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Abstract

We introduce a new public quantum interactive proof system, namely qAM, by augmenting
the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-
bounded verifiers, and compare our new public system with private-coin interactive proof (IP)
system in the same space bounds. We show that qAM systems not only can simulate all known
space-bounded private-coin protocols, but also implements some protocols that are either not
implementable by IP systems or currently not known to be simulated by IP systems. More
specifically, we show that for any Turing-recognizable language, there exists a constant-space
weak-qAM system (the nonmembers do not need to be rejected with high probability), and,
different from the classical case, our protocol has perfect-completeness (the members are ac-
cepted exactly). For strong proof system, where the nonmembers must be rejected with high
probability, we show that the known space-bounded private-coin protocols can also be simulated
by qAM systems with the same space bound. In case of constant-space and log-space IP sys-
tems, the best known lower bounds are ASPACE(n) and EXP, respectively. We obtain better
lower bounds for the corresponding qAM systems: Each language in NP has a constant-space
(exp-time) qAM system, there is an NEXP-complete language having a constant-space qAM
system, and each language in NEXP has a log-space qAM system.

1 Introduction

Interactive proof (IP) systems and Arthur-Merlin (AM) proof systems were introduced by Gold-
wasser, Micali, and Rackoff [13] and Babai [3], respectively. In the case of time-bounded verifiers,
it was shown that the class of languages having a polynomial-time IP or AM system is identical
to PSPACE [23]. In the case of space-bounded verifiers, IP systems are more powerful than AM
systems for any space-bound [5, 6, 11]. e.g. the class of languages having a logarithmic-space AM
system is identical to P, and the best known lower bounds for constant-space and logarithmic-space
IP systems are ASPACE(n) and EXP, respectively. Note that P ( ASPACE(n) and the relation be-
tween NP and ASPACE(n), on the other hand, is still open. It was also shown that [10] for any
Turing-recognizable language, there exits a constant-space weak -IP system (the verifier does not
need to halt with high probability for the nonmembers of the corresponding language).

∗This is an extended version of some contents in [27, 25].
†The author was partially supported by FP7 FET-Open project QCS.
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There are many different definitions of quantum interactive proof (QIP) systems [17, 16, 24,
1, 18]. In the case of time-bounded verifiers, similar to the classical case, the class of languages
having a polynomial-time QIP system was shown to be identical to PSPACE [15]. In the case of
space-bounded verifiers, the only published work belongs to Nishimura and Yamakami [20]. Their
results, unfortunately, are model-dependent, and so do not reflect the full power of QIP systems
since they use some restricted models of quantum automata as the verifiers.

In this paper, we introduce a new proof system by augmenting the verifier with a fixed-size1

quantum register in Arthur-Merlin game, namely qAM, and we focus on space-bounded verifiers.
Our proof system is the first public space-bounded QIP system, and we present the first non-
trivial results on space-bounded QIP systems. We show how a fixed-size quantum register leads
to unexpected increase in the computational power of a public proof system, in which the prover
can have complete information about the computation of the verifier. Therefore, we compare our
public proof system with the private-coin IP systems. First of all, we show that there exists a
constant-space weak-qAM protocol for any Turing-recognizable language. In the classical case, a
similar result is known for constant-space weak private-coin protocols [10]. However, our protocol
is not only public but also has perfect-completeness. Secondly, we show that for any known s(n)
space-bounded private-coin protocol, there exists an equivalent s(n) space-bounded qAM protocol,
where s(n) ∈ O(1) ∪ Ω(log(n)) is space-constructible. Lastly, we obtain better lower bounds for
qAM proof system in constant and logarithmic space bounds: Each language in NP has a constant-
space qAM system that runs in exponential expected time, there is an NEXP-complete language
having a constant-space qAM system, and each language in NEXP has a log-space qAM system.

2 Preliminaries

For any string x, |x| is the length of x and x[j] is its jth symbol, where 1 ≤ j ≤ |x|. “#” is the
blank symbol.

We assume that the reader is familiar with deterministic, nondeterministic, and alternating
Turing machines, (DTM, NTM, and ATM, respectively,) and their time- and space-bounded com-
plexity classes XTIME and XSPACE, where X is “D”, “N”, and “A”, respectively; and, the standard
time complexity classes: P, NP, EXP, and NEXP.

In the following part, we provide the necessary background, based on [11, 7], for the proof
systems. For a detailed survey on space-bounded interactive proof systems, we refer the reader to
[7]. An interactive proof system (IPS) consists of a prover (P ) and a verifier (V ). The verifier is a
(resource-bounded) probabilistic Turing machine having a read-only input tape, a read/write work
tape, and a source of random bits. Each head has two-way access to its tape. The states of the
verifier are partitioned into reading, communication, and halting (accepting or rejecting) states,
and it has a special communication cell for communicating with the prover, where the capacity of
the cell is finite.

The one-step transitions of the verifier can be described as follows. When in a reading state, the
verifier firstly flips an unbiased coin and then determines its next configuration based on the symbol
under the tape heads, the state, and the outcome of the coin flip. When in a communication state,
the verifiers writes a symbol on the communication cell with respect to the current state. Then,
in response, the prover writes a symbol in the cell. Based on the state and the symbol written by
prover, the verifier defines the next state of the verifier.

The prover P is specified by a prover transition function, which determines the response of the
prover to the verifier based on the input and the verifier’s communication history until then. Note

1The size of the register does not depend on the length of the input.
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that this function does not need to be computable.
For a given input x, the probability that (P, V ) accepts (rejects) x is the cumulative accepting

(rejecting) probabilities taken over all branches of the verifier. The prover-verifier pair (P, V ) is an
IPS for L with error probability ϵ < 1

2 if

1. for all x ∈ L, the probability that (P, V ) accepts x is greater than 1− ϵ,

2. for all x /∈ L, and all provers P ∗, the probability that (P ∗, V ) rejects x is greater than 1− ϵ.

These conditions are known as completeness and soundness, respectively. Now, we define some
variants of IP systems by restricting and/or relaxing the above conditions.

The prover-verifier pair (P, V ) is an weak-IPS for L with error probability ϵ < 1
2 if we relax the

soundness condition (2) as follows:

2′. for all x /∈ L, and all provers P ∗, the probability that (P ∗, V ) accepts x is at most ϵ.

The prover-verifier pair (P, V ) is a (weak or not) IPS having perfect completeness for L if we
restrict the completeness condition (1) as follows:

1′. for all x ∈ L, the probability that (P, V ) accepts x is exactly equal to 1.

An Arthur-Merlin (AM) proof system (or a public-coin IPS) is a special case of IPS such that
after each coin toss, the outcome is automatically written on the communication cell, and so the
prover can have complete information about the computation of the verifier.

We will use IP(·) and AM(·) to represent the space-bounded complexity classes for IP and AM
systems, respectively. Note that the space bound is always defined on the verifiers. The ones having
perfect-completeness will be shown by IP1(·) and AM1(·), respectively. We will use prefix “weak-”
to represent their “weak” versions.

Some known facts related to our results on AM and IP systems are given below. (We also refer
the reader to Appendix A for the details of some private-coin protocols.)

Fact 1. [9, 5, 11] For any space-constructible s(n) = Ω(log n),

weak-AM(s(n)) = AM(s(n)) = ASPACE(s(n)).

Moreover, weak-AM(1) ( weak-AM(log) = AM(log) = P.

Fact 2. [10] Any Turing recognizable language is in weak-IP(1).

Fact 3. [11] DTIME(2O(n)) = ASPACE(O(n)) ⊆ IP1(1).

Fact 4. [5, 11] For any space-constructible s(n) = Ω(log(n)),

DTIME(22
O(s(n))

) = ASPACE(2O(s(n))) ⊆ IP1(s(n)).

Fact 5. [10] For any space-constructible s(n) = Ω(log(n)),

IP1(s(n)) ⊆ IP(s(n)) ⊆ ATIME(22
2O(s(n))

).

As seen from the above facts, IP systems are more powerful than AM systems under the same
space bounds. In the case of weak-soundness, the power of the IP systems with finite-state verifiers
becomes Turing-equivalent, which can never be possible for a space-bounded AM system.
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We will shortly show that AM systems using a fixed-size quantum register not only can simulate
the known private-coin protocols (Facts 3 and 4) under the same space bounds but also implement
some protocols which are not known to be simulated by IP systems under certain space bounds.
Moreover, in the case of weak-soundness, our new proof system can also be Turing-equivalent even
restricting to perfect-completeness, which can never be a case for a space-bounded IP systems due
to the following theorem (Theorem 1).

Theorem 1. For any space-constructible s(n) ∈ Ω(log(n)),

IP1(s(n)) ⊆ weak-IP1(s(n)) ⊆ ASPACE(22
O(s(n))

).

Proof. See Appendix B.

Note that Theorem 1 improves the previously known upper bound (Fact 5) for space-bounded
IPS having perfect-completeness.

3 qAM

In this section, we give the definition of our new AM system, namely qAM. A qAM (quantum
Arthur-Merlin) proof system is an AM system where the verifier additionally has a fixed size
quantum register. (The small “q” indicates that the verifier has a “very small” (possible the
smallest) quantum resource.) The reading state of the new verifier is as follows:

A superoperator, determined by the current state and the symbol(s) under the tape
head(s), is applied to the quantum register, and the outcome of the operator is auto-
matically written on the communication cell in order to satisfy the complete information
requirement. Then, the next configuration is determined based on the the current state,
the symbol(s) under the tape head(s), and the observed outcome. For any deterministic
transition, the verifier applies an identity operator on the register. We refer the reader
to Figure 1 for the details of superoperators.

Note that the verifier no longer needs a classical random source: For example, the superoperator
E =

{
Eh1 = 1

2I, Eh2 = 1
2I, Et1 = 1

2I, Et2 = 1
2I

}
always produces the outcomes head (“h1” or “h2)

and tail (“t1” or “t2”) with probability 1
2 . We will use qAM(·) and qAM1(·) to represent qAM

counterparts of AM(·) and AM1(·), respectively. Prefix “weak-” is also applicable to qAM(·) and
qAM1(·).

Knowledgeable readers will have noticed that, when the verifier is restricted to use constant
space, the qAM system is actually the quantum counterpart of the finite automaton with both
nondeterministic and probabilistic states of Condon et. al. [8], and that if we remove the com-
munication with the prover as well we end up with a finite automaton with quantum and classical
states (2qcfa) of Ambainis and Watrous [2]. Thus, in the framework of Dwork and Stocmeyer [11],
qAM(1) corresponds to AM(2qcfa).

4 Main results

In our qAM protocols, we use some non-unitary transformations to implement our main tasks.
We define our superoperators based on these transformations. Let E1, . . . , Ek be some of these
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The most general quantum operator is a superoperator, which generalizes stochastic and unitary operators and
also includes measurement. Formally, a superoperator E is composed by a finite number of operation elements,
E = {E1, . . . , Ek}, satisfying that

k∑
i=1

E†
iEi = I, (1)

where k ∈ Z+ and the indices are the measurement outcomes. When a superoperator, say E , is applied to the
quantum register in state |ψ⟩, i.e. E(|ψ⟩), we obtain the measurement outcome i with probability pi = ⟨ψ̃i|ψ̃i⟩,
where |ψ̃i⟩, the unconditional state vector, is calculated as |ψ̃i⟩ = Ei|ψ⟩ and 1 ≤ i ≤ k. (Note that using
unconditional state vector simplifies calculations in many cases.) If the outcome i is observed (pi > 0), the new

state of the system is obtained by normalizing |ψ̃i⟩, which is |ψi⟩ = |ψ̃i⟩√
pi
. Moreover, as a special operator, the

quantum register can be initialized to a predefined quantum state. This initialize operator, which has only one
outcome, is denoted É . In this paper, the entries of quantum operators are defined by rational numbers. Thus
the probabilities of the outcomes are always rational numbers.

Figure 1: The details of superoperators

transformations. We can obtain a superoperator E based on them by defining some additional
transformations Ek+1, . . . , Ek+k′ such that

E =

{
1

d
E1, . . . ,

1

d
Ek,

1

d
Ek+1, . . . ,

1

d
Ek+k′

}
satisfies Condition 1 (in Figure 1) for a convenient d > 1, where k′ > 0. (We refer the reader
to [26, 28] for similar procedures.) We call

{
1
dE1, . . . ,

1
dEk

}
the main operation elements and{

1
dEk+1, . . . ,

1
dEk+k′

}
the auxiliary operation elements. Moreover, in our protocols, the computation

continues on the quantum register only when the outcomes of some main operation elements are
observed. On the other hand (when the outcome of an auxiliary operation element is observed),
the current computation on the quantum register is always terminated/restarted with discarding
the current content of the register. Therefore, the details of the auxiliary operation elements can
be omitted from the description of the protocols. We use this simplification in our qAM protocols
except the first protocol given in the following subsection (Section 4.1).

4.1 A constant-space exp-time qAM protocol for KNAPSACK

We begin with a simple constant-space (exp-time) qAM protocol for the well-known NP-complete
language KNAPSACK, which is the collection of all strings of the form S$a1$ . . . $an$ such that S
and the ai’s are numbers in binary (1 ≤ i ≤ n), and there exists a set I ⊆ {1, . . . , n} satisfying∑

i∈I ai = S, where n > 0. This protocol will also be used by some other protocols given in the
last subsection (Section 4.4).

Lemma 1. KNAPSACK ∈ qAM1(1), where the protocol runs in exponential expected time.

Proof. We assume that the input to be of the form S$a1$ . . . $an$, where S, the ai’s are numbers
in binary (1 ≤ i ≤ n), and n > 0. (If not, the input is immediately rejected.) The input is written
between two # symbols on the input tape and its head is not allowed to cross these boundaries.

The main idea is that the verifier scans the input from left to right in an infinite loop and firstly
encodes S, and then subtracts the encoding of each of the ai’s selected by the prover, in some
amplitudes of the states on the quantum register. And, at the end of the loop (round), the verifier
tests whether the result is zero or not (described later). Since our encoding procedure works by
reducing the amplitude with a constant in each step, the process can successfully be ended with
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Part 2: E0 =

Ef = 1
3

1 0 0
0 2 0
0 0 1

 , Ei1
= 1

3

2 0 −2
2 0 2
0 2 0

 , Ei2
= 1

3

0 1 0
0 0 0
0 0 0


E1 =

Ef = 1
3

1 0 0
1 2 0
0 0 1

 , Ei1
= 1

3

2 −1 0
1 0 2
1 0 −2

 , Ei2
= 1

3

1 0 0
0 2 0
0 0 0


E$ =

{
Ef = 1

3
I, Ei1

= 1
3
2I, Ei2

= 1
3
2I

}

Part 3: E′
0 =

Ef = 1
3

1 0 0
0 1 0
0 0 2

 , Ei1
= 1

3

2 2 0
2 −2 0
0 0 2

 , Ei2
= 1

3

0 0 1
0 0 0
0 0 0


E′
1 =

Ef = 1
3

1 0 0
0 1 0
1 0 2

 , Ei1
= 1

3

2 0 −1
1 2 0
1 −2 0

 , Ei2
= 1

3

1 0 0
0 0 2
0 0 0


Part 4: E′

$ =

Ef = 1
3

1 0 0
0 1 −1
0 0 0

 , Ei1
= 1

3

0 −1 1
2 1 −1
2 −1 1

 , Ei2
= 1

3

0 2 2
0 0 0
0 0 0

 , Ei3
= 1

3

0 1 0
0 0 1
0 0 0


E′′
$ =

Ef = 1
3

1 0 0
0 1 0
0 0 0

 , Ei1
= 1

3

 2 −2 0
2 2 0
0 0 3


Part 5: E# =

Ea = 1
3

1 0 0
0 0 0
0 0 0

 , Er = 1
3

0 0 0
0 3 0
0 0 0

 , Ei1
= 1

3

2 0 0
2 0 0
0 0 3


Figure 2: The details of superoperators used by the qAM protocol for KNAPSACK

an exponentially small probability depending on the length of the input. Therefore, a new round
is initiated with remaining huge probability.

The quantum register has 3 states, {q1, q2, q3}. Each round is composed by five parts, described
below. The details of superoperators applied in each round are given in Figure 2. The actions
associated to each outcome are as follows: (i) The input head is moved forward if outcome “f”
is observed, (ii) the input is accepted (rejected) if outcome “a” (“r”) is observed, and (iii) a new
round is initiated if outcome “ij” (1 ≤ j ≤ 3) is observed.

1. The finite register is initialized on symbol #: |ψ0⟩ = (1 0 0)T .

2. S is encoded into the amplitudes of |q2⟩: Eσ is applied to the quantum register when reading
σ ∈ {0, 1}. Then, E$ is applied to the quantum register when reading $.

3. Each ai (1 ≤ i ≤ n) is encoded into the amplitude of |q3⟩: E ′
σ is applied to the quantum

register when reading σ ∈ {0, 1}.

4. If an ai (1 ≤ i ≤ n) is selected by the prover on symbol $, it is subtracted from the number
represented by the amplitude of |q2⟩: E ′

$ is applied to the quantum register. If it is not
selected, E ′′

$ is applied to the quantum register. Note that, the amplitude of |q3⟩ is set to 0
after each of these transformations.

5. The decision is given on the right end-marker #: E# is applied to the quantum register when
reading the right end-marker #.

Let x be the input and T be the cumulative sum of selected ai’s by the prover. Then, the state
of the register before reading the right end-marker # becomes

|ψ̃|x|⟩ =
(
1

3

)|x|
 1
S − T

0

 .

After applying E#, the input is rejected with probability(
1

3

)2|x|+2

(3S − 3T )2 ,
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which is at least 9
(
1
3

)2|x|+2
if S ̸= T , and is exactly equal to 0 if S = T . On the other hand,

the input is always accepted with probability
(
1
3

)2|x|+2
. Therefore, if x ∈ KNAPSACK, there exists

a prover such that it is accepted exactly, and if x /∈ KNAPSACK, whatever the prover says, it is
rejected with a probability at least 9

10 . The error bound can be reduced to any desired value by
using conventional probability amplification techniques. Since the protocol is always terminated

with a probability at least
(
1
3

)2|x|+2
in each round, the expected running time is 2O(n).

4.2 Constant-space weak-qAM systems are Turing-equivalent

We continue with a constant-space weak-qAM protocol having perfect completeness for any given
Turing-recognizable language. We present our result by giving a new public protocol simulating a
given DTM. Contrary to the classical case, our simulation technique can also be applicable to the
case of strong-soundness. In classical case, to show universality of constant-space weak-IP systems,
a simulation of two-way finite automaton with two-counters was given [10]. Since the complexity
classes are defined by Turing machines, this technique does not seem to be applicable to the case
of strong-soundness. (See also Appendix A). Therefore, after making certain modifications (and
combining with the qAM protocol for KNAPSACK in some cases), we obtain some other space-bounded
qAM protocols. Note that, all of our qAM protocols have perfect-completeness. (Remember that
two-sided bounded error is necessary for the universality of constant-space weak-IP systems due to
Theorem 1.)

Theorem 2. Any Turing recognizable language is in weak-qAM1(1).

Proof. Let L be a Turing recognizable language and D be a single-tape DTM recognizing L. We
will construct a weak-qAM proof system (P, V ) for L with perfect completeness, where V is a finite
state verifier.

We begin with some details of D. Q containing q1 (the initial state), qa (the accepting state),
and qr (the rejecting state) is the set of states, Γ containing # is the tape alphabet, and Γ′ = Q∪Γ,
called configuration alphabet, where Q and Γ are disjoint sets and $ /∈ Γ. Note that Γ′ contains at
least 5 elements. Any configuration of D is of the form uqv (D is in q and the tape head is on the
leftmost symbol of v), where q ∈ Q and uv ∈ #(Γ)∗#. The unnecessary blank symbols are always
dropped from the descriptions of configurations. For a given input string x, the initial configuration
is represented as q1#x#.

The main protocol is executed in an infinite loop and each iteration (round) is composed by
the following: (i) The verifier requests the computation (a sequence of configurations starting from
the initial configuration) of D on the given input, say x, from the prover. (ii) Against the cheating
provers, the verifier checks the correctness of the computation and rejects x if it detects a defect in
the computation. (iii) When it encounters a halting configuration, the verifier mimics the decision
of this (halting) configuration.

Let w be the string obtained from the prover in a single round. The verifier expects w as
c1$$c2$$c3$$ · · · , where (P1) ci’s (i > 0) are some configurations of D, (P2) c1 is the initial con-
figuration, and (P3) ci+1 is the successor of ci in one step for any i > 0. (We use double $ for
pedagogical reasons.) Note that w can be an infinite string. The verifier can check P1 and P2
deterministically, and x is rejected immediately if one of them fails. Therefore, in the following
part, we assume that w satisfies both P1 and P2 and any configuration separator is always “$$”.

The non-trivial part is to check P3 for each i > 0, i.e. whether ci+1 is identical to next(ci),
where next(ci) is the single-step successor of ci. This is where the quantum register comes into play.
The idea behind is to encode next(ci) and ci+1 into the amplitudes of two states on the register,
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and then to subtract them, and to reject x with the resulting amplitude.2 We call this procedure
successor-check. The ith successor-check compares next(ci) and ci+1. As will be detailed below,
whenever ci+1 = next(ci) (for all defined i > 0), the input is never rejected by a successor-check.
Thus, once a halting configuration is obtained from the prover, the only decision is made based on
it. Otherwise, i.e. ∃i > 0 s.t. ci+1 ̸= next(ci), x is rejected by the ith successor-check. We show
that such a reject probability is sufficiently greater than any accept probability in a single round.

In the remaining part, we will give the details of a single round and the analyses of the protocol.
The verifier requests the computation of D on x symbol by symbol from the prover, and it uses
a 3-symbol buffer to parallelly encode the legal successor of the presently scanned configuration.
The verifier uses a 4-state quantum register, q1, . . . , q4, which is set to |ψ1,0⟩ = (1 0 0 0)T at
the beginning of each round. The configurations are encoded in base-m, where m = |Γ′|+ 1. Each
symbol of Γ′ is associated with a different positive integer. Thus, any configuration ci (i > 0) can
be represented by a |ci|-length number in base-m. We use the same symbol for both the encoded
string/symbol and its encoding. The verifier applies one superoperator per symbol. When the
outcome of an auxiliary operation elements is observed, the verifier terminates the current round
and initiates a new round. The tasks implemented by the main operation elements reduce the
amplitudes with 1

d < 1. Therefore, after applying each superoperator, a new round is initiated
with some probability. In other words, a round can continue only with a small probability. The
complete details of the superoperators and the related operations are given at the end of the proof
due to their technicalities.

Let li be the length of c1$$c2$$ · · · ci$$ (i > 0). By processing c1$$, i.e. a series of superoperators
E1,1, . . . , E1,|c1$$| are applied to the register, next(c1) is encoded into the amplitudes of |q2⟩. Then,
the quantum state becomes

|ψ̃2,0⟩ =
(
1

d

)l1


1

next(c1)
0
0

 .

Note that unconditional state vectors facilitate the calculations since the probabilities can be cal-
culated directly. Similarly, by processing c2$, c2 and next(c2) are encoded into the amplitudes of
|q3⟩ and |q4⟩, respectively:

|ψ̃2,|c2$|⟩ =
(
1

d

)l2−1


1

next(c1)
c2

next(c2)

 .

After processing one more $, the first successor-check is finalized: The corresponding superoperator
has two main operation elements. The first one is responsible for comparing next(c1) and c2, and
subtracts the amplitudes of |q2⟩ and |q3⟩. Its outcome is observed with probability(

1

d

)2l2

(next(c1)− c2)
2,

which is also the rejecting probability of the first successor-check. The second main operation
element is determined conditionally. If next(c2) is an accepting (a rejecting) configuration, then it

selects only the amplitude of |q1⟩, the outcome of which is observed with probability
(
1
d

)2l2 . This

2In fact, the encoding part can also be implemented by a probabilistic system but the aforementioned subtraction
is not possible in classical systems!
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probability is also the accepting (rejecting) probability of the round. Since the computation is
terminated due to the outcomes of both operation elements, the round does not continue in this
case. If next(c2) is not a halting configuration, the round continues with the next successor-check.
Thus the quantum state becomes

|ψ̃3,0⟩ =
(
1

d

)l2


1

next(c2)
0
0

 .

One can easily verify that if the prover is cheating about c2, the input is rejected with a probability

at leastm2
(
1
d

)2l2 since both next(c1) and c2 end with a # and they must be disagree on at least one
digit. If the prover is honest, the decision is given only if next(c2) is a halting configuration, whose
probability is at least m2 smaller than the above rejecting probability. The other successor-checks
are executed exactly in the same way (check the end of the proof).

The analysis of the protocol is as follows. If x ∈ L, then P always sends the correct computation
of D on x to V , say c1$$c2$$ · · · $$ct$$ such that next(ct) is an accepting configuration. Then V

never rejects but accepts x with probability
(
1
d

)2lt in each round. So, x is accepted exactly by V .
If x /∈ L, then the only case in which V accepts x is that P ∗ send a computation of some

nonhalting configurations c1$$c2$$ · · · $$ct′$$ such that next(ct′) is an accepting configuration,
where t′ > 1. Since x /∈ L, there must be an i (1 ≤ i < t′) such that next(ci) ̸= ci+1. Therefore,
x is rejected with probability at least m2 times greater than the accepting probability in a single
round. In other words, the overall accepting probability can be bounded above by 1

m2+1
. This

bound can be easily reduced to any desired value by selecting a greater m value.
Now, we give the omitted details of the superoperators and the related operations below. Re-

member that li is the length of c1$$c2$$ · · · ci$$ and the quantum state is set to

|ψ1,0⟩ =


1
0
0
0


at the beginning of each round. As described before, we omit the details of each auxiliary operation
element, and a new round is initiated when the outcome of such an operation element is observed.

For each symbol of w1 = c1$$, the verifier applies |w1| superoperators, E1,1, . . . , E1,|w1|, to the
register, some of them can be the same. The aim is to encode next(c1) into the amplitudes of |q2⟩.
For each j ∈ {1, . . . , |c1| − 1}, the main operation element of E1,j is as follows:

1

d


1 0 0 0

next(c1)[j] m 0 0
0 0 0 0
0 0 0 0

 .

For E1,|c1| and E1,|c1$|, we have the following cases, each of which can be deterministically determined
and handled by using 3-symbol buffer:

� If |next(c1)| = |c1| − 1, the main operation elements of E1,|c1| and E1,|c1$| are as follows:

1

d


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and
1

d


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,
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respectively, since the encoding of next(c1) is finished by superoperator E1,|c1|−1.

� If |next(c1)| = |c1|, the main operation elements of E1,|c1| and E1,|c1$| are as follows:

1

d


1 0 0 0
# m 0 0
0 0 0 0
0 0 0 0

 and
1

d


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

respectively, since the encoding of next(c1) is finished by superoperator E1,|c1|. (Note that
the last symbol of any configuration is a blank symbol.)

� If |next(c1)| = |c1|+ 1, the main operation elements of E1,|c1| and E1,|c1$| are as follows:

1

d


1 0 0 0

next(c1)[|c1|] m 0 0
0 0 0 0
0 0 0 0

 and
1

d


1 0 0 0
# m 0 0
0 0 0 0
0 0 0 0

 ,

respectively, since the encoding of next(c1) is finished by superoperator E1,|c1|+1.

The main operation elements of E1,|c1$$| is as follows:

1

d


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

Thus, after applying superoperators E1,j ’s (1 ≤ j ≤ |w1|), the state vector of the register becomes

|ψ̃2,0⟩ =
(
1

d

)l1


1

next(c1)
0
0

 . (2)

We continue with the block w2 = c2$$. In fact, the tasks implemented in this part are the
same for any other block wi = ci$$ (i > 2). Similar to the above case, for each symbol of w2,
the verifier applies |w2| superoperators, E2,1, . . . , E2,|w2|, to the register, some of which can be the

same. Remember that before starting to apply any operator, the unconditional state vector is |ψ̃2,0⟩
(Equation 2). The aims in this block (w2) are as follows:

1. By processing c2$,

(a) to encode c2 into the amplitudes of |q3⟩ and
(b) to encode next(c2) into the amplitudes of |q4⟩.

2. By processing the second $,

(a) to finalize the 1st successor-check,

(b) to accept or reject the input if next(c2) is an accepting or a rejecting configuration,
respectively; and, to start 3rd successor-check if next(c2) is not a halting configuration.
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The details of superoperators to encode c2 and next(c2) are similar to the ones given above. For
each j ∈ {1, . . . , |c2| − 1}, the main operation element of E2,j is as follows:

1

d


1 0 0 0
0 1 0 0

c2[j] 0 m 0
next(c2)[j] 0 0 m

 .

For E2,|c2| and E2,|c2$|, we have the following cases:

� If |next(c2)| = |c2| − 1, the main operation elements of E2,|c2| and E2,|c2$| are as follows:

1

d


1 0 0 0
0 1 0 0
# 0 m 0
0 0 0 1

 and
1

d


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

respectively, since the encoding of next(c2) is finished by the superoperator E2,|c2|−1.

� If |next(c2)| = |c2|, the main operation elements of E2,|c2| and E2,|c2$| are as follows:

1

d


1 0 0 0
0 1 0 0
# 0 m 0
# 0 0 m

 and
1

d


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

respectively, since the encoding of next(c2) is finished by the superoperator E2,|c2|.

� If |next(c2)| = |c2|+ 1, the main operation elements of E2,|c2| and E2,|c2$| are as follows:

1

d


1 0 0 0
0 1 0 0
# 0 m 0

next(c2)[|c2|] 0 0 m

 and
1

d


1 0 0 0
0 1 0 0
0 0 1 0
# 0 0 m

 ,

respectively, since the encoding of next(c2) is finished by superoperator E2,|c2|+1.

Thus, before applying E2,|c2$$|, the state vector becomes as follows:

|ψ̃2,|c2$|⟩ =
(
1

d

)l2−1


1

next(c1)
c2

next(c2)

 . (3)

Operator E2,|c2$$| has two main operation elements. This first one is responsible to finalize the 1th

successor-check:

1

d


0 0 0 0
0 1 −1 0
0 0 0 0
0 0 0 0

 .
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The associated action of this operation element is to reject the input. Therefore, the input is rejected
with probability (

1

d

)2l2

(next(c1)− c2)
2 ,

which is zero if the check succeeds (next(c1) = c2) and is at least(
1

d

)2l2

m2

if the check fails (next(c1) ̸= c2). Since the last symbol of next(c1) and c2 are the identical, the
value of |next(c1)− c2| can be at least m.

The second main operation element is determined by the type of next(c2):

� If it is an accepting (a rejecting) configuration, then the following operation element is applied:

1

d


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

The associated action of this is to accept (reject) the input. Therefore, the input is accepted
(rejected) with probability (

1

d

)2l2

.

Note that the round is certainly terminated in this case.

� If it is not a halting configuration, then the following operation element is applied:

1

d


1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

The associated action of this is to continue the round, and so to initiate the 3rd successor-
check. The state vector becomes

|ψ̃3,0⟩ =
(
1

d

)l2


1

next(c2)
0
0

 .

Note that if the prover never sends $$ symbols, then no decision is given.
The tasks for block w3 = c3$$ is exactly the same as for block w2 = c2$$, and the tasks for

block w4 = c4$$ is exactly the same as for block w3 = c3$$, and so on. Therefore we can generalize
it for a generic block wi = ci$$, where i ≥ 2. The state vector is

|ψ̃i,0⟩ =
(
1

d

)li−1


1

next(ci−1)
0
0


at the beginning. The aims are as follows:
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1. By processing ci$,

(a) to encode ci into the amplitudes of |q3⟩ and
(b) to encode next(ci) into the amplitudes of |q4⟩.

2. By processing the second $,

(a) to finalize the (i− 1)st successor-check,

(b) to accept or reject the input if next(ci) is an accepting or a rejecting configuration,
respectively; and, to start the (i + 1)st successor-check if next(ci) is not a halting con-
figuration.

When the (i− 1)st successor-check is finalized, the input is rejected with probability(
1

d

)2li

(next(ci−1)− ci)
2,

which can be at least (
1

d

)2li

m2

if next(ci−1) ̸= ci. If next(ci) is an accepting (a rejecting) configuration, then the input is accepted
(rejected) with probability (

1

d

)2li

.

Otherwise, the (i+ 1)st successor-check is initialized with the state vector

|ψ̃i,0⟩ =
(
1

d

)li


1

next(ci)
0
0

 .

One of the remarkable properties of our protocol is that the quantum register can be in a
superposition of two successor-checks, which is one of the fundamental and distinctive properties
of quantum computation. In fact, private-coin protocols can also “imitate” this phenomenon: The
verifier privately selects odd- or even-numbered successor-checks, and so, from the viewpoint of the
prover, the verifier seems to be in a superposition of two successor-checks (such as, with probability
1
2). However, in our protocol, the verifier really is in a superposition and it is independent from any
prover. This is indeed why our protocol works in a public setting. Therefore, our protocol can also
be seen as a new and elegant evidence on how the superposition phenomenon can become useful in
terms of complexity theory.

The main corollary of Theorem 2 is that weak-qAM systems can be more powerful than weak-IP
systems:

Corollary 1. For any space bound s(n), weak-IP1(s(n)) ( weak-qAM1(1).
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4.3 qAM systems can simulate the known private-coin protocols

Now, we back to the protocols in which the computation always halts with high probability. (Note
that, our weak-protocol may run forever in some cases, i.e., the simulated machine may run forever
on some inputs, a cheating prover never sends $$ after sending a few valid configurations, etc.) In
our weak-protocol, the input head of the verifier is never used after checking the first configuration.
In fact, it can be used to check whether the length of a configuration sent by the prover is linear.
Thus, the verifier can force the prover to send linear-size configurations. So, it can be easily obtained
that DSPACE(n) ⊆ qAM1(1), i.e. the prover sends the computation of a linear-space DTM.

Lemma 2. DSPACE(n) ⊆ qAM1(1).

If the prover additionally provides nondeterministic choices, this result is extended to NSPACE(n)
⊆ qAM1(1), i.e. the prover sends the computation of a linear-space NTM, in which nondeterministic
choices are determined by the prover. Although it is not trivial as these two results, we can go one
step further: ASPACE(n) ⊆ qAM1(1), i.e. the prover sends the computation of a linear-space ATM,
in which nondeterministic choices are determined by the prover and universal choices are deter-
mined by the verifier. This idea was firstly given by Reif [22] for the simulation of a space-bounded
ATM by a private ATM, and then used by Condon and Ladner [9], Condon [5], and Dwork and
Stockmeyer [11] for some other similar simulations. We embed the simulation idea of Dwork and
Stockmeyer [11] into our weak-protocol by making some certain modifications.

Theorem 3. DTIME(2O(n)) = ASPACE(n) ⊆ qAM1(1).

Proof. Let L be a language in ASPACE(n). Then, there exists a single-tape ATM A recognizing
L. The components of A is similar to D given in the proof of Theorem 2. (Note that, for an
ATM, any nonhalting state is labelled as either existential or universal.) We make some additional
assumptions on A as given in Dwork and Stockmeyer [11] (see also Appendix A). Tape alphabet
Γ, apart from #, contains another special symbol ¢. The input, say x, is given as ¢x¢, ¢ is only
overwritten by ¢, the head is not allowed to leave the area between the cent symbols, and any
non-cent symbol is only overwritten by a non-cent symbol. Thus, any configuration of A is of
the form uqv such that q ∈ Q and uv ∈ ¢(Γ \ {¢})|x|¢. We assume that A makes an existential
move after a universal one and vice versa. Moreover, each such a transition leads to exactly two
branches. In order to fix the running time in each branch, we assume that A has some additional
deterministic states (i.e. universal states with no branching) to keep a counter to guarantee that
the decision is given after making exactly 2c|x| branching transitions. So, we can group non-halting
states of A into three groups:

1. existential states,

2. universal states leading to two transitions, and

3. universal states leading to one transition.

The third ones are called deterministic states to prevent confusion. So, only the second ones are
called universal states. We also assume that each counter operation takes the same amount of
steps, which is only dependent on the length of input (|x|). So the computation tree of A′ on x,

denoted by TA(x), has 22
c|x|

leafs, and each path from the root to a leaf has the same depth, where
c is an appropriate constant. If the leaf is an accepting (rejecting) configuration, then the path is
called accepting (rejecting) path.
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Now, we will describe a qAM proof system (P, V ) for L with perfect completeness based the
qAM system given in the proof of Theorem 2 after making some modifications, where V is a finite
state verifier.

The first modification is that the verifier requests a computation path of TA(x), i.e. a path from
the root to one of the leafs, from the prover in each round. The format of the computation is the
same:

c1$$c2$$ · · · ci$$ci+1$$ · · · .
However, before a successor-check, say the ith one, the verifier should know which branch it follows
after ci since the verifier encodes next(ci) during processing ci$$. Therefore, the verifier should
know the follow-up branch before obtaining ci$$. Similarly, the prover should be aware of this
branch before sending ci+1. As mentioned earlier, any existential branch is determined by the
prover and any universal branch is determined by the verifier. One of the convenient ways is that
before communicating on ci$$, both parties exchange their decisions about which branch is followed
after ci. Remark that if ci is a deterministic branch, then both choices become useless, if it is an
existential (a universal) one, the choice of the prover (the verifier) becomes useless. The verifier
makes its choice with equal probability. Therefore, it applies a superoperator having the following
two main operation elements 

1

d
I︸︷︷︸
l

,
1

d
I︸︷︷︸
r

 ,

where outcome “l” (“r”) represents the left-branch (right-branch) and I is the identity operator.
The second modification is that each configuration length is deterministically checked by the

verifier to be equal to |x|+2 by help of the input head. We denote this property as P4. If not, the
computation is terminated and the input is rejected immediately.

The third modification is about the acceptance probability, which will be dramatically smaller
than the accepting probability in the original protocol. We describe why the original strategy does
not work with an example.

Remember that if a round ends with an accepting (a rejecting) configuration in the
original protocol, then the input is accepted (rejected) with a probability calculated by
the amplitude of |q1⟩. Suppose that the prover sends a computation of A satisfying P1-
P4. Then if the verifier follows the original strategy, the input is rejected (accepted) with
the same probability at the end of each round since the length of each path is equal in
this case. If the prover follows a nondeterministic strategy of A that leads to exactly one
rejecting leaf, then the input is accepted with a high probability although the input must
be rejected with high probability due to this subtree.

Our new acceptance strategy is as follows. The verifier uses an additional state, q5, on the register.
When a new round is initiated, the state vector is immediately set to

(
1

d

)
1
0
0
0
1

 .

Then, the amplitude of |q5⟩ is multiplied by (
1

2d

)
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for each configuration in the computation. The input is accepted similar to the original protocol
but by the amplitudes of |q5⟩. Note that after making b branches, the ratio of the amplitude of |q1⟩
to the amplitude of |q5⟩ is 2b, and so, any rejecting probability calculated by the amplitude of |q1⟩
is 4b times greater than any accepting probability calculated by the amplitude of |q1⟩.

Now, we can analyse our modified protocol. If x ∈ L, then (honest) P always sends a valid
computation of A on x, and the input is always accepted with a (constant) non-zero probability in
each round. Therefore, x is accepted by V exactly.

If x /∈ L, there exists always at least one rejecting path whichever nondeterministic strategy is
followed. As known form the original protocol, if the prover (P ∗) sends some configurations violating
any of P1-P4, then the rejecting probability is always sufficiently greater than the accepting one in
a single round. Therefore, suppose that the prover sends the configurations satisfying P1-P4. Let
p be the probability of rejecting x at the end of a rejecting path. So, the accepting probability of
x at the end of an accepting path is equal to

p(
1

4
)2
c|x|
.

Since there can be at most 22
c|x| − 1 accepting paths, a single rejecting probability is sufficiently

greater than the overall accepting probability.

Theorem 4. For any space-constructible s(n) ∈ Ω(log(n)),

DTIME(22
O(s(n))

) = ASPACE(2O(s(n))) ⊆ qAM1(s(n)).

Proof. In this case, the verifier can force the prover to send 2O(s(n))-size configurations by using its
classical work tape. The remainder follows from the proof of Theorem 3.

Due to Fact 1 and Theorem 4, we can follow that qAM systems (having perfect-completeness)
are strictly more powerful than any AM system under the same space bound.

Corollary 2. For any space bound s(n), AM(s(n)) ⊆ weak-AM(s(n)) ( qAM1(s(n)).

4.4 Better lower bounds for qAM systems

In this section, we use the idea given at the beginning of Section 4.3 in a different way. That
is, similar to the simulation of linear-space DTMs, constant-space qAM systems can also simulate
linear-space (deterministic) reductions. Thus, by combining this kind of simulation with the qAM
protocol for KNAPSACK, we can obtain the following interesting result.

Theorem 5. Any language linear-space reducible to KNAPSACK is in qAM1(1). Moreover, if the
reduction takes t(n)-steps, the expected running time of the protocol is 2O(n·t(n)).

Proof. The proof combines Lemma 1 and Lemma 2. Let L be a language linear-space reducible
to KNAPSACK. Then, there exists a linear-space DTM D that outputs a string u for a given input
string, say x, such that x ∈ L iff u ∈ KNAPSACK.

We can design a constant-space qAM protocol for L as follows. Similar to previous protocols,
the main protocol is executed in an infinite loop. The prover sends the computation of D on x to
the verifier, and also says “selected” or “not selected” after each $ symbol of the output string u
(except the first $ symbol). The verifier runs two protocols in parallel. The first one checks the
correctness of the computation of D, and rejects the input if it detects a defect in the computation.
(This protocol never accepts the input.) The second one simulates the qAM protocol for KNAPSACK
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on the output string (see Lemma 1). If x ∈ L, the first protocol never rejects the input and the
second protocol always accepts the input with some probability in each round by the help of the
(honest) prover. If x /∈ L, we have two main cases. If the prover lies about the computation of D
on x in a single round, then the first protocol rejects the input with some probability, which can be
sufficiently bigger than any accept probability given by the second protocol. If the prover does not
lie, then the second protocol rejects the input with some probability, which is certainly bigger than
any accepting probability. Since the maximum length of a valid computation is at most O(n · t(n)),
the computation is always terminated with a probability at least

(
1
2

)O(n·t(n))
in each round, the

expected running time of the protocol is 2O(n·t(n)).

It is an open question whether NP ⊆ IP(1) [11]. On the other hand, we can show that any
language in NP has a constant-space exp-time qAM system having perfect-completeness.

Theorem 6. NP ⊆ qAM1(1), where the protocol runs in exponential expected time.

Proof. The proof follows from Theorem 5 and the fact that any language in NP is log-space (and
so also poly-time) reducible to KNAPSACK [21].

Another surprising result about constant-space qAMs is as follows.

Theorem 7. qAM1(1) contains an NEXP-complete language.

Proof. It is not hard to show that SUCCINCT 0-1 KNAPSACK (see Figure 3), a NEXP-complete lan-
guage [14], can be reduced to KNAPSCAK via linear-space reduction. So, there is a constant-space
qAM system having perfect-completeness for this language due to Theorem 5.

The language SUCCINCT 0-1 KNAPSACK is composed by strings am#ak#θ such that θ is a Boolean
formula with variables x1, . . . , xm+k satisfying that the string b#a1# · · ·#a2k−1 defined based on θ

(described below) is a member of KNAPSCAK, i.e.
∑2k−1

i=1 aizi = b for some z1, . . . , z2k−1 ∈ {0, 1}, where
b and each ai are precisely 2m bits (leading 0s permitted) binary numbers.

The string b#a1# · · ·#a2k−1 is defined based on θ as follows. Let (i)2,k be the k-bit binary
representation of i.

� The ith bit of b is the value of θ by setting x1, . . . , xk+m to the digits of 0k(i)2,m in order.

� The ith bit of aj is the value of θ by setting x1, . . . , xk+m to the digits of (j)2,k(i)2,m in order.

Figure 3: The definition of SUCCINCT 0-1 KNAPSACK [14]

If the verifier uses logarithmic space, then qAM systems can also simulate poly-space (deter-
ministic) reductions. Thus, we can extend Theorem 5 as follows.

Theorem 8. Any language poly-space reducible to KNAPSACK is in qAM1(log). Moreover, if the
reduction takes t(n)-steps, the expected running time of the protocol is 2O(poly(n)·t(n)).

The best-known lower bound for IP(log) is EXP. By Theorem 8, we obtain a better lower bound
for log-space qAM systems.

Theorem 9. NEXP ⊆ qAM1(log).

Proof. Any language in NEXP is log-space reducible to SUCCINCT 0-1 KNAPSACK [14], which is linear-
space reducible to KNAPSACK. Thus, any language in NEXP is poly-space reducible to KNAPSACK.
The proof follows from Theorem 8.
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A A review of previous private-coin protocols

In this part, we review the private-coin protocols for obtaining the results given in Facts 2 and
3, which we will refer as the weak-protocol and the strong-protocol, respectively. (Since Fact 4 is
a generalization of Fact 3 [11], we omit its details.) The main idea behind both protocols for a
given language is to simulate a fixed machine recognizing the given language: The prover sends
to the verifier the computation of the simulated machine on a given input, which is a sequence of
configurations starting from the initial configuration, and the verifier tries to verify the correctness of
this sequence and then gives a decision with respect to the halting configuration sent by the prover.
During the verification procedure, the following tasks can easily be checked deterministically: (i)
each configuration has a correct format, and (ii) the sequence starts with the initial configuration
and ends with a halting configuration. In the latter protocol, the length of each configuration is
also checked to be at most linear. On the other hand, to check whether the prover sends a valid
next configuration after each one is a non-trivial task. We will call this task successor-check and
this is indeed where the private coin-flips come into play.

Since a single computation requires many adjunctive successor-checks and each of them contains
many (private) coin-flips, a decision on the input can only be given with a very small probability
after passing a single computation. Therefore, the prover sends the computation repeatedly in
an infinite loop. Depending on the machine and resources of the verifier, either the verifier can
always halt the computation with high probability or the protocol can run forever in some cases.
For example, if the simulated machine never halts on the input and the prover honestly sends the
corresponding computation, the verifier can never halt and give a decision.

Now, we give some protocol specific details. We begin with the weak-protocol of Condon and
Lipton [10]. In his seminal paper [12], Freivalds presented a two-way probabilistic finite automaton
(pfa) recognizing language

FRE = {an1bn1an2bn2 · · · ankbnk | n1, . . . , nk > 0, k > 0}

with bounded error. Based on Freivalds’ algorithm, Condon and Lipton proposed a private-coin
protocol such that if a prover sends a member of FRE repeatedly to a one-way pfa verifier, then
the verifier detects the memberships of the input with high probability. If the prover sends some
nonmembers of FRE repeatedly to the same verifier, then the verifier gives a decision of rejection
with high probability. Two-way finite automata with two-counters (2D2CA) are Turing-equivalent
[19], and their main configuration elements are the contents of the counters, which can be encoded
unary. Then successor-checks on a computation of a 2D2CA can be implemented by the protocol
given by Condon and Lipton. Let L be a Turing-recognizable language and D be the 2D2CA
recognizing it. For the members of L, the honest verifier sends finite valid configurations, and so
the verifier accepts the input with high probability. For the nonmembers of L, the verifier can
only accept if the last configuration of the computation is an accepting one. This means that the
computation contains at least one defect, and so the probability of rejection is greater than the
probability of acceptance due to the defect. Since a prover may never sends a halting configuration,
the protocol has a weak-soundness.
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In the case of the strong-protocol of Dwork and Stockmeyer [11], the simulated machine is an
O(n) space-bounded ATM, say A. In order to simplify the proof, some inessential assumptions
are made on A: Roughly, each existential or universal transition leads to exactly two branches,
there is no consecutive two existential or universal branching, A uses only |x|+ 2 space, A always
halts exactly after 2c|x| branching steps by keeping a counter, and so A never enters a loop, where
x is a given input and c is an appropriate constant. Note that the computation tree of A on x
has 22

c|x|
leafs. The prover repeatedly sends the computation of some paths of this tree, in which

the nondeterministic choices are made by the prover and the universal choices are made by the
verifier, i.e. the verifier flips a coin and sends the outcome to the verifier. The configurations on a
computation are separated by $’s as

· · · $ci$ci+1$ci+2$ · · · ,

where i > 0. Since each configuration of A on x is fixed length (|x|+3), the verifier can implement
the successor-check by deterministically comparing the symbols at distance |x| + 4 by using its
input head.3 If there is not exactly one $ between two symbols, then the input is rejected by the
verifier. The private part of the successor-check is that the verifier always selects the first symbol
randomly and repeats this selection after each comparison. That is, if l > 0 is the index of a
selected symbol, then it is compared with (l + |x| + 4)th symbol, and then a new symbol with an
index between (l + |x|+ 4) + 1 and (l + |x|+ 4) + |x|+ 4 is selected. Since the protocol is private,
the prover can never know which two symbols are compared. Thus, any defect on the computation
can always be detected by the verifier with some probability, which is sufficiently greater than any
accept probability. If there is no defect, the accepting probability is still very small so that a single
rejecting probability on a leaf can always dominate the cumulative accepting probabilities from
all the other leafs. (We omit the details here but the same issue is also detailed in the proof of
Theorem 3.) Therefore, for the strings accepted by A, none of successor-check produces a rejecting
probability, and so the verifier accepts the input exactly by help of a honest prover. For the strings
rejected by A, if the input is not rejected by any successor-check, the input is rejected at least one
path which is sufficient to dominate all the accepting decisions. Note that, if the prover never sends
a halting configuration, the verifier detects infinitely many defects, which are sufficient to reject
the input with probability 1, by using its input head.

As seen from the details, the private methods used by the protocols are different. In the former
one, the verifier privately collects statistical evidence from over the computations to decide their
correctness. Moreover, two-sided error is necessary in this case due to Theorem 1. In the latter
case, the verifier can force the prover to send linear size configurations and then detects the defects
directly. The latter protocol has also perfect-completeness.

B The proof of Theorem 1

The proof of IP1(s(n)) ⊆ weak-IP1(s(n)) ⊆ ASPACE(22
O(s(n))

) follows from Lemma 3 (see below) and
[4], where s(n) ∈ Ω(log(n)) is space-constructible.

We begin with a definition: The prover-verifier pair (P, V ) is an unbounded-error IPS having
perfect completeness for L if it has a perfect-completeness, i.e. satisfying condition (1′), and has
the following soundness condition:

2′′. for all x /∈ L, and all provers P ∗, the probability that (P ∗, V ) accepts x is less than 1.

3If the simulated machine is s(n) ∈ ω(n) space-bounded, then log(s(n)) space-bounded verifier is sufficient for a
similar check, where s is a space-constructible function.
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The classes defined by unbounded-error IPS having perfect completeness will be shown by IP1,<1(·).

Lemma 3. For any space-constructible s(n) ∈ Ω(log(n)),

IP1,<1(s(n)) ⊆ DTIME(22
2O(s(n))

).

Proof. Let L ∈ IP1,<1(s(n)). Then there exists an unbounded-error IPS having perfect-completeness
(P, V ) for L. We will show that a DTM can recognize L by using triple-exponential time in s(n).

Let x be an input string. Without loss of generality, we assume that the communication alphabet
contains exactly two symbols {0, 1}. We represent the configuration set of V on x as CV (x), whose
size is exponential in s(|x|). We classify the configurations into five groups:

1. read: the ones in a reading state

2. comm-0: the ones in a communication state ready to write 0 on the communication cell

3. comm-1: the ones in a communication state ready to write 1 on the communication cell

4. acc: the ones in an accepting state

5. rej: the ones in a rejecting state

The computation tree of (P ′, V ) on x can be infinite for a prover P ′. On the other hand,
having perfect completeness allow us to build a finite computation tree that concisely represents
the computation of V on x and its communications with all possible provers (P ∗). First of all,
we do not need to keep the probabilities of the configurations since the input is either accepted
with probability 1 or with a probability less than 1. (We do not need the cumulative sums of the
accepting and rejecting probabilities.) Secondly, the length of any halting path must be bounded
by a certain number steps. If the computation does not halt, then V must enter an infinite loop.
An infinite loop, in our case, can either contributes to a halting path or independent from the other
parts of the computation. We visualize both cases in Figure 4. The former case can be seen as a
part of the halting path since the probability of being in the loop approaches to zero and the halting
path is re-traversed with the decreasing probability after each cycle. However, the probability of
being in the loop remains the same in latter case, and so it should be replaced with a rejecting
path if detected.

Figure 4: Two cases of infinite loops

We denote our finite tree TV (x). (Note that we do not specify any prover since this tree
represent all possible communication scenarios.) The structure and evaluation of TV (x) is similar
to the computation tree of an ATM. The main difference of TV (x) is that a node can take three
different values instead of two values, which are originally true and false. We give the details of
how TV (x) can be constructed below.
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Since the protocol is private, we keep the configurations that follow the same communication
strategy together. Therefore, each node of TV (x) represents a subset of CV (x). The root represents
the initial configuration. We have four different types of inner nodes, i.e.

read-comm, comm-01, comm-0, and comm-1,

and three different types of leafs, i.e.

acc, rej, and loop.

A read-comm node, say RC, is a node that contains at least one read configuration and may
contain some comm-0 or comm-1 configurations. The child node(s) of RC is (are) determined as
follows: Each read configuration in RC divides into at most two child configurations in a single
step.

� If the child is an acc (a rej) configuration, then an acc (a rej) leaf is created and connected
to the RC.

� If the child is a read configuration which is identical to a read configuration in RC, then a
loop leaf is created and connected to RC.

� In any other case, each child should be one of a read (not in RC), a comm-0, or a comm-1

configuration. All these children with the previous comm-0 or comm-1 configurations form a
new node and connected to RC.

The type of the new node given in the last item is determined conditionally. If its depth (in TV (x))
exceeds a certain number (2|CV (x)| – the total number of all subsets of CV (x)), it becomes a loop
leaf since it must be a repetition of a previous node along the same path.

Suppose that the depth of the new node does not exceed this number. If it contains at least
one read configuration, then it becomes a read-comm node again. If it contains both comm-0 and
comm-1 configurations, then it becomes a comm-01 node. If it contains only some comm-0 (comm-1)
configurations, then it becomes a comm-0 (comm-1) node.

For each comm-01 node, say C01, two new nodes are created and connect to C01. One of them
becomes a comm-0 node that contains all comm-0 configurations of C01. The other one becomes a
comm-1 node that contains all comm-1 configurations of C01. Both comm-0 and comm-1 are the
communication nodes. We give the details for a comm-0, say C0, node. (The situation is exactly
the same for a comm-1 node.) Let c be a configuration in C0. In c, the verifier writes 0 on the
communication cell, and then receives 0 or 1. Since we consider all possible communications, there
are two next configurations evolved from c in a single step, say c0 and c1. If c0 (c1) is an acc or
a rej configuration, then an acc or a ref leaf is created, respectively, and connected to the C0;
or if c0 (c1) is a comm-0 configuration which is identical to a comm-0 configuration in C0, then a
loop leaf is created and connected to C0. Otherwise, all c0’s and c1’s are collected into two new
nodes and then connected to C0. The types of the new nodes are determined as explained above.
We completed how TV (x) can be constructed.

Now, we describe how TV (x) can be evaluated. We associate each inner node with “∧” or
“∨” operator: read-comm and comm-01 are associated with “∧” (universal choice), and comm-0
and comm-1 are associated with “∨” (nondeterministic choice). These operators determines the
value of a node from the values of its children. There are three types of values: true, false, and
loop[depth], where depth is a numeric value. Obviously, any acc (rej) leaf takes the value of true
(false). Any loop leaf takes the value of loop with a depth value that represent the smallest depth
of the repeated node.
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If the computation tree just contains true and false values, then its evaluation becomes trivial
(exactly the same as alternation). The non-trivial part is how to include the loop into the evaluation.
Suppose that a node associated with “∧” has k > 0 child/children, whose values are represented
by v1, . . . , vk. The value of the node can be calculated as follows:

v1 ∧ (v2 ∧ · · · (vk−2 ∧ (vk−1 ∧ vk))),

where binary relation “∧” is defined as follows:

∧ true false loop[d1]

true true false true

false false false false

loop[d2] true false loop[min{d1, d2}]

Since it is a universal choice, any false value beats all the other values. Any true value beats any
loop value, since this loop contributes the accepting path. Between two loop values, we select the
one having smaller depth. The value of a “∨” node can be calculated in a similar way with its
specific rules:

∨ true false loop[d1]

true true true true

false true false loop[d1]

loop[d2] true loop[d2] loop[min{d1, d2}]

Since it is an existential (nondeterministic) choice, any true value beats all the other values. Any
loop value beats any false value, since the corresponding loop may contribute an accepting path in
a lower depth. Between two loop values, we again select the one having smaller depth. The last
thing about the evaluation is that if a node takes value of loop and the depth of the loop refers to
this node, then the value of the node is changed to false since this loop does not contribute any
accepting path. The value of the root is the value of the tree.

In case of x ∈ L, we know that there exists a nondeterministic strategy (corresponding to the
communication with P ) on the tree such that it does not lead to any rejecting path, and any infinite
loop must contribute some accepting paths. Therefore, the value of the root is set to true.

In case of x /∈ L, we know that for every nondeterministic strategy (corresponding to the com-
munication with P ∗), there must be a nonzero rejecting path or a nonzero looping path (not con-
tributing any accepting path) that dominates all the other opponent values during the evaluation.
Therefore, the value of the root is set to false.

A DTM can construct and evaluate TV (x) in a straightforward way. Since the depth of the tree
is 2|CV (x)|, the total running time of the DTM is double-exponential in |CV (x)|. Since |CV (x)| is
exponential in s(|x|), then the total running time becomes triple-exponential in s(|x|).
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