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Abstract

In the random oracle model, the parties are given oracle access to a random member of
a (typically huge) function family, and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This model provides powerful
properties that allow proving the security of many protocols, even such that cannot be proved
secure in the standard model (under any hardness assumption). The random oracle model is also
used to show that a given cryptographic primitive cannot be used in a black-box way to construct
another primitive; in their seminal work, Impagliazzo and Rudich [STOC ’89] showed that in the
random function model – when the function family is the set of all functions – it is impossible
to construct (secure) key-agreement protocols, yielding that key-agreement cannot be black-box
reduced to one-way functions. Their work has a long line of followup works (Simon [EC ’98],
Gertner et al. [STOC ’00] and Gennaro et al. [SICOMP ’05], to name a few), showing that given
oracle access to a certain type of function family (e.g., the family that “implements” public-key
encryption) is not sufficient for building a given cryptographic primitive (e.g., oblivious transfer).
Yet, in the more general sense, the following fundamental question remained open:

What is the exact power of the random oracle model, and more specifically, of the
random function model?

We make progress towards answering the above question, showing that any (no private input)
semi-honest two-party functionality that can be securely implemented in the random function
model, can be securely implemented information theoretically (where parties are assumed to be
all powerful, and no oracle is given). We further generalize the above result to function families
that provide some natural combinatorial property.

To exhibit the power of our result, we use the recent information theoretic impossibility result
of McGregor et al. [FOCS ’10], to show the existence of functionalities (e.g., inner product) that
cannot be computed both accurately and in a differentially private manner in the random
function model; yielding that protocols for computing these functionalities cannot be black-box
reduced to the existence of one-way functions.
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1 Introduction

In the random-oracle model, the parties are given oracle access to a random member of a (typically
huge) function family, and are assumed to have unbounded computational power (though they can
only make a bounded number of oracle queries). Instantiations of this model with a given function
family are typically very powerful, and can be used to implement many cryptographic primitives,
such as one-way functions and cryptographic hash functions, with extremely strong security. More
importantly, it can even be used for implementing secure protocols for tasks that are hard to
implement in the standard model, and sometimes even completely unachievable; a well known
example is the work of Fiat and Shamir [7], showing how to convert three-message identification
schemes to a highly efficient (non interactive) signature scheme. Their scheme is provably secure in
the random-function model – an instantiation of the random oracle-model with the function family
being the set of all functions [20].1 Under standard cryptographic assumptions, however, there
exist protocols (with no oracle access) whose Fiat-Shamir variant (secure in the random-function
model), cannot be proven secure under any implementation of the function family, and any hardness
assumption [11, 3].

On a different route, the random-oracle model was used to show that one cryptographic prim-
itive cannot be used in a black-box way to construct another primitive. In their seminal work,
Impagliazzo and Rudich [13] showed that in the random-function model, it is impossible to con-
struct (secure) key-agreement protocols, yielding that key-agreement cannot be black-box reduced
to one-way functions. Their work has initiated a long line of follow up works (Simon [24], Gertner
et al. [10], and Gennaro et al. [9], to name a few) showing that given oracle access to a certain type
of function family (e.g., the family that “implements” public-key encryption) is not sufficient for
building a given cryptographic primitive (e.g., oblivious transfer). Yet, in the more general sense,
the following fundamental question remained open:

What is the exact power of the random-oracle model, and more specifically, of the
random-function model?

Apart from being aesthetic mathematically, answers to these question are very likely to enrich our
understanding of (the limitations of) black-box reductions in cryptography.

It is well known that for malicious adversaries, there exist functionalities that cannot be achieved
in the information-theoretic model, i.e., where all entities are assumed to be unbounded (with no
oracle access), yet can be securely computed in the random-function model (e.g., commitment
schemes, coin-tossing protocols and, non-trivial zero-knowledge proofs). All of these functionalities,
however, are blatantly trivial when considering semi-honest adversaries, which is the focus of this
work.

1.1 Our Result

We make progress towards answering the above question, showing that any (no private input) semi-
honest, two-party computation that can be securely implemented in the random-function model,
can be securely implemented in the information-theoretic model.

1It is common to identify the random-oracle model with the (more specific) random-function model defined above.
Here, however, we distinguish between the two.
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Theorem 1 (Main theorem, informal). Let π be a no private-input, m-round, ℓ-query, oracle-aided
two-party protocol. Then for any ε > 0, there exists an O(ℓ2/ε2)-query oracle-aided function Map,
and a stateless, no oracle, m-round protocol π̃ such that:

SD

((
outA, outB,Mapf (t)

)
f←FAF,(outA,outB,t)←⟨Af ,Bf⟩

,
⟨
Ã, B̃

⟩)
∈ O(ε),

where FAF is the all functions family, and ⟨X,Y ⟩ stands for a random execution of the protocol
(X,Y ), resulting in the parties’ private outputs and the common transcript.

Namely, the distributions induced by a random execution of πf (for a random f ← FAF) on
the parties’ private outputs and the common transcript, is almost the same as that induced by a
random execution of the (no oracle) protocol π̃, where the only difference is that one needs to apply
an efficient procedure Map to π’s transcript.

Theorem 1 generalizes to all function families with the property that answers for distinct queries,
induced by drawing a random member from the family, are independent.

1.1.1 Applications

Informally speaking, Theorem 1 yields the following meta result.

Corollary 2 (very informal). Assume that π securely realizes a no-input functionality P in the
random-function model, then the security of P against semi-honest adversaries is trivial — can be
realized in the information-theoretic model.

We give two concrete instantiations of the above informal claim. The first example (reproving
[13, 1]) concerns the existence of key-agreement protocols in the random-function model. Recall
that key-agreement protocols cannot be realized in the information-theoretic model. Namely, for
any (no oracle) protocol π, there exists a passive (i.e., semi-honest) adversary that extracts the
key from the protocol’s transcript. Hence, Theorem 1 yields that key-agreement protocols cannot
be realized in the random-function model, and thus key-agreement protocols cannot be black-box
reduced to one-way functions, reproving the result of [13, 1]. The actual parameters achieved by
applying Theorem 1, match the optimal bound given in Barak and Mahmoody [1].

As a second more detailed example, we prove that in the random-function model, it is impossible
for two parties to approximately compute the inner-product function in a differentially private
manner. Namely, in a way that very little information is leaked about any single bit of the input
of each party, to the other party. A recent result of McGregor et al. [17] shows that in the
information-theoretic model, it is impossible to approximately compute the inner product function
in a differentially private manner. Combining their result with Theorem 1, we obtain the following
fact.2

Theorem 3. Any ℓ-query, (ℓ2, α, γ)-differentially private protocol, errs (with constant probability)

with magnitude at least
√
n

log(n)·eα , in computing the inner product of two n-bits strings.

2We mention that the result of [17] is stated for protocol with inputs, where Theorem 1 is only applicable to
no-input protocols. Indeed, a fair amount of work was needed to derive an impossibility result for no-input protocols,
from the work of [17].
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Very informally, a protocol is (k, α, γ)-differentially private, if no party making at most k queries
to the oracle, learns more then ε information about one of the other party’s input bits, except with
some small probability γ.

The above result yields the impossibility of fully black-box reducing differentially private pro-
tocols for (well) approximating two-party inner-product to the existence of one-way functions.
Roughly speaking, such a fully black-box reduction is a pair of efficient oracle-aided algorithms
(Q,R) such that the following hold: (1) Qf is a good approximation protocol of the inner-product
for any function f , and (2) Rf,A inverts f , for any adversary A that learns too much about the
input of one of the parties in Qf . Since a random sample from the all-function family is hard to
invert (cf., [13, 9]), the existence of such a reduction yields that Qf is differentially-private with
respect to poly-query adversaries, when f is chosen at random from the set of all functions.3 Hence,
Theorem 3 yields the following result.

Corollary 4. There exists no fully black-box reduction from (α, γ)-differentially private protocol

computing the inner product of two n-bit strings with error magnitude less than
√
n

log(n)·eα , to one-
way functions.

Finally, following an observation made by McGregor et al. [17], Theorem 3 and Corollary 4 imply
similar results for two-party differentially private protocols for the Hamming distance functionality.4

1.2 Our Technique

When using a no-oracle protocol to emulate an oracle-aided protocol π, having oracle access to
a random member of the all-function family, the crucial issue is to find all common information
the parties share at a given point. The clear obstacle are the oracle calls: the parties might share
information without explicitly communicating it, say by making the same oracle call.

Here comes into play the Dependency Finder of Impagliazzo and Rudich, and Barak and Mah-
moody (algorithm Eve, in their terminology). This oracle-aided algorithm (Finder, hereafter) gets
as input a communication transcript t of a random execution of π, and an oracle access to f , the
“oracle” used by the parties in this execution. Algorithm Finder outputs a list of query/answer
pairs to f that, with high probability, contains all oracle queries that are common to both parties
(and possibly also additional ones). Moreover, with high probability Finder is guaranteed not to
make “too many” oracle queries.

Equipped with Finder, we give the following definition for the mapping procedure Map and
the stateless (no oracle) protocol π̃ = (Ã, B̃): on a communication transcript t, the oracle-aided
algorithm Mapf outputs

((
t1, I1 = Finderf (t1)

)
,
(
t1,2, I2 = Finderf (t1,2)

)
. . . ,

(
t, Im = Finderf (t)

))
.

Namely, Map invokes Finder on each prefix of the transcript, and outputs the result. The no-oracle
protocol π̃ = (Ã, B̃) is defined as follows: assume that Ã speaks at round (i + 1), and that the
i’th message is ((t1, I1), . . . , (t1,...,i, Ii)). The stateless, plain-model Ã samples random values for
f ∈ FAF and the random coins of A, conditioned on (t1,...,i, Ii) being the protocol’s transcript.
It then lets ti+1 be the next message of A induced by the above choice of f and random coins,

3Assume towards a contradiction the existence of a poly-query adversary A for Qf , then the poly-query Rf,A

would successfully invert a random f .
4The inner product between two bit strings x, y can be expressed as IP(x, y) = w(x) + w(y) + Hd (x, y), where

the weight w(z) is number of 1-bits in z. Thus, a differentially private protocol for estimating the Hamming distance
Hd (x, y) can be turned into one for the inner product by having the parties send differentially private approximations
of the weights of their inputs.
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and sends
(
t
′
= (t1,...,i, ti+1),Finder

f (t
′
)
)
back to B̃. In case this is the last round of interaction,

Ã locally outputs the (local) output of A induced by this choice of f and random coins. In other
words, Ã selects a random view (including the oracle itself) for A that is consistent with the
information contained in the plain-model protocol augmented transcript (i.e., the transcript of the
oracle protocol and the oracle calls), and then acts as A would.

The fact that Ã perfectly emulates A (and that B̃ perfectly emulates B) trivially holds for
information theoretic reasons. For the same reason, it also holds that the transcript generated by
applying Mapf to a random transcript of πf , where f ← FAF, generates exactly the same transcript
as a random execution of π̃ does (actually, the above facts hold for any definition of Finder5 and
for any function family). The interesting part is arguing that the joint output of the plain model
protocol has similar distribution to that of the oracle aided protocol. To see that this is not trivial,
assume that in the last round both oracle parties make the same oracle query q and output the
query/answer pair (q, f(q)). If it happens that (q, ·) /∈ I, where I = Finder(t) is the query/answer
pairs made by the final call to Finder on transcript t, then the answer that each of the plain-model
parties compute for the query q might be different. In this case, the joint output of the plain model
protocol does not look like the joint output of the oracle protocol. Luckily, the guarantee of Finder
yields that the above scenario is unlikely to happen; with high probability I contains all common
queries the two parties made, yielding that the joint output of the plain-model protocol has similar
distribution to that of the oracle protocol. It turns out that the above example generalizes to any
possible protocol, showing that the above mapping and plain-model protocol are indeed the desired
ones.

1.3 Related Work

In their seminal work, Impagliazzo and Rudich [13] showed that there are no key-agreement proto-
cols in the random-function model, and deduce that key-agreement protocols cannot be black-box
reduced to one-way functions. This result was later improved by Barak and Mahmoody [1], show-
ing there are no ℓ-query key-agreement protocols in the random-function model, secure against
adversary making O(ℓ2) queries. Thus, matching the upper bound of Merkle [18]. On the technical
level, Impagliazzo and Rudich [13] implemented a dependency finder for the all-function family (see
Section 1.2), and then showed that no key-agreement protocol exists relative to a function family
that has such a dependency finder. The latter observation was the starting point of the research
we describe here.

Parts of the proof of our main technical lemma (Lemma 16), and in particular the first part
of the proof of Lemma 22, follow the footsteps of [1] (which in turn, follows those of [13]). Yet,
the proof we give for these parts presents several improvements over those of [13, 1]. First, our
proof holds with respect to a large set of function families, and not only for the all-function family
considered in [13, 1]. Second, our proof respects the round structure of the original protocol (the
works of [13, 1] first transform the protocol in hand, into a normal form; one round per query, which
induces a blow up in the protocol’s round complexity). Finally, we find our proof more modular and
with a simpler structure comparing to the previous proofs. In particular, it separates the generic
parts of the proof from those building upon the specific properties of a function family in hand.

In an independent work, Mahmoody et al. [16] show that the all-function family (and thus one-
way functions) are useless for secure function evaluation of deterministic, polynomial input-domain,

5Whose output contains all queries made to the oracle.
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two-party functionalities. In other words, deterministic, bounded input domain, functionalities that
can be securely computed in the random-function model, are the trivial ones — functionalities
that can be securely computed unconditionally. The comparison to the result stated here is that
[16] handle with input functionalities, but only deterministic with polynomial input domain, where
here we handle input-less functionalities, but including randomized ones. Putting the two results
together, gives a partial characterization of the power of the random-function model for (semi-
honest) two-party computation. It is still open, however, whether the random-function model is
useful for securely computing randomized functionalities with inputs, or functionalities of super-
polynomial input domain.

1.3.1 Additional Black-box Separations

Following [13], the method of black-box separation was subsequently used in many other works:
[22] shows that there does not exist a black-box reduction from a k-pass secret key agreements
to (k − 1)-pass secret key agreements; [24] shows that there exist no black-box reductions from
collision-free hash functions to one-way permutations; [14] shows that there exists no construction
of one-way permutations based on one-way functions. Other works using this paradigm contain
[15], [8], [9], [4], [10], [12] and [25].

1.3.2 Differential Privacy

Distributed differential privacy was considered by Beimel et al. [2], who studied the setting of mul-
tiparty differentially private computation (where an n-bit database is shared between n parties).
They gave a separation between the information theoretic and computational differential privacy in
the distributed setting. The notion of computational differential privacy was considered in Mironov
et al. [19]. They presented several definitions of computational differential privacy, studied the rela-
tionships between these definitions, and constructed efficient two-party computational differentially
private protocols for approximating the Hamming-distance between two vectors. Two-party differ-
ential privacy (where an n-bit database is shared between two parties) was considered by McGregor
et al. [17]. They prove a lower-bound on the accuracy of two party differentially private protocols, in
the information theoretic model, for computing the inner-product between two n-bit strings (and,
consequently for protocols for computing the Hamming distance). Hence, proving a separation
between information theoretic and computational two-party differentially private computation. In
this paper, we extend the lower-bound of [17] to the random-oracle model.

1.4 Open Problems

As mentioned above, the main open problem is the full characterization of the power of the random-
function model with respect to semi-honest adversaries. Specifically, is it possible to come up with
a similar mapping from any (also with inputs) oracle-aided protocol to an equivalent one in the
no-oracle model. Another interesting problem is to use our mapping (or a variant of it) to show
that the random-function model is also useless for protocols (say, input-less) that are secure against
fail-stop adversaries. An immediate implication of such a result would be that optimally-fair coin
tossing are impossible to achieve in the random function model.6

6We mention that Dachman-Soled et al. [5] showed such an impossibility result for O(n/ logn)-round protocols,
where n being the random function input length.
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Paper Organization

Formal definitions are given in Section 2. We state our main result in Section 3, and prove the main
technical lemma in Section 4. The different applications of our main result are given in Section 5.

2 Preliminaries

2.1 Notations

Let poly be the set of all polynomials, and let pptm stand for probabilistic polynomial-time algo-
rithm. A function µ : N→ [0, 1] is negligible, denoted µ(n) = neg(n), if µ(n) = n−ω(1). For m ∈ N,
let [m] = {1, . . . ,m}. For a finite set S, we let χS stands for its characteristic function, and write
x ← S to denote that x is selected according to the uniform distribution over S. Similarly, for
a random variable X, we write x ← X to denote that x is chosen according to X. The support
of a distribution D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The
statistical distance between two distributions P and Q over a finite set U , denoted SD(P,Q), is
defined as 1

2

∑
u∈U |P (u)−Q(u)|, and is known to be equal to maxS⊆U (PrP [S]− PrQ[S]). We say

that two distributions P and Q are δ-close if SD(P,Q) ≤ δ.

2.2 Interactive Protocols

A two-party protocol π = (A,B) (with no oracle access) is a pair of probabilistic interactive Turing
machines. The communication between the Turing machines A and B is carried out in rounds,
where in each round one of the parties is active and the other party is idle. In the j’th round of
the protocol, the currently active party P acts according to its partial view, writing some value
on its output tape, and then sending a message to the other party (i.e., writing the message on
the common tape). A communication transcript t (i.e., the “transcript”) is the list of messages
exchanged between the parties in an execution of the protocol, where t1,...,j denotes the first j
messages in t. A view of a party contains its input, its random tape and the messages exchanged
by the parties during the execution. Specifically, A’s view is a tuple vA = (iA, rA, t), where iA is
A’s input, rA are A’s coins, and t is the transcript of the execution. We let (vA)j denote the partial
view of A in the first j rounds of the execution described by vA, namely, (vA)j = (iA, rA, t1,...,j); we
define vB analogously. We call v = (vA, vB) the joint view of A and B, and let vj = ((vA)j , (vB)j).
Given a distribution (or a set) D on the joint views of A and B, we let DA be the projection of D on
A’s view (i.e., PrDA

[vA] = Pr(vA,·)←D[vA]), and define DB analogously. Finally, we sometimes refer
to a well structured tuple v as a “view” of π, even though v happens with zero probability. When
we wish to stress that we consider a view that has non-zero probability, we call it a valid view.

We call π an m-round protocol, if for every possible random tapes for the parties, the number
of rounds is exactly m. Given a joint view v (containing the views of both parties) of an execution
of (A,B) and P ∈ {A,B}, let vP denote P’s part in v and let trans(v) denote the communication
transcript in v. For j ∈ [m], let outPj (v) = outPj (vP) denote the output of the party P at the end of

j’th round of v (i.e., the string written on P’s output tape), where outPj (v) = outPj−1(v), in case P
is inactive in the j’th round of v.

We sometimes consider stateless protocols – the parties hold no state, and in each round act on
the message received in the previous round with freshly sampled random coins. Throughout this
paper we almost solely consider no-private input protocols – the parties’ only input is the common
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input (the only exception to that is in Section 5.2, additional required notations introduced therein).
Given a no-input two-party protocol π, let ⟨π⟩ be the distribution over the joint views of the parties
in a random execution of π.

2.2.1 Oracle-Aided Protocols

An oracle-aided, two-party protocol π = (A,B) is a pair of interactive Turing machines, where each
party has an additional tape called the oracle tape; the Turing machine can make a query to the
oracle by writing a string q on its tape. It then receives a string ans (denoting the answer for this
query) on the oracle tape.

For simplicity, we only consider function families whose inputs and outputs are binary strings.
For an oracle-aided, no-input, two-party protocol π = (A,B) and a function family F , we let
ΩF ,π be the set of all triplets (rA, rB, f), where rA and rB are possible random coins for A and
B, and f ∈ F (henceforth, we typically omit the superscript (F , π) from the notation, whenever
their values are clear from the context). For f ∈ F , the distribution

⟨
πf = (Af ,Bf )

⟩
, is defined

analogously to ⟨π⟩ = ⟨A,B⟩, i.e., it is the distribution over the joint views of parties in a random
execution of π with access to f . Given some information inf about some element of Ω (e.g., a set of
query/answer pairs, or a view), let PrΩ[inf] = Prω←Ω[ω is consistent with inf], and let PrΩ|inf′ [inf]
be this probability conditioned that ω is consistent with inf ′ (set to zero, in case PrΩ[inf

′] = 0).
Given a (possibly partial) execution of πf , the views of the parties contain additional lists of

query/answer pairs made to the oracle throughout the execution of the protocol. Specifically, A’s
view is a tuple vA = (rA, t, fA), where rA are A’s coins, t is the transcript of the execution, and fA
are the oracle answers to A’s queries. By convention, the active party in round j first makes all its
queries to the oracle for this round, and then writes a value to its output tape and send a message
to the other party. We denote by (fP)j the oracle answers to the queries that party P makes during
the first j rounds. As above, we let (vA)j denote the partial view of A in the first j rounds of the
execution described by vA, namely, (vA)j = (rA, t1,...,j , (fA)j). We define vB analogously.

For ω ∈ Ω, we let view(ω) be the full view of the parties determined by ω. We say that a “view”
v is consistent with (F , π), if PrΩF,π [v] > 0.

We assume without loss of generality that in each round, the active party sends exactly one
message to the other party (furthermore, the party acting in the last round outputs a final message,
after which none of the parties makes any action). Therefore, a partial transcript t of the protocol
uniquely determines the length of the partial execution that generated it (i.e., the number of rounds
of π played), which we denote by |t|. We consider the following distributions.

Definition 5 (Ω(t, I) and VIEW(t, I)). Given a partial transcript t and a set of query/answer
pairs I, let Ω(t, I) = ΩF ,π(t, I) be the set of all tuples (rA, rB, f) ∈ Ω = ΩF ,π, in which f is
consistent with I, and t is a prefix of the transcript induced by

⟨
Af (rA),B

f (rB)
⟩
. Given a set

P ⊆ Ω, let ΩP(t, I) = Ω(t, I) ∩ P.
Let VIEW(t, I) = VIEWF ,π(t, I) be the value of view(ω)|t| for ω ← Ω(t, I), and define

VIEWF ,πP (t, I) analogously.

We note that since we consider the uniform distribution over Ω, we have that for any partial
transcript t, set of query/answer pairs I, set P ⊆ Ω, and information inf about some element of Ω
it holds that PrΩP (t,I)[inf] = PrΩ|t,I,P [inf].
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3 Mapping Oracle-Aided Protocols to No-Oracle Protocols

In this section we prove our main result, a mapping from protocols in the random-oracle model to
(inefficient) no-oracle protocols.

3.1 Dependent Views

In the following we fix an m-round oracle-aided protocol π and a function family F . We would like
to restrict VIEW(t, I) to those views for which I contains all the joint information of the parties
about f . We start by formally defining what it means for I to contain all the joint information.

Definition 6. Let vA be a jA-round view for A and vB be a jB-round view for B, for some jA, jB ∈
[m]. For i ∈ [jA], let IAi be the set of query/answer pairs that A makes in the i’th round of vA
(where IAi = ∅, if A is idle in round i), and define IBi analogously. Given a set I of query/answer
pairs, we define

1. αIvA =
∏

i∈[jA] PrΩ | I,IA1...,IAi−1

[
IAi

]
and

2. αIvA|vB =
∏

i∈[jA] PrΩ | I,IA1,IB1,...,IAi−1,IBi−1

[
IAi

]
,

and define αIvB|vA and αIvB analogously.

Intuitively, αIvA is the probability of A’s view of f given I, and αIvA|vB is this probability when

conditioning also on B’s view. We will focus on those views with αIvA = αIvA|vB and αIvB = αIvB|vA .

Definition 7 (dependent views). Let v = (vA, vB) be a pair of (possibly partial) valid views.7 We
say that vA and vB are dependent with respect to a set of query/answer pairs I and a function
family F , denoted DependentFI (v) = 1, if αIvA ̸= αIvA|vB or αIvB ̸= αIvB|vA.

8

A pair of views v = (vA, vB) with DependentI(v) = 0 is called independent. We let IndF ,π(t, I) =
{ω ∈ Ω(t, I) : DependentFI (view(ω)|t|) = 0} and let VIEWF ,πInd (y) stand for VIEWF ,π

IndF,π(y)
(y).

The following observation (generalizing a similar observation made in [1]) plays a crucial role
in the proof of our main result (stated in Section 3.3). It shows how to express the probability of
a given view v, using αIvA|vB and αIvB|vA . In particular, it implies that for an independent pair of

views v = (vB, vA) and any set P ⊆ Ω, the probability that VIEWP(t, I) = v can be written as a
product of a term determined solely by vA and (t, I,P), and a term determined solely by vB and
(t, I,P).

Proposition 8. Let t be a transcript, let I be a list of query/answer pairs, and let P ⊆ Ω. Then,
for every view v = (rA, rB, ·) ∈ Supp

(
VIEW

(
t, I

))
with PrΩ[v, I, t,P] = PrΩ[v, I], it holds that

Pr[VIEWP(t, I) = v] , Pr
ΩP (t,I)

[v] =
PrΩ[rA, rB] · αIvA|vB · α

I
vB|vA

PrΩ|I [t,P]
.

7While properly defined for any pair of views (vA, vB), we will typically only consider the following notions for
pairs with trans(vA) = trans(vB) (i.e., both views induce the same transcript).

8One can verify that DependentFI (v) = 1, in case v is inconsistent with F , namely, PrF [IA, IB] = 0, where IA and
IB, are the lists of query/answer pairs appear in vA and vB respectively.
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Proof. Note that

Pr
ΩP (t,I)

[v] =
PrΩ[v, t, I,P]
PrΩ[t, I,P]

=
PrΩ[v, I]

PrΩ[t, I,P]
=

PrΩ[rA, rB, I] · PrΩ|rA,rB,I [v]
PrΩ[t, I,P]

,

where the second equality holds since by assumption, PrΩ[v,P, I, t] = PrΩ[v, I]. Since the choice
of random coins is independent of the choice of f , we can write

Pr
ΩP (t,I)

[v] =
PrΩ[rA, rB] · PrΩ[I] · PrΩ | rA,rB,I [v]

PrΩ[I] · PrΩ | I [t,P]
=

PrΩ[rA, rB] · PrΩ | rA,rB,I [v]
PrΩ | I [t,P]

(1)

We next analyze the term PrΩ|rA,rB,I [IA, IB, t], where IA is the set of query/answer pairs that A
sees according to vA (IB is defined analogously). Note that this term is equal to PrΩ|rA,rB,I [v], since
given (rA, rB, I), the values of (IA, IB, t) and v are implied by each other.

Let j be the number of rounds in v, and for i ∈ [j] recall that IAi is the set of query/answer
pairs that A sees in the i’th round of the execution according to vA (IBi is defined analogously).
Since at any point through the execution of πf , the next query of the acting party is determined
by its partial view, it follows that

Pr
Ω|rA,rB,I

[IA, IB, t] =
∏
i∈[j]

Pr
Ω|rA,rB,I,IA1,IB1,...,IAi−1,IBi−1,t1,...,ti−1

[
IAi, IBi, ti

]
=

∏
i∈[j]

Pr
Ω|rA,rB,I,IA1,IB1,...,IAi−1,IBi−1,t1,...,ti−1

[
IAi, IBi

]
=

∏
i∈[j]

Pr
Ω|I,IA1,IB1,...,IAi−1,IBi−1

[
IAi, IBi

]

=

∏
i∈[j]

Pr
Ω|I,IA1,IB1,...,IAi−1,IBi−1

[IAi]

 ·
∏

i∈[j]

Pr
Ω|I,IA1,IB1,...,IAi−1,IBi−1

[IBi]


= αIvA|vB · α

I
vB|vA ,

where the second equation holds since the i’th message is (deterministically) determined by
the randomness of the parties, the oracle answers and the transcript till now. The third one
holds since the distribution on the oracle answers at each point during the execution is a
function of I and the previous queries made by the parties (recall that PrΩ|inf′

[
IAi, IBi

]
=

Prω←Ω|inf′ [ω is consistent with IAi, IBi] and that the first i − 1 messages are determined by the
randomness of the parties and the oracle answers to the queries made till round i− 1). Finally, the
fourth one holds since only one party is active in each round (hence, for every i either IAi or IBi

is empty). �

3.2 Intersecting Views

A special case of dependent views is when the two paries share a common oracle query not in I.

Definition 9 (intersecting views). A (possibly partial) pair of views v = (vA, vB) are intersecting
with respect to a set of query/answer pairs I, denoted IntersectI(v) = 1, if vA and vB share a
common query q not in I (i.e., (q, ·) /∈ I).

9



For most function families, an intersection implies being dependent (with respect to the same
list of query/answer pairs). In this paper we limit our attention to “simple” function families for
which also the other direction holds, namely dependency implies intersection.

Definition 10 (simple function families). A function family F is simple, if for any oracle-aided
protocol π, list I of query/answer pairs that is consistent with some f ∈ F , and a (possibly partial)
pair of views v = (vA, vB) consistent with I, it holds that DependentFI (v) = 1 iff IntersectI(v) = 1.

Example 11. It is not hard to verify (see Section 5.3) that the “all-function family” (i.e., the set
of all functions from {0, 1}n to {0, 1}n) is simple.

3.3 Oracle-Aided to No-Oracle Protocol Mapping

The following theorem shows that an execution of an oracle-aided protocol with oracle access to a
random f ∈ F , where F is a simple function family, can be mapped to an execution of a related
protocol with no oracle access. In Section 5 we use this result to prove limitations on the power of
oracle-aided protocols in achieving specific cryptographic tasks.

Definition 12 (oracle-aided to no-oracle mapping). A pair of a function family F and a no-input,
m-round, oracle-aided protocol π = (A,B), has a (T, ε)-mapping, if there exists a deterministic,
oracle-aided T -query algorithm Map and a stateless, m-round, no-input (and no-oracle) protocol
(Ã, B̃), such that the following hold:

1. SD (DF ,DP ) ≤ ε for every j ∈ [m], where

DF =
(
outAj (v), out

B
j (v),Mapf (trans(v)1,...,j)

)
f←F ,v←⟨Af ,Bf⟩

and,

DP =
(
outÃj (v), out

B̃
j (v), trans(v)1,...,j

)
v←⟨Ã,B̃⟩

.9

Furthermore, DP [1, 3] ≡ DF [1, 3] and DP [2, 3] ≡ DF [2, 3].10

2. For every f ∈ F , an m-round transcript t and j ∈ [m], it holds that Mapf (t1,...,j) =
Mapf (t)1,...,j. Furthermore, the oracle calls made in Mapf (t1,...,j) are a subset of those made
in Mapf (t).

Theorem 13. Let F be a simple function family and let π = (A,B) be an ℓ-query, oracle-aided,
no-input protocol, then (F , π) has an (256 · ℓ2/ε2, ε)-mapping for any 0 < ε ≤ 1.

Remark 14 (Round complexity of the no-oracle protocol). The proof of Theorem 13 can be easily
modified to yield a one-message no-oracle protocol (in this case, DF and DP should be modified to
reflect the transcript and outputs at the end of the executions). The roles of Ã and B̃ in the resulting
protocol however, cannot reflect as closely the roles of A and B, as done in the many-round, no-
oracle protocol stated above.

The heart of the proof of Theorem 13 lies in the following lemma, proof of which is given in
Section 4.

10I.e., the projections of DP and DF to their transcript part and the output of one of the parties, are identically
distributed.
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Definition 15 (DependencyFinder). Let F be a function family and let π = (A,B) be an m-round
oracle-aided protocol. A deterministic oracle-aided algorithm Finder is a (T, ε)-DependencyFinder
for (F , π) if the following holds for any j ∈ [m]: consider the following random process CF =
CF(F , π,Finder):

1. Choose (rA, rB, f)← ΩF ,π and let t be the j-round transcript of π induced by (rA, rB, f).

2. For i = 1 to j set Ii = Ii−1 ∪Finderf (t1,...,i, Ii−1) (letting I0 = ∅), where Finderf (x) is the set
of queries/answers made by Finderf (x) to f .

3. Output
(
t, Ij

)
.

Then

1. Ed←CF

[
SD

(
VIEWF ,π(d), (VIEWF ,π(d)A,VIEWF ,π(d)B)

)]
≤ ε, and

2. Pr[# of f-calls made in CF > T ] ≤ ε.

That is, conditioned on a random transcript of πF and the oracle queries made by a (T, δ)-
DependencyFinder, the parties’ views are close to being in a product distribution.

Lemma 16. Let F be a simple function family and let π = (A,B) be an ℓ-query oracle-aided
protocol, then (F , π) has a (64/δ2, ℓδ)-DependencyFinder for any 0 < δ ≤ 1/ℓ.

Before proving Lemma 16, we first use it to prove Theorem 13.

3.3.1 Proving Theorem 13

Fix a simple function family F and a no-input, m-round, ℓ-query oracle-aided protocol π. Fix
0 < ε ≤ 1 and let Finder be the (T = 256 · ℓ2/ε2, ε/2)-DependencyFinder guaranteed by Lemma 16
for (F , π) (taking δ = ε/2ℓ). We start by defining the mapping algorithm and then we define a
protocol with no oracle access.

Algorithm 17 (Map).

Oracle: f ∈ F .
Input: j-round transcript t of π.

Operation:

1. For i = 1 to j set Ii = Ii−1 ∪ Finderf (t1,...,i, Ii−1) (letting I0 = ∅).

2. If in some round i∗ the overall number of f calls (made by Finder) is T , halt the above
procedure and set Ii∗ to be the set of T query/answer pairs obtained so far,11 and set Ii = Ii∗
for all i∗ < i ≤ j.

3. Output
(
t1, I1

)
,
(
t1,2, I2

)
, . . . ,

(
t, Ij

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11I.e., augmenting Ii∗−1 with the queries/answers made in round i∗ before halting.
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The no-oracle protocol. Our stateless, no-oracle protocol π̃ = (Ã, B̃), emulates the oracle-aided
protocol π by keeping the “important” oracle queries as part of the transcript, and selecting the
rest of the oracle at random (independently in each round). In particular, Ã is active in π̃ in the
same rounds that A is in π (same for B̃ and B). The definition of Ã is given below (B̃ is analogously
defined).

Algorithm 18 (Ã).

Input: A pair (t, I), where t is a transcript of length j and I is a set of query/answer pairs.

Operation:

1. Sample (rA, rB, f)← Ω(t, I), and let outj+1 and tj+1 denote A’s output and message respec-
tively, in the (j + 1) round of

⟨
Af (rA),B

f (rB)
⟩
.

2. Output outj+1.

3. Compute the value of Ij+1 output by Mapf (tj+1) for tj+1 = (t, tj+1).

4. Send (tj+1, Ij+1) to B̃.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof of Theorem 13. We prove that algorithm Map ( 17) and protocol π̃ = (Ã, B̃) ( 18), form an
(T, ε)-mapping for (F , π). By construction, algorithm Map is deterministic (since Finder is deter-
ministic), makes at most T queries and fulfills the second item of Definition 12. Towards showing
that (Map, π̃) fulfills also the first property of Definition 12 with respect to stated parameter, we
prove the following claim:

Claim 19.
(
Mapf (trans(v)1,...,j)

)
f←F ,v←⟨Af ,Bf⟩ ≡ (trans(v)1,...,j)v←⟨Ã,B̃⟩ for every j ∈ [m].

Proof. We prove the claim by induction on j; by the induction hypothesis and the fact that
Mapf (trans(v)1,...,j)1,...,j−1 = Mapf (trans(v)1,...,j−1) (since Map fulfills the second item of Defini-
tion 12), it suffices to prove that the distributions in the claim are the same, conditioned that
their (j − 1)-“round” prefix is fixed to some value

(
. . . ,

(
t1,...,j−1, Ij−1

))
. Since Ij−1 is the set of

queries/answers made by Mapf (trans(v)1,...,j−1) to f , the value of the right-hand-side distribution
under this conditioning is Mapf (t

′
), where f and t

′
are the function and the j-round transcript of

π respectively, induced by ω ← Ω
(
t1,...,j−1, Ij−1

)
. It is easy to verify that, under this conditioning,

the latter process also describes the left-hand-side distribution. �

We next note that Claim 19 yields that DP [1, 3] ≡ DF [1, 3] (and similarly that DP [2, 3] ≡
DF [2, 3]); indeed, conditioned on DP [3] = DF [3] =

(
. . . ,

(
t1,...,j , Ij

))
, the values of both DP [1] and

of DF [1] (i.e., A’s output), are obtained by the following random process: sample ω ← Ω
(
t1,...,j , Ij

)
and output A’s output in the j’th round induced by ω.

Finally, the definition of π̃ = (Ã, B̃) yields that

DP :=
(
outÃj (v), out

B̃
j (v), trans(v)1,...,j

)
v←⟨Ã,B̃⟩

(2)

≡
(
outAj (vA), out

B
j (vB), t̃1,...,j

)
t̃←trans(⟨Ã,B̃⟩),vA←VIEW(t̃j)A,vB←VIEW(t̃j)A

12



where we recall that t̃j consists of a pair (tj , Ij). It is easy to verify that

DF :=
(
outAj (v), out

B
j (v),Mapf (trans(v)1,...,j)

)
f←F ,v←⟨Af ,Bf⟩

≡
(
outAj (vA), out

B
j (vB), t̃1,...,j

)
f←F ,t←trans(⟨Af ,Bf⟩),t̃←Mapf (t),v←VIEW(t̃j)

and therefore Claim 19 yields that

DF ≡
(
outAj (vA), out

B
j (vB), t̃1,...,j

)
t̃←trans(⟨Ã,B̃⟩),v←VIEW(t̃j)

(3)

We conclude the proof using the fact that Finder is a (T, ε/2)-DependencyFinder for (F , π). The
issue to note is that Process CF (described in Definition 15) may make arbitrary number of oracle
queries, while Map is restricted to at most T queries. Let S be the set of pairs d =

(
t1,...,j , Ij

)
in

the support of the Process CF with |Ij | ≤ T . Note that the probability that CF outputs d ∈ S, is
exactly the probability of the transcript part being of the form (. . . , d) according to distribution
DF , where by Claim 19 this is also the probability of the this event according to DP . We bound the
statistical distance between DF and DP , by separately bounding the part contributed by transcripts
(. . . , d) with d ∈ S and by transcripts (. . . , d) with d /∈ S.

The fact that Finder is a (T, ε/2)-DependencyFinder for (F , π), yields a bound of ε/2 on the
contribution of elements whose transcripts is inside S to the statistical distance between DF and
DP . It also bounds by ε/2 the probability that CF outputs elements whose transcripts is outside S;
yielding the same bound on the contribution of such elements to the statistical distance between
DF and DP . We conclude that SD (DF ,DP ) ≤ ε/2 + ε/2 = ε.

�

4 Proving Lemma 16

We start by proving Lemma 16 for normal-form protocols, defined below. In Section 4.1 we extend
the proof to arbitrary protocols. In the following, for a view v describing an execution of an oracle-
aided protocol π, we let ℓi(v) be the number of queries made (by the non-idle party) in round i
according to v.

Definition 20 (normal-form protocols). An oracle-aided protocol π is in normal-form if ℓi(v) ≤ 1
for every possible view v and every round i, that is, if a party makes at most a single query to the
oracle in each communication round.

Fix a normal-form, oracle-aided protocol π, a simple function family F , and 0 < δ ≤ 1/ℓ. Define
the following oracle-aided algorithm.

Algorithm 21 (Finder).

Input: a transcript t and a list I of query/answer pairs.

Oracle: f ∈ F .
Operation: While there exists a query q with (q, ·) /∈ I and pq > δ/32, where pq is the probability

that q was asked either by A or B in a random sample from VIEWF ,πInd (t, I):
12

12Recall that the distribution VIEWF,π
Ind (t, I) stands for a random, independent joint view of π, which is consistent

with the transcript t and the query/answer list I.
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Add (q, f(q)) to I (choose the lexicographically first q if there are more than one).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Namely, algorithm Finder considers executions of π that are consistent with the given partial
transcript and a set of “known” query/answer pairs, in which the views of the parties are inde-
pendent (since F is a simple family, it means that the parties share no intersecting query — a
common query whose answer in not described in the given information). The goal of Finder is to
find all “heavy queries”: those queries that have substantial probability of being asked by one of
the parties in a random such execution.

We prove Lemma 16 (for the case of normal-form protocols) by showing that Finder is a
(64/δ2, ℓδ)-DependencyFinder for (F , π). The heart of the proof is in the following lemma, yielding
that in a random execution of CF = CF(F , π,Finder), the probability that the views of the parties
“become dependent”, in any given round, is small.

Lemma 22. Let t be a (possibly partial) transcript of (the normal-form protocol) π, let I be a set
of query/answer pairs, let Ind = Indπ,F (t, I), let D = VIEWInd(t, I), and let δ > 0 be such that
Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ ≤ 1

4ℓ for every query q. Then, the following hold:

1. There exists a product distribution C over Supp(DA)× Supp(DB) with SD (D, C) ≤ 2ℓδ.

2. Let D+ be the value of view(ω)|t|+1 for ω ← ΩInd(t, I), then Prv←D+ [DependentI(v)] ≤
4δ · Prv←D+

[
ℓ|t|+1(v) = 1

]
.

We prove Lemma 22 in Section 4.2, but first use it for proving Lemma 16. We start by showing
that Algorithm Finder (see 21) is a good DependencyFinder for (F , π), proving Lemma 16 for
normal-form protocols.

Claim 23. Algorithm Finder is a (64/δ2, ℓδ)-DependencyFinder for (F , π).

Proof. The following random variables are defined with respect to a random execution of CF =
CF(F , π,Finder). Let V = view(ω)j , i.e., the j long prefix of the full view implied by the triplet
ω ∈ Ω chosen in the first step of CF. We let T denote the (j-round) transcript in V . For i ∈ [j] let
Ii denote the value of Ii computed in CF, and for 2 ≤ i ≤ j let FirstDepi = DependentIi−1

(Vi) ∧
¬DependentIi−2

(Vi−1) (where I0 = ∅). We start by bounding the probability of DependentIj (V ),
which yields the first property required for being a (·, ℓδ)-DependencyFinder for (F , π), and then
complete the proof by bounding the number of queries made in CF.

Bounding the probability of dependencies. The following claim bounds the probability that
a single “round” of CF causes dependencies.

Claim 24. Pr[FirstDepi] ≤ δ
8 · E[ℓi(V )] for every 2 ≤ i ≤ j.

Proof. In the following we fix 2 ≤ i ≤ j and a value for (T 1,...,i−1, Ii−1), and prove (the slightly
stronger fact) that the claim holds even under any such fixing. We next bound the probability that
(under this fixing) the i’th round of π causes a collision. Recall that by Process CF, we obtained
Ii−1 = Ii−2 ∪ Finderf (T 1,...,i−1, Ii−2). The definition of Finder yields that

Pr[q ∈ Vi−1 ∧ (q, ·) /∈ Ii−1 | ¬DependentIi−1
(Vi−1)] ≤ δ/32 (4)
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for any query q. We can hence apply Lemma 22(2) with respect to the function family F , protocol
π, transcript T 1,...,i−1 and query/answer list Ii−1, yielding that

Pr
[
DependentIi−1

(Vi) | ¬DependentIi−1
(Vi−1)

]
≤ δ

8
· Pr

[
ℓi(V ) = 1 | ¬DependentIi−1

(Vi−1)
]

(5)

We conclude that

Pr [FirstDepi] (6)

= Pr[DependentIi−1
(Vi) ∧ ¬DependentIi−2

(Vi−1)]

≤ Pr[DependentIi−1
(Vi) ∧ ¬DependentIi−1

(Vi−1)]

= Pr[¬DependentIi−1
(Vi−1)] · Pr[DependentIi−1

(Vi) | ¬DependentIi−1
(Vi−1)]

≤ Pr[¬DependentIi−1
(Vi−1)] ·

δ

8
· Pr

[
ℓi(V ) = 1 | ¬DependentIi−1

(Vi−1)
]

≤ δ

8
· E[ℓi(V )].

The first inequality holds since F is a simple family (hence, DependentI(v) = 0 implies
DependentI′(v) = 0, for every view v and lists I ′ ⊇ I) and the second one follows from Equa-
tion (5). Finally, since Equation (6) holds conditioned on any fixing of (T 1,...,i−1, Ii−1), it also holds
without this conditioning and the claim follows. �

Continuing the proof, Claim 24 yields that

Pr
[
DependentIj (V )

]
≤ Pr

 ∨
2≤i≤j

FirstDepi

 ≤ ∑
2≤i≤j

δ

8
· E [ℓi(V )] (7)

=
δ

8
E

 ∑
2≤i≤j

ℓi(V )

 ≤ ℓδ

8
.

The first inequality holds since F is a simple family and since a first round view is never dependent
(the inactive party made no queries). The third inequality holds since ℓ bounds the overall number
of queries made in any execution of π. Since for any d = (t, I) ∈ Supp(T , Ij) it holds that
SD (VIEW(d),VIEWInd(d)) = Prω←Ω(d)[w /∈ Ind(d)] = Prv←VIEW(d)[DependentI(v)], it follows
that

E
d←(T ,Ij)

[SD (VIEW(d),VIEWInd(d))] = E
d←(T ,Ij)

[
Pr

v←VIEW(d)
[DependentI(v)]

]
(8)

= Pr[DependentIj (V )]

≤ ℓδ

8
,

where the inequality hold by Equation (7). We complete the proof of this part by showing that
VIEWInd(d) is close to some product distribution over the parties’ views. The definition of Finder
yields that

Pr[q ∈ V ∧ (q, ·) /∈ Ij | ¬DependentIj (V ), (T , Ij) = d] ≤ ℓδ

32
(9)
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for any possible query q and d ∈ Supp(T , Ij). Therefore, Lemma 22(1) yields that

SD (VIEWInd(d), C(d)) ≤
ℓδ

16
, (10)

for any d ∈ Supp(T , Ij), where C(d) is a product distribution over the parties’ views. It follows
(using the triangle inequality) that SD

(
VIEWInd(d),

(
VIEWInd(d)A,VIEWInd(d)B

))
≤ 3

16 · ℓδ for
any d ∈ Supp(T , Ij), and therefore

E
d←(T ,Ij)

[
SD

(
VIEWInd(d),

(
VIEWInd)(d)A,VIEWInd)(d)B

))]
≤ 3

16
· ℓδ. (11)

Combining Equations (8) and (11) and the triangle inequality, yields that

E
d←(T ,Ij)

[
SD

(
VIEW(d),

(
VIEW(d)A,VIEW(d)B

))]
≤ 9

16
· ℓδ ≤ ℓδ.

Bounding the query complexity. We complete the proof by bounding the probability that CF
makes too many oracle queries. For i ∈ [j] let Qi = {q : (q, ·) ∈ Ii \ Ii−1} and let Q =

∪
i∈[j]Qi (i.e.,

Q is the set of queries appearing in a query/answer pair of Ij). The heart of the proof is in the
following claim.

Claim 25. For every query q it holds that∑
i∈[j]

Pr[q ∈ Qi ∧ ¬DependentIi−1
(Vi)] ≤

32

δ
· Pr[q ∈ V ].

Namely, Claim 25 relates the probability that a query is asked by Finder, to the probability that
this query is asked by one of the parties in V .

Proof. Fix i ∈ [j] for a moment, and assume that during the i’th call to Finder on input (t
∗
, ·),

algorithm Finder is about to ask a query q and let I∗ be the value of I at this moment. The
definition of Finder tells us that

Pr[q ∈ Vi | I∗, t∗,¬DependentI∗(Vi)] ≥ δ/32, (12)

where the conditioning on (I∗, t∗) means that Vi is consistent with I∗ and t
∗
. Applying a simple

Bayes’ rule, it follows that

Pr[q ∈ Vi | I∗, t∗] ≥ Pr[q ∈ Vi ∧ ¬DependentI∗(Vi) | I∗, t∗] (13)

= Pr[¬DependentI∗(Vi) | I∗, t∗] · Pr[q ∈ Vi | I∗, t∗,¬DependentI∗(Vi)]

≥ Pr[¬DependentI∗(Vi) | I∗, t∗] ·
δ

32
.

For i ∈ [j] let Si(q) be the set of (I∗, t∗) pairs that cause Finder to ask the query q in the i’th
round of CF — assuming that w ∈ Ω (chosen in CF) is consistent with (I∗, t∗), then Finder asks the
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query q in the i’th round of CF, and the value of I before it does so is I∗. It follows that

Pr[q ∈ V ] ≥
∑
i∈[j]

∑
(I∗,t∗)∈Si(q)

Pr[w is consistent with (I∗, t∗)] · Pr[q ∈ V | I∗, t∗]

≥
∑
i∈[j]

∑
(I∗,t∗)∈Si(q)

Pr[w is consistent with (I∗, t∗)] · δ
32
· Pr[¬DependentI∗(Vi) | I∗, t∗]

≥ δ

32
·
∑
i∈[j]

Pr[q ∈ Qi ∧ ¬DependentIi−1
(Vi)].

The first inequality holds since a query is asked at most once in CF (and hence we are summing
over disjoint events), the second one by Equation (13) and the last one holds since F is a simple
family. �

Let C̃F be the variant of CF that aborts in case DependentIi−1
(Vi) = 1 for some i ∈ [j] (i.e., C̃F

aborts right after computing Ii−1). Let Q̃i be the respective analogs of Qi defined with respect to

a random execution of C̃F, and let Q̃ =
∪

i∈[j] Q̃i (i.e., Q̃ denote all queries asked by Finder in C̃F).
The same calculation done in Equation (7) yields that

SD(Q, Q̃) ≤ ℓδ/8 (14)

In the following we bound the number of queries made by Finder in C̃F, and derive a similar bound
on CF.

A simple argument yields that Pr[q ∈ Q̃i] ≤ Pr[q ∈ Qi ∧ ¬DependentIi−1
(Vi)], for every i ∈ [j]

and every query q. Thus, Claim 25∑
i∈[j]

Pr[q ∈ Qi ∧ ¬DependentIi−1
(Vi)] ≤

32

δ
· Pr[q ∈ V ]

yields that

Pr[q ∈ Q̃] =
∑
i∈[j]

Pr[q ∈ Q̃i] ≤
32

δ
· Pr[q ∈ V ] (15)

for every query q. It follows that

E
[∣∣∣Q̃∣∣∣] = E

[∑
q

χ
Q̃
(q)

]
≤ 32

δ
· E

[∑
q

χV (q)

]
≤ 32ℓ/δ. (16)

The first inequality holds by Equation (15) and linearity of expectation and the last one since at
most ℓ queries are asked in V (where χx(q) = 1 if q ∈ x and χx(q) = 0 otherwise).

A Markov argument yields that Pr
[∣∣∣Q̃∣∣∣ > 64/δ2

]
≤ ℓδ/2. Hence, Equation (14) yields that

Pr
[
|Q| > 64/δ2

]
≤ ℓδ/2 + ℓδ/8 < ℓδ. �
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4.1 Handling Non Normal-Form Protocols

In this section we show how to construct a DependencyFinder for every simple function family
and every oracle-aided protocol (possibly not in normal form). We do this by showing how to
use a DependencyFinder for the normal form variant of a protocol, defined below, to construct a
DependencyFinder (of the same quality) for the original protocol.

Definition 26 (the normal-form variant of a protocol). Given an ℓ-query oracle-aided protocol π,
we define its normal form variant πN as follows: the parties of πN act as in π while sending additional
“dummy” messages; following each oracle query made through the execution, the parties interact in
a “dummy round” — the active party sends ⊥ to the other party who answers with ⊥. In addition,
before sending the next message of π, the parties interact in (ℓ − k) consecutive dummy rounds,
where k is the number of oracle queries made by the active party in the current round.13

Lemma 27. Let F be a function family, let π be an oracle-aided protocol and let πN be its
normal form variant. Assume (F , πN) has a (T, ε)-DependencyFinder, then (F , π) has a (T, ε)-
DependencyFinder.

The straightforward proof of Lemma 27 is given below, but first let us use it for concluding the
proof of Lemma 16.

Proof of Lemma 16. Let F be a simple function family, let π = (A,B) be an ℓ-query oracle-aided
protocol and let πN be its normal-form variant. Since πN is in normal form according to Definition 20,
Claim 23 yields that (F , πN) has a (64/δ2, ℓδ)-DependencyFinder for any δ ≤ 1/ℓ. Hence, Lemma 27
yields that the same holds for (F , π). �

Proof of Lemma 27. Let F , π and πN be as in the statement of the lemma, and let FinderN be a
(T, ε)-DependencyFinder for (F , πN). We define the DependencyFinder for (F , π) as follows:

Algorithm 28 (Finder).

Input: a transcript t of π and a list I of query/answer pairs.

Oracle: f ∈ F .
Operation:

1. Create the transcript tN from t by inserting 2ℓ strings ‘⊥,’, following each but the last message
in t.

2. For k = 1 to ℓ do:

(a) Set I = I ∪ FinderN(I, tN).
(b) Set tN = tN,⊥,⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to verify that a random output of CFN can be sampled by applying a (deterministic)
injective functionM to a random output of CF, whereM preserves the number of queries in the input
(specifically, M is simply the padding function described in the first line of 28). This observation

13Note that each round in the original protocol is replaced by ℓ rounds in its normal-form variant, hence, concealing
the number of actual oracle-queries made in each round.
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immediately yields the required bound on the number of oracle queries done in CF, since these
outputs determine the number of queries made to the oracle. To prove that the first property
required by Definition 15 also holds (see the equation below), we also note that a random sample
of VIEWF ,πN(dN), for dN ∈ Supp(CFN), can be sampled by applying a (deterministic) injective
function to VIEWF ,π(M−1(dN)). It follows that

E
d←CF

[
SD

(
VIEWF ,π(d), (VIEWF ,π(d)A,VIEWF ,π(d)B)

)]
= E

d←CFN

[
SD

(
VIEWF ,πN(d), (VIEWF ,πN(d)A,VIEWF ,πN(d)B)

)]
≤ ε,

concluding the proof of the lemma. �

4.2 Proving Lemma 22

The following discussion is with respect to fixed values of t and I, where Ind, D and D+ are defined
with respect to these values as in the statement of Lemma 22.

Towards proving Lemma 22, we make the following observations: in Claim 29 we show that D
is distributed as some product distribution, under the independence condition. In Claim 31, we use
the first observation to express D as a uniform sampled edge of a dense bipartite graph.14

4.2.1 Product Characterization

Claim 29. There exist two distributions A and B with D = (A× B) | Ind.

Proof. We show that we can write D(v) = γA(vA) · γB(vB) · c for every v = (vA, vB) ∈ Supp(D),
where γA and γB are appropriate functions, and c is a global constant. This would imply the claim,
letting A be the distribution over Supp(DA) with A(vA) = cA · γA(vA), and B be the distribution
over Supp(DB) with B(vB) = cB · γB(vB), for the appropriate constants cA and cB.

Proposition 8 yields that

D(v) =
PrΩ[rA, rB] · αIvA|vB · α

I
vB|vA

PrΩ|I [t, Ind]
, (17)

for every v = (rA, rB, ·) ∈ Supp(D). Since the random coins of the parties are chosen independently,
it holds that PrΩ[rA, rB] = PrΩ[rA]·PrΩ[rB]. In addition, the definition ofD yields that αIvA|vBα

I
vA

and

that αIvB|vA = αIvB , for every v ∈ Supp(D). Taking γA(vA) := PrΩ[rA]·αIvA and γB(vB) := PrΩ[rB]·αIvB ,
we obtain the desired result. �

4.2.2 Graph Characterization

We use the above product characterization to show that we can think of D as a distribution over
random edges of some bipartite graph G. We show that D is close to being a product distribution
by showing that the graph is dense. Specifically, we show that every vertex in G is connected to
most of the vertices on the other side.

14Observations of similar spirit were done in [1]. Much the following text is taken verbatim from [1].
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Definition 30 (The graph G). Define the bipartite graph G = (VA, VB;E) as follows: let A and
B be as the distribution guaranteed by Claim 29. Every node a ∈ VA has a corresponding view
viewA(a) of A in the support of A; we let the number of nodes corresponding to a view vA be
proportional to A(vA), meaning that A corresponds to the uniform distribution over the left-side
vertices VA. Similarly, every node b ∈ VB has a corresponding view viewB(b) of B, such that B
corresponds to the uniform distribution over VB. Finally, let E = {(a, b) ∈ (VA × VB) ∩ Ind}.

Claim 29 yields that D corresponds to the distribution obtained by letting (a, b) ← E, and
choosing (viewA(a), viewB(b)). We next show that this graph must be dense.

Claim 31. Let G = (VA, VB;E) be as in Definition 30. Then d(a) ≥ |VB| · (1− 2ℓδ) for every
a ∈ VA, and d(b) ≥ |VA| · (1− 2ℓδ) for every b ∈ VB, where d(x) stands for the degree of the vertex
x.

Proof. Since, by assumption, Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ for every query q, since ℓ bounds the
query complexity of π, and finally since F is simple, we have that

Pr
vA←DA

[DependentI(vA, vB)] ≤ ℓδ (18)

for every fixed vB ∈ Supp(DB), and the analogous condition for every fixed vA ∈ Supp(DA). For

a vertex a ∈ VA, let
�
E(a) = {b ∈ VB : (a, b) /∈ E}. We next show that

∑
b∈

�
E(a)

d(b) ≤ ℓδ · |E| for
every a ∈ VA. Note that the probability of a vertex x being chosen when selecting a random edge
in E is d(x)

|E| . Assuming that
∑

b∈
�
E(a)

d(b)
|E| > ℓδ , then PrvB←DB

[DependentI(viewA(a), vB)] > ℓδ,

contradicting Equation (18). An analogous argument shows that
∑

a∈
�
E(b)

d(a) ≤ ℓδ · |E| for every
b ∈ VB, and we conclude the proof using the following claim:

Fact 32. [1, claim 4.6] Let G = (VA, VB;E) be a nonempty bipartite graph. Assume there exists

γ ≤ 1/2 such that |
�
E (v)| ≤ γ|E| for every vertex v ∈ (VA ∪ VB)), then d(a) ≥ |VB| · (1− 2γ) for

every a ∈ VA, and d(b) ≥ |VA| · (1− 2γ) for every b ∈ VB.
�

We now use the above claims to prove Lemma 22.

Proof of Lemma 22. The first part of the lemma immediately follows from Claim 31. We prove the
second part of the lemma by showing that

Pr
v←D+|vB=v+B

[
DependentI(vA, v

+
B )

]
≤ 4δ · ℓ|t|+1(v

+
B ) (19)

for every v+B ∈ Supp(D+
B ), where we assume for concreteness that B is active in the (|t|+ 1) round

of π. Since Equation (19) trivially holds in case ℓ|t|+1(v
+
B ) = 0, in the following we prove it for

ℓ|t|+1(v
+
B ) = 1 (recall that, by definition, ℓ|t|+1(v

+
B ) ≤ 1).

Fix such view v+B ∈ Supp(D+
B ), let v

′
B ∈ Supp(DB) be its |t|-round prefix and let q′ be the query

asked in its (|t|+ 1) round. We assume without loss of generality that (q′, ·) /∈ I, as otherwise the
proof is trivial. Fix further b ∈ VB with viewB(b) = v′B, let N(b) be b’s neighbors in G and let
S = {a ∈ N(b) : q′ ∈ viewA(a)}. Since Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ , we have that∑

a∈S d(a)

|E|
≤ δ (20)
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and therefore

Pr
a←N(b)

[a ∈ S] = |S|
d(b)

≤ |S|
(1− 2ℓδ)|VA|

≤ |S||VB|
(1− 2ℓδ)|E|

≤
∑

a∈S d(a)

(1− 2ℓδ)2|E|
≤ δ

(1− 2ℓδ)2
≤ 4δ (21)

The first and third inequalities hold by Claim 31, the second since |E| ≤ |VA||VB|, and the fourth
by Equation (20). Since Equation (21) holds for every b ∈ VB with viewB(b) = v′B, it follows that

Pr
v←D+|vB=v+B

[
q′ ∈ vA

]
≤ 4δ (22)

Finally, since F is a simple family, Equation (22) yields that Prv←D+|vB=v+B

[
DependentI(vA, v

+
B )

]
≤

4δ, concluding the proof of Equation (19), and thus the proof of the lemma. �

5 Applications

In this section we use our main result (i.e., the oracle-aided to no-oracle protocol mapping for
simple function families) from Section 3 to derive the impossibility of realizing two cryptographic
tasks, with respect to simple function families (implying the same result with respect to the all
function family, which we later show to be simple). In Section 5.1 we re-establish the result of [13],
showing that key-agreement protocols cannot be realized with respect to simple function families.
Then, in Section 5.2, we extend the lower-bound of [17] on the accuracy of two-party differentially
private no-oracle protocols, to show it also holds (with a slight loss in parameters) for oracle-aided
differentially private protocols (with respect to this class of function families). In Section 5.3, we
use the fact that the all-function family is simple to prove the impossibility of reducing each of the
above primitives to the hardness of one-way functions in a black-box manner.

Remark 33 (definitions for no-oracle primitives). Throughout this section we only give formal
definitions (of the security and correctness) of primitives with respect to oracle-aided protocols.
Deriving formal definitions for their no-oracle counterparts can be easily done by considering the
trivial function family (i.e., a singleton family, whose only member returns ⊥ on any query).

5.1 Key Agreement Protocols

In a key-agreement protocol two parties wish to agree on a common secret in a secure way —
an observer (adversary) seeing the communication transcript, cannot find the secret. Below we
prove that with respect to a certain class of function families, non-trivial key-agreement cannot
be achieved. We start by formally defining the notion of key agreement. We then recall the
known fact that in the no-oracle model, an adversary can reveal any secret agreement between two
parties in the strongest possible sense (i.e., with the same probability that the parties themselves
agree). Combining this fact with the mapping from oracle-aided to no-oracle protocols, described
in Section 3, yields a similar result for oracle-aided protocols.

We remark that the results presented in this section yield very little conceptual added-value to
what was already shown by [13, 1]. We do, however, present them here to demonstrate how they
are easily derived from our main result (Theorem 13), and as a warm-up before moving on to the
other application of our main result, described in Section 5.2.
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5.1.1 Standard Definitions and Known Facts

Recall (see Section 2.2) that for a joint view v ∈ Supp
(⟨
πf

⟩)
, we let trans(v) denote the commu-

nication transcript in v, and outPi (v) denote the output of the party P at the i’th round. In the
following we let outP(v) = outPm(v), where m is the last round in v.

Definition 34 (key agreement protocol). Let 0 ≤ γ, α ≤ 1 and k ∈ N. A two-party, oracle-aided
protocol π = (A,B) is a (k, α, γ)-key-agreement protocol with respect to a function family F , if the
following hold:

Consistency: π is (1− α)-consistent with respect to F . Namely,

Pr
f←F ,v←⟨πf⟩

[
outA (v) = outB (v)

]
≥ 1− α. (23)

Security: For every P ∈ {A,B} and any k-query adversary Eve,

Pr
f←F ,v←⟨πf⟩

[
Evef (trans (v)) = outP (v)

]
≤ γ. (24)

A protocol π is an (α, γ)-key-agreement protocol, if it is a (·, α, γ)-key-agreement protocol with
respect to the trivial function family.15

In the no-oracle model, all correlation between the parties is implied by the transcript. Hence,
an adversary that on a given transcript t samples a random view for A that is consistent with t
and outputs whatever A would upon this view, agrees with B with the same probability as does A.
This simple argument yields the following fact.

Fact 35. Let 0 ≤ α ≤ 1 and let π = (A,B) be a no-oracle, two-party, no-input protocol. Assume
that the probability that in a random execution of π both parties output the same value is 1 − α.
Then there exists an adversary that, given the transcript of a random execution of π, outputs the
same value as does B with probability 1− α.

An immediate implication of Fact 35 is that there does not exist any no-oracle, two-party,
(α, γ)-key-agreement protocol for any 0 ≤ γ < 1− α. We next use our main result from Section 3
to prove a similar result for oracle-aided protocols.

5.1.2 Limits on Oracle-Aided Key-Agreement Protocols

Theorem 36. Let F be a function family and let π be an oracle-aided protocol. Assume that the
pair (F , π) has a (T, ε)-mapping, then π is not a (T, α, γ)-key-agreement with respect to F for any
0 ≤ γ < 1− (α+ ε).

Proof. Assume to the contrary that π is a (T, α, γ)-key-agreement with respect to F for some
0 ≤ γ < 1− (α+ ε). Let π̃ = (Ã, B̃) and Map be the no-input no-oracle protocol and oracle-aided
algorithm, guaranteed by the assumption of the theorem. The first item in Definition 12 yields that

SD
(
(outÃ (v) , outB̃ (v))v←⟨π̃⟩, (out

A (v) , outB (v))f←F ,v←⟨πf⟩
)
≤ ε. (25)

15A stronger definition may require consistency to hold for every f ∈ F , rather than for a random f . Our
impossibility result (as well the results of [13, 1]), however, holds even with respect to the weaker definition given
here.
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Hence, the (1− α)-consistency of π yields that

τ := Pr
v←⟨π̃⟩

[
outÃ (v) = outB̃ (v)

]
≥ 1− (α+ ε) . (26)

Fact 35 yields an adversary Ẽve that given the transcript of a random execution of π̃, outputs the
same value as does B with probability τ . Let Eve be an adversary for π that upon a transcript t (of

an execution of π with access to f) applies Ẽve to Mapf
(
t
)
and outputs whatever Ẽve does. Note

that by Definition 12, Eve makes at most T oracle calls. The definition of Eve yields that

Pr
f←F ,v←⟨πf⟩

[
Evef (trans (v)) = outB (v)

]
= Pr

f←F ,v←⟨πf⟩

[
Ẽve

(
Mapf (trans (v))

)
= outB (v)

]
(27)

= Pr
ṽ←⟨π̃⟩

[
Ẽve (trans (ṽ)) = outB̃ (ṽ)

]
= τ ≥ 1− (α+ ε) ,

where the second equality follows from the furthermore statement of the first item in Definition 12,
stating that (Mapf (trans (v)) , outB (v)) is identically distributed as (trans (ṽ) , outB̃ (ṽ)), where f ,
v, and ṽ are sampled as in Equation (27). �

Combining Theorems 13 and 36 yields the following corollary.

Corollary 37. Let F be a simple function family. For parameters k, ℓ ∈ N and α, γ ∈ R with

k ≥ 210 ·
(

ℓ
1−α−γ

)2
and 1 − α > γ ≥ 0, there exists no ℓ-query oracle-aided protocol, that is

(k, α, γ)-key-agreement with respect to F .

Proof. Let F be a simple function family and let π be an ℓ-query oracle-aided protocol. For

ε = 1−α−γ
2 , Theorem 13 yields that (F , π) has a (T, ε)-mapping for T = 256 ·

(
ℓ
ε

)2
= 210 ·

(
ℓ

1−α−γ

)2
.

Since 0 ≤ γ < 1 − (α+ ε) and k ≥ T , Theorem 36 yields that π is not a (k, α, γ)-key-agreement
protocol with respect to F . �

5.2 Differentially Private Two-Party Computation

In this section we apply our main result to extend the lower-bound of McGregor et al. [17] to
oracle-aided protocols equipped with simple function families. Specifically, we show that when
given access to a random member of a simple function family (e.g., the all-function family), any
two-party, differentially private, oracle-aided protocol computing the inner product of two s-bit
strings, exhibits error magnitude of roughly Ω (

√
s/ log s). This fact is later used in Section 5.3.4

to show that differentially private accurate computation of the inner product, cannot be reduced
to one-way functions in a black-box way.

Unlike the case of key-agreement protocols discussed in Section 5.1, here we consider a setting
where the parties do hold private inputs. Since our main result (Theorem 13) only handles no
input protocols, in order to apply it to differentially private protocols we need first to reduce the
question in hand to such no-input protocols. Indeed, much of the following text deals with this
transformation.

We begin (Section 5.2.2) by using Theorem 13 together with (an “information theoretic”) result
by [17], to show that a “sampled-input” protocol cannot be both differentially private and a good
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approximation for the inner product of two strings. In a sampled-input protocol, the no-input par-
ties choose the inputs to the functionality (in our case, the inner product function) by themselves.
We then (Section 5.2.3) derive the same limitation on protocols with inputs, but where the correct-
ness and privacy are measured with respect to uniformly chosen inputs. Finally (Section 5.2.4), we
use the latter result to show the same limitation for fixed inputs, hence proving the required result.
Before starting with the aforementioned plan, let us first recall the formal definition of differential
privacy, and cite the result of [17].

5.2.1 Standard Definitions and Known Facts

We start by recalling the standard definition of differential privacy for mechanisms (in a centralized
model, where the mechanism has access to all the data). Let Σ be some alphabet. For strings
x, x′ ∈ Σs, let Hd (x, x

′) = |{i ∈ [s] : xi ̸= x′i}| denote the Hamming distance between x and x′.
A randomized mechanism operating on s-long strings (databases) is a randomized algorithm that
given input in Σs, outputs a value in the range R.

Definition 38 ((α, γ)-differential privacy [6] (in the centralized model)). A randomized mechanism
M over Σs is (α, γ)-differentially private, if for every distinguisher D and every x, x′ ∈ Σs with
Hd (x, x

′) = 1, it holds that

Pr[D (M (x)) = 1] ≤ eα · Pr[D
(
M

(
x′
))

= 1] + γ.

If M satisfies (α, γ)-differential privacy with γ = 0, then M is just α-differentially private.16

Differential privacy extends naturally to the setting of two-party (semi-honest) protocols by
requiring that the view of each party satisfies differential privacy with respect to the other party’s
private input. In this work we use a relaxed definition (and hence potentially easier to achieve)
that only requires that the communication transcript (rather than the whole view of a party) is
differentially private with respect to each party’s input. Such a requirement is easily implied by
the above requirement on views, since any distinguisher that breaks the privacy seeing only the
transcript can break the privacy seeing the whole view of a party (by simply disregarding everything
in the view but the transcript part). We next define differential privacy for protocols using similar
definitions to those given in [2, 17, 19]. Indeed, our definitions are close in spirit to the definition of
IND-CDP from [19] (which they showed to be implied by all other definitions that they considered
for computational differential privacy).

In the following, when we say protocol, we mean a two-party protocol. We focus on protocols
where each party holds an s-bit string as its private input, and call such protocols s-bit input
protocols. We adapt the notations from Section 2.2 (defined for no-input protocols) to protocols
with inputs, with the understanding that the view of a party also includes its s-bit private input.
Specifically, given an oracle-aided protocol π = (A,B), a function f , and x, y ∈ {0, 1}∗, we define⟨
πf (x, y)

⟩
to be

⟨
(Af (x) ,Bf (y))

⟩
(i.e., the distribution over the joint views of parties in a random

execution of π with access to f , where the private input of A is x and the private input of B is
y). Recall that for v ∈ Supp

(⟨
πf (x, y)

⟩)
, we let trans(v) denote the communication transcript in

v, and we let outPi (v) denote the output of the party P at the i’th round. In the following we let
outP(v) denote the output of the party P at the last round of v.

16Throughout this section, we assume α, γ ≥ 0.
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Definition 39 (differential privacy for oracle-aided protocols). Let F be a function family and let
π = (A,B) be an s-bit input, oracle-aided protocol. The protocol π is (k, α, γ)-differentially private
with respect to F and A, if for every k-query, oracle-aided distinguisher D and every x, x′, y ∈ {0, 1}s
with Hd (x, x

′) = 1, it holds that

Pr
f←F ,v←⟨πf (x,y)⟩

[
Df (trans (v)) = 1

]
≤ eα · Pr

f←F ,v←⟨πf (x′,y)⟩

[
Df (trans (v)) = 1

]
+ γ.

Being (k, α, γ)-differentially private with respect to F and B, is analogously defined. If π is (k, α, γ)-
differentially private with respect to F and both parties, then it is (k, α, γ)-differentially private with
respect to F .
Finally, π is (α, γ)-differentially private, if it is (·, α, γ)-differentially private with respect to the
trivial function family.

Note that for no-oracle protocols, the above definition of (α, γ)-differentially private matches
the standard (no-oracle) definition (slightly relaxed, as we only require the transcript to preserve
the privacy of the parties). Our impossibility results, given below, apply to privacy parameter α
being smaller than some constant.

Since differentially private mechanisms cannot be deterministic, for any deterministic (non-
constant) function g of the input, one can only hope for the output of the mechanism being a good
approximation for g. We next define a notion of accuracy for differentially private protocols.

Definition 40 (good approximations). Let g : {0, 1}s × {0, 1}s 7→ R be a deterministic function
and let π = (A,B) be an s-bit input, oracle-aided protocol. The protocol π is a (β, d)-approximation
for g with respect to a function family F , if for every x, y ∈ {0, 1}s and P ∈ {A,B}, it holds that

Pr
f←F ,v←⟨πf (x,y)⟩

[∣∣∣g (x, y)− outP (v)
∣∣∣ > d

]
< β. (28)

Namely, we require that the output of both parties is within distance d from g (x, y) with
probability at least β.

For two s-bit strings x and y, let IP(x, y) denote the inner product of x and y; that is IP(x, y) =∑
i∈[s] xi · yi. McGregor et al. [17] showed that for small enough γ, no two-party, no-oracle, (α, γ)-

differentially private protocol for computing the inner product of two s-bit databases can be a
(0.01, d)-approximation for d ∈ o(

√
s/ log s). This follows from the following general theorem.

Theorem 41 ([17, Theorem A.5]). Let π = (A,B) be an s-bit (no-oracle) protocol, let XIn and YIn
be the inputs of A and B, respectively, and let Xout and Yout be the outputs of A and B, respectively,
induced by a random execution of π. Assume that both XIn and YIn are independently and uniformly
chosen from {0, 1}s, and that π is (α, γ)-differentially private, then

Pr

[
|Yout − IP(XIn, YIn)| < ∆ := Ω

( √
s

log s
· τ
eα

)]
≤ τ

for every 1 ≥ τ ≥ 48sγ. 17 The same holds for Xout.

17This constraint implies that γ should be smaller than the inverse of some polynomial in s, however, this is how
we typically think of γ.
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In the next section we use similar arguments to the ones used by McGregor et al. [17], to
prove a variant of Theorem 41 for (no-oracle) no-input protocols (which we call here sampled-input
protocols). For that we recall a few definitions and results from [17].

Lemma 42 ([17, Lemma A.3]). Let M be an (α, γ)-differentially private mechanism over {0, 1}s.
Then for every ν > 0 and every x, x′ ∈ {0, 1}s with Hd (x, x

′) = 1, it holds that

Pr
m←M(x)

[
Pr[M (x) = m]

Pr[M (x′) = m]
/∈
[
e−(ν+α), e(ν+α)

]]
< γ · 1 + e−(ν+α)

1− e−ν
. (29)

Unpredictability of bit sources. The model of random sources introduced by Santha and Vazi-
rani [23] is one where each bit is somewhat unpredictable given the previous ones. An unpredictable
s-bit source is a random variable over {0, 1}s with the property that given any prefix of it, it is
hard to guess the value of the next bit.

Definition 43 ((η, γ)-unpredictable bit source). For η ∈ [0, 1] a random variable X = (X1, . . . , Xs)
taking values in {0, 1}s is an (η, γ)-unpredictable bit source, if with probability at least 1− γ over
i← [s] and over (x1, . . . , xi−1)← (X1, . . . , Xi−1), it holds that

η ≤ Pr [Xi = 0 | X1 = x1, . . . Xi−1 = xi−1]

Pr [Xi = 1 | X1 = x1, . . . Xi−1 = xi−1]
≤ 1/η.

A variable X is η-unpredictable, if it is (η, 0)-unpredictable.
A random variable X = (X1, . . . , Xs) taking values in {0, 1}s is an (η, γ)-strongly-unpredictable

bit source, if with probability at least 1 − γ over i ← [s] and over (x1, . . . , xi−1, xi+1, . . . , xs) ←
(X1, . . . , Xi−1, Xi+1, . . . , Xs), it holds that

η ≤ Pr [Xi = 0 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs]

Pr [Xi = 1 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs]
≤ 1/η.

Note that if X is η-unpredictable for η = 1, then it is uniform. More generally, the larger η is,
the more “randomness” is the source guaranteed to have. Specifically, an unpredictable source has
high min-entropy.

Fact 44. Let X = (X1, . . . , Xs) be an η-unpredictable source, then the min-entropy of X, defined
as H∞(X) = minx∈Supp(X) log

1
Pr[X=x] , is at least βs for β = log (1 + η).

Proof. Fix (x1, . . . , xs) ∈ Supp(X), i ∈ [s] and b ∈ {0, 1}. Definition 43 yields that
Pr [Xi = b | X1 = x1, . . . Xi−1 = xi−1] ≥ η · Pr [Xi = 1− b | X1 = x1, . . . Xi−1 = xi−1].

18 Since
Pr [Xi = b | X1 = x1, . . . Xi−1 = xi−1] + Pr [Xi = 1− b | X1 = x1, . . . Xi−1 = xi−1] = 1, it follows
that (1 + η) · Pr [Xi = b | X1 = x1, . . . Xi−1 = xi−1] ≤ 1, and therefore Pr[X = (x1, . . . , xs)] ≤(

1
1+η

)s
. �

We will make use of the following results from [17].

Lemma 45 ([17, Lemma A.2]). Let X = (X1, . . . , Xs) be an (η, γ)-strongly-unpredictable bit source,
then, for every ν > 0, it is sγ

ν -close to some η̂-unpredictable bit source, where η̂ = η · 1−ν1+ν .

18For b = 1, this is implied by the right hand side inequality in the condition of Definition 43.
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Corollary 46. Let X = (X1, . . . , Xs) be an (η, γ)-strongly-unpredictable bit source, then it is 2sγ-
close to some η/3-unpredictable bit source.

Proof. Apply Lemma 45 with ν = 1/2. �

Theorem 47 ([17, Theorem 3.4]). Let X and Y be s-bit independent bit sources, where X is η-
unpredictable and Y has min-entropy at least βs, and let Z = IP(X,Y ) mod m for some m ∈ N.
Assume that s ≥ c · m2

ηβ · log
(
m
β

)
· log

(
m
γ

)
for some γ ∈ [0, 1], where c is a universal constant, then

SD ((Y,Z), (Y, Um)) ≤ γ, where Um is uniform on Zm and independent of Y .

5.2.2 Limits on Sampled-Input Protocols

In this section we give a lower-bound on the accuracy of no-input, two-party, differentially private
protocols, where the inputs for the functionally are derived from the parties’ private coins (while
preserving differential privacy with respect to these inputs). We do so by combining a result from
[17] (stated here as Theorem 41) and our main result from Section 3 (Theorem 13).

Definition 48 (sampled-input protocols). A no-input protocol π = (A,B) is an s-bit sampled-input
protocol, if the output of party A in any execution of π is of the form (x, a) and the output of party
B is of the form (y, b), where x, y ∈ {0, 1}s. We call x [resp., y] the sampled input of A [resp., B],
and a [resp., b] the actual output of A [resp., B].

For v ∈ Supp
(⟨
πf

⟩)
, let SInpP(v) denote the sampled input of party P in v, and AOutP(v)

denote the actual output of the party P.19

We next extend the notion of good-approximations to sampled-input protocols. Intuitively, we
require the output of both parties to be within distance d from the value of g applied to the sampled
inputs of the parties, except with probability β.

Definition 49 (sampled-input good approximations). Let g : {0, 1}s×{0, 1}s 7→ R be a determin-
istic function, and let π = (A,B) be an oracle-aided, s-bit sampled-input protocol. The protocol π
is a (β, d)-SI-approximation for g with respect to a function family F and P ∈ {A,B}, if

Pr
f←F ,v←⟨πf⟩

[∣∣∣g (SInpA (v) ,SInpB (v)
)
−AOutP (v)

∣∣∣ > d
]
< β. (30)

Protocol π is a (β, d)-SI-approximation for g with respect to F , if it is a (β, d)-SI-approximation for
g with respect to F and both parties.

We also extend the notion of differential privacy to sampled-input protocols.

Definition 50 (differential privacy sampled-input protocols). Let F be a function family and let
π = (A,B) be an oracle-aided, s-bit sampled-input protocol. The protocol π is (k, α, γ)-differentially
private with respect to F and A, if for every k-query, oracle-aided distinguisher D and every x, x′ ∈
{0, 1}s with Hd (x, x

′) = 1, it holds that

Pr
f←F ,v←⟨πf⟩

[
Df (trans (v)) | SInpA (v) = x

]
≤ eα · Pr

f←F ,v←⟨πf⟩

[
Df (trans (v)) | SInpA (v) = x′

]
+ γ.

The differential privacy of π with respect to (F and) B is defined analogously.
The protocol π is (k, α, γ)-differentially private with respect to F , if it is (k, α, γ)-differentially private
with respect to F and both parties.

19Namely, SInpP(v) = outP(v)1,...,s and AOutP(v) = outP(v)s+1,....
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Lower bound for no-oracle sampled-input protocols. The following proposition is a variant
of Theorem 41, suited for no-oracle, sampled-input protocols.

Proposition 51. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and z ∈ N such that
the following holds. Let π = (A,B) be a no-oracle, s-bit sampled-input protocol, let XIn and YIn be
the sampled inputs of A and B, respectively, and let Xout and Yout be the actual outputs of A and
B, respectively, induced by a random execution of π. Assume that both XIn and YIn are uniformly
distributed over {0, 1}s, and that π is (α, γ)-differentially private. If s ≥ z, then

Pr

[
|Yout − IP(XIn, YIn)| ≤ ∆ := λ ·

√
s

log s
· τ

]
≤ τ

for every 1 ≥ τ ≥ max {48sγ, ν}.17 The same holds for Xout.

The main difference between Proposition 51 and Theorem 41, is that Proposition 51 allows
XIn and YIn to be chosen during the protocol (and hence not necessarily be independent), where
Theorem 41 assumes that the inputs are selected by an external entity (hence, needing to require
independence of inputs). We observe that the proof of Theorem 41 given in [17], does not require a
priori independence between XIn and YIn, but only that they are independent given any transcript
of the protocol. The latter holds, however, for any joint distribution for (XIn, YIn), since the views of
the parties (in the no-oracle model with no inputs) are always independent of each other, given the
transcript. Indeed, Proposition 51 easily follows by slight adaptation to the proof of Theorem 41,
given in [17]. For completeness, however, we include a proof (much of which, taken verbatim from
[17]).

Let us first describe the outline of the proof given in [17] for Theorem 41 (Theorem A.5 in [17]),
which is in turn the scheme of our proof. Their proof is twofold. The first part of it is a result
about unpredictable bit sources, showing that it is possible to extract a uniform element in Zm

from the inner product between two independent unpredictable s-bit variables (even given one
of these variables), provided that m is somewhat less than

√
s. We can use this result without

reproving it (for the formal statement see Theorem 47). The second part of the proof deals with
executions of (α, γ)-differentially private protocols, where the inputs of the parties are selected
uniformly at random. It is shown that the input of each party in such executions, given the
transcript of the execution, is close to an unpredictable bit-source. We reprove this part, with
respect to sampled-input protocols. Finally, combining the above two results yields that every two-
party differentially-private protocol for approximating the inner product function must incur an
error of roughly m ≈

√
s. Indeed, if a significantly better approximation could be computed given

the transcript (and one party’s input), then the inner product would be concentrated in an interval
of size significantly smaller than m, contradicting the fact that it reduces to an almost-uniform
element of Zm.

Proof of Proposition 51. Let π = (A,B) be a no-oracle, s-bit sampled-input protocol, let XIn and
YIn be the sampled inputs of A and B, respectively, and let Xout and Yout be the actual outputs of
A and B, respectively, induced by a random execution of π. Let T be the communication transcript
in a random execution of π, and for t ∈ Supp

(
T
)
let XIn | t [resp., YIn | t] be the value of XIn

[resp., YIn] in such a random execution, conditioned on T = t. Assume that both XIn and YIn are
uniformly distributed over {0, 1}s and that π is (α, γ)-differentially private. Let η = e−(1.1+α)/3
and β = log (1 + η)). Finally, fix ν > 0 and τ ≥ max {48sγ, ν}.

28



The proof is carried via the following claims (proofs given below). In Claim 52 we show that
by the differential privacy of π, it holds that XIn | t and YIn | t are, on average, close to being
unpredictable. In Claim 53 we define the constants λ and z so that we can apply Theorem 47 with
respect to such sources.

Claim 52. There are numbers {γt}t∈Supp(T) with E
[
γT

]
≤ 4γ, such that the following holds for

every t ∈ Supp
(
T
)
: the random variable XIn | t [resp., YIn | t] is 2sγt-close to some η-unpredictable

bit-source X̂t [resp., Ŷt].

Claim 53. There are numbers λ > 0 and z ∈ N, functions of α and ν, such that the following

holds. Let ∆ = λ ·
√
s

log s · τ , let m = 6 ·∆/τ and let c be the constant from Theorem 47. Assuming

s ≥ z, then s ≥ c · m2

ηβ · log
(
m
β

)
· log

(
m
τ/3

)
.

We use the above claims for proving the proposition for Yout, where the proof for Xout is
analogous. Fix for a moment t ∈ Supp

(
T
)
, and note that XIn | t and YIn | t are independent (since

π is a no-input, no-oracle protocol). Let {γt}t∈Supp(T), λ, z, ∆ and m, be the numbers from

Claims 52 and 53. Claim 52 yields that

SD
((

YIn | t, IP(XIn | t, YIn | t) mod m
)
,
(
Ŷt, IP(X̂t, Ŷt) mod m

))
≤ 4sγt (31)

for some two (independent) η-unpredictable bit sources X̂t and Ŷt. Note that by Fact 44, both X̂t

and Ŷt have min-entropy βs.

Assume s ≥ z. Since by Claim 53 s ≥ c · m2

ηβ · log
(
m
β

)
· log

(
m
τ/3

)
, Theorem 47 yields that

SD
((

Ŷt, IP(X̂t, Ŷt) mod m
)
,
(
Ŷt, Um

))
≤ τ/3, (32)

where Um is independently and uniformly distributed over Zm. Finally, combining Equations (31)
and (32) yields that

SD
((

YIn | t, IP(XIn | t, YIn | t) mod m
)
,
(
Ŷt, Um

))
≤ 4sγt + τ/3 (33)

for every t ∈ Supp
(
T
)
.

In the following we assume without loss of generality that B’s output is a deterministic function
fB of

(
YIn, T

)
.20

Let S =
{(

y, t, z
)
∈ Supp

(
YIn, T

)
× R :

(
fB

(
y, t

)
− z mod m

)
∈ {m−∆, . . . , 0, . . . ,∆}

}
. It

20For an arbitrary function fB, consider its variant f ′
B that applies fB on a random view that is consistent with(

YIn, T
)
. Clearly, f ′

B computes the inner product correctly with the same probability as fB does, and its output is a

randomized function of (only)
(
YIn, T

)
. Finally, the deterministic function f ′′

B that applies f ′
B with the best choice of

random coins, computes the inner product correctly no worse than f ′
B does, and thus no worse than fB.
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follows that

Pr [|Yout − IP(XIn, YIn)| ≤ ∆]

≤ Pr
[
(YIn, T , IP(XIn, YIn)) ∈ S

]
= Pr

[
(YIn, T , IP(XIn, YIn) mod m) ∈ S

]
≤ Pr

[
(ŶT , T , Um) ∈ S

]
+ SD

(
(YIn, T , IP(XIn, YIn) mod m), (ŶT , T , Um)

)
≤ Pr

[
(ŶT , T , Um) ∈ S

]
+ E[4sγT + τ/3]

≤ 2∆/m+ 16sγ + τ/3

≤ τ.

The second inequality holds by Equation (33), the third one since E[γT ] ≤ 4γ, and the last one
since ∆

m = γ/6 and since, by assumption, τ ≥ 48sγ. �

Proof of Claim 52. Let Xj denote the j’th bit in XIn. For i ∈ [s] and
(
x, t

)
∈ Supp

(
XIn, T

)
, define

ρX
(
i, x, t

)
:=

Pr
[
Xi = 0 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs, T = t

]
Pr

[
Xi = 1 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs, T = t

] (34)

=
Pr

[
T = t | X1 = x1, . . . Xi−1 = xi−1, Xi = 0, Xi+1 = xi+1, . . . , Xs = xs

]
Pr

[
T = t | X1 = x1, . . . Xi−1 = xi−1, Xi = 1, Xi+1 = xi+1, . . . , Xs = xs

] ,
where the equality holds by the uniformity of XIn (using Bayes’ Rule), and let SX ={(

i, x, t
)
: ρX

(
i, x, t

)
/∈
[
e−(1.1+α), e(1.1+α)

]}
. Define SY analogously for YIn. For t ∈ Supp

(
T
)
, set

γt := max
{
Pri←[s],x←XIn | t

[(
i, x, t

)
∈ SX

]
,Pri←[s],y←YIn | t

[(
i, y, t

)
∈ SY

]}
. It follows that XIn | t

and YIn | t are (e
−(1.1+α), γt)-strongly-unpredictable bit sources, and hence, Corollary 46 yields that

both XIn | t and YIn | t are 2sγt-close to some (e−(1.1+α)/3)-unpredictable bit sources, yielding the
first requirement of the claim.

For the second requirement of the claim, applying Lemma 42 with ν = 1.1 yields that

max

{
Pr

(x,t)←(XIn,T)

[(
i, x, t

)
∈ SX

]
, Pr
(y,t)←(YIn,T)

[(
i, y, t

)
∈ SY

]}
≤ γ · 1 + e−(1.1+α)

1− e−1.1
(35)

< 2γ

for every i ∈ [s],21 and we conclude that

E
[
γT

]
≤ E

t←T

[
Pr

i←[s],x←XIn | t

[(
i, x, t

)
∈ SX

]
+ Pr

i←[s],y←YIn | t

[(
i, y, t

)
∈ SY

]]
(36)

≤ E

[
2 ·max

{
Pr

(x,t)←(XIn,T)

[(
i, x, t

)
∈ SX

]
, Pr
(y,t)←(YIn,T)

[(
i, y, t

)
∈ SY

]
: i ∈ [s]

}]
< 4γ.

�
21We note that Lemma 42 is stated for differentially private mechanisms. Nevertheless, its proof for sampled-input

protocols readily follows from the original proof.
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Proof of Claim 53. Let λ1 = λ/η > 0, where λ ∈ (0, 1) is determined later, and note that s =(
∆·log s
λ1·τ ·η

)2
. Let z1 = z1(λ, α) be such that s ≥ z1 implies log s ≥ 1/λ1. Note that

s ≥ 1

λ2
1

·
(
∆

τη

)2

·
(
log

(
∆

τη

))2

(37)

=
1

λ2
1

· m2

36 · η2
·
(
log

(
m

6η

))2

≥ 1

36 · λ2
1

· m
2

ηβ
·
(
log

(
m

6η

))2

for every s ≥ z1, where the last inequality holds since, by inspection, β ≥ η.
Let z2 = z2(λ, α) be such that s ≥ z2 implies m

6·η ≥ 2, and let z = max {z1, z2}. Let κ =

κ(α, ν) = 1 + max
{
log

(
6η
β

)
, log

(
6η
ν/3

)}
and let λ = λ(α, ν) ∈ (0, 1) be such that 1

36·λ2
1
≥ c · κ2.

Fix s ≥ z. Since
(

m
6η

)κ
≥ max

{
m
β ,

m
ν/3

}
, Equation (37) yields that

s ≥ c · κ2 · m
2

ηβ
·
(
log

(
m

6η

))2

≥ c · m
2

ηβ
· log

(
m

β

)
· log

(
m

τ/3

)
,

concluding the claim’s proof. �

Lower bound for oracle-aided, sampled-input protocols. We now use Theorem 13 to give
variant of Proposition 51 for (sampled input) oracle-aided protocols. We start by showing that
the existence of differentially private, oracle-aided, sampled-input protocols implies the existence
of no-oracle, sampled-input protocols, incurring no loss in privacy, and a minor loss in accuracy.

Lemma 54. Let F be a function family, let π be an oracle-aided, s-bit sampled-input protocol, and
let g : {0, 1}s × {0, 1}s 7→ R be a deterministic function. Assume that the pair (F , π) has a (T, ε)-
mapping, and assume that π is a (β, d)-SI-approximation for g with respect to F and party P, and
satisfies (T, α, γ)-differential privacy with respect to F . Then, the no-oracle, s-bit sampled-input
protocol π̃ = (Ã, B̃), guaranteed by the (T, ε)-mapping, is a (β + ε, d)-SI-approximation for g with
respect to party P, and is (α, γ)-differentially private.

Furthermore, the sampled input of party A (resp. B) and the sampled input of party Ã (resp. B̃)
are identically distributed.

Proof. Let π̃ = (Ã, B̃) and Map be the no-input, no-oracle protocol and oracle-aided algorithm
guaranteed by Definition 12 with respect to π and F . We first argue that π̃ satisfies (α, γ)-
differential privacy. Assume to the contrary that this is not the case. Specifically, assume without
loss of generality that there exists a (no-oracle) adversary D̃, such that

Pr
ṽ←⟨π̃⟩

[
D̃ (trans (ṽ)) | SInpÃ (ṽ) = x

]
> eα · Pr

ṽ←⟨π̃⟩

[
D̃ (trans (ṽ)) | SInpÃ (ṽ) = x′

]
+ γ (38)
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for some x, x′ ∈ {0, 1}s with Hd (x, x
′) = 1. Consider the adversary D for π that on a given

transcript t (of an execution of π with access to f) applies D̃ to Mapf
(
t
)
. We claim that

Pr
f←F ,v←⟨πf⟩

[
Df (trans (v)) | SInpA (v) = x

]
> eα · Pr

f←F ,v←⟨πf⟩

[
Df (trans (v)) | SInpA (v) = x′

]
+ γ

(39)

To see that Equation (39) holds, note that by the furthermore statement of the first item in
Definition 12, the transcript together with the sampled input of Ã in a random execution of

π̃ (i.e.,
(
trans (ṽ) ,SInpÃ (ṽ)

)
, where ṽ ← ⟨π̃⟩), are (jointly) identically distributed as the value

of Map applied to the transcript and the sampled input of A in a random execution of π (i.e.,(
Mapf (trans (v)) ,SInpA (v)

)
, where v ←

⟨
πf

⟩
for f ← F). In addition, by Definition 12, D makes

at most T oracle calls. Hence, we obtain a contradiction to the (T, α, γ)-differential privacy of π,
yielding that the protocol π̃ must be (α, γ)-differentially private.

We conclude the proof by showing that π̃ is a good approximation for g with respect to any

party P ∈
{
Ã, B̃

}
. Specifically, we show that

Pr
ṽ←⟨π̃⟩

[∣∣∣g (SInpÃ (ṽ) ,SInpB̃ (ṽ)
)
−AOutP (ṽ)

∣∣∣ ≥ d
]
< β + ε. (40)

By the first item in Definition 12, we have that the (actual) joint outputs of the parties in a random
execution of π, are in statistical distance at most ε from the (actual) joint outputs of the parties

in a random execution of π̃. Formally, if we let Dπ̃ =
(
SInpÃ (ṽ) ,SInpB̃ (ṽ) ,AOutP (ṽ)

)
ṽ←⟨π̃⟩

and

Dπ =
(
SInpA (v) ,SInpB (v) ,AOutP (v)

)
f←F ,v←⟨πf⟩, then we have that SD (Dπ̃,Dπ) ≤ ε. Hence,

Equation (40) follows from the accuracy of π, i.e., since we have that

Pr
f←F ,v←⟨πf⟩

[∣∣∣g (SInpA (v) ,SInpB (v)
)
−AOutP (v)

∣∣∣ ≥ d
]
< β (41)

To verify this, let S = {(x, y, w) ∈ SuppDπ̃ : |g(x, y)− w| ≥ d} and observe that the probability of
falling into S according to Dπ̃ can be larger than the probability of falling into S according to Dπ

(which is bounded by β), by at most the statistical distance between Dπ̃ and Dπ.
The furthermore statement follows from the furthermore statement of the first item in Defini-

tion 12. �

We now combine Lemma 54 and Proposition 51 to prove a lower bound on the accuracy of
oracle-aided, sampled-input protocols that are differentially private.

Proposition 55. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and z ∈ N such that the
following holds. Let F be a function family and let π = (A,B) be an oracle-aided, s-bit sample-input
protocol, let XIn and YIn be the sampled inputs of A and B, respectively, and let Xout and Yout be
the actual outputs of A and B, respectively, induced by a random execution of π. Assume that both
XIn and YIn are uniformly distributed over {0, 1}s.

Assume that π is (T, α, γ)-differentially private with respect to F , and that the pair (F , π) has
a (T, ε)-mapping. If s ≥ z, then

Pr

[
|Yout − IP(XIn, YIn)| ≤ ∆ := λ ·

√
s

log s
· (τ − ε)

]
≤ τ

for every 1 ≥ τ such that τ − ε ≥ max {48sγ, ν}.17 The same holds for Xout.
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Proof. Given values for ν and α, set λ and z to be as in Proposition 51. Let F and π be as in the
statement of the proposition. Since π is assumed to be (T, α, γ)-differentially private with respect
to F , and since the pair (F , π) is assumed to have a (T, ε)-mapping, it follows from Lemma 54
that the no-oracle, sampled-input protocol π̃ (guaranteed by this mapping) is (α, γ)-differentially
private.

Since XIn and YIn are uniformly distributed over {0, 1}s, it follows from the furthermore state-
ment of Lemma 54 that the same holds for the sampled inputs of both parties in π̃. Hence,
Proposition 51 yields that for s ≥ z and τ such that τ ′ := τ − ε ≥ max {48sγ, ν}, it holds that π̃ is

not a (1− τ ′,∆)-SI-approximation for ∆ = λ ·
√
s

log s · τ
′. By Lemma 54, π is not a (1− τ ′ + ε,∆)-

SI-approximation, namely, Pr [|Yout − IP(XIn, YIn)| ≤ ∆] ≤ τ ′ − ε = τ. �

5.2.3 Limits on Uniform-Input Executions

The focus of this section is on executions of differentially private protocols, where the inputs of
the parties are chosen uniformly at random. Towards proving a lower-bound on the accuracy
of approximating the inner-product function in such executions, we next define a mapping from
uniform-input executions to sampled-input protocols. Roughly speaking, we let the parties in the
sampled-input protocol sample their inputs at random.

Notation 56 (the sampled-input variant µ (π)). Given an s-bit input, (possibly, oracle-aided)
protocol π = (A,B), let µ (π) = (µ (A) , µ (B)) denote the following s-bit sampled-input protocol:
The parties µ (A) and µ (B) interact in an execution of (A(xA; rA),B(xB; rB)), taking the roles of
A and B respectively, where xA [resp., xB] is the first s bits of µ (A)’s [resp., µ (B)’s] coins, and
rA [resp., rB] is the rest of µ (A)’s [resp., µ (B)’s] coins. Let a and b be the outputs of A and
B, respectively, in this execution, then the outputs of µ (A) and µ (B) will be (xA, a) and (xB, b),
respectively.

We next define what it means for a protocol to approximate a function with good probability
when the inputs of the parties are uniformly selected.

Definition 57 (good random-approximations). Let g : {0, 1}s × {0, 1}s 7→ R be a deterministic
function, and let π = (A,B) be an oracle-aided, s-bit input protocol. Protocol π is a (β, d)-random-
approximation for g with respect to a function family F and P ∈ {A,B}, if

Pr
f←F ,x,y←{0,1}s,v←⟨πf (x,y)⟩

[∣∣∣g (x, y)− outP (v)
∣∣∣ > d

]
< β. (42)

Protocol π is a (β, d)-random-approximation for g with respect to F , if it is a (β, d)-random-
approximation for g with respect to F and both parties.

The following observation allows us to use the lower bound stated in Lemma 54, to derive a
similar bound for with-input protocols, when the inputs of the parties are chosen uniformly at
random.

Lemma 58. Let g : {0, 1}s × {0, 1}s 7→ R be a deterministic function and let F be some oracle
family. Assume that there exists an oracle-aided, s-bit input protocol π = (A,B) that is a (β, d)-
random-approximation for g with respect to F and party P, and is (k, α, γ)-differential privacy
with respect to F . Then µ (π) is a (β, d)-SI-approximation for g with respect to F and P, and
(k, α, γ)-differentially private with respect to F .
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Proof. Immediate by definition. �

Combining Proposition 55 and Lemma 58 yields the following result.

Proposition 59. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and z ∈ N such that
the following holds. Let F be a function family and let π = (A,B) be an oracle-aided, s-bit input
protocol. Let XIn and YIn be the inputs of A and B, respectively, and let Xout and Yout be the outputs
of A and B, respectively, induced by a random execution of π. Assume that both XIn and YIn are
independently and uniformly chosen from {0, 1}s.

Assume that π is (T, α, γ)-differentially private with respect to F , and that the pair (F , µ (π))
has a (T, ε)-mapping (where µ (π) is sampled-input variant of π). If s ≥ z, then

Pr

[
|Yout − IP(XIn, YIn)| ≤ ∆ := λ ·

√
s

log s
· (τ − ε)

]
≤ τ

for every 1 ≥ τ such that τ − ε ≥ max {48sγ, ν}.17 The same holds for Xout.

Proof. Given values for ν and α, set λ and z to be as in Proposition 55. Let F and π be as
in the statement of the proposition. Let µ (π) be the (oracle-aided) sampled-input variant of π
(see Notation 56). By construction, the sampled inputs of both parties in µ (π) are uniformly
distributed. Since π is assumed to be (T, α, γ)-differentially private with respect to F , it follows
by Lemma 58 that µ (π) is also (T, α, γ)-differentially private with respect to F . Since the pair
(F , µ (π)) is assumed to have a (T, ε)-mapping, it follows from Proposition 55 that for s ≥ z and τ
such that τ ′ := τ − ε ≥ max {48sγ, ν}, the protocol µ (π) is not a (1− τ ′ + ε,∆)-SI-approximation

for ∆ = λ ·
√
s

log s ·τ
′. Hence, by Lemma 58, π is not a (1− τ ′ + ε,∆)-random-approximation, namely,

Pr [|Yout − IP(XIn, YIn)| ≤ ∆] ≤ τ ′ − ε = τ. �

5.2.4 Limits on Arbitrary Protocols

The results presented above give a lower-bound on the accuracy of differentially private protocols,
with respect to executions where inputs are selected uniformly at random. Indeed, such a lower-
bound easily implies a similar lower bound for arbitrary executions of such protocols. Intuitively,
this is because if a protocol errs with probability β on uniform inputs, then there must be a specific
choice of inputs for the parties on which the protocol errs with probability at least β. We next give
a formal statement.

Proposition 60. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and z ∈ N such
that the following holds. Let F be a function family and let π = (A,B) be an oracle-aided, s-bit
input protocol. Assume that π is (T, α, γ)-differentially private with respect to F , and that the pair
(F , µ (π)) has a (T, ε)-mapping (where µ (π) is sampled-input variant of π).

If s ≥ z, then for every P ∈ {A,B} there exist x, y ∈ {0, 1}s, such that

Pr
f←F ,v←⟨πf (x,y)⟩

[∣∣∣outP(v)− IP(x, y)
∣∣∣ ≤ ∆ := λ ·

√
s

log s
· (τ − ε)

]
≤ τ (43)

for every τ ≤ 1 such that τ − ε ≥ max {48sγ, ν}.17 The same holds for Xout.

Proof. Immediate, by taking x and y that maximize the probability in Equation (43), and using
Proposition 59 to bound this probability from below. �
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Combining Proposition 60 and theorem 13 yields the following corollary.

Corollary 61. Let F be a simple function family. For numbers 0 < ν < 1 and α ≥ 0, there exist
numbers λ > 0 and z ∈ N such that, for s ≥ z, the following holds. Assume that π is an s-bit
input, ℓ-query oracle-aided protocol that is (k, α, γ)-differentially private with respect to F , with

k > 210 ·
(

ℓ
1−ν

)2
and γ ≤ ν

48·s . Then, π is not a (β, d)-approximation with respect to F for the

inner-product function, with β < 1−ν
2 and d ≤ λ · ν ·

√
s

log s .

Proof. For numbers 0 < ν < 1 and α ≥ 0, let λ and z be as in Proposition 60. Let F be a
simple function family and let π be an s-bit input, ℓ-query oracle-aided protocol. Let µ (π) be the
(oracle-aided) sampled-input variant of π (see Notation 56). By construction, µ (π) is an ℓ-query,
oracle-aided, no-input protocol. Finally, let ε = 1−ν

2 .

Theorem 13 yields that (F , µ (π)) has a (T, ε)-mapping for T = 256 ·
(
ℓ
ε

)2
= 210 ·

(
ℓ

1−ν

)2
.

Let γ be such that γ ≤ ν
48·s . Taking τ = ν + ε, it follows that τ − ε ≥ max {48sγ, ν}. Hence

for k ≥ T , Proposition 60 yields that if π is (k, α, γ)-differentially private with respect to F ,
then it is not a (β, d)-approximation for the inner-product function with respect to F , whenever
d ≤ λ ·

√
s

log s · (τ − ε) = λ · ν ·
√
s

log s and β ≤ 1− τ = 1− ν − ε. Plugging in the value of ε, the latter

holds whenever β ≤ 1−ν
2 . �

5.3 Applications to Random Functions, and Black-Box Reductions to One-way
Functions

In this section we show that the all-function family is simple. and therefore Theorem 13 holds with
respect to this family. We then use this fact to give limits on black-box reductions to one-way
functions.

5.3.1 Standard Definitions and Known Facts

One-way functions and the all-function family. An efficiently computable function is one-
way, if it is hard to invert on a random output.

Definition 62 (one-way functions). A polynomially-time computable function f : {0, 1}∗ 7→ {0, 1}∗
is one-way, if

Pr
x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] = neg(n)

for any pptm A.

We define the all-function family over a given input length, as the set of all length-preserving
functions over this input length.

Definition 63 (the all-function family). For n ∈ N, let FAFn be the family of all functions from
n-bit strings to n-bit strings.

It is well known (cf., [13, 9]) that random members of the all-function family are “one-way”.
Specifically, we use the following fact.
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Fact 64. For any (2n/3 − 1)-query oracle-aided algorithm A, it holds that

Pr
f←FAFn

[
Pr

x←{0,1}n
[Af (f(x)) ∈ f−1(f(x))] > 2−n/3

]
≤ 2−n/3.

Proof. It is easy to verify that

Pr
f←FAFn,;x←{0,1}n

[
Af (f(x)) ∈ f−1(f(x))

]
≤ 2n/3/2−n = 2−2n/3,

and the proof follows by a straightforward averaging argument. �

Black-box reductions. Loosely speaking, a fully black-box reduction from a primitive Q (e.g.,
key agreement protocol) to a primitive P (e.g., one-way function ) is: (1) a construction of Q out of
P that “ignores” the structure of the implementation of P (i.e., uses it as a “black box”), and (2)
a generic reduction from the security of P to that of Q. In more details, such a reduction consists
of a pptm pair (Q,R) such that the following holds. (1) for every correct implementation P of P ,
it holds that QP is a correct implementation of Q, and (2) for every adversary A that breaks (the
security of) QP, it holds that RP,A breaks P. See [21] for a more formal discussion.

Cryptographic primitives are typically parameterized by the so called security parameter, which
determines their security and functionality (e.g., the key length of the key-agreement protocol). For
such primitives we consider a restricted form of black-box reductions that requires the reduction,
and in particular the security proof R, to work for every choice of the security parameter n, e.g.,
an algorithm that guesses the agreed key of the key-agrement protocol “too well” on security
parameter n, can be used by the reduction to invert the one-way function on inputs of length n.
See Definitions 67 and 69 for concrete examples.22

5.3.2 The All-Function Family is Simple

Claim 65. For every n ∈ N, the family FAFn is simple.

In the following we fix n and let FAF = FAFn. Claim 65 is proved via the following claim:

Claim 66. Let π = (A,B) be a no-input, oracle-aided protocol, let I ∈ {0, 1}n × {0, 1}n be a set
query/answer pairs, let (vA, ·), (·, vB) ∈ Supp(VIEWFAF,π(·, I)) and let IA [resp., IB] be the set
of query/answer pairs that A makes in vA [resp., B makes in vB]. The following hold for every
(q, a) ∈ IA (an analogous observation holds for (q, a) ∈ IB):

1. If (vA, vB) is consistent (i.e., PrΩ[vA, vB] > 0), then

Pr
f←(FAF|IqA∪I

q
B∪I)

[f(q) = a] ≥ Pr
f←(FAF|IqA∪I)

[f(q) = a] ,

where IqA [resp., IqB] is the set of queries/answers asked in vA [resp., vB] before q is asked in
vA.

22We choose to focus on this simpler form of black-box reductions as it simplifies the proofs given in Sections 5.3.3
and 5.3.4, and still seems to capture the same set of known reductions captured by the standard notion of black-box
reductions.
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2. If IntersectI(vA, vB) = 0, then

Pr
f←(FAF|IqA∪I

q
B∪I)

[f(q) = a] = Pr
f←(FAF|IqA∪I)

[f(q) = a] .

Proof. The proof of Item 2 is immediate. For proving Item 1, assume first that (q, ·) ∈ IqB. Since
the views are consistent, it follows that Prf←(FAF|IqA∪I

q
B∪I)

[f(q) = a] = 1 and the claim follows

for this case. For the other case ((q, ·) /∈ IqB), it is easy to verify that under this assumption
Prf←(FAF|IqA∪I

q
B∪I)

[f(q) = a] = Prf←(FAF|IqA∪I)
[f(q) = a], concluding the claim’s proof. �

Proof of Claim 65. Claim 66(2) immediately yields that IntersectI(vA, vB) = 0 implies
DependentI(vA, vB) = 0. For the other direction (IntersectI(vA, vB) = 1 implies
DependentI(vA, vB) = 1), we assume IntersectI(vA, vB) = 1 and show that either αIvA|vB ̸= αIvA
or αIvB|vA ̸= αIvB .

We distinguish between two cases: assuming that (vA, vB) are not consistent, it follows that
Prf←FAF

[I, IA, IB] = 0 and therefore αIvA|vB = 0. But since vA is consistent with I, it holds that

αIvA ̸= 0, yielding that DependentI(vA, vB) = 1.
We complete the proof by considering the case that (vA, vB) are consistent. Let (q, a) ∈ (IA ∩

IB) \ I be a query/answer pair whose existence guaranteed by the intersection assumption, and
assume without loss of generality that q was asked first by B. It follows that

1. Prf←(FAF|IqA∪I
q
B∪I)

[f(q) = a] = 1, and

2. Prf←(FAF|IqA∪I)
[f(q) = a] = 2−n.

Applying Claim 66(1) yields that αIvA|vB ≥ 2n · αIvA , and therefore DependentI(vA, vB) = 1. �

5.3.3 Key Agreement Protocols

Following Definition 34 and the discussion in Section 5.3.1, we define fully black-box reduction from
key-agreement protocols to one-way functions as follows.

Definition 67 (fully black-box reduction from key agreement to one-way functions). A pptm
triplet (A,B,R) is a fully black-box reduction from an (α, γ)-key-agreement protocol to one-way
functions, where α and γ are functions over N, if the following holds for every n ∈ N and every
function f over {0, 1}n.

1. Prv←⟨(Af ,Bf )(1n)⟩
[
outA (v) = outB (v)

]
≥ 1− α(n),

2. For every algorithm D and δ > 0 such that Prv←⟨(Af ,Bf )(1n)⟩
[
D(trans(v)) = outP (v)

]
≥ γ+ δ

for some P ∈ {A,B}, algorithm RD,f inverts f with probability at least p(δ), where p ∈ poly
is universal.

Combining Corollary 37, Fact 64, and Claim 65, yields the following result.

Corollary 68. There exists no fully black-box reduction from an (α, γ)-key-agreement protocol to
one-way functions, with 1− α(n)− γ(n) > 1/poly(n).
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Proof’s sketch. Assume there exists a fully black-box reduction (A,B,R) from an (α, γ)-key-
agreement protocol to one-way functions, with 1 − α(n) − γ(n) > 1/poly(n). By Corollary 37
and Claim 65 and a simple average argument there exists a poly(n)-query algorithm D such that

Pr
f←FAFn

[
Pr

v←⟨(Af ,Bf )(1n)⟩

[
Df (trans(v)) = outP (v)

]
≥ γ(n) + 1/ poly(n)

]
≥ 1/poly(n) (44)

It follows that Prf←FAFn

[
Prx←{0,1}n [R

Df ,f (f(x)) ∈ f−1(f(x))] > 1/poly(n)
]
> 1/ poly(n), in con-

tradiction to Fact 64. �

5.3.4 Differentially Private Two-Party Computation

Following Definitions 39 and 40 and the discussion in Section 5.3.1, we define fully black-box
reduction from differentially private protocols to one-way functions as follows.

Definition 69 (fully black-box reduction from differentially private protocols to one-way func-
tions). A pptm triplet (A,B,R) is a fully black-box reduction from an (s, β, d, α, γ)-differentially
private protocol for a function g to one-way functions, where s, β, d, α and γ are functions over
N, if the following holds for every n ∈ N and every function f over {0, 1}n.

1. For every x, y ∈ {0, 1}s(n) and P ∈ {A,B}, it holds that

Pr
v←⟨(Af (x),Bf (y))⟩

[∣∣∣g (x, y)− outP (v)
∣∣∣ > d(n)

]
< β(n).

2. For every algorithm D and δ > 0 such that

Pr
v←⟨(Af (x),Bf (y))⟩

[D (trans (v)) = 1] ≥ eα(n) · Pr
v←⟨(Af (x′),Bf (y))⟩

[D (trans (v)) = 1] + γ(n) + δ

for some x, x′, y ∈ {0, 1}s(n) with Hd (x, x
′) = 1, or the analogue condition holds for some

y, y′, x ∈ {0, 1}s(n) with Hd (y, y
′) = 1, algorithm RD,f inverts f with probability at least p(δ),

where p ∈ poly is universal.

Combining Corollary 61, Fact 64, and Claim 65 yields the following result.

Corollary 70. For constants ν ∈ (0, 1) and η ≥ 0, there exist λ > 0 such that the following
holds. There exists no fully black-box reduction from an (s, β, d, α, γ)-differentially private protocol
for inner product to one-way functions, with α(n) ≤ η, γ(n) ≤ ν

48·s(n) −1/ poly(n), β(n) ≤ 1−ν
2 and

d(n) ≤ λ · ν ·
√

s(n)

log s(n) for infinitely many n’s.
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