndpoint, ComputeForgetLeftEndpoint,
ComputeIntroduceLeftEndpoint and ComputeJoinLeftEndpoint. In Section 7.2, we give
a logspace algorithm that computes l(root, v) (Theorem 7.5). This follows from the fact that
l(root, v) is the minimum of the left endpoints of v in the path decompositions corresponding just
to the nodes on individual paths from a leaf to the root (Theorem 7.4).

To compute a path decomposition of G, start from D′ and apply successively the logspace al-
gorithms of Section 4, Section 5, Section 6 and Section 7. Since the class of logspace computable
functions is closed under composition, we thus obtain a logspace algorithm to compute path de-
compositions of bounded pathwidth graphs. The algorithms of Section 4, Section 5, Section 6 and
Section 7 work for any constants l and k, implying our main theorem (Theorem 1.3).

In Section 8, we prove that the language path-width-k = {G | pw(G) ≤ k} is L-complete.
This complements a result of Elberfeld, Jakoby and Tantau [EJT10], showing that the language
tree-width-k = {G | tw(G) ≤ k} is L-complete.

5

3 Definitions

3.1 Treewidth and Pathwidth

Definition 3.1. (Rooted tree decomposition) A rooted tree decomposition is a tree decomposition
D = ({Xi | i ∈ I}, T (I, F)) where T is a rooted tree.

Definition 3.2. (Minimal path decomposition) A path decompostion P = (Y1, Y2, . . . Ys) is called
minimal if for all i, 1 ≤ i < s, Yi 6= Yi+1.

Definition 3.3. (Subgraph rooted at a node) Let D = ({Xi | i ∈ I}, T (I, F)) be a rooted tree
decomposition of a graph G(V,E). For each node i of T , let Ti be the subtree of T rooted at node
i and let Vi =

⋃
j∈Ti Xj . We call Gi = G[Vi] the subgraph of G rooted at i.

Definition 3.4. (Partial path decomposition) A partial path decomposition rooted at node i ∈ I
is a path decomposition of Gi, the subgraph of G rooted at i.

3.2 Interval Model, Typical Lists and Characteristics

Definition 3.5. (Interval model) Let P = (Y1, Y2, . . . Ys) be a partial path decomposition rooted
at node i. We define (Zj)1≤j≤s = (Y1 ∩Xi, Y2 ∩Xi, . . . , Ys ∩Xi), a path decomposition of the bag
Xi. Let 1 = r1 < . . . < rt+1 = s+ 1 be defined by

∀1≤j≤t ∀rj≤k<rj+1
[Zk = Zrj]

∧
∀1≤j<t[Zrj 6= Zrj+1]

The interval model for P at i is the path decomposion Z = (Zrj)1≤j≤t.

Definition 3.6. (List of a partial path decomposition) Let P = (Y1, Y2, . . . , Ys) be a partial path
decomposition with interval model Z = (Zrj)1≤j≤t. Let the list of P be [y] = (y1, y2, . . . , yt), where
for 1 ≤ j ≤ t, we have yj = (|Yrj |, |Yrj+1|, . . . , |Yrj+1−1|). Note that [y] is a list of integer sequences.

For any integer sequence a, let l(a) be the number of integers in a and for any list [y] =
(y1, y2, . . . , yt), let l[y] = l(y1)+ l(y2)+ . . .+ l(yt). Notice the use of square brackets in the notation
l[y] for the length of the list [y] and the use of round brackets in the notation l(a) for the length of
the sequence a.

For any two integer sequences a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) with l(a) = l(b), define
a+b = (a1+b2, a2+b2, . . . , an+bn). For any two lists [y1] = (y11, y

2
1, . . . , y

t
1) and [y2] = (y12, y

2
2, . . . , y

t
2)

with l(yj1) = l(yj2), for any 1 ≤ j ≤ t, define [y1] + [y2] = (y11 + y12, y
2
1 + y22, . . . , y

n
1 + yn2).

Definition 3.7. (Typical sequence, Typical list) Let a = (a1, a2, . . . , an) be an integer sequence.
Define the typical sequence T (a) to be the sequence obtained by repeatedly applying the following
operation, until it is no longer possible:

• if there exists 1 ≤ i < n with ai = ai+1 replace (a1, a2, . . . , an) by (a1, a2, . . . , ai, ai+2, . . . , an).

• if there exists 1 ≤ i < n−1 with ai < ai+1 < ai+2 or ai > ai+1 > ai+2, replace (a1, a2, . . . , an)
by (a1, a2, . . . , ai, ai+2, . . . , an).

Let [y] = (y1, y2, . . . yt) be a list of integer sequences. Define the typical list T [y] to be the list
T [y] = (T (y1), T (y2), . . . , T (yt)).

6

Notice the use of square brackets in the notation T [y] for the typical list of [y] and the use of
round brackets in the notation T (a) for the typical sequence of a. Moreover, if [y] is a typical list,
T [y] = [y] and hence we can write [y] instead of T [y].

Definition 3.8. (Characteristic) Let D = ({Xi | i ∈ I}, T (I, F)) be a tree decomposition. Let
i ∈ I and P be a partial path decomposition at i with interval model Z and typical list [y]. Define
the characteristic of P at i to be C = (Z, [y]).

Definition 3.9. (Extensions) Let a = (a1, a2, . . . , an) be an integer sequence. Define E(a) to be
the set of extensions of a:

E(a) = { a∗ | ∃1=t1<t2<...<tn+1 ∀1≤i≤n ∀ti≤j<ti+1 [a∗j = ai] }

Definition 3.10. (Precedence) Let a and b be two integer sequences. Define a � b if and only if
there exist ea = (ea1, e

a
2, . . . , e

a
t) ∈ E(a), eb = (eb1, e

b
2, . . . , e

b
t) ∈ E(b) such that for all 1 ≤ i ≤ t, eai ≤ ebi .

Let P1 and P2 be two partial path decompositions rooted at the same node with the same
interval model. Let their corresponding lists be [y1] = (y11, y

2
1, . . . y

t
1) and [y2] = (y12, y

2
2, . . . y

t
2).

Define P1 � P2 if and only if for all 1 ≤ j ≤ t, yj1 � y
j
2.

Definition 3.11. (Full set of characteristics) For i ∈ I, define FS(i) to be a full set of character-
istics at i if and only if for every partial path decomposition P at i of width at most k there exists
a partial path decomposition P ′ at i such that P ′ � P and the characteristic of P ′ is in FS(i).

4 Nice Tree Decompositions

Let l ≥ 1 be a constant and G be a graph of treewidth at most l. Let D′ = ({Xi | i ∈ I ′}, T ′(I ′, F ′))
be a width-l rooted tree decomposition of G obtained by using the algorithm of Theorem 2.1. In
this section, we present a logspace algorithm to transform D′ into a nice tree decomposition D.

Recall that the elements of I are called the nodes of the tree T .

Definition 4.1. (Nice tree decomposition) A rooted tree decomposition D = ({Xi | i ∈ I}, T (I, F))
is called a nice tree decomposition if the following conditions are satisfied:

• every node of T has at most two children (NTD-1)

• if a node i has two children j and k, then Xi = Xj = Xk (NTD-2)

• if a node i has one child j, then exactly one of the following holds (NTD-3)

– |Xi| = |Xj | − 1 and Xi ⊂ Xj

– |Xi| = |Xj |+ 1 and Xi ⊃ Xj

Theorem 4.2. There exists a logspace algorithm that converts D′ = ({Xi | i ∈ I ′}, T ′(I ′, F ′))
into a width-l nice tree decomposition D = ({Xi | i ∈ I}, T (I, F)). Moreover, the height of T is
O(logn).

Proof. There are three properties of a nice tree decomposition: NTD-1, NTD-2 and NTD-3. Note
that D′ already satisfies NTD-1 (see Theorem 2.1).

7

We perform the following steps for each node p with two children (say q and r) in T ′. We
subdivide the edge (p, q) into (p, q′) and (q′, q) such that Xq′ = Xp. Similarly, we subdivide the
edge (p, r) into (p, r′) and (r′, r) such that Xr′ = Xp. The tree decomposition thus constructed
(say D′′ = ({Xi | i ∈ I ′′}, T ′′(I ′′, F ′′))) satisfies NTD-1 and NTD-2.

We perform the following steps for each node p with exactly one child (say q) in T ′′. If
Xp = Xq, then we contract the edge (p, q). If Xp 6= Xq, let Xpq = Xp ∩ Xq, Xp \ Xq =
{vp1 , vp2 , . . . , vps} and Xq \Xp = {vq1 , vq2 , . . . , vqt}. Let Xpi = Xpq∪{vp1 , vp2 , . . . , vpi} for 1 ≤ i < s.
Let Xqi = Xpq ∪ {vq1 , vq2 , . . . , vqi} for 1 ≤ i < t. Replace the edge (p, q) by a path with
nodes p, ps−1, . . . , p1, pq, q1, q2, . . . , qt−1, q. The corresponding bags associated with these nodes
are Xp, Xps−1 , . . . , Xp1 , Xpq, Xq1 , Xq2 , . . . , Xqt−1 , Xq. Note that the length of this path is at most
2l. The tree decomposition thus constructed (say D = ({Xi | i ∈ I}, T (I, F))) satisfies NTD-1,
NTD-2 and NTD-3. Moreover, the height of T is O(logn).

Additionally, we perform the following steps for each leaf node of D. Let p be a leaf node with
Xp = {v1, v2, . . . vs}. For all 1 ≤ i < s, let Xpi = {v1, v2, . . . vi}. Replace the node p by a path with
nodes p, ps−1, . . . , p1. The corresponding bags associated with these nodes are Xp, Xps−1 , . . . , Xp1 .
Note that the length of this path is at most l and that the new leaf node Xp1 has one vertex.

Henceforth, we assume that all the leaf nodes of D = ({Xi | i ∈ I}, T (I, F)) have one vertex in
their bags.

The nodes of D are of the following four types :

Definition 4.3. (Start, Join, Forget and Introduce nodes) Let D = ({Xi | i ∈ I}, T (I, F)) be a
nice tree-decomposition and let p ∈ I. Node p is one of the following types:

• Start: a leaf node, having one vertex in its bag.

• Forget: a node with one child q, with Xp ⊂ Xq and |Xp| = |Xq| − 1,

• Introduce: a node with one child q, with Xp ⊃ Xq and |Xp| = |Xq|+ 1,

• Join: a node with two children q and r, with Xp = Xq = Xr.

Since any nice tree decomposition is a rooted tree decomposition, one of the nodes in I is the
root of T . We denote this node by root. Observe that root is still of one of the above four types.

5 Computing Characteristics

In this section, we show how to compute in logspace the full set of characteristics at a node,
given the full sets of characteristics at its children. We then show how to compute the full set of
characteristics at the root. Finally, we compute a unique characteristic at each node.

Since FS(root) 6= ∅ if and only if pw(G) ≤ k, once we have shown that FS(root) can be
computed in logspace, we have solved the decision version of the problem. The results in Section
5.3 - Section 7.2 contribute only to the constructive part of the solution, in which we show that a
path decomposition can be found in logspace.

Throughout this section, let k ≥ 1 be a constant and D = ({Xi | i ∈ I}, T (I, F)) be the nice
tree decomposition of G computed in Section 4. Let p, q, r ∈ I be nodes of T .

8

5.1 Computing the Characteristic from the Characteristics at Children

We now present a logspace algorithm to compute FS(p), the full set of characteristics at p, given
the full sets of characteristics at the children of p.

5.1.1 Start Node

Let p ∈ I be a start node with Xp = {v}. By definition, FS(p) = {(({v}), [(1)]), (({v}, {∅}),
[(1), (0)]), (({∅}, {v}), [(0), (1)]), (({∅}, {v}, {∅}), [(0), (1), (0)])}. We define the procedure
ComputeStartFS(p) that outputs this set FS(p). It is easy to see that ComputeStartFS(p)
is a logspace function.

5.1.2 Forget Node

We first give some lemmas referring to the space requirements of an interval model, minimal path
decomposition, typical sequence, typical list and full set of characteristics.

Lemma 5.1. (Bodlaender and Kloks [BK96]) The number of different interval models at p is
bounded by (2k + 3)2k+3. The number of bags in any interval model is at most 2k + 3. These
bounds hold for the minimal path decompositions of G[Xp] as well.

Corollary 5.2. Any interval model can be stored in logspace.

Lemma 5.3. (Bodlaender and Kloks [BK96]) Let a = (a1, a2, . . . , an) be a sequence of nonnegative
integers with max(a) = k + 1. Then l(T (a)) ≤ 2k + 3. The number of different typical sequences
of integers in {0, 1, . . . , k + 1} is at most 8

322(k+1).

Lemma 5.4. Let (Z, [y]) with Z = (Zj)1≤j≤t be a characteristic at p. Then l[y] ≤ (2k + 3)2.
Furthermore, the number of different typical lists that are part of some characteristic at p is at
most (8322(k+1))2k+4.

Proof. For any 1 ≤ j ≤ t, max(yj) ≤ k + 1 and hence by Lemma 5.3, l(yj) ≤ 2k + 3. By Lemma
5.1, t ≤ 2k + 3. Therefore, l[y] ≤ (2k + 3)2.

By Lemma 5.3, there are 8
322(k+1) different typical sequences that are elements of a typical list

that is part of a characteristic at p. Hence for every i, there are (8322(k+1))i different typical lists
that are part of some characteristic at p and that have i typical sequences. Since the number of
typical sequences in a typical list that is part of characteristic at p is at most 2k + 3, we get that
the number of different typical lists that are the typical list of some characteristic at p is at most∑2k+3
i=1 (8322(k+1))i ≤ (8322(k+1))2k+4.

Bodlaender and Kloks [BK96] gave a bound on the number of different characteristics of possible
path-decompositions with pathwidth at most k. We will use the following slightly weaker bound,
as it is enough for our purposes and it is a direct consequence of the results stated previously.

Corollary 5.5. The number of different characteristics at p is at most (2k+ 3)2k+3(8322(k+1))2k+4.

Let p be a forget node and q be its child such that Xq \Xp = {v}. Let Cq = (Z, [y]) ∈ FS(q)
be a characteristic at q with Z = (Zj)1≤j≤t. We define the procedure ComputeForgetFS(p, Cq)
as follows.

Define Z \ {v} = (Zj \ {v})1≤j≤t and let Z ′ be the minimal path decomposition obtained by
removing the consecutive duplicate bags of Z \ {v}. Define [y′] as follows:

9

• if Z \ {v} does not contain any consecutive duplicate bags, then [y′] = [y],

• if Z \ {v} contains exactly a pair of consecutive duplicate bags, say Zj1 \ {v} = Zj1+1 \ {v},
for some 1 ≤ j1 < t, then [y′] = (y1, y2, . . . , yj1−1, yj1yj1+1, yj1+2, . . . , yt),

• if Z \{v} contains two pairs of consecutive duplicate bags, but no three consecutive duplicate
bags, say Zj1 \ {v} = Zj1+1 \ {v} and Zj2 \ {v} = Zj2+1 \ {v} for some 1 ≤ j1 < j2 < t, then
[y′] = (y1, y2, . . . , yj1−1, yj1yj1+1, yj1+2, . . . , yj2−1, yj2yj2+1, yj2+2, . . . , yt),

• if Z \ {v} contains three consecutive bags, say Zj1 \ {v} = Zj1+1 \ {v} = Zj1+2 \ {v} for some
1 ≤ j1 ≤ t− 2, then [y] = (y1, y2, . . . , yj1−1, yj1yj1+1yj1+2, yj1+3, . . . , yt).

Let [y′′] = T [y′] and let the output of ComputeForgetFS(p, Cq) be (Z ′, [y′′]). Note that
(Z ′, [y′′]) is a characteristic at p and FS(p) = { ComputeForgetFS(p, Cq) | Cq ∈ FS(q)}. By
Corollary 5.5, the number of characteristics in FS(p) is at most a constant and hence, to show that
FS(p) can be computed in logspace from FS(q), it is sufficient to show that ComputeForget
FS(p, Cq) can be implemented in logspace.

Theorem 5.6. ComputeForgetFS(p, Cq) is a logspace computable function.

Proof. Let Cq = (Z, [y]) with Z = (Zj)1≤j≤t. ComputeForgetFS(p, Cq) works as follows.

Step 1 : Computing the interval model Z ′
By Corollary 5.2, Z can be stored in logspace and hence, we can compute Z \ {v} in logspace.

Now we eliminate the consecutive duplicate bags of Z \{v} in logspace. Iterate the bags of Z \{v}.
Always output Z1 \ {v}. Let the current bag be Zj \ {v} and the last bag output be Zj′ \ {v}.
We can determine in logspace if Zj′ \ {v} 6= Zj \ {v} using the algorithm from Lemma 5.7. If
Zj′ \ {v} 6= Zj \ {v}, output Zj \ {v} and otherwise, store j and continue the iteration of the bags
of Z \ {v}.

Step 2 : Computing the typical list [y′′]
The previous step computes the indices j such that Zj \ {v} = Zj−1 \ {v}. Now we can iterate

the sequences of [y] and using the definition of [y′], compute [y′] in logspace. By Lemma 5.4, l[y] is
at most a constant. We now apply the algorithm of Lemma 5.8 to compute [y′′].

Lemma 5.7. Let Y1, Y2 ⊆ Xp with |Y1| ≤ k+1 and |Y2| ≤ k+1. There exists a logspace algorithm
deciding whether Y1 = Y2.

Proof. Iterate the vertices in Y1 and for each current vertex v, iterate the vertices of Y2, comparing
each of them with v. Since Y1 and Y2 have at most some constant number of vertices, each with
a logarithmic label, this can be done in logspace. If v is not found in Y2, conclude that Y1 6= Y2
and terminate. If we reach the end of the iteration without terminating prematurely, it means that
Y1 ⊆ Y2. Now repeat the above procedure for the pair (Y2, Y1). If this also does not terminate
prematurely, we have Y2 ⊆ Y1 and therefore, we conclude that Y1 = Y2 and terminate.

Lemma 5.8. Let n ≤ c(k), where c(k) is a constant depending on k. Let a = (a1, a2, . . . an) be a
sequence of integers such that for 1 ≤ i ≤ n, ai can be stored in logspace. There exists a logspace
algorithm computing T (a).

10

Proof. Iterate the integers of a. Output a1 and proceed to the next element. Let ai be the current
integer and ai′ be the last integer output. If i = n, output ai. Otherwise, output ai if and only if
one of the following holds:

• ai > ai′ and ai > ai+1

• ai < ai′ and ai < ai+1

From the definition of a typical sequence, we see that this procedure correctly outputs T (a). Since
each of the integers of a can be stored in logspace, this is a logspace algorithm.

5.1.3 Introduce Node

Let p be an introduce node and q be its child such that Xp \Xq = {v}.

Definition 5.9. (Split) Let a = (a1, a2, . . . , an) be an integer sequence.

• For 1 ≤ i < n, define ((a1, a2, . . . , ai), (ai+1, ai+2, . . . , an)) to be a split of type I of a at i.

• For 1 ≤ i ≤ n, define ((a1, a2, . . . , ai), (ai, ai+1, . . . , an)) to be a split of type II of a at i.

• Define (a1, a2) to be a split of a if there exists 1 ≤ i ≤ n such that (a1, a2) is a split of type I
or II of a at i.

Let Cq = (Z, [y]) be a characteristic at q with Z = (Zj)1≤j≤t. Define the procedure Compute
IntroduceFS(p, Cq) as follows.

First compute the set S(Z) of all minimal path decompositions Z ′ =
(Z ′j)1≤j≤t′ for G[Xp], such that by removing the consecutive duplicate bags of Z ′ \ {v}, we ob-
tain Z, where Z ′ \ {v} = (Z ′j \ {v})1≤j≤t′ .

For every Z ′ ∈ S(Z), do the following. Let l, r be the smallest and largest indices such that
v ∈ Z ′l and v ∈ Z ′r, resp. For any integer sequence a = (a1, a2, . . . , an), we denote a + 1 =
(a1 + 1, a2 + 1, . . . , an + 1). Define the set of typical lists S′(Z ′) as follows:

• if t′ = t, then S′(Z ′) = {(y1, y2, . . . , yl−1, yl + 1, yl+1 + 1, . . . , yr + 1, yr+1, . . . , yt)},

• if t′ = t+ 1 and Z ′l \ {v} = Z ′l−1, then S′(Z ′) = {(y1, y2, . . . , yl−2, (y′)l−1, (y′)l + 1, yl + 1, . . . ,
yr−1 + 1, yr, . . . , yt) | ((y′)l−1, (y′)l) is a split of yl−1},

• if t′ = t+ 1 and Z ′r \ {v} = Z ′r+1, then S′(Z ′) = {(y1, y2, . . . , yl−1, yl + 1, . . . , yr−1 + 1, (y′)r +
1, (y′)r+1, yr+1, . . . , yt) | ((y′)r, (y′)r+1) is a split of yr},

• if t′ = t + 2 and l < r, then S′(Z ′) = {(y1, y2, . . . , yl−2, (y′)l−1, (y′)l + 1, yl + 1, . . . , yr−2 +
1, (y′)r + 1, (y′)r+1, yr, . . . , yt) | ((y′)l−1, (y′)l) is a split of yl−1 and ((y′)r, (y′)r+1) is a split of
yr−1},

• if t′ = t + 2 and l = r, then S′(Z ′) = {(y1, y2, . . . , yl−2, (y′)l−1, (y′)l + 1, (y′)l+1, yl, . . . , yt) |
((y′)l−1, y′′) is a split of yl−1 and ((y′)l, (y′)l+1) is a split of y′′}.

For all [y′] ∈ S′(Z ′), output (Z ′, [y′]). Note that the output of ComputeIntroduceFS(p, Cq)
is a set of characteristics at p and FS(p) = { ComputeIntroduceFS(p, Cq) | Cq ∈ FS(q)}.
Hence, to show that FS(p) can be computed in logspace from FS(q), it is sufficient to show that
ComputeIntroduceFS(p, Cq) can be implemented in logspace.

11

Theorem 5.10. ComputeIntroduceFS(p, Cq) is a logspace computable function.

Proof. Let Cq = (Z, [y]) with Z = (Zj)1≤j≤t. ComputeIntroduceFS(p, Cq) works as follows.

Step 1 : Computing the minimal path decompositions for G[Xp]
By Lemma 5.1, the number of bags in a minimal path decomposition for G[Xp] is bounded

by a constant (say c). We first see that we can iterate in logspace the sequences of integers
y = (y1, y2, . . . , ys) with s ≤ c and for all 1 ≤ i ≤ s, yi ≤ k + 1. Since s is at most some constant
and each for 1 ≤ i ≤ s, yi is also at most some constant, we can store y in constant space. We
can iterate these sequences in logspace by storing only the last computed sequence and at the next
step computing the next valid sequence in lexicographical order.

For each such sequence y, we see that we can iterate in logspace the sequences of bags Y =
(Y1, Y2, . . . , Ys) such that for all 1 ≤ i ≤ s, Yi ⊆ Xp and |Yi| = yi. Since s is at most some constant
and for 1 ≤ i ≤ s, Yi contains at most some constant number of vertices, each with a logarithmic
label, Y can be stored in logspace. We can iterate these sequences in logspace by storing only the
last computed sequence and at the next step computting the next valid sequence in lexicographical
order.

For each such sequence Y , we shall now prove that we can decide in logspace whether Y is a path
decomposition. We check in logspace each of the three defining properties of a path decomposition
(see Definition 1.2).

• PD-1: Iterate all vertices in Xp. Since Xp has at most some constant number of vertices, each
with a logarithmic label, this can be done in logspace. For each current vertex u, iterate the
vertices in each of the bags in Y , comparing each of them with u. Since Y can be stored in
logspace, this can be done in logspace. Decide that Y has property PD-1 iff for all vertices u,
there exists 1 ≤ i ≤ s such that u ∈ Yi.

• PD-2: Iterate in logspace all edges in Xp. For each current edge (u,w), iterate the vertices
in each of the bags in Y , comparing each of them with u and w. Decide that Y has property
PD-2 iff for all edges (u,w) there exists 1 ≤ i ≤ s such that u,w ∈ Yi.

• PD-3: Iterate in logspace the vertices in Xp. For each current vertex u, iterate the vertices
in each of the bags in Y , comparing each of them with u. During this procedure, store two
boolean variables found and lost. Initially, found = false and lost = false. Let the current
bag be Yi. If u ∈ Yi, set found = true and if found = true and u /∈ Yi, set lost = true. If
at some point during the iteration, we have found = true, lost = true and u ∈ Yi, conclude
that Y does not have have PD-3 and terminate. If the iteration of the vertices in Xp does
not terminate prematurely, conclude that Y has property PD-3.

For each path decomposition Y , we can decide in logspace whether Y is minimal. Iterate in
logspace consecutive pairs of bags of Y . For each current pair of bags (Yi, Yi+1) apply the logspace
algorithm of Lemma 5.7 to determine whether they are equal. If they are found equal, terminate
the procedure and conclude that Y is not minimal. If no pair of bags causes the termination of the
procedure, conclude that Y is indeed a minimal path decomposition.

Applying successively the above procedures yields a logspace algorithm that computes all min-
imal path decompositions for G[Xp].

12

Step 2 : Computing the interval models in S(Z)
For each minimal path decompositions Z ′, we want to determine in logspace the sequence of

bags Z ′′ obtained by removing the consecutive duplicate bags of Z ′ \ {v} = (Z ′j \ {v})1≤j≤t′ . This
can be done using the algorithm from the “Computing the interval model” step of the Compute
ForgetFS(p, Cq) procedure.

Let Z ′′ = (Z ′′j)1≤j≤t′′ . We now check if Z ′′ = Z. Because Z ′ can be stored in logspace, t′′ can
be determined in logspace. If t 6= t′′, conclude that Z ′′ 6= Z and hence Z ′′ /∈ S(Z). Otherwise, for
all 1 ≤ j ≤ t = t′′, determine in logspace if Z ′′j 6= Zj using the algorithm of Lemma 5.7. Conclude
that Z ′′ /∈ S(Z) iff there exists j such that Z ′′j 6= Zj .

Step 3 : Computing the typical lists in S′(Z ′)
Let Z ′ ∈ S(Z) and let l, r be the smallest and largest indices such that v ∈ Z ′l and v ∈ Z ′r, resp.

We now see that l and r can be computed in logspace. Iterate the bags in Z ′. Let Z ′j be the current
bag. If v ∈ Z ′j , set l = j and terminate the iteration. Now iterate all the pairs of consecutive bags
in Z ′. Let (Z ′j , Z

′
j+1) be the current pair of bags. If v ∈ Z ′j and v /∈ Z ′j+1, set r = j and terminate

the iteration.
For all 1 ≤ j ≤ t, we can compute all splits of yj in logspace. Let yj = (yj1, y

j
2, . . . , y

j
l(yj)

). For

each 1 ≤ j′ < l(yj), output ((yj1, y
j
2, . . . , y

j
j′), (y

j
j′+1, y

j
j′+2, . . . , y

j
l(yj)

)) and for all 1 ≤ j′ ≤ l(yj),

output ((yj1, y
j
2, . . . , y

j
j′), (y

j
j′ , y

j
j′+1, . . . , y

j
l(yj)

)). By Lemma 5.4, [y] can be stored in logspace and

thus, this procedure can be done in logspace.
Assume t′ = t + 1 and Z ′l \ {v} = Z ′l−1. The other cases are treated similarly. Iterate all

possible splits of yl−1. For each current split ((y′)l−1, (y′)l), iterate the sequences of [y] and output
(y1, y2, . . . , yl−2, (y′)l−1, (y′)l + 1, yl + 1, . . . , yr−1 + 1, yr, . . . , yt). Since [y] can be stored in constant
space and all the splits can be computed in logspace, this is a logspace procedure.

5.1.4 Join Node

Let p be a join node and q, r be its children such that Xp = Xq = Xr.
Let Cq = (Zq, [yq]) ∈ FS(q) and Cr = (Zr, [yr]) ∈ FS(r) be characteristics at q and r, respec-

tively. We define the procedure ComputeJoinFS(p, Cq, Cr) as follows.
If Cq and Cr do not have the same interval model, the procedure terminate without any output.

Otherwise, let Z = Zq = Zr with Z = (Zj)1≤j≤t. Let the procedure output all characteristics
of the form (Z, [y′p]), where [y′p] = T [yp] and for all 1 ≤ j ≤ t, yjp = ejq + ejr − |Zj |, for some
ejq ∈ E(yjq), e

j
r ∈ E(yjr), with l(ejq) = l(ejr) ≤ l(yjq) + l(yjr) and max(yjp) ≤ k + 1.

The output of ComputeJoinFS(p, Cq, Cr) is a set of characteristics at p and moreover, FS(p) =
{ ComputeJoinFS(p, Cq, Cr) | Cq ∈ FS(q), Cr ∈ FS(r)}. Hence, to show that FS(p) can be com-
puted in logspace from FS(q) and FS(r), it is sufficient to show that ComputeJoinFS(p, Cq, Cr)
can be implemented in logspace.

Theorem 5.11. ComputeJoinFS(p, Cq, Cr) is a logspace computable function.

Proof. Let Cq = (Zq, [yq]) and Cr = (Zr, [yr]). ComputeJoinFS(p, Cq, Cr) works as follows.
Using the algorithm of Lemma 5.7, we can determine in logspace whether Zq = Zr. If Zq 6= Zr,

do not output anything and terminate. Otherwise, let Z = Zq = Zr, with Z = (Zj)1≤j≤t.
For 1 ≤ j ≤ t, we can iterate in logspace all extensions ejq ∈ E(yjq) with l(ejq) ≤ l(yjq) + l(yjr). By

Lemma 5.4, l(yjq) and l(yjr) are at most some constants and hence l(ejq) is also at most some constant.

13

Iterate all nondecreasing sequences of integers (i1, i2, . . . il) with l ≤ l(yjq) + l(yjr), i1 = 1, il = l(yjq)
and i2 ≤ i1+1, i3 ≤ i2+1, . . . , il ≤ il−1+1. Since l is at most some constant and each of i1, i2, . . . , il
is at most some constant, the sequence (i1, i2, . . . il) can be stored in logspace. The iteration over
these sequences can be done in logspace, as we can store the last sequence output and then compute
the next valid one in lexicographical ordering. For each current sequence (i1, i2, . . . , il), output
((yjq)i1 , (y

j
q)i2 , . . . , (y

j
q)il).

We now see that we can compute the set of typical lists Sj = {(y′p)j | (y′p)
j = T (yjp), y

j
p =

ejq+ejr−|Zj | for some ejq ∈ E(yjq), e
j
r ∈ E(yjr), with l(ejq) = l(ejr) ≤ l(yjq)+l(yjr) and max(yjp) ≤ k+1}.

For each extension ejq computed by the previous algorithm, we can similarly iterate all extensions
ejr ∈ E(yjr) with l(ejr) = l(ejq). For each current pair of extensions (ejq, e

j
r), compute yjp = ejq+e

j
r−|Zj |.

Since Zj has a constant number of vertices, we can compute |Zj | in logspace. Moreover, l(ejq) = l(ejr)
is at most some constant and each of the integers of ejq and ejr are at most some constants and
hence we can compute yjp in logspace. Using the algorithm of Lemma 5.8, we can compute (y′p)

j in
logspace. Add (y′p)

j to Sj iff max(yjp) ≤ k + 1.
Hence, we can compute S1, S2, . . . St in logspace. Now iterate all typical lists ((y′p)

1, (y′p)
2, . . . ,

(y′p)
t) such that for all 1 ≤ j ≤ t, (y′p)j ∈ Sj . By Lemma 5.4, each typical sequence can be stored in

logspace and by Lemma 5.1, t is at most some constant. Hence, we can store each element of the
iteration in logspace. At the next step, we can compute the next valid sequence in lexicographical
ordering and hence, this iteration can be done in logspace. This produces the desired output.

5.2 Computing the Full Set of Characteristics at the Root

Lindell in [Lin92] gave a logspace algorithm for tree traversal. We give a brief description of this
algorithm in Appendix B. In this section, we extend his algorithm to obtain a logspace algorithm
for computing FS(root), where root is the root node of T .

Let p ∈ I. We will see that FS(p) can be stored in logspace. We now introduce a relabeling
function, which transforms FS(p) so that it can be stored in only constant space. This is crucial
to proving the logarithmic space bound of our entire algorithm.

Definition 5.12. (Relabeling) Let V = {v1, v2, . . . , vn} and Xp = {vp1 , vp2 , . . . , vps} with 1 ≤ p1 <
p2 < . . . ps ≤ n and let C = (Z, [y]) ∈ FS(p) with Z = (Zj)1≤j≤t.

We define the relabeling function R as follows:

• for 1 ≤ i ≤ s, the relabeling of vpi at p is R(p, vpi) = i,

• the relabeling of Z at p is R(p,Z) = Z ′, where Z ′ = (Z ′j)1≤j≤t and for all 1 ≤ j ≤ t, Z ′j =
{R(p, v) | v ∈ Zj},

• the relabeling of C at p is R(p, C) = (R(p,Z), [y]),

• the relabeling of FS(p) at p is R(p, FS(p)) = {R(p, Cp) | Cp ∈ FS(p)}.

• the relabeling of null is R(p, null) = null.

Define the inverse relabeling R−1 to be inverse function of the relabeling function.

Lemma 5.13. FS(p) can be stored in (2k + 3)2k+3(8322(k+1))2k+4[(2k + 3)(k + 1) log n+ (log(k +

1))(2k+3)2] space and R(p, FS(p)) can be stored in (2k+3)2k+3(8322(k+1))2k+4[(2k+3)(k+1) log k+

(log(k + 1))(2k+3)2] space.

14

Proof. By Corollary 5.5, the number of different characteristics is at most (2k+3)2k+3(8322(k+1))2k+4.
Let C = (Z, [y]) ∈ FS(p) with Z = (Zj)1≤j≤t. By Lemma 5.1, t ≤ 2k + 3 and since |Zj | ≤

k + 1 and each vertex has logarithmic labels, we can store Z in (2k + 3)(k + 1) logn space. Each
vertex in each of the bags of R(p,Z) has label of size log k and hence R(p,Z) can be stored in
(2k + 3)(k + 1) log k space. By Lemma 5.4, l[y] ≤ (2k + 3)2 and since each of the integers in
[y] is at most k + 1, [y] can be stored in (log(k + 1))(2k+3)2 space. Thus, C can be stored in
(2k+ 3)(k+ 1) log n+ (log(k+ 1))(2k+3)2 space and R(p, C) can be stored in (2k+ 3)(k+ 1) log k+
(log(k + 1))(2k+3)2 space.

Lemma 5.14. R(p, FS(p)) and R−1(p,R(p, FS(p)) are logspace computable functions.

Proof. Since the class of logspace computable functions is closed under composition, to show that
R(p, FS(p)) is a logspace function, it is enough to show that for any v ∈ Xp, R(p, v) is a logspace
function. Iterate the vertices of Xp, keeping a counter recording the number of vertices seen so far
with labels smaller than or equal to the label of v. Let R(p, v) be the value of the counter at the
end of the iteration.

To show that R−1(p,R(p, FS(p))) is a logspace function, it is enough to show that for any
1 ≤ i ≤ |Xp|, R−1(p, i) is a logspace function. Iterate the vertices of Xp and output the current
node v iff R(p, v) = i.

Theorem 5.15. The full set of characteristics FS(root) can be computed in logspace.

Proof. Perform a logspace depth-first search tree traversal of T using the algorithm of [Lin92],
described in Section B. We choose a non-recursive implementation of DFS, with the nodes to be
explored added to a stack. For the join nodes, we consistently explore the child with the smaller
label first.

During the iteration, we store the following relabelings. We store R(q, FS(q)), where q is the
last node popped off the DFS stack. We also store a stack stackRelabelingFS of all R(p′, FS(p′)),
where the parent p′′ of p′ has two children and we have computed R(p′, FS(p′)), but not R(p′′,
FS(p′′). To maintain this stack, we push R(p, FS(p)) on stackRelabelingFS, each time a node
p is popped off the DFS stack and p has a sibling with a larger label and we pop an element off
stackRelabelingFS each time a join node p is popped off the DFS stack.

We now see that with the above information we can compute R(p, FS(p)) each time a node p is
popped off the DFS stack. Perform the stack-based DFS traversal and let p be the node currently
popped off the DFS stack. Then:

• if p is a start node, compute FS(p) = ComputeStartFS(p) and then find R(p, FS(p)).

• if p is a forget node, let q be its child. Then q is the last node popped and we have already
computed and stored R(q, FS(q)), so we can compute FS(q) = R−1(q,R(q, FS(q))). Then
compute FS(p) = ComputeForgetFS(p, FS(q)) and finally R(p, FS(p)).

• if p is an introduce node, proceed as in the case when p is a forget node.

• if p is a join node, let q and r be its children, such that q is lexicographically smaller than r.
Then the last node popped is r and hence we have already computed and stored R(r, FS(r)).
Furthermore, observe that q is on top of stackRelabelingFS, so we know R(q, FS(q)). We
can now compute FS(q) = R−1(q,R(q, FS(q))) and FS(r) = R−1(r,R(r, FS(r))) and then
compute FS(p) = ComputeJoinFS(p, FS(q), FS(r)) and finally R(p, FS(p)).

15

We now see that the algorithm can be implemented in logspace. By Lemma 5.13, R(p, FS(p))
can be stored in constant space for any node p and since the depth of T is O(logn), stackRelabeling
FS can be stored in logspace. By Section 5.1, the procedures ComputeStartFS, ComputeFor-
getFS, ComputeIntroduceFS and ComputeJoinFS are logspace functions and by Lemma
5.14, the functions R and R−1 are also logspace functions. The result follows since the class of
logspace computable functions is closed under composition.

5.3 Computing a Unique Characteristic at Each Node

In this section, we see how to compute in logspace a unique characteristic at each node such that
there exists a path decomposition (Y1, Y2, . . . , Ys) of G such that for every node t of T , the unique
characteristic at t is the characteristic of the partial path decomposition (Y1∩Gt, Y2∩Gt, . . . , Ys∩Gt).
Recall that Gt denotes the subgraph of G rooted at t.

Let p ∈ I, Cp ∈ FS(p) and q be a child of p. Let p′ ∈ I be a descendant of p in T . We define a
unique characteristic at p, at q and then at p′.

Definition 5.16. (Descendant characteristic) Define the descendant characteristic dc(p, p, Cp) of
Cp at p for p to be Cp.

Define the descendant characteristic dc(p, q, Cp) of Cp at p for q as follows:

• if p is a forget node, then dc(p, q, Cp) is the lexicographically smallest characteristic in
{Cq | Cq ∈ FS(q), Cp = ComputeForgetFS(p, Cq)},

• if p is an introduce node, then dc(p, q, Cp) is the lexicographically smallest characteristic in
{Cq | Cq ∈ FS(q), Cp ∈ ComputeIntroduceFS(p, Cq)},

• if p is a join node, let r be its other child. Then,

– if q is lexicographically smaller than r, let (dc(p, q, Cp), dc(p, r, Cp)) be the lexicograph-
ically smallest pair of characteristics in {(Cq, Cr) | Cq ∈ FS(q), Cr ∈ FS(r), Cp ∈
ComputeJoinFS(p, Cq, Cr)}.

– otherwise, let (dc(p, r, Cp), dc(p, q, Cp)) be the lexicographically smallest pair of charac-
teristics in {(Cr, Cq) | Cq ∈ FS(q), Cr ∈ FS(r), Cp ∈ ComputeJoinFS(p, Cr, Cq)}.

Let p = p0, p1, . . . pt−1, pt = p′ be the nodes in order on the path in T between p and p′. Let
Cp0 = Cp and for 0 ≤ i < t, let Cpi+1 = dc(pi, pi+1, Cpi). Define the descendant characteristic
dc(p, p′, Cp) of Cp at p for p′ to be Cp′ = Cpt .

Theorem 5.17. There exists a logspace algorithm ComputeDescendantCharacteristic(p, p′,
Cp) that outputs the descendant characteristic dc(p, p′, Cp).

Proof. We first show that the statement holds when p′ is q, a child of p. Theorem 5.15 applied to
the subtree of T rooted at q gives FS(q) in logspace.

• If p is a forget node, iterate the characteristics in FS(q), storing a characteristic Cmin, initial-
ized with null, where null is defined to be lexicographically larger than any characteristic.
If the current characteristic is Cq such that Cp = ComputeForgetFS(p, Cq) and Cq is lexi-
cographically smaller than Cmin, let Cmin be Cq. Return the value of Cmin at the end of the
iteration.

16

• If p is an introduce node, proceed similarly to the case when p is a forget node.

• If p is a join node, let r be the other child of p. Suppose wlog q is lexicographically smaller
than r. Compute FS(r) in logspace. Iterate the characteristics in FS(q) and for each of them,
iterate the characteristics in FS(r), storing a characteristic Cmin, initialized with null. If the
current characteristics are Cq ∈ FS(q), Cr ∈ FS(r) such that Cp ∈ ComputeJoinFS(p, Cq, Cr)
and Cq is lexicographically smaller than Cmin, let Cmin be Cq. Return the value of Cmin at the
end of the iteration.

Observe that dc(p, q, Cp) is a logspace function, because the functions ComputeForgetFS,
ComputeIntroduceFS, ComputeJoinFS are logspace functions by Theorem 5.6, Theorem 5.10
and Theorem 5.11 and FS(q) and Cmin can be stored in logspace by Lemma 5.13.

For any ancestor p∗ ∈ I of p′, define child(p∗, p′) to be the child of p∗ that is an ancestor of p′.
We now see that child(p∗, p′) can be implemented in logspace. Iterate the nodes on the path from
p′ to p∗, storing the current node p∗∗ and its child p∗∗∗ that is an ancestor of p′. Initialize p∗∗ = p′

and p∗∗∗ = null. At each step, update p∗∗∗ by p∗∗ and p∗∗ by parent(p∗∗). Stop the iteration when
p∗∗ = p∗ and output p∗∗∗.

We now show that dc(p, p′, Cp) is a logspace function. Iterate the nodes on the path from the
p to p′, storing the current node p∗ and a characteristic C∗ at p∗. Initialize p∗ = p and C∗ = Cp.
Replace C∗ by dc(p∗, child(p∗, p′), C∗) and then p∗ by child(p∗, p′). Stop when p∗ = p′ and output
the current value of C∗.

Definition 5.18. (Unique characteristic) Let Croot ∈ FS(root) be the lexicographically smallest
characteristic in FS(root). Define the unique characteristic C∗p at p to be the descendant charac-
teristic dc(root, p, Croot).

It follows from Theorem 5.17 that the unique characteristic C∗p at p can be computed in
logspace.

6 Computing the Gap List

In this section, we give a logspace algorithm for computing the gap list, an auxiliary data structure
useful for computing the path decompositions. We first show how to compute the gap list at a
node given the gap list at its children and then show how to compute it at the root.

Let p ∈ I and C∗p = (Z, [y]) be the unique characteristic at p, with Z = (Zj)1≤j≤t and [y] =
(y1, y2, . . . , yt).

Definition 6.1. (Characteristic path decomposition) Let the characteristic path decomposition
CP(p) = (Y1, Y2, . . . Ys) be the width-k path decomposition at p output by the algorithm of [BK96]
given D and choosing C∗root as the characteristic at the root.

We now define the gap list at p and see that it can be stored in logspace. Each of the integers
in the typical list of C∗p is the cardinality of some bag in CP(p). We define the gap list as the list of
the number of bags in CP(p) between any two bags corresponding to consecutive elements in the
typical list.

17

Definition 6.2. (Gap list) Let 1 ≤ j ≤ t and yj = (|Y
ij1
|, |Y

ij2
|, . . . , |Y

ij
l(yj)

|). Define

g(p)j = (ij2 − i
j
1 − 1, ij3 − i

j
2 − 1, . . . , ij

l(yj)
− ij

l(yj)−1 − 1, ij+1
1 − ij

l(yj)
− 1),

where if j = t, we define ij+1
1 = s+ 1. Define g(p) = (g(p)1, g(p)2, . . . , g(p)t) to be the gap list at p.

Notice that g(p) can be stored in logspace. For any 1 ≤ j ≤ t and 1 ≤ i ≤ l(yj), we have
g(p)ji ≤ s and since s can be stored in logspace, g(p)ji can also be stored in logspace. Moreover,
l[g(p)] = l[y] and by Lemma 5.4, l[y] is at most a constant (depending on k). The desired result
now follows since g(p) contains at most a constant number of integers, each of which can be stored
in logspace.

6.1 Computing the Gap List from the Gap Lists at Children

In this section, we see how to compute in logspace g(p), given the gap lists at the children of p.

6.1.1 Start Node

Let p be a start node and g(p) be its gap list. Observe that:

• if C∗p = (({v}), [(1)]), then g(p) = [(0)],

• if C∗p = (({v}, {∅}), [(1), (0)]), then g(p) = [(0), (0)],

• if C∗p = (({∅}, {v}), [(0), (1)]), then g(p) = [(0), (0)],

• if C∗p = (({∅}, {v}, {∅}), [(0), (1), (0)]), then g(p) = [(0), (0), (0)].

Define the procedure ComputeStartGapList(p) to compute the gap list g(p). It is easy to
see that ComputeStartGapList(p) is a logspace computable function.

6.1.2 Forget Node

Let p be a forget node and q be its child. Let C∗p = (Z ′, [y′′]), C∗q = (Z, [y]) be the unique charac-
teristics at p, q, resp, with Z = (Zj)1≤j≤t and [y] = (y1, y2, . . . , yt). Recall that [y′′] = T [y′].

Definition 6.3. (Typical gap sequence) Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two
integer sequences. Let a′, b′ be two integer sequences, initialized with a′ = a and b′ = b. Repeat
the following procedure until no update is made:

• if there exists 1 ≤ i < n with a′i = a′i+1, replace a′ by (a′1, a
′
2, . . . , a

′
i, a
′
i+2, . . . , a

′
n) and b′ by

(b′1, b
′
2, . . . , b

′
i−1, b

′
i + b′i+1 + 1, b′i+2, . . . b

′
n),

• if there exists 1 ≤ i < n − 1 with a′i < a′i+1 < a′i+2 or a′i > a′i+1 > a′i+2, replace a′ by
(a′1, a

′
2, . . . , a

′
i, a
′
i+2, . . . , a

′
n) and b′ by (b′1, b

′
2, . . . , b

′
i−1, b

′
i + b′i+1 + 1, b′i+2, . . . b

′
n).

Let (a′′, b′′) be the value of (a′, b′) at the end of the iteration.
Define the typical gap list T G(a, b) of b for a to be b′′.

Define the output of the procedure ComputeForgetGapList(g(q)) to be g(p), where g(p) is
defined as follows:

18

• if Z \ {v} does not contain any consecutive duplicate bags, let g(p) = g(q),

• if Z \{v} contains exactly a pair of consecutive duplicate bags, say Zj1 \{v} = Zj1+1 \{v}, for
some 1 ≤ j1 < t, let g(p) = (g(q)1, g(q)2, . . . , g(q)j1−1, T G(yj1yj1+1, g(q)j1g(q)j1+1), g(q)j1+2,
. . . , g(q)t),

• if Z \{v} contains two pairs of consecutive duplicate bags, but there are no three consecutive
duplicate bags, say Zj1 \ {v} = Zj1+1 \ {v} and Zj2 \ {v} = Zj2+1 \ {v} for some 1 ≤
j1 < j2 < t, let g(p) = (g(q)1, g(q)2, . . . , g(q)j1−1, T G(yj1yj1+1, g(q)j1g(q)j1+1), g(q)j1+2, . . . ,
g(q)j2−1, T G(yj2yj2+1, g(q)j2g(q)j2+1), g(q)j2+2, . . . , g(q)t)

• if Z \ {v} contains three consecutive bags, say Zj1 \ {v} = Zj1+1 \ {v} = Zj1+2 \ {v} for some
1 ≤ j1 ≤ t, let g(p) = (g(q)1, g(q)2, . . . , g(q)j1−1, T G(yj1yj1+1yj1+2, g(q)j1g(q)j1+1g(q)j1+2),
g(q)j1+3, . . . , g(q)t).

We now show that the output of ComputeForgetGapList(g(q)) is indeed the gap list g(p).
By construction, CP(p) = CP(q). Hence, if [y′] = [y], Z \{v} contains no duplicate bags and hence
g(p) = g(q). Otherwise, for each integer (y′)ji of [y′] that is eliminated, the number of bags between
the bags corresponding to the two newly adjacent integers is the sum of the number of bags that
were initially between each of them and the bag of cardinality (y′)ji plus one, to account for the

bag of cardinality (y′)ji . Hence, the procedure has the desired output.
It remains to show that ComputeForgetGapList(g(q)) is a logspace computable function.

This follows since g(p) and g(q) can be stored in logspace and C∗p and C∗q can be computed in
logspace (Theorem 5.17) and stored in logspace (Lemma 5.13). Moreover, similarly to the proof of
Lemma 5.7, the typical gap list can be computed in logspace.

6.1.3 Introduce Node

Let p be an introduce node and q be its child, with Xp \ Xq = {v}. Let C∗p = (Z ′, [y′]), C∗q =
(Z, [y]) be the unique characteristics at p, q, resp, with Z = (Zj)1≤j≤t, [y] = (y1, y2, . . . , yt) and
Z ′ = (Z ′j)1≤j≤t, [y

′] = ((y′)1, (y′)2, . . . , (y′)t).

Definition 6.4. (Gap split) Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . bn) be two integer sequences.
For any split (a1, a2) of a, define (b1, b2) as follows:

• if (a1, a2) = ((a1, a2, . . . , ai), (ai+1, ai+1, . . . , an)), let ((b1, b2, . . . , bi−1, bi), (bi+1, bi+2, . . . , bn))

• if (a1, a2) = ((a1, a2, . . . , ai), (ai, ai+1, . . . , an)), let ((b1, b2, . . . , bi−1, 0), (bi, bi+1, . . . , bn))

Define the gap split of b for (a1, a2) to be (b1, b2).

Define the output of the procedure ComputeIntroduceGapList(g(q)) to be g(p), where g(p)
is defined as follows:

• if t′ = t, let g(p) = g(q),

• if t′ = t+ 1 and Z ′l \ {v} = Z ′l−1 for some l, let g(p) = (g(q)1, g(q)2, . . . , g(q)l−2, g(p)l−1, g(p)l,
g(q)l, . . . , g(q)t), where (g(p)l−1, g(p)l) is the gap split of g(q)l−1 for ((y′)l−1, (y′)l).

• if t′ = t+1 and Z ′r \{v} = Z ′r+1 for some r, let g(p) = (g(q)1, g(q)2, . . . , g(q)r−1, g(p)r, g(p)r+1,
g(q)r+1, . . . , g(q)t), where (g(p)r, g(p)r+1) is the gap split of g(q)r for ((y′)r, (y′)r+1).

19

• if t′ = t + 2 and Z ′l \ {v} = Z ′l−1 and Z ′r+1 \ {v} = Z ′r for some l < r, let g(p) =
(g(q)1, g(q)2, . . . , g(q)l−2, g(p)l−1, g(p)l, g(q)l, . . . , g(q)r−2, g(p)r, g(p)r+1, g(q)r, . . . , g(q)t),
where (g(p)l−1, g(p)l) is the gap split of g(q)l−1 for ((y′)l−1, (y′)l) and (g(p)r, g(p)r+1) is the
gap split of g(q)r−1 for ((y′)r, (y′)r+1).

• if t′ = t+2 bags and Z ′l−1 = Z ′l\{v} = Z ′l+1, let g(p) = (g(q)1, g(q)2, . . . , g(q)l−2, g(p)l−1, g(p)l,
g(p)l+1, g(q)l, . . . , g(q)t), where (g(p)l−1, g′′) is the gap split of g(q)l−1 for ((y′)l−1, y′′) and
(g(p)l, g(p)l+1) is the gap split of g′′ for ((y′)l, (y′)l+1).

We now show that the output of ComputeIntroduceGapList(g(q)) is indeed the gap list
g(p). By construction, CP(p) is obtained by choosing a sequence of consecutive bags in CP(q) and
adding {v} = Xp \ Xq to all the bags in this sequence. Before doing this, the first bag of this
sequence can be duplicated, in which case v is not added to the first copy, but is added to the
second copy. Similarly, the last bag can be duplicated, in which case v is added to the first copy,
but not to the second copy. In this new sequence of bags, there are no bags between the the two
copies of the same bag and the number of bags between any other two bags is the same as before
the transformation. Hence, the procedure has the desired output.

It remains to show that ComputeIntroduceGapList(g(q)) is a logspace computable function.
This follows since g(p) and g(q) can be stored in logspace and C∗p , C∗q can be computed in logspace
(Theorem 5.17) and stored in logspace (Lemma 5.13). Moreover, the gap split can be computed in
logspace.

6.1.4 Join Node

Let p be a join node and q, r be its children. Let C∗p = (Z, [y′p]), C∗q = (Z, [yq]), C∗r = (Z, [yr])
be the unique characteristics at p, q, r, resp, with Z = (Zj)1≤j≤t and [yp] = (y1p, y

2
p, . . . y

t
p), [yq] =

(y1q , y
2
q , . . . y

t
q), [yr] = (y1r , y

2
r , . . . , y

t
r). Recall that [y′p] = T [yp] and for 1 ≤ j ≤ t, yjp = ejq + ejr − |Zj |,

for some ejq ∈ E(yjq), e
j
r ∈ E(yjr).

Definition 6.5. (Gap extension) Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two integer
sequences. Let a∗ ∈ E(a) be an extension of a. There exist 1 = t1 < t2 < . . . < tn+1 such that for
1 ≤ i ≤ n and ti ≤ j < ti+1, a

∗
j = ai. Define b∗ such that for 1 ≤ i ≤ n and ti ≤ j < ti+1−1, b∗j = 0

and b∗ti+1−1 = bi. Define the gap extension of b for a∗ to be b∗.

Define the output of ComputeJoinGapList(g(q)) to be geq = (ge1q , ge
2
q , . . . , ge

t
q), where for 1 ≤

j ≤ t, gejq is the gap extension of g(q)j for ejq. Define the output of ComputeJoinGapList(g(r))
similarly. Define gep = geq + ger. Now define the output of the procedure ComputeJoinGapList
(g(q), g(r)) to be T G(yp, gep) = (T G(y1p, ge

1
p), T G(y2p, ge

2
p), . . . , T G(ytp, ge

t
p)), where for 1 ≤ j ≤ t,

T G(yjp, ge
j
p) is the typical gap list of gejp for yjp.

We now show that the output of the procedure ComputeJoinGapList(g(q), g(r)) is the gap
list g(p). By construction, CP(p) is the union of some extension Yq of CP(q) and some extension Yr
of CP(r). For each integer that is duplicated in [yq], its corresponding bag in CP(q) is duplicated.
Call Y ′q the resulting extension of CP(q) and similarly define Y ′r . There are no bags between
duplicates of the same bag and the number of bags between the bags corresponding to any other
consecutive integers in eq is the same as the number of bags between their corresponding bags in
yq. So the output of ComputeJoinGapList(g(q)) is the gap list of Y ′q for the list eq.

20

For any two consecutive integers (ejq)i and (ejq)i+1 in eq, there are (gejq)i bags between their
corresponding bags in Y ′q . Moreover, all these bags have cardinality max((ejq)i, (e

j
q)i+1). Simi-

larly, for any two consecutive integers (ejr)i and (ejr)i+1 of er, there are (gejr)i bags of cardinal-
ity max((ejr)i, (e

j
r)i+1) between their corresponding bags in Y ′r . The bag in CP(p) of cardinality

(ejq)i + (ejr)i − |Zj | is the union of the bag of cardinality (ejq)i in Y ′q and the bag of cardinality (ejr)i
in Y ′r . Similarly for the bag of cardinality (ejq)i+1 +(ejr)i+1−|Zj |. Hence the bags in CP(p) between
the bags corresponding to (ejq)i + (ejr)i − |Zj | and (ejq)i+1 + (ejr)i+1 − |Zj | are the union of an ex-
tension of the subpath in Y ′q between the bags corresponding to (ejq)i and (ejq)i+1 and an extension
of the subpath in Y ′r between the bags corresponding to (ejr)i and (ejr)i+1. If (ejq)i > (ejq)i+1 and
(ejr)i < (ejr)i+1, we cannot simply take the union of the bags in the subpaths in Y ′q and Y ′r , as the
bag of their union has cardinality (ejq)i+ (ejr)i+1−|Zj | and we do not know whether this is ≤ k+ 1.
However, we know that (ejq)i + (ejr)i − |Zj | ≤ k + 1 and (ejq)i+1 + (ejr)i+1 − |Zj | ≤ k + 1. So we
duplicate (gejq)i times the bag in Y ′r corresponding to (ejr)i and we duplicate (gejr)i times the bag
in Y ′q corresponding to (ejq)i+1 and then set the subpath in CP(p) between the bags corresponding
to (ejq)i + (ejr)i − |Zj | and (ejq)i+1 + (ejr)i+1 − |Zj | to be the union of these resulting subpaths.
For consistency, we assume that for any (ejq)i and (ejq)i+1, the subpath in Yq between the bags
corresponding to (ejq)i and (ejq)i+1 is obtained by duplicating (gejr)i times the bag corresponding
to min((ejq)i, (e

j
q)i+1) in the subpath in Y ′q between the same bags. Moreover, the subpath in Yq

between the bags corresponding to (ejq)l(ejq)
and (ej+1

q)1 is obtained by duplicating (gejr)l(ejr)
times

the bag corresponding to (ejq)l(ejq)
in the subpath in Y ′q between the same bags. Similarly for the

subpats in Yr. Therefore, gep is indeed the gap list for to the list yp.
For each integer of y′p that is eliminated, the number of bags between the bags corresponding

to the two newly consecutive integers is the sum of the number of bags that were initially betweeen
each of them and the bag corresponding to the integer eliminated, plus one, to acount for the bag
corresponding to the integer eleminated. Therefore, T G(yp, gep) is indeed g(p).

It remains to show that ComputeJoinGapList(g(q), g(r)) is a logspace computable function.
This follows since g(p), g(q), g(r) can be stored in logspace, C∗p , C∗q , C∗r can be computed in logspace
(Theorem 5.17) and stored in logspace (Lemma 5.13) and the extensions eq and er can be computed
in logspace. Moreover, the gap extensions and the typical gap extensions can be computed and
stored in logspace.

6.2 Computing the Gap List at the Root

In this section, we see how the logspace algorithms of the previous section can be used to obtain
a logspace algorithm for computing g(root). This follows from the fact that g(root) is the sum of
lists, each computable only from the nodes on a path from a leaf to the root.

Definition 6.6. (Additive typical gap sequence) Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)
be two integer sequences. Let a′, b′ be two integer sequences, initialized with a′ = a and b′ = b.
Repeat the following procedure until no update is made:

• if there exists 1 ≤ i < n with a′i = a′i+1, replace a′ by (a′1, a
′
2, . . . , a

′
i, a
′
i+2, . . . , a

′
n) and b′ by

(b′1, b
′
2, . . . , b

′
i−1, b

′
i + b′i+1, b

′
i+2, . . . b

′
n),

• otherwise, if there exists 1 ≤ i < n− 1 with a′i < a′i+1 < a′i+2 or a′i > a′i+1 > a′i+2, replace a′

by (a′1, a
′
2, . . . , a

′
i, a
′
i+2, . . . , a

′
n) and b′ by (b′1, b

′
2, . . . , b

′
i−1, b

′
i + b′i+1, b

′
i+2, . . . b

′
n).

21

Let (a′′, b′′) be the value of (a′, b′) at the end of the iteration.
Define the additive typical gap list T G′(a, b) of b for a to be b′′.

For any forget node p ∈ I with child q, define the procedure ComputeForgetGapList’(g(q)),
whose output is computed in the same way as the output of the procedure ComputeForget-
GapList(g(q)), except that all occurrences of T G are replaced by T G′. Similarly, for any join node
p ∈ I with children q and r, define the procedure ComputeJoinGapList’(g(q), g(r)) whose out-
put is computed in the same way as the output the procedure ComputeJoinGapList(g(q), g(r)),
except that all occurrences of T G are replaced by T G′.

Let leaf be a leaf node and let leaf = p0, p1, . . . , pd = root be the nodes in order on the path
in T from leaf to root. For 0 ≤ i < d, define the procedure ComputeGapList(leaf, g(pi)) to be
one of the following:

• ComputeForgetGapList(g(pi)), if pi+1 is a forget node and leaf is the lexicographically
smallest leaf node in the subtree of T rooted at pi+1.

• ComputeForgetGapList’(g(pi)), if pi+1 is a forget node and leaf is not the lexicographi-
cally smallest leaf node in the subtree of T rooted at pi+1.

• ComputeIntroduceGapList(g(pi)), if pi+1 is an introduce node.

• ComputeJoinGapList(g(pi)), if pi+1 is a join node and leaf is the lexicographically smallest
leaf node in the subtree of T rooted at pi+1.

• ComputeJoinGapList’(g(pi)), if pi+1 is a join node and leaf is not the lexicographically
smallest leaf node in the subtree of T rooted at pi+1.

Define ComputeGapListt(leaf) recursively, where ComputeGapList1(leaf) is Compute
GapList(leaf, g(leaf)) and ComputeGapListt(leaf) is ComputeGapList(leaf,ComputeGap
Listt−1(leaf)).

Define L(p) to be the set of leaves in the subtree of T rooted at p and define dist(p, leaf) to be
the number of edges in T on the path from the leaf node leaf to a node p.

Theorem 6.7. The gap list g(root) is equal to
∑
leaf∈L(root)ComputeGapListdist(root,leaf)(leaf).

Proof. We prove by induction on d, that for all nodes p at depth d, we have g(p) =
∑
∈L(p)Com

puteGapListdist(p,leaf)(leaf). This clearly holds for all leaves p. Suppose it holds for all nodes at
depth greater than d and prove that it holds for all nodes at depth d.

If p is a forget node, let q be its child and leaf ′ be the lexicographically smallest leaf node.
Using the induction hypothesis, the definition of ComputeForgetGapList and the fact that
ComputeForgetGapList’ is an additive function, we obtain:

g(p) = ComputeForgetGapList(g(q))

= ComputeForgetGapList(
∑

leaf∈L(q)
ComputeGapListdist(q,leaf)(leaf))

= ComputeForgetGapList(ComputeGapListdist(q,leaf
′)(leaf ′))

+
∑

leaf∈L(q)\{leaf ′}
ComputeForgetGapList’(ComputeGapListdist(q,leaf)(leaf))

=
∑

leaf∈L(p)
ComputeGapListdist(p,leaf)(leaf)

22

If p is an introduce node, let q be its child. Using the induction hypothesis and the fact that
by definition, ComputeIntroduceGapList is an additive function, we obtain:

g(p) = ComputeIntroduceGapList(g(q))

= ComputeIntroduceGapList(
∑

leaf∈L(q)
ComputeGapListdist(q,leaf)(leaf))

=
∑

leaf∈L(q)
ComputeIntroduceGapList(ComputeGapListdist(q,leaf)(leaf))

=
∑

leaf∈L(p)
ComputeGapListdist(p,leaf)(leaf)

If p is a join node, let q, r be its children and leaf ′ be the lexicographically smallest leaf node.
Using the induction hypothesis, the definition of ComputeJoinGapList and the fact that by
definition, ComputeJoinGapList’ is an additive function, we obtain:

g(p) = ComputeJoinGapList(g(q), g(r))

= ComputeJoinGapList(
∑

leaf∈L(q)
ComputeGapListdist(q,leaf)(leaf)

,
∑

leaf∈L(r)
ComputeGapListdist(r,leaf)(leaf))

= ComputeJoinGapList(ComputeGapListdist(p,leaf
′)−1(leaf ′))

+ ComputeJoinGapList’(
∑

leaf∈L(p)\{leaf ′}
ComputeGapListdist(p,leaf)−1(leaf))

= ComputeJoinGapList(ComputeGapListdist(p,leaf
′)−1(leaf ′))

+
∑

leaf∈L(p)\{leaf ′}
ComputeJoinGapList’(ComputeGapListdist(p,leaf)−1(leaf))

= ComputeGapListdist(p,leaf
′)(leaf ′) +

∑
leaf∈L(p)\{leaf ′}

ComputeGapListdist(p,leaf)(leaf)

=
∑

leaf∈L(p)
ComputeGapListdist(p,leaf)(leaf)

Theorem 6.8. The gap list g(root) can be computed in logspace.

Proof. Iterate the nodes of T , while storing a variable sum. Initialize sum = 0. If the current node
p is a leaf node, add to the current value of sum the output of ComputeGapListdist(root,p)(p). By
Theorem 6.7, the value of sum at the end of iteration will be g(root). Since the composition of
logspace functions is a logspace function and ComputeGapList is a logspace procedure, g(root)
can be computed in logspace.

23

7 Computing Endpoints

Note that each path decomposition is completely determined by specifying for each vertex the
indices of the bags it belongs to. By property PD-3, these bags are consecutive, so each path
decomposition is also completely determined by specifying for each vertex v the indices of the first
and last bags containing v. We shall call the indices of the first and last bag containing v, the left
and right endpoints of v.

In this section, we see how to compute in logspace the left endpoint of a given vertex v at a
node p, given the left endpoint of v at the children of p. We then give a logsapce algorithm for
computing the left endpoint of v at the root of T . By symmetry, we can also determine in logspace
the right endpoint of v.

Let v ∈ V (G), p ∈ I and CP(p) = (Y1, Y2, . . . Ys) be the characteristic path decomposition at p
(see Definition 6.1). Recall that Gp is the subgraph of G rooted at p (see Definition 3.3).

Definition 7.1. (Endpoints) Define the left endpoint l(p, v) and the right endpoint r(p, v) of v at
p as follows:

• if v /∈ Gp, then l(p, v) = r(p, v) = null,

• if v ∈ Gp, then l(p, v) is the smallest index i such that v ∈ Yi,

• if v ∈ Gp, then r(p, v) is the largest index i such that v ∈ Yi.

Since l(p, v) ≤ s and r(p, v) ≤ s and CP(p) is a minimal partial path decomposition, l(p, v) and
r(p, v) can be stored in logspace.

7.1 Computing the Endpoints from the Endpoints at Children

In this section, we see how to compute in logspace l(p, v), given the left endpoints of v in the
characteristic path decompositions at the children of p.

7.1.1 Start Node

Let p be a start node and let C∗p be the unique characteristic at p. If Xp 6= {v}, let l(p, v) = null.
Otherwise, from the algorithm computing FS(p), we observe that:

• if C∗p = (({v}), [(1)]), then l(p, v) = 1,

• if C∗p = (({v}, {∅}), [(1), (0)]), then l(p, v) = 1

• if C∗p = (({∅}, {v}), [(0), (1)]), then l(p, v) = 2

• if C∗p = (({∅}, {v}, {∅}), [(0), (1), (0)])}, then l(p, v) = 2

Define the procedure ComputeStartLeftEndpoint(p) to compute l(p, v). Since at least one of
the above cases holds, ComputeStartLeftEndpoint(p) is a logspace computable function.

24

7.1.2 Forget Node

Let p be a forget node and q be its child. By the proof of the algorithm computing the characteristic
at p given the characteristic at q, we see that CP(q) = CP(p). Therefore, l(p, v) = l(q, v). Define
the procedure ComputeForgetLeftEndpoint(l(q, v)) to compute l(p, v) given l(q, v). From the
above, it is easy to see that ComputeForgetLeftEndpoint(l(q, v)) is a logspace computable
function.

7.1.3 Introduce Node

Let p be an introduce node and q be its child. Let C∗p = (Z ′, [y′]), C∗q = (Z, [y]) be the unique
characteristics at p, q, resp., with Z = (Zj)1≤j≤t. Let Xp \Xq = {v′}.

We first define an auxiliary data structure, the typical indices list. Each integer in the typical
list of C∗p is the cardinality of some bag in CP(p). The typical indices list is the list of the indices
of these bags.

Definition 7.2. (Typical indices list) For 1 ≤ j ≤ t and 1 ≤ i ≤ l(g(p)j), define

ix(p)ji =
j−1∑
j′=1

l(g(p)j
′
)∑

i′=1

(g(p)j
′

i′ + 1) +
i−1∑
i′=1

(g(p)ji′ + 1) + 1

Define ix(p) = (ix(p)1, ix(p)2, . . . , ix(p)t) to be the typical indices list at p.

Lemma 7.3. The typical indices list ix(p) can be computed and stored in logspace.

Proof. Since each of the integers in the typical indices list is at most s and s can be stored in
logspace, each of the elements of ix(p) can be stored in logspace. Moreover, l[ix(p)] = l[g(p)] = l[y′]
and hence by Lemma 5.4, l[ix(p)] is at most a constant depending on k. Therefore, ix(p) can be
stored in logspace.

Moreover, by applying Theorem 6.8 to the graph Gp, we can compute g(p) in logspace. We can
iterate the elements of g(p) to compute each element of ix(p).

Define the procedure ComputeIntroduceLeftEndpoint(l(q, v)) to output l(p, v), where
l(p, v) is defined as follows:

• if v /∈ V (Gp), then l(p, v) = null,

• if v ∈ V (Gp), but v /∈ V (Gq), then v = v′ and v belongs to at least one of the bags of the
interval model. Let l be minimal index such that v ∈ Zl. Let l(p, v) = ix(p)l1,

• if v ∈ V (Gq), then

– if l[y′] = l[y], then l(p, v) = l(q, v),

– if l[y′] = l[y] + 1 and Z ′l \ {v′} = Z ′l−1 for some l. Then ((y′)l−1, (y′)l) is a split of type
II of yl−1 at some 1 ≤ l′ ≤ l(yl−1).
∗ if l(q, v) ≤ ix(q)l−1l′ , then l(p, v) = l(q, v),

∗ if l(q, v) > ix(q)l−1l′ , then l(p, v) = l(q, v) + 1.

25

– if l[y′] = l[y] + 1 and Z ′r \ {v′} = Z ′r+1 for some r. Then ((y′)r, (y′)r+1) is a split of type
II of yr at some 1 ≤ r′ ≤ l(yr).
∗ if l(q, v) ≤ ix(q)rr′ , then l(p, v) = l(q, v),

∗ if l(q, v) > ix(q)rr′ , then l(p, v) = l(q, v) + 1.

– if l[y′] = l[y] + 2 and Z ′l−1 = Zl \ {v′} and Z ′r+1 \ {v′} = Z ′r for some l < r , there
exist l, r such that ((y′)l−1, (y′)l) is a split of type II of yl−1 at some 1 ≤ l′ ≤ l(yl) and
((y′)r, (y′)r+1) is a split of type II of yr−1 at some 1 ≤ r′ ≤ l(yr).
∗ if l(q, v) ≤ ix(q)l−1l′ , then l(p, v) = l(q, v),

∗ if ix(q)l−1l′ < l(q, v) ≤ ix(q)r−1r′ , then l(p, v) = l(q, v) + 1,

∗ if l(q, v) > ix(q)r−1r′ , then l(p, v) = l(q, v) + 2.

– if l[y′] = l[y] + 2 and Z ′l−1 = Zl \ {v′} = Z ′l+1 for some l. Then ((y′)l−1, y′′) is a split of
type II of yl−1 at some 1 ≤ l′ ≤ l(yl−1) and ((y′)l, (y′)l+1) is a split of type II of y′′ at
some 1 ≤ l′′ ≤ l(y′′).
∗ if l(q, v) ≤ ix(q)l−1l′ , then l(p, v) = l(q, v),

∗ if ix(q)l−1l′ < l(q, v) ≤ ix(q)l−1l′′ , then l(p, v) = l(q, v) + 1,

∗ if l(q, v) > ix(q)l−1l′′ , then l(p, v) = l(q, v) + 2.

We now show that ComputeIntroduceLeftEndpoint(l(q, v)) correctly outputs the left end-
point l(p, v). One of the following cases holds:

• if v /∈ V (Gp), then the output of the procedure is clearly correct.

• if v ∈ V (Gp), but v /∈ V (Gq), then v = v′. Let l be the minimal such that v ∈ Zl. Then
v does not belong to any of the bags corresponding to the integers of any of the seqeunces
(y′)1, (y′)2, . . . , (y′)l−1, but it does belong to all the bags corresponding to the integers of the
sequence (y′)l. Hence the first bag it belongs to is the one corresponding to (y′)l1.

• if v ∈ Gq, then by construction, CP(p) is obtained by choosing a sequence of consecutive
bags in CP(q) and adding the introduced node to all these bags. Before doing this, the first
and last bags of the chosen sequence can be duplicated. Whenever a bag is duplicated, all
the bags following the duplicate are shifted to the right by one. So each duplication of a bag
appearing before the the first bag containing v adds one to the initial left endpoint of v.

It remains to show that ComputeIntroduceLeftEndpoint(l(q, v)) is a logspace computable
function. The procedure computes ix(q) and then compares l(q, v) with an integer of ix(q). Since
l(q, v) can be stored in logspace, C∗p , C∗q can be computed and stored in logspace and ix(q) can be
computed and stored in logspace, this is a logspace procedure.

7.1.4 Join Node

Let p be a join node with children q and r. Let C∗p = (Z, [y′p]), C∗q = (Z, [yq]), C∗r = (Z, [yr])
be the unique characteristcs at p, q, r, with Z = (Zj)1≤j≤t and [yp] = (y1p, y

2
p, . . . y

t
p), [yq] =

(y1q , y
2
q , . . . y

t
q), [yr] = (y1r , y

2
r , . . . , y

t
r). Recall that [y′p] = T [yp] and for 1 ≤ j ≤ t, yjp = ejq + ejr − |Zj |,

for some ejq ∈ E(yjq), e
j
r ∈ E(yjr). For 1 ≤ j ≤ t, let gejq and gejr be the gap extension of g(q)j for ejq

and the gap extension of g(r)j for ejr.

26

For any 1 ≤ j ≤ t, there exist 1 = tj1 < tj2 < . . . < tj
l(yjq)+1

such that for 1 ≤ i ≤ l(yjq), t
j
i ≤ s <

tji+1, (ejq)s = (yjq)i. Let jq be minimal such that ix(q)
jq+1
1 > l(q, v) and define ix(q)

jq
l(ix(q)jq)+1

=

ix(q)
jq+1
1 . Let iq be minimal such that ix(q)

jq
iq+1 > l(q, v). Define le′q = l(q, v) +

∑jq−1
j=1 (tj

l(yjq)+1
−

1− l(yjq)) + t
jq
iq
− iq +

∑jq−1
j=1

∑l(ebjq)
i=1 (ebjr)i +

∑iq−1
i=1 (eb

jq
r)i. If (y

jq
q)iq < (y

jq
q)iq+1 or iq = l(y

jq
q), define

leq = le′q + (eb
jq
r)iq and otherwise, define leq = le′q.

Define the procedure ComputeJoinLeftEndpoint(l(q, v)) to output null if v /∈ V (Gp) and
leq, otherwise. Similarly, define the procedure ComputeJoinLeftEndpoint(l(r, v)). Define the
procedure ComputeJoinLeftEndpoint(l(q, v), l(r, v)) to output min(ComputeJoinLeftEnd
point(l(q, v)), ComputeJoinLeftEndpoint(l(r, v))).

We now show that ComputeJoinLeftEndpoint(l(q, v), l(r, v)) correctly outputs l(p, v). By
construction, CP(p) is the union of some extension Yq of CP(q) and some extension Yr of CP(r).
Hence, l(p, v) will be the minimum of the indices of the first bag containing v in Yq and Yr. So
the output of ComputeJoinLeftEndpoint(l(q, v), l(r, v)) is correct, provided that the outputs
of ComputeJoinLeftEndpoint(l(q, v)) and ComputeJoinLeftEndpoint(l(r, v)) are correct.

For each integer that is duplicated in [yq], its corresponding bag in CP(q) is duplicated. Call Y ′q
the resulting path decomposition. Define Y ′r similarly. So each bag duplication in CP(q) that occurs
before the first bag containing v adds one to the left endpoint of v in the new path decomposition.
This accounts for the second and third terms in the definition of le′q.

As in the definition of the gap list at a join node, we see that the number of bags in Yq between
any two bags corresponding to consecutive integers in eq is the sum the number of bags in Y ′q
between their corresponding bags in Y ′q and the number of bags in Y ′r between the bags in Y ′r
corresponding to the integers at the same indices in er. We see that the sum of integers in geq is
included in l(q, v) and hence we only need to add to the left endpoint the sum of integers in ger.
This accounts for the last two terms in the definition of le′q.

Now if (y
jq
q)iq < (y

jq
q)iq+1 or iq = l(y

jq
q), the bag corresponding to (y

jq
q)iq is first duplicated

(eb
jq
r)iq times in Yq before adding the subpath in Y ′q between the bags corresponding to (y

jq
q)iq and

(y
jq
q)iq+1. Hence, the output of ComputeJoinLeftEndpoint(l(q, v)) is correct.

It remains to show that ComputeJoinLeftEndpoint(l(q, v), l(r, v)) is a logspace computable
function. This follows since l(p, v), l(q, v), l(r, v) can be stored in logspace, C∗p , C∗q , Cr∗ can be com-
puted in logspace (Theorem 5.17) and stored in logspace (Lemma 5.13) and the extensions eq and
er can be computed and stored in logspace and g(q) and g(r) and their extensions can be computed
and stored in logspace.

7.2 Computing the Endpoints at the Root

Let v ∈ V (G). In this section, we see how the logspace functions of the previous sections can be
used to compute l(root, v) in logspace. This follows from the fact that l(root, v) is the minimum
of the left endpoints of v in the path decompositions corresponding just to the nodes on individual
paths from a leaf to the root. The algorithm of this section is similar to the algorithm for computing
g(root).

For any node p ∈ I with child q, define the procedure ComputeLeftEndpoint(l(q, v))
to be ComputeForgetLeftEndpoint(l(q, v)), ComputeIntroduceLeftEndpoint(l(q, v)) or
ComputeJoinLeftEndpoint(l(q, v)) depending on the type of the node p. Denote by Compute

27

LeftEndpointt(l(leaf, v)) the output obtained by composing the procedure ComputeLeftEnd-
point t times on the input l(leaf, v). Let L(p) be the set of leaves in the subtree of T rooted at p
and let dist(p, leaf) the number of edges in T on the path from the leaf node leaf to p.

Theorem 7.4. The left endpoint l(root, v) is minleaf∈L(root)ComputeLeftEnd

pointdist(root,leaf)(l(leaf, v)).

Proof. We prove by induction on d, that for all nodes p at depth d, we have l(p, v) = minleaf∈L(p)
ComputeLeftEndpointdist(p,leaf)(l(leaf, v)). This clearly holds for all leaves p. We suppose it
holds for all nodes at depth greater than d and prove that it holds for all nodes at depth d.

It is easy to see from the definitions of ComputeForgetLeftEndpoint(l(q, v)), Compute
IntroduceLeftEndpoint(l(q, v)), ComputeJoinLeftEndpoint(l(q, v)) and ComputeJoin
LeftEndpoint(l(r, v)) that they are increasing functions. Observe that for any increasing function
f and set S, we have f(mins∈S s) = mins∈S f(s).

Now suppose p is a forget node at depth d; the other cases are treated similarly. Let q be its
child. By the induction hypothesis and since ComputeForgetLeftEndpoint is a nondecreasing
function, we obtain:

l(p, v) = ComputeForgetLeftEndpoint(l(q, v))

= ComputeForgetLeftEndpoint

(min
leaf∈L(q)

ComputeLeftEndpointdist(q,leaf)(l(leaf, v)))

= min
leaf∈L(q)

ComputeForgetLeftEndpoint

(ComputeLeftEndpointdist(q,leaf)(l(leaf, v))

= min
leaf∈L(p)

ComputeLeftEndpointdist(p,leaf)(l(leaf, v))

Theorem 7.5. The left endpoint l(root, v) can be computed in logspace.

Proof. Iterate the nodes of T . For each leaf node leaf , we compute ComputeLeftEnd
pointdist(root,leaf)(l(leaf, v)). By Theorem 7.4, the minimum value taken over all leaf nodes is
the left endpoint l(root, v). Since logspace functions are closed under composition, ComputeLef-
tEndpoint is a logpspace procedure and hence l(root, v) can be computed in logspace.

8 L-completeness

In [EJT10], it is shown that for any constant k ≥ 1, the language tree-width-k = {G | tw(G) ≤ k}
is L-complete. We now show the corresponding result for pathwidth i.e., the language path-width-
k = {G | pw(G) ≤ k} is L-complete.

As mentioned earlier, G ∈ path-width-k if and only if the full set of characteristics at the
root node of the tree of the nice tree decomposition of G is non-empty. This can be decided in
logspace by using Theorem 5.15. Hence path-width-k ∈ L. We now show that path-width-1
and path-width-k are L-hard by showing reductions from Single Cycle Permutation problem, a
known L-complete problem [CM87]. It is easy to see that all our reductions can be performed in
NC1.

28

Definition 8.1. (Single Cycle Permutation problem) The Single Cycle Permutation problem (SCP)
is to decide if a given permutation, presented pointwise, consists of a single cycle.

Theorem 8.2. The language path-width-1 = {G | pw(G) ≤ 1} is L-complete.

Proof. We give a reduction from SCP to path-width-1. Given a permutation π = (π(1), π(2),
. . . , π(n)), we construct an undirected graphG with V (G) = {v1, v2, . . . , vn} and E(G) = {(vi, vπ(i)) |
i 6= π(i), 1 ≤ i ≤ n}. Let e ∈ E(G) be an arbitrary edge of G. Let G′ be a graph with V (G′) = V (G)
and E(G′) = E(G) \ {e}.

• If π ∈ SCP. Then G is a cycle, G′ is a path and thus pw(G′) = 1.

• If π /∈ SCP, G has at least two cycles and G′ has at least one cycle. Hence pw(G′) ≥ 2.

Hence π ∈ SCP iff G′ ∈ path-width-1 implying the L-hardness of path-width-1.

Theorem 8.3. Let k ≥ 1 be a constant. The language path-width-k = {G | pw(G) ≤ k} is
L-complete.

Proof. We construct G and G′ as done in Theorem 8.2. We use a construction from [EJT10] to
construct G′′ with V (G′′) = {vpi | 1 ≤ i ≤ n, 1 ≤ p ≤ k} and E(G′′) = {(vpi , v

q
i) | 1 ≤ i ≤ n, 1 ≤ p <

q ≤ k}
⋃
{(vqi , v

p
j) | (vi, vj) ∈ E(G′), 1 ≤ i < j ≤ n, 1 ≤ p ≤ q ≤ k}.

If π ∈ SCP, G′ is a path. We may assume that v1, v2, . . . vn are the vertices of the path, in that
order. We will now define a width-k path decomposition for G′′.

• For 1 ≤ i ≤ n, let Xi = {v1i , v2i , . . . vki }.

• For 1 ≤ i < n, 1 ≤ p ≤ k, let Xi,i+1,p = {vpi , v
p+1
i , . . . vki , v

1
i+1, v

2
i+1, . . . v

p
i+1}.

• Let I = {i | 1 ≤ i ≤ n}
⋃
{(i, i+ 1, p) | 1 ≤ i < n, 1 ≤ p ≤ k}.

• Let F = {((i, i + 1, p), (i, i + 1, p + 1)) | 1 ≤ i < n, 1 ≤ p < k}
⋃
{(i, (i, i + 1, 1)), (i +

1, (i, i+ 1, k)) | 1 ≤ i < n}.

• Let D = ({Xi | i ∈ I}, T (I, F)).

Note that T is a path. We now verify the three properties of a path decompostion (see Definition
1.2).

• PD-1: For any vpi ∈ V (G′′), we have vpi ∈ Xi.

• PD-2: For any (vpi , v
q
i) ∈ E(G′′), we have vpi , v

q
i ∈ Xi and for any (vqi , v

p
i+1) ∈ E(G′′) with

1 ≤ i < n and 1 ≤ p ≤ q ≤ n, we have vqi , v
p
i+1 ∈ Xi,i+1,p.

• PD-3: For any vpi ∈ V (G′′) with 1 < i < n, we see that vpi only belongs to the bags Xi−1,i,p,
Xi−1,i,p+1, . . . Xi−1,i,k, Xi, Xi,i+1,1, Xi,i+1,2, . . . , Xi,i+1,p, which induce a subpath in T . Sim-
ilarly for any vp1 ∈ V (G′′), all the bags containing vp1 induce a subpath in T and for any
vpn ∈ V (G′′), all the bags containing vpn induce a subpath in T .

Note that the width of D is k implying pw(G′′) = k.
If π /∈ SCP, then G′ contains a cycle and G′′ has a (k + 2)-clique as a minor (see [EJT10] for

details). Hence tw(G′′) > k implying pw(G′′) > k.
Therefore, π ∈ SCP iff G′′ ∈ path-width-k, implying the L-hardness of path-width-k.

29

9 Conclusion and Open Problems

We presented a logspace algorithm to compute path decompositions of bounded pathwidth graphs.
What is the complexity of Graph Isomorphism of bounded pathwidth graphs? Can we improve the
LogCFL upper bound implied by the algorithm of Das, Toran and Wagner [DTW10]? Is there a
logspace algorithm?

Bodlaender and Kloks [BK96] presented a polynomial time algorithm to compute path decom-
positions of bounded treewidth graphs. Since bounded treewidth graphs can have pathwidth as large
as Ω(logn), our techniques cannot be directly applied to achieve a logspace algorithm. Is there a
logspace algorithm to compute path decompositions of bounded treewidth graphs?

References

[ADK08] Vikraman Arvind, Bireswar Das, and Johannes Köbler. A logspace algorithm for partial
2-tree canonization. In CSR, pages 40–51, 2008.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Inf. Process. Lett., 25(2):127–132, 1987.

[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

[Bod90] Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11:631–644, 1990.

[Bod96] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth, 1996.

[CM87] Stephen A. Cook and P. McKenzie. Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8:385–394, 1987.

[Cou90] Brouno Courcelle. Graph rewriting: an algebraic and logic approach. Handbook of
theoretical computer science (vol. B). pages 193–242. MIT Press, 1990.

[DLN08] Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected planar graph
isomorphism is in log-space. In FSTTCS, pages 155–162, 2008.

[DLN+09] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian
Wagner. Planar graph isomorphism is in log-space. In IEEE Conference on Computa-
tional Complexity, pages 203–214, 2009.

[DNTW09] Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. Graph
isomorphism for K3,3-free and K5-free graphs is in log-space. In FSTTCS, pages 145–
156, 2009.

[DTW10] Bireswar Das, Jacobo Torán, and Fabian Wagner. Restricted space algorithms for
isomorphism on bounded treewidth graphs. In STACS, pages 227–238, 2010.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of Bodlaender and Courcelle. In FOCS, pages 143–152, 2010.

30

[GV06] Martin Grohe and Oleg Verbitsky. Testing graph isomorphism in parallel by playing a
game. In Annual International Colloquium on Automata, Languages and Programming
(ICALP), 2006.

[Hal76] R. Halin. S-functions for graphs. J. Geometry, 8:171–186, 1976.

[Klo94] Ton Kloks. Treewidth: Computation and approximation. LNCS, Springer, Heidelberg,
842, 1994.

[Lin92] Steven Lindell. A logspace algorithm for tree canonization. In STOC, pages 400–404,
1992.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7(3):309–322, 1986.

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci.,
37(3):312–323, 1988.

[Wag37] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann, 114:570–590,
1937.

[Wan94] Egon Wanke. Bounded tree-width and LOGCFL. J. Algorithms, 16(3):470–491, 1994.

Appendix

A Graph Isomorphism and Bounded TreeWidth graphs

The Graph Isomorphism problem is to decide whether two given graphs are isomorphic. The
complexity of Graph Isomorphism (GI) is a long-standing open problem. GI is not known to be
solvable in polynomial time and is unlikely to be NP-complete [BHZ87], [Sch88]. Polynomial time
algorithms are known for GI of several special classes of graphs. One such interesting class is
graphs excluding a fixed minor. Any family of graphs that is closed under taking minors falls into
this class. Important examples of such families include bounded genus graphs, bounded pathwidth
graphs and bounded treewidth graphs (a.k.a partial k-trees).

As mentioned earlier, Courcelle’s theorem [Cou90] states that for every monadic second-order
(MSO) formula φ and for every constant k there is a linear time algorithm that decides whether
a given logical structure of treewidth at most k satisfies φ. Unfortunately, it is not known how to
formulate GI in MSO logic.

Study of GI of bounded treewidth graphs has a long history. Bodlaender [Bod90] proved that
GI of bounded treewidth graphs can be decided in polynomial time. Using a clever implementation
of the Weisfeiler-Lehman algorithm, Grohe and Verbitsky [GV06] presented a TC1 upper bound.
Lindell [Lin92] showed that trees can be canonized in logspace.

Arvind, Das and Köbler [ADK08] proved the logspace-completeness of GI of partial 2-trees.
They decompose the given partial 2-tree into its “tree” of biconnected components and canonize this
tree by using a biconnected component canonization as a subroutine. Given any graph it is easy to
construct its tree of biconnected components in logspace. Canonization of biconnected components
is done by using a structural property of biconnected partial 2-trees [Klo94]. Datta, Limaye and

31

Nimbhorkar [DLN08] showed that 3-connected planar GI is in logspace. Datta et al [DLN+09]
showed that the decomposition of biconnected planar graphs into triconnected components can be
done in logspace and planar GI reduces to 3-connected planar GI, hence proving that planar GI is
in logspace. Datta et al [DNTW09] further extended these results to the classes of graphs excluding
K3,3 or K5 as a minor. Their algorithm first decomposes such graphs into their triconnected
components, which are known to have special structural properties. Since partial 3-trees are K5-
free, their algorithm implies a logspace algorithm for GI of partial 3-trees. All the above mentioned
algorithms are based on efficiently computing special decompositions of the input graph.

Using an algorithm of Wanke [Wan94] that computes bounded tree decompositions in LogCFL,
Das, Toran, and Wagner [DTW10] presented a LogCFL algorithm for GI of partial k-trees (with
k ≥ 4). Currently this is the best known upper bound.

One of the bottlenecks in the algorithm of Das, Toran, and Wagner is computing bounded
width tree decompositions in logspace. Recently Elberfeld, Jakoby and Tantau [EJT10] removed
this bottleneck. However, it is still not clear how to design a logspace algorithm for GI of partial
k-trees. This motivates the study of GI on special cases of partial k-trees. Bounded pathwidth
graphs are a natural subset of bounded treewidth graphs. The best known upper bound for GI
of bounded pathwidth graphs is LogCFL, implied by the algorithm of Das, Toran, and Wagner
[DTW10]. Computing bounded path decompositions in logspace is a natural first step towards
improving this upper bound. This is one of the main motivations behind our work.

B Logspace Tree Traversal

In this section, we give a brief description of Lindell’s logspace tree traversal algorithm [Lin92].
Let T be a tree. For any node p of T , define the following auxiliary functions:

• root: returns the root of T ,

• parent(p): returns the parent of p or null, if p is the root,

• firstChild(p): returns the lexicographically smallest child of p or null, if p does not have any
children,

• nextSibling(p): returns the lexicographically smallest child of parent(p) greater than p or
null, if p is the root or the lexicographically largest child of parent(p).

Lindell proved that these functions can be implemented in logspace.
The algorithm now performs a DFS traversal using the above procedures and storing at each

step only the current node p and the last procedure performed LastProcedure. Initially, p = root
and LastProcedure = root. Update p as follows.

• If LastProcedure is root, firstChild or nextSibling,

– if firstChild(p) 6= null, let p be firstChild(p),

– otherwise, if nextSibling(p) 6= null, let p be nextSibling(p),

– otherwise, let p be parent(p).

• Otherwise, LastProcedure is parent. Then,

32

– if nextSibling(p) 6= null, let p be nextSibling(p),

– otherwise, if parent(p) 6= null, let p be parent(p),

– otherwise, p is the root and hence we terminate.

Update LastProcedure accordingly. Since p and LastProcedure can be stored in logspace
and the auxiliary procedures can be done in logspace, this is a logspace procedure.

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

