
Space Complexity in Polynomial Calculus∗†

Yuval Filmus
University of Toronto

yuval.filmus@utoronto.ca

Massimo Lauria
KTH Royal Institute of Technology

lauria@kth.se

Jakob Nordström
KTH Royal Institute of Technology

jakobn@kth.se

Noga Ron-Zewi
Technion – Israel Institute of Technology

nogaz@cs.technion.ac.il

Neil Thapen
Academy of Sciences of the Czech Republic

thapen@math.cas.cz

October 20, 2012

Abstract

During the last decade, an active line of research in proof complexity has been to study space
complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of
intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused
on weak systems that are used by SAT solvers.

There has been a relatively long sequence of papers on space in resolution, which is now reason-
ably well understood from this point of view. For other natural candidates to study, however, such as
polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial
space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been
for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is
smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consis-
tent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in
constant space.

In this paper, we prove several new results on space in polynomial calculus (PC), and in the
extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]:

1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole
principle formulas PHPm

n with m pigeons and n holes, and show that this is tight.

2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pi-
geonhole principle. These formulas have width O(log n), and hence this is an exponential
improvement over [Alekhnovich et al. ’02] measured in the width of the formulas.

3. We then present another encoding of the pigeonhole principle that has constant width, and
prove an Ω(n) space lower bound in PCR for these formulas as well.

4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential
size and linear space (which holds for resolution and thus for PCR, but was not obviously
the case for PC). We also characterize a natural class of CNF formulas for which the space
complexity in resolution and PCR does not change when the formula is transformed into 3-CNF
in the canonical way, something that we believe can be useful when proving PCR space lower
bounds for other well-studied formula families in proof complexity.

∗This work was initiated at the BIRS workshop on proof complexity (11w5103) in October 2011 and part of the work was
also performed during the special MALOA semester on Logic and Complexity in Prague in the autumn of 2011.

†This is a full-length version of the paper [FLN+12] which appeared in Proceedings of the 27th Annual IEEE Conference
on Computational Complexity (CCC ’12).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 132 (2012)

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

1 Introduction

A proof system for a language L is a binary predicate P (x, π) computable in time polynomial in the
sizes of the inputs such that for all x ∈ L there is a string π (a proof) for which P (x, π) = 1, while for
any x 6∈ L it holds for all strings π that P (x, π) = 0. A propositional proof system is a proof system for
TAUTOLOGY, the language of tautologies in propositional logic.

The field of proof complexity, initiated by Cook and Reckhow [CR79], studies the complexity of
proving propositional formulas in different propositional proof systems. One important motivation for
proof complexity is the problem of P vs. NP. A proof system is said to be polynomially bounded if for
every x ∈ L there is a proof πx of size at most polynomial in the size of x. As observed in [CR79], one
way of establishing co-NP 6= NP, and hence P 6= NP, would be to prove that there are no polynomially
bounded proof systems. This goal remains very distant, however, and it is probably fair to say that most
current work in proof complexity is motivated by other concerns.

One such other concern, that has motivated an interesting line of research in proof complexity in
the last decade, is the SATISFIABILITY problem and the study of proof complexity measures related
to SAT solving. While it is generally believed that SATISFIABILITY is an intractable problem in the
worst case, impressive algorithmic developments in the last 10–15 years have led to SAT solvers that can
handle real-world problem instances with millions of variables. A somewhat surprising aspect of this
is that at the core, the state-of-the-art solvers today are still based on the fairly simple Davis-Putnam-
Logemann-Loveland or DPLL procedure [DLL62, DP60] from the early 1960s augmented with clause
learning [BS97, MS96]; these programs are also known as conflict-driven clause learning solvers or
CDCL solvers. Despite the fact that such SAT solvers can be seen to be searching for proofs in the rel-
atively weak resolution proof system, for which numerous exponential lower bounds are known, CDCL
solvers have carried the day in the international SAT competition [SAT] in recent years.

From the point of view of proof complexity, by studying proof systems that are, or could potentially
be, used by SAT solvers, one can hope to gain a better understanding of the potential and limitations
of such solvers. There is a growing literature of such papers, with [AFT11, BHJ08, BJ10] being a very
subjective pick of just three of the most recent interesting examples. While the current paper is of a more
purely theoretical nature, it is also partly motivated by similar concerns.

The two main bottlenecks for modern SAT solvers are running time and memory usage. By studying
proof size, proof space, and trade-offs between these two measures in different proof systems, we want to
understand how the important resources of time and space are connected to one another and whether they
can be optimized simultaneously or have to be traded for one another in SAT solvers using these proof
systems.1 In this context, it seems that the most interesting proof systems are resolution, polynomial
calculus and cutting planes.

Concluding this brief general discussion, we want to mention that some good starting points for
a further study of proof complexity in general are, for instance, [Bea04, Seg07], while the upcoming
survey [Nor12] by the third author focuses specifically on space complexity and time-space trade-offs.
On the more applied side, a recent, very comprehensive, reference on SAT solving is the Handbook of
Satisfiability [BHvMW09].

1.1 Previous Work

Any formula in propositional logic can be efficiently converted to a CNF formula that is only linearly
larger and is unsatisfiable if and only if the original formula is a tautology. Therefore, any sound and
complete system for refuting CNF formulas can be considered as a general propositional proof system.
Furthermore, while the general definition of a proof system allows for any predicate P , in practice the
proof systems studied in the proof complexity literature tend to have the structure that a proof π can be

1Perhaps we should point out that this is more than just a vague hope that theory and practice should somehow be related—
for instance, recent experimental work by the third author joint with Järvisalo, Matsliah and Živný [JMNŽ12] seems to indicate
a correlation between theoretical space complexity in resolution and practical hardness (measured as the running time) for
CDCL solvers.

2

1 Introduction

viewed as a sequence of lines, where each line either is (some encoding of) a disjunctive clause of the
CNF formula being refuted or follows from previous lines in the proof by the inference rules of the proof
system in question. We will say that such proof systems are sequential. All proof systems considered in
this paper are sequential proof systems for refuting unsatisfiable CNF formulas.

Of the three proof systems mentioned above, the resolution proof system is by far the most well-
studied and well-understood. Resolution was introduced in [Bla37] and began to be investigated in
connection with automated theorem proving in the 1960s [DLL62, DP60, Rob65]. In this context, it is
natural to prove bounds on the length of refutations, i.e., the number of clauses, rather than on the total
size (the two measures are easily seen to be polynomially related). One of the early break-throughs in
proof complexity was the result by Haken [Hak85] that CNF formulas encoding the pigeonhole principle
(PHP formulas) require proofs of exponential length. There have been a sequence of follow-up papers
establishing quantitatively stronger bounds for other formula families in, for instance, [BKPS02, BW01,
CS88, Urq87].

Motivated by the fact that memory usage is a major concern in applied SAT solving, and by the
question of whether proof complexity could say anything interesting about this, the study of space in
resolution was initiated by Esteban and Torán in [ET01]. Alekhnovich et al. [ABRW02] later extended
the concept of space to a more general setting, including other proof systems, and this setting is what
will be of interest to us in this paper. Intuitively, the space of a resolution refutation is the amount of
memory needed while verifying the refutation (where in resolution usually one thinks of each clause as
requiring one unit of memory, a measure that is known as clause space). Perhaps somewhat surprisingly,
it turns out that one need never use more than linear (clause) space in resolution, and a sequence of papers
[ABRW02, BG03, ET01] have established matching lower bounds (up to constant factors).

Another sequence of papers [Nor09a, NH08, BN08] involving the third author clarified the relation
between length and space in resolution. While it follows from [AD08] that small complexity with respect
to space implies small complexity with respect to length, building on [Nor09a, NH08] the paper [BN08]
established that there exist explicit formulas that are maximally easy with respect to length, having linear
length refutations, but which are hard for space in that their clause space complexity is Ω(n/ log n) (and
this separation is optimal). Regarding trade-offs between length and space, some results in restricted
settings were presented in [Ben09, Nor09b], and strong trade-offs for general resolution were finally
obtained in [BN11]. Even more recently, [BBI12] obtained trade-off results for formulas that require
even superlinear space if length is to be optimized.

In the polynomial calculus (PC) proof system introduced by Clegg et al. [CEI96], clauses are inter-
preted as multilinear polynomial equations over some field, and a CNF formula is refuted by showing
that there is no common root for the polynomial equations corresponding to all the clauses. The minimal
refutation size of a formula in this proof system turns out to be closely related to the total degree of the
polynomials appearing in the refutation [IPS99], and a number of strong lower bounds on proof size have
been obtained by proving degree lower bounds in, for instance, [AR03, BGIP01, BI10, IPS99, Raz98].

The treatment of negated and unnegated literals in PC is asymmetric and means that wide clauses
with literals of the wrong sign can blow up to polynomial equations of exponential size. To get a more
symmetric treatment of space, [ABRW02] introduced polynomial calculus resolution (PCR) as a com-
mon extension of PC and resolution.2 Briefly, in PCR one adds an extra set of parallel formal variables
x, y, z, . . . as well as axioms specifing that x and x must always take opposite signs (so that we can
think of the variable x as the literal negating x). In this way, negated and unnegated literals can both be
represented in a space-efficient fashion.

In this stronger PCR system, [ABRW02] managed to establish lower bounds on space measured
as the number of monomials, but only sublinear bounds and only for formulas of unbounded width
(namely, for PHP formulas). The problem of proving linear lower bounds on space in PC and PCR,
and more importantly of proving any nontrivial lower bounds for formulas of bounded width in terms

2As a side note, we remark that if our main concern in studying space is the connection to SAT solving, then it is not entirely
clear that the generalization to PCR is the right way to go. The issue is that PCR might in fact be a bit too strong in the sense
that it magically eliminates a problem with exponential space blow-up that actually appears to be an issue in practice for some
PC-based SAT solvers.

3

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

of PCR-space or even PC-space, has remained open since [ABRW02]. Thus, it has been theoretically
consistent with our current state of knowledge that all k-CNF formulas would potentially be refutable
in constant space in polynomial calculus. And as far as we are aware, there have not been any trade-off
results shown before (the partial results in) the very recent paper [HN12].

At the time the paper [CEI96] was published, there was quite some excitement about polynomial
calculus, since this proof system seemed to hold out the promise of better SAT solvers than those based
on resolution. This promise has failed to materialize so far, however. There are PC-based solvers such
as PolyBoRi [BD09], but in general they seem to be an order of magnitude slower than state-of-the-art
CDCL solvers (although [BDG+09] reports that PolyBoRi can be faster on certain specific industrial
instances).

To conclude our quick survey on research on space complexity and size-space trade-offs in proof
complexity, we also want to briefly discuss the cutting planes (CP) proof system [CCT87]. Here the
clauses of a CNF formula are translated to linear inequalities and the formula is refuted by showing that
the polytope defined by these inequalities does not have any zero-one integer points (corresponding to
satisfying assignments). We only know of one superpolynomial lower bound on CP proof size [Pud97]
(improving on the result [BPR95] in a somewhat restricted setting). It is natural to define the line space
of a CP-refutation to be the maximal number of linear inequalities that need to be kept in memory
simultaneously during the refutation. Just as for monomial space in PCR, line space in CP is easily
seen to be a generalization of clause space in resolution and is hence upper bounded by the clause space
complexity. As far as we are aware, nothing is known on space for cutting planes, much less for size-
space trade-offs, except again for the recent paper [HN12].

1.2 Our Results

In this paper, we focus on polynomial calculus and PCR and prove several new results. We give an
overview of these results below. The notation and terminology used follows that of the survey [Nor12]
fairly closely, but for completeness we provide all the necessary preliminaries in Section 2.

1.2.1 Upper Bound on Space for k-CNF Formulas in Polynomial Calculus

A first natural question when proving lower bounds on space in polynomial calculus is how strong bounds
we can hope for, i.e., what upper bounds there are to match. For the resolution proof system, it is easy to
show that any CNF formula F with m clauses over n variables has a refutation in simultaneous length
exp(min{m,n} + O(1)) and clause space min{m,n} + O(1). Since PCR can simulate resolution
efficiently line by line, we get similar upper bounds for size and monomial space there.

For polynomial calculus without extra variables for negative literals, however, it is easy to see that one
cannot polynomially simulate resolution. Namely, consider a formula F with a wide clause consisting
of only negative literals. Just representing such a clause in the PC-translation to a polynomial requires
exponential size and space. This counter-example for PC seems somewhat artificial, however, since we
could transform F to an equivalent 3-CNF formula in the canonical way and work with this formula
instead to avoid the problems with downloading wide all-negative clauses. Therefore, we are interested
in determining upper bounds for the worst case for PC when the unsatisfiable input formulas are given
in k-CNF.

Interestingly, this turns out to be connected to a problem regarding width in resolution. We know
from [BW01] that if a formula cannot have resolution refutations without at least one clause of linear
length, then the length of any resolution refutation has to be exponential. In fact, by counting one
immediately gets that not only must any refutation contain at least one wide clause in such a case, but
rather an exponential number of wide clauses. Suppose now that we are considering random k-CNF
formulas, where the signs of the literals in the axioms will be randomly (and evenly) divided. Is it true
that in any resolution refutation of such a formula, there must also be wide clauses with reasonably evenly
divided positive and negative literals? Or weakening this question a bit: Is it true that in any resolution
refutation of a random k-CNF formula, it holds with high probability that the refutation must contain at

4

1 Introduction

least one clause with a large positive component and one clause (the same one or another one) with a
large negative component?

Somewhat surprisingly, the answer to this question is a resounding “no.” If we want to minimize
negative width (or positive width, for that matter), then for any unsatisfiable k-CNF formula F we can
find a resolution refutation that never has any clause with more than k negative (positive) literals.

This is an interesting fact in itself, but it also has immediate consequences for polynomial calculus.
Namely, the reason that PC cannot simulate resolution in the same way as PCR is that clauses with
many negative literals cause an exponential blow-up in monomial space. But since we can construct a
resolution refutation that never has more than k negative literals in any clause, we can limit this blow-
up to an exponential in k, which is a constant. Hence, we get that PC has at least as good worst-case
behaviour for k-CNF formulas as does resolution.

Theorem 1.1. Any unsatisfiable k-CNF formula F with m clauses over n variables has a PC-refutation
in simultaneous length exp(O(min{m,n})) and monomial space O(min{m,n}), where the hidden
constant depends on k.

1.2.2 Lower Bound on Space for k-CNF Formulas in Polynomial Calculus

Next, we turn our attention to lower bounds for k-CNF formulas in PC. There is a standard way to
turn any CNF formula F into an equivalent 3-CNF formula F̃ by converting every wide clause C =
a1 ∨ a2 ∨ . . . ∨ aw to the set of 3-clauses C̃ = {y0} ∪ {yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ w} ∪ {yw} where

the yi are new variables that do not appear anywhere else. Let P̃HPm
n denote the pigeonhole principle

formula PHPm
n converted to 3-CNF in this way. For resolution we know that the space requirements for

these two versions are the same, but the Ω(n) lower bound on space in PCR for PHPm
n in [ABRW02]

unfortunately breaks down for P̃HPm
n , and no lower bound has been known even for PC.

Intuitively, one would like to think of the semantics of the new auxiliary variables as being yi ≡∨w
j=i+1 aj , and use this to extract a PCR-refutation of PHPm

n from any PCR-refutation of P̃HPm
n by

substituting
∨w

j=i+1 aj for yi. Sadly, this idea does not work. The problem is that the semantics of the
negation of yi in the 3-CNF conversion is yi ≡

∨i
j=1 aj , and under this interpretation there is nothing

ruling out that both yi and yi “are true simultaneously,” as it were. Therefore, this simulation idea fails.
However, for PC we never need to deal with yi, since this literal does not exist, and if we do the

substitution for yi above then it turns out we can in fact extract a PC-refutation of PHPm
n from any

PC-refutation of P̃HPm
n . This immediately yields a first nontrivial lower bound on space for 3-CNF

formulas in PC. Using the ideas from Section 1.2.1 together with results from the literature, it is not hard
to show that this bound is asymptotically tight.

Theorem 1.2. The space of refuting P̃HPn+1
n in polynomial calculus is Θ(n), or Θ

(
3
√

N
)

expressed in
the formula size N .

This lower bound holds for the standard (from the algebraic point of view) encoding equating 0 with
true and 1 with false. Since PC is clearly very sensitive to such issues of representation, it is natural to
ask whether the lower bound is due to an unfavourable encoding and could be avoided by a preprocessing
step flipping the polarities of the literals in the formula in some way. However, it is straightforward to
show, appealing to [ABRW02], that Theorem 1.2 holds even if we allow arbitrary flips of literal polarities
in the formula.

1.2.3 Lower Bound on Space for k-CNF Formulas in PCR

The main goal of this paper, however, is to prove lower bounds on space for k-CNF formulas not in
polynomial calculus, but in the stronger PCR system. And here the simple simulation used to obtain
Theorem 1.2 no longer works, for the reasons sketched above.

As a first step, we instead consider an alternative encoding of the pigeonhole principle. In the PHPm
n

formula, we have variables pi,j encoding that pigeon i sits in hole j. However, there is another way to

5

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

encode the pigeonhole principle that arises naturally in bounded arithmetic, which uses variables x[i, `]
for ` = 1, . . . , log2 n encoding in binary the hole into which pigeon i goes. Note that in this encoding
the pigeonhole principle will automatically be functional, i.e., every pigeon gets sent to exactly one hole
and not more. These “bit-graph PHP formulas” have width logarithmic in n and, as we prove, require
space linear in n in PCR. Hence, this provides an exponential improvement over [ABRW02] measured
in the width of the formulas.

Theorem 1.3. The space in PCR of refuting bit-graph pigeonhole principle formulas BPHPn+1
n is Ω(n),

or Ω
(

3
√

N/ log N
)

expressed in the formula size N .

We then tweak the formulas in a specific way to have “hole indicators” for each hole and pigeon,
where we say that pigeon i sits in hole j if the exclusive or of the hole indicator variables for (i, j − 1)
and (i, j) is true. While we certainly do not claim that this is the most natural encoding of the pigeonhole
principle ever presented in the literature, it has the nice feature that it can be written as a 4-CNF and that
the proof of Theorem 1.3 still works with very minor modifications. So in this way we are finally able to
prove strong lower bounds on PCR space for k-CNF formulas.

Theorem 1.4. The space in PCR of refuting the XOR pigeonhole principle XPHPn+1
n encoded in 4-CNF

is Ω(n), or Ω
(

3
√

N
)

expressed in the formula size N .

The proofs of Theorems 1.3 and 1.4 are very much inspired by [ABRW02] and follow the arguments
in that paper fairly closely, but also require some subtle but crucial twists. We refer to Section 5 for the
proof of Theorem 1.3. The easy modifications to prove Theorem 1.4 are described in Section 6.

1.2.4 Space Complexity of Wide CNF Formulas and Their 3-CNF Versions

While Theorem 1.4 establishes nontrivial PCR space lower bounds for specially crafted 4-CNF formulas,
we still do not know any lower bounds for 3-CNF formulas. In particular, the PCR space complexity of
the “3-CNF version” P̃HPm

n of the pigeonhole principle formulas remains open. Returning to the dis-
cussion in Section 1.2.2, it is natural to ask the question in general what happens to the space complexity
of formula F when it is transformed to a 3-CNF F̃ in the canonical way described above. It is clear
that such a transformation can never increase the space complexity. For all formula families that we are
aware of, the space complexity, when it is known, does not decrease either, but stays the same. It would
be very interesting to know whether this is true in general, or whether it is somehow possible to come up
with a family of wide formulas Fn where the space complexity of F̃n is asymptotically smaller.

As a first step towards resolving this question, we characterize a natural class of CNF formulas for
which the space complexity in resolution and PCR provably does not decrease when the formula is
transformed into a 3-CNF. Suppose that for every wide clause a1 ∨ ... ∨ aw in F there are also axioms
ai ∨ aj for all 1 ≤ i < j ≤ w requiring that any satisfying assignment of the clause is constrained to
have Hamming weight 1 (we call such a formula weight-constrained). Then for such a formula F the
idea in Section 1.2.2 of substituting

∨w
j=i+1 aj for yi and

∨i
j=1 aj for yi turns out to actually work.

Theorem 1.5. Let F be a weight-constrained CNF formula and let F̃ be its 3-CNF version as described
above. Then in resolution F and F̃ have the same space complexity up to a small additive constant,
and in PCR the two formulas have asymptotically the same space complexity (within small multiplicative
factors).

In particular, this means that for the standard encoding of the functional pigeonhole principle, which
has precisely such weight constraints, the space complexity of the wide formula and its 3-CNF version is
essentially the same. Unfortunately, nothing is known about the PCR space complexity of this formula,
and in particular the techniques in [ABRW02] break down when functional axioms are added to the
formula. However, what Theorem 1.5 says is that if one can manage to prove PCR space lower bounds
for the wide functional pigeonhole principle, then the same bound also holds for the 3-CNF version. We
hope that this insight can be useful when approaching the task of proving PCR space lower bounds for

6

2 Preliminaries

(3-CNF versions of) the functional pigeonhole principle and other well-studied formula families in proof
complexity. Also, it would be interesting to see if Theorem 1.5 could be generalized to hold for any CNF
formula, even without weight constraints, or if there is some counter-example.

1.3 Subsequent Developments

After the first version of this paper was published, in [BNT12] Beck and Tang together with the third
author have extended the size-space trade-off results for resolution in [BN11] and [BBI12] to PCR, albeit
with a slight loss in the parameters which leaves room for further improvements.

Also, just as the full-length version of this paper was being finalized, Bonacina and Galesi [BG12]
announced a further generalization of the techniques in [ABRW02] and our paper leading to among other
things optimal (linear) space lower bounds in PCR for random k-CNF formulas with k ≥ 4.

1.4 Outline of This Paper

The rest of this paper is organized as follows. We start by presenting the necessary preliminaries in
Section 2. In Section 3, we prove that the space of refuting k-CNF formulas in polynomial calculus
is at most O(n), where n is the number of variables, and in Section 4 we prove a polynomial calculus
space lower bound for 3-CNF versions of the pigeonhole principle formulas. In Sections 5 and 6 we
then present what we consider to be our main results, namely space lower bounds in polynomial calculus
resolution (PCR) for CNF formulas of small width. In Section 5, we study formulas of logarithmic width,
and in Section 6 we extend the result to a family of CNF formulas of constant width. In Section 7, we
consider CNF formulas where all wide clauses have weight constraints which specify that exactly one
literal is true. We show that the space for refuting these formulas and their standard 3-CNF versions
coincide asymptotically both in resolution and PCR. Finally, in Section 8, we make some concluding
remarks and mention a few of the many fascinating problems in this area that remain open.

2 Preliminaries

Let x be a Boolean variable. A literal over x is either the variable itself or its negation, denoted ¬x
or x. The former is called a positive literal, the latter a negative literal. It will also be convenient to
use the alternative notation xb for b ∈ {0, 1}, where xb is x when b = 0 and x when b = 1. Note that
this notational convention is the opposite of what is found in some other papers in the proof complexity
literature, but as we will see shortly it is the natural choice in the context of polynomial calculus.

A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. Below we will think of clauses as sets, so
that the ordering of the literals is immaterial and no literals are repeated. We denote the empty clause,
i.e., the clause containing no literals, by ⊥. A clause containing at most k literals is called a k-clause. A
CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. We will think of CNF formulas as sets of
clauses. A k-CNF formula is a CNF formula consisting of k-clauses.

Assignments are functions that assign a truth value for each variable in v. We write α, β to denote
truth value assignments. An assignment satisfies a Boolean function if it makes the function true. For
example, a clause is true if any of its constituent literals is true; the empty clause ⊥ is always false. In
the context of the algebraic proof systems PC and PCR (defined below) we will identify 0 with true and
1 with false (so that xb is true if x = b).

We say that a proof system for refuting unsatisfiable CNF formulas is sequential if a proof π in
the system is a sequence of lines, where each line is derived from previous lines by one of a finite set
of allowed inference rules. Following the exposition in [ET01], we view a proof as similar to a non-
deterministic Turing machine computation, with a special read-only input tape from which the clauses
of the CNF formula F being refuted (the axioms) can be downloaded and a working memory where
all derivation steps are made. Then the length of a proof is essentially the time of the computation
and space measures memory consumption. The following definition is a straightforward generalization
of [ABRW02]. We employ the standard notation [n] = {1, . . . , n}.

7

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Definition 2.1 (Refutation). For a sequential proof system P with lines of the form Li, a P-configu-
ration D, or, simply, a configuration, is a set of such lines. A sequence of configurations {D0, . . . , Dτ}
is said to be a P-derivation from a CNF formula F if D0 = ∅ and for all t ∈ [τ], the set Dt is obtained
from Dt−1 by one of the following derivation steps:

Axiom Download Dt = Dt−1 ∪ {LC}, where LC is the encoding of a clause C ∈ F in the syntactic
form prescribed by the proof system (an axiom clause).

Inference Dt = Dt−1 ∪ {L} for some L inferred by one of the inference rules for P from a set of
assumptions L1, . . . , Lm ∈ Dt−1.

Erasure Dt = Dt−1 \ {L} for some L ∈ Dt−1.

A P-refutation π : F `⊥ of a CNF formula F is a P-derivation π = {D0, . . . , Dτ} such that D0 = ∅
and ⊥ ∈ Dτ , where ⊥ is the representation of contradiction (e.g. for resolution the empty clause without
literals).

Definition 2.2 (Refutation size, length and space). Given a size measure S (L) for lines L in P-deri-
vations (which we usually think of as the number of symbols in L, but other definitions can also be
appropriate depending on the context), the size of a P-derivation π is the sum of the sizes of all lines
in a derivation, where lines that are derived multiple times are counted with repetitions. The length of
a P-derivation π is the number of axiom downloads and inference steps in it.3 For a space measure
SpP(D) defined for P-configurations, the space of a derivation π is defined as the maximal space of a
configuration in π.

We define the P-refutation size of a formula F , denoted SP(F `⊥), to be the minimum size of any
P-refutation of it. The P-refutation length LP(F ` ⊥) and P-refutation space SpP(F ` ⊥) of F are
analogously defined. When the proof system in question is clear from context, we will drop the subindex
in the proof complexity measures.

Let us next give formal definitions in the framework of Definition 2.1 of the proof systems that will

be of interest in this paper. Below, the notation G1 · · · Gm

H
means that if G1, . . . , Gm have

been derived previously in the proof (and are currently in memory), then we can infer H .

Definition 2.3 (Resolution). In resolution, the lines in a derivation are clauses and inferences follow the
resolution rule:

B ∨ x C ∨ x
B ∨ C

(2.1)

for clauses B and C. We refer to (2.1) as resolution on the variable x and to B ∨ C as the resolvent of
B ∨ x and C ∨ x on x. Sometimes it will be useful to allow an additional rule, weakening:

B
B ∨ C

(2.2)

for clauses B and C. Weakening is admissible, in the sense that weakening can be eliminated from every
resolution refutation without increasing any of the standard parameters such as length, size, or space.

For resolution, the length measure is as defined in Definition 2.2. We will consider three separate
space measures: clause space, total space and width.

Definition 2.4 (Width and space in resolution). The width W(C) of a clause C is the number of
literals in it, and the width of a CNF formula or clause configuration is the size of the widest clause in it.
The clause space Sp(C) of a clause configuration C is the number of clauses in C, and the total space
TotSp(C) is the total number of literals in C counted with repetitions. The width or space of a resolution
refutation π is the maximum that the corresponding measures attains over any configuration C ∈ π.

3The reader who so prefers can instead define the length of a derivation π = {D0, . . . , Dτ} as the number of steps τ in it,
since the difference is at most a factor of 2. We have chosen the definition above for consistency with previous papers defining
length as the number of lines in a listing of the derivation.

8

2 Preliminaries

Remark 2.5. When studying and comparing the complexity measures for resolution in Definition 2.4, as
was noted in [ABRW02] it is preferable to prove the results for k-CNF formulas, i.e., formulas where
all clauses have size upper-bounded by some constant. This is especially so since the width and space
measures can “misbehave” rather artificially for formula families of unbounded width (see [Nor09b,
Section 5] for a discussion of this). Since every CNF formula can be rewritten as an equivalent formula
of bounded width, it therefore seems natural to insist that the formulas under study should have width
bounded by some constant.

The polynomial calculus (PC) proof system was introduced in [CEI96] under the name of “Gröbner
proof system.” In a PC-refutation, clauses are interpreted as multilinear polynomials. For instance, the
requirement that the clause x∨ y ∨ z should be satisfied gets translated to the equation xy(1− z) = 0 or
xy − xyz = 0 (recall that we think of 0 as true and 1 as false), and we derive contradiction by showing
that there is no common root for the polynomial equations corresponding to all the clauses.

Definition 2.6 (Polynomial Calculus (PC)). Lines in a polynomial calculus proof are multivariate poly-
nomial equations p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F. It is customary to omit “= 0”
and only write p. The derivation rules are as follows, where α, β ∈ F, p, q ∈ F[x, y, z, . . .], and x is any
variable:

Boolean axioms
x2 − x

(forcing 0/1-solutions).

Linear combination
p q

αp + βq

Multiplication p
xp

For an assignment α to variables and a PC configuration P, we say that α satisfies P, or P(α) = 0, if
when we substitute 0 for each true variable in α and 1 for each false variable in α then all polynomials
in P are zeroed.

Definition 2.7 (PC refutation). The PC translation of a clause C is the product
∏

x∈P x×
∏

x∈N (1−x)
written out as a sum of monomials, where P is the set of variables which appear positively in C, and N
is the set of variables appearing negatively. Note that the PC translation is defined in such a way that a
literal xb (where b ∈ {0, 1}) is satisfied if its PC translation is zeroed when substituting x = b.

A polynomial calculus refutation of a CNF formula F is a derivation of 1. The size measure for
lines (polynomials) in a PC-derivation is the number of monomials in the polynomial (counted with
repetitions).4 The (monomial) space of a PC-configuration (a set of polynomials) is the total number of
monomials in the configuration (counted with repetitions).5

The representation of a clause
∨n

i=1 xi as a PC-polynomial is
∏n

i=1(1 − xi), which means that the
number of monomials is exponential in the clause width. This problem arises only for negative literals,
however—a large clause with only positive literals is translated to a single monomial. This is a weakness
of monomial space in polynomial calculus when compared to clause space in resolution. In order to
obtain a cleaner, more symmetric treatment of proof space, in [ABRW02] the proof system polynomial
calculus resolution (PCR) was introduced as a common extension of polynomial calculus and resolution.
The idea is to add an extra set of parallel formal variables x, y, z, . . . so that positive and negative literals
can both be represented in a space-efficient fashion. Thus, in PCR the clause x ∨ y ∨ z gets translated to
the single monomial xyz.

4Note that if one wanted to nitpick, one could argue that the number of variables in each monomial should also be counted
to get a true size measure. However, size as defined in Definition 2.7, which is the standard definition in the literature, clearly
is within a linear factor of this and is much cleaner to work with (assuming that the field F is constant so that we do not need to
worry about issues regarding representation of the coefficients).

5Alekhnovich et al. [ABRW02] define monomial space as the maximal number of distinct monomials in any configuration.
While their lower bounds hold even for this stricter definition (and so do ours), we think that their definition is somewhat
artificial and prefer the definition given here.

9

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Definition 2.8 (Polynomial Calculus Resolution (PCR)). Lines in a PCR-proof are polynomials over
the ring F[x, x, y, y, z, z, . . .], where as before F is some field. We have all the axioms and rules of PC
plus the following axioms:

Complementarity
x + x− 1

for all pairs of variables (x, x).

A truth value assignment α to the variables x, y, z, . . . extends to an assignment α̃ to the variables
x, x, y, y, z, z, . . . by assigning ¬α(x) to x. The assignment α satisfies a PCR-configuration P if its
extension α̃ satisfies P (under the semantics of PC).

Definition 2.9 (PCR-refutation). The PCR translation of a clause C is the monomial
∏

x∈P x ×∏
x∈N x, where P is the set of variables which appear positively in C, and N is the set of variables

which appear negatively in C. A PCR-refutation of a CNF formula is a derivation of 1. Size, length and
space are defined as for PC.

The point of the complementarity rule is to force x and x to have opposite values in {0, 1}, so that
they encode complementary literals. This means that one can potentially avoid an exponential blow-up
in size measured in the number of monomials (and thus also for space). In PCR, monomial space is a
natural generalization of clause space, since every clause translates into one monomial as just explained.

We remark that although the measure of total space, considering the total number of symbols in
memory, is perhaps a priori the most natural one, most papers on proof space have focused on space
measured as the number of lines in memory (in particular, the number of clauses). However, as observed
in [ABRW02], for strong enough proof systems, this “line space” measure is no longer interesting since
just one unit of memory can contain a big AND of all formulas derived so far. But this measure does make
perfect sense for resolution. For PC/PCR, however, measuring just the number of polynomial equations
is not meaningful, since every equation can be of exponential size and encode very much information.
Instead, the natural generalization of clause space is monomial space.

In general, admissible inferences in a sequential proof system are defined by a set of syntactic infer-
ence rules. In what follows, we will also be interested in a strengthened version of this concept, which
was made explicit in [ABRW02].

Definition 2.10 (Syntactic and semantic derivations). We refer to derivations according to Defini-
tion 2.1, where each new line L has to be inferred by one of the inference rules for P , as syntactic
derivations. If instead any line L that is semantically implied by the current configuration can be derived
in one atomic step, we talk about a semantic derivation.

More precisely, in a resolution refutation, a clause D can be inferred from a configuration C if
every truth assignment which satisfies all clauses in C also satisfies D. In a semantic PC refutation, a
polynomial Q can be inferred from a clause configuration P if every 0/1 assignment to the variables in
P which zeroes all polynomials in P also zeroes Q. Semantic PCR is defined similarly.

Clearly, semantic derivations are at least as strong as syntactic ones, and they are easily seen to be
superpolynomially stronger with respect to length for any proof system where superpolynomial lower
bounds are known. This is so since a semantic proof system can download all axioms in the formula one
by one, and then deduce contradiction in one step since the formula is unsatisfiable. Therefore, semantic
versions of proof systems are mainly interesting when we want to reason about space or the relationship
between space and length. If we can prove lower bounds not just for syntactic but even semantic versions
of proof systems, this of course makes these bounds much stronger.

An even stronger proof system, defined in [ABRW02], is functional calculus (FC). This purely se-
mantical system works with arbitrary Boolean functions, regardless of their syntactical representation
complexity. In fact the space complexity for FC defined below will simply minimize over all such repre-
sentations. Although this system is not natural, the space lower bound for PCR applies to it as well, and
it is a useful tool for proving lower bounds when an abstraction from particulars of a given syntactical
system is desirable and instructive.

10

3 Upper Bounds on Space for k-CNFs in Polynomial Calculus

Definition 2.11 (Functional Calculus (FC)). The line of a functional calculus derivation is an arbi-
trary Boolean function (that is, a Boolean-valued function of Boolean variables). The single inference
rule is the semantical one, i.e., derive g from f1, . . . , fn whenever every truth assignment that satisfies
f1, . . . , fn also satisfies g. An FC-refutation of a CNF formula is a functional calculus proof of 1 from
Boolean axioms and the clauses in the formula, considered as Boolean functions.

When defining the clause space of FC-configurations, we must overcome the following problem. A
line in FC is an arbitrary Boolean function f . Clearly, f can be represented by many circuits over some
complete Boolean basis, each with a different amount of clauses. The natural way to solve this problem
is to define the clause space to be the minimal number of clauses in any such representation.

Definition 2.12 (FC clause space). Let P be a set of Boolean functions over variables x1, . . . , xn. The
(clause) space of P in FC, denoted SpFC(P), is the minimal s such that we can choose s clauses with the
property that every f ∈ P can be represented as a Boolean function over the chosen clauses. Formally,
SpFC(P) is defined as

min{s : ∃{Ci(x1, . . . , xn) | i ∈ [s]} ∀f(x1, . . . , xn) ∈ P ∃g(y1, . . . , ys) f ≡ g(C1, . . . , Cs)} ,

where C1, . . . , Cs are clauses, and g runs over arbitrary Boolean functions in s variables. The space of
an FC-refutation is the maximal space of any configuration P encountered during the proof.

A proof in PCR can be converted to a proof in FC by replacing each polynomial L(x1, . . . , xn) by
the Boolean function

f(x1, . . . , xn) =

{
> if L(x1, . . . , xn) = 0,

⊥ if L(x1, . . . , xn) 6= 0.

The space of a PCR configuration P under FC is at most the number of distinct monomials appearing
in P. In particular, switching from the PCR space measure to the FC space measure cannot increase
space. This shows that FC space lower bounds also apply to PCR. Although FC is potentially much
stronger than PCR, it turns out that the lower bounds in [ABRW02] apply equally well to FC. The same
is true for the PCR lower bounds proven in this paper.

3 Upper Bounds on Space for k-CNFs in Polynomial Calculus

In this section we prove that any narrow CNF can be refuted in polynomial calculus using linear space
and exponential length simultaneously. More precisely we show the following theorem.

Theorem 3.1 (Detailed version of Theorem 1.1). Let F be an unsatisfiable k-CNF formula over n
variables. Then F can be refuted in the PC proof system in space 2k(2n + 9) and length n4n+1.

For the proof of the above theorem we introduce the notion of negative width of a formula F which
is the maximum number of negative literals in a clause in the refutation of F (see formal definition
below). The reason for introducing this notion is that, as observed in Definition 2.7, the representation
of negative literals in the PC system generally requires more space then the representation of the positive
ones. Given the definition of negative width, the proof of the theorem consists of two main steps. In the
first step we show that any unsatisfiable k-CNF formula in n variables can be refuted in the resolution
proof system in space n+2, negative width k, and length 4n simultaneously. In the second part we show
that such a refutation can be simulated in the PC proof system in space 2k(2n + 9) and length n4n+1

simultaneously. We start by defining formally the notion of negative width.

Definition 3.2 (Negative width). The negative width W−(C) of a clause C is the number of negative
literals in C, and the negative width W−(C) of a clause configuration C is the maximum negative width
of a clause in it. The negative width W−(π) of a resolution refutation π is the maximum negative width
of a configuration in π. The negative width W−(F ` ⊥) of a CNF formula F is the minimum negative
width of a resolution refutation of F .

11

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Our first main lemma says that unsatisfiable k-CNFs can be refuted in linear space, exponential
length, and in the smallest possible negative width.

Lemma 3.3. Let F be an unsatisfiable k-CNF formula in n variables. Then F can be refuted in resolu-
tion in space n + 2, negative width k, and length 4n simultaneously.

For the proof, we need the following lemma from [ET01].

Lemma 3.4 ([ET01]). Let F be an unsatisfiable CNF formula in n variables. Then F can be refuted in
resolution in space n + 2 and length 2n+1 − 1 simultaneously.

Proof of Lemma 3.3. The proof is by induction on the number of variables n. If n ≤ k then it follows
from Lemma 3.4 that F has a refutation π of space at most n + 2 and length at most 2n+1 − 1 ≤ 4n.
Since there are only k different variables the negative width of π is necessarily at most k.

For the induction step, suppose that the statement holds for every k-CNF formula in n variables and
we shall prove that it holds for every k-CNF formula in n+1 variables as well. Let F be an unsatisfiable
k-CNF formula in n + 1 variables. For b ∈ {>,⊥} and for any clause C ∈ F let C |x=b denote the
clause obtained from C by setting x to b. That is,

C |{x=⊥}=


> ¬x ∈ C
C \ {x} x ∈ C
C otherwise

C |{x=>}=


C \ {¬x} ¬x ∈ C
> x ∈ C
C otherwise

(3.1)

Let F |x=b be the k-CNF formula which contains all clauses of the form C |x=b where C ∈ F .
Pick an arbitrary variable x and consider the restricted formula F |{x=⊥}. By inductive hypothesis,

it has a refutation of length 4n, space n + 2 and negative width k. It is an easy observation that from
this refutation we obtain a proof F ` x in the same length, space and negative width. In order to do
so substitute the initial clauses in the former refutation with the corresponding initial clauses in F , and
do the same inference steps. It is easy to see that for any clause C in the refutation of F |{x=⊥}, the
corresponding clause in the new proof is either C or C ∨ x. Thus the final configuration in this proof
includes either the empty clause ⊥ or the clause x. In either case, x can be derived via weakening. Proof
length and proof space do not change and, since x is a positive literal, neither negative width does. From
now on we keep the clause x in memory.

We now consider the formula F |{x=>}. One natural approach is to use the same strategy as above
for deriving the clause ¬x from F and conclude by resolving ¬x with the literal x in memory. However,
we cannot use this strategy here because it may cause an increase of negative width. We instead simulate
such refutation directly: actually we just need to simulate downloads of the clauses of F |{x=>} which
are not in F . Such clauses are of the form C where C∨¬x is in F , so it is sufficient to download C∨¬x,
to resolve with x which is in memory and then to erase C ∨ ¬x. Notice that this simulation uses two
additional monomials in memory. In the end we get the empty clause, which concludes the refutation
of F .

So far we obtain a simulation which uses space n + 4 (instead of n + 3 which is what we want). To
reduce the space further on one unit, we do a preliminary normalization on the refutation of F |{x=>}:
we enforce that no download step increases the clause space above n + 1. If some does then it must be
followed by an erasure step, because otherwise the clause step would go above n+2 which is contrary to
our inductive hypothesis. In this case we first do the erasure step and then the download step. In this way
the space after the download step is at most n + 1. This does not hinder the soundness of the inference,
does not increase space, and guarantees that the refutation has at most n+1 clauses in memory after any
axiom downloads. Thus our simulation causes the space to go up to n + 3 at most.

The length of the total refutation is 4n for the first part and 3 · 4n for the second part (each axiom
download is simulated with three steps). In total the length is 4n+1. The negative width remains k.

Our second main lemma says that if a k-CNF formula can be refuted in resolution in space s, negative
width w, and length l simultaneously then it can be refuted in the PC proof system in space 2w · (2s + 5)

12

3 Upper Bounds on Space for k-CNFs in Polynomial Calculus

and in length 4nl. We will actually prove a slightly more general result that will also be useful to us later.
For this generalized result we need the following definition of total negative space.

Definition 3.5 (Total negative space). For a clause set C we define its total negative space TotSp−(C)
as the total number of negative literals in clauses in C counted with repetitions. For a refutation π we
define its total negative space TotSp−(π) as the maximum total negative space of a configuration in it.
The total negative space TotSp−(F ` ⊥) of a CNF formula F is the minimum total negative space of a
resolution refutation for F .

Lemma 3.6. Let F be an unsatisfiable CNF formula, and suppose that F can be refuted in resolution
simultaneously in space s, in negative width w, in length l, and in total negative space N . Then F can
be refuted in PC in length 4nl and in space

min{2w · (2s + 5), 2w + 23N+2 + s + 2}.

Proof. Let π be a resolution refutation of F in space at most s, negative width at most w, length l and
total negative space at most N . We claim that π can be transformed into a resolution refutation π̃ of F
of space at most s+2, negative width at most w +1, length at most 2nl, and total negative space at most
3N + 2, where in each application in π̃ of the resolution rule on clauses A∨ x and B ∨¬x we have that
A = B. To see this suppose that π applies the resolution rule on the clauses A ∨ x and B ∨ ¬x, where
A = a1 ∨ . . . ∨ ar and B = b1 ∨ . . . ∨ b`. Then the clause A ∨B can be derived from the clauses A ∨ x
and B ∨¬x by obtaining first the pair of clauses A∨B ∨ x and A∨B ∨¬x from the clauses A∨ x and
B ∨ ¬x respectively via weakening and then resolving A ∨B ∨ x and A ∨B ∨ ¬x on the variable x. A
space efficient derivation of this form is shown below.

(
A ∨ x

B ∨ ¬x

)
→

 A ∨ x
B ∨ ¬x

A ∨ x ∨ b1

→


A ∨ x

B ∨ ¬x
A ∨ x ∨ b1

A ∨ x ∨ b1 ∨ b2



→

 A ∨ x
B ∨ ¬x

A ∨ x ∨ b1 ∨ b2

→ . . . →

 A ∨ x
B ∨ ¬x

A ∨ b1 ∨ b2 ∨ . . . ∨ b` ∨ x



→


A ∨ x

B ∨ ¬x
A ∨B ∨ x

B ∨ ¬x ∨ a1

→


A ∨ x

B ∨ ¬x
A ∨B ∨ x

B ∨ ¬x ∨ a1

B ∨ ¬x ∨ a1 ∨ a2



→


A ∨ x

B ∨ ¬x
A ∨B ∨ x

B ∨ ¬x ∨ a1 ∨ a2

→ . . . →


A ∨ x

B ∨ ¬x
A ∨B ∨ x

A ∨B ∨ ¬x



→


A ∨ x

B ∨ ¬x
A ∨B ∨ x

A ∨B ∨ ¬x
A ∨B

→


A ∨ x

B ∨ ¬x
A ∨B ∨ x

A ∨B

→

 A ∨ x
B ∨ ¬x
A ∨B


Note that this transformation increases the space by at most 2, the negative width by at most 1, and the
total negative space by at most 2N + 2. The length increases by a factor of 2n (recall that according
to Definition 2.2 we are only counting axiom downloads and inferences). Let π̃ = {C1, . . . , Ct}, and
let π′ be the sequence of configurations {C′

1, . . . , C′
t} obtained from π̃ by replacing each clause in a

configuration Ci ∈ π with its PC translation.

13

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Since the negative width of every clause in a configuration Ci is at most w +1, its PC translation has
at most 2w+1 monomials. Since each configuration Ci contains at most s + 2 clauses this implies in turn
that each configuration C′

i contains at most 2w+1(s + 2) monomials. But since we know that the total
negative space is at most 3N + 2, another upper bound on the number of monomials in a configuration
C′

i is 23N+2 + s + 2. It remains to show that all transitions from a configuration C′
i to a configuration

C′
i+1 in π′ can be carried out in PC using inference rules with at most 2w additional space (as opposed

to considering just semantic deduction), while the length grows by a factor of at most 2.
Clearly, if Ci+1 was obtained from Ci via axiom download or erasure then the transition from C′

i to
C′

i+1 can be carried out in syntactic PC employing the same rule. Suppose that Ci+1 was obtained from
Ci using the resolution rule applied to the clauses A∨x and B∨¬x. From our assumption on π̃ we have
that A = B, and hence the PC translation of A ∨ B = A = B can be obtained from the PC translation
of A ∨ x and B ∨ ¬x via summation.

Finally, suppose that Ci+1 was obtained from Ci via weakening of a clause A to the clause A ∨ a.
If a is a positive literal then the PC translation of A ∨ a can be obtained from A via the multiplication
rule. Otherwise, suppose that a is the negative literal ¬x and let P , (1 − x)P be the PC translations
of A, A ∨ ¬x respectively. Then (1 − x)P can be obtained from P by first multiplying P by x and
then subtracting the polynomial xP from the polynomial P . Note that the latter derivation increases the
number of monomials in a configuration by at most the number of monomials in P which is at most 2w,
and the length by a factor of at most 2.

Concluding, we have that the number of monomials in each configuration C′
i is at most

min{2w+1(s + 2), 23N+2 + s + 2} , (3.2)

and that for every 1 ≤ i ≤ t the transition from C′
i to C′

i+1 can be carried out in syntactic PC using at
most 2w additional space, and increasing the length by factor of at most 2. Thus we have obtained a PC
refutation of F in length at most 4nl and space at most

2w + min{2w+1(s + 2), 23N+2 + s + 2} = min{2w · (2s + 5), 2w + 23N+2 + s + 2} (3.3)

as required.

Theorem 3.1 now follows immediately from Lemmas 3.3 and 3.6.

Proof of Theorem 3.1. Lemma 3.3 implies that F can be refuted in resolution in space n + 2, negative
width k, and length 4n simultaneously. Lemma 3.6 then implies that F can be refuted in polynomial
calculus in space 2k(2(n + 2) + 5) = 2k(2n + 9) and length n4n+1.

4 Space Complexity of 3-CNF PHP Formulas in PC

In this section, we prove an Ω(n) space lower bound on the 3-CNF extended version of the pigeonhole
principle PHPm

n . We also show that when m = n + 1 this lower bound is tight up to a constant factor,
by showing a matching upper bound. We start with the definitions of the pigeonhole principle and its
extended version.

Definition 4.1 (Pigeonhole principle formula). The pigeonhole principle formula PHPm
n is an unsat-

isfiable CNF formula over the variables {pi,j | i ∈ [m], j ∈ [n]}. We think of [m] as the set of pigeons
and of [n] as the set of holes. The PHPm

n formula consists of the following clauses:

•
∨n

j=1 pi,j for each i ∈ [m];

• pi1,j ∨ pi2,j for all distinct i1, i2 ∈ [m] and for all j ∈ [n].

The extended version F̃ of a CNF formula F is defined as follows.

14

4 Space Complexity of 3-CNF PHP Formulas in PC

Definition 4.2 (Extended version). We define the extended version of a clause C = a1 ∨ a2 ∨ . . .∨ an,
n > 3, as the following 3-CNF formula over n + 2 clauses and 2n + 1 variables:

{y0} ∪ {yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ n} ∪ {yn} .

If C has at most 3 literals then the extended version of C equals C. The variables y0, y1, . . . , yn are
called extension variables. The extended version F̃ of a CNF formula F is the union of all extended
versions of clauses in F , where the extension variables used for each clause in F are distinct.

Thus, the extended version P̃HPm
n of the pigeonhole principle PHPm

n is the 3-CNF which consists
of the following clauses:

• yi,0, yi,0 ∨ pi,1 ∨ yi,1, yi,1 ∨ pi,2 ∨ yi,2, . . . , yi,n−1 ∨ pi,n ∨ yi,n, yi,n for each i ∈ [m];

• pi1,j ∨ pi2,j for all distinct i1, i2 ∈ [m] and for all j ∈ [n].

It can be verified that the extended version F̃ of a CNF formula F is unsatisfiable if and only if F is
unsatisfiable. In their paper [ABRW02], Alekhnovich et. al. proved a lower bound of Ω(n) on the space
complexity of the pigeonhole principle PHPm

n in the PCR proof system.

Theorem 4.3 ([ABRW02]). For any m > n, it holds that SpPCR
(
PHPm

n `⊥
)

= Ω(n).

Since the PCR proof system is stronger than the PC proof system with respect to space, the above
theorem holds for the PC proof system as well.

Corollary 4.4. For any m > n, it holds that SpPC
(
PHPm

n `⊥
)

= Ω(n).

It is not difficult to see that in the PC proof system SpPC
(
F̃ ` ⊥

)
≤ SpPC

(
F ` ⊥

)
+ O(1) since

every PC refutation of F can be transformed into a PC refutation of F̃ using only constant additional
space. Our main theorem in this section says that for the pigeonhole principle PHPm

n the converse is
also true, up to a constant factor.

Theorem 4.5. For any m > n, it holds that SpPC
(
PHPm

n `⊥
)
≤ 3

2SpPC
(
P̃HPm

n `⊥
)

+ O(1).

The combination of Corollary 4.4 and Theorem 4.5 yields the first non-constant space lower bound
on a 3-CNF formula in the PC system.

Corollary 4.6. For any m > n, it holds that SpPC
(
P̃HPm

n `⊥
)

= Ω(n).

Proof of Theorem 4.5. We will show a way to transform any PC refutation of P̃HPm
n into a PC refutation

of PHPm
n without increasing the monomial space by more than a constant factor. Let π = {C1, . . . , Ct}

be a PC refutation of P̃HPm
n in space s. Let π′ = {C′

1, . . . , C′
t} be the sequence of configurations

obtained from π by substituting each extension variable yi,j , 0 ≤ j ≤ n − 1, which appears in a
polynomial in a configuration in π with the product of variables

∏n
t=j+1 pi,t, and substituting the variable

yi,n with 1.
Since variables are substituted with products of variables, the number of monomials in each config-

uration in π′ is the same as the number of monomials in the corresponding configuration in π. It remains
to show that all transitions from C′

i to C′
i+1 can be carried out in syntactic PC without increasing the

number of monomials by more than a constant factor. Clearly, if Ci+1 was obtained from Ci via erasure,
the addition rule or via multiplication by a variable which is not an extension variable, then C′

i+1 can be
obtained from C′

i by applying the same rule, and without increasing the space complexity. It remains to
handle the cases in which Ci+1 was obtained from Ci via multiplication by an extension variable or via
axiom download.

If Ci+1 was obtained from Ci via multiplication of a polynomial Q by an extension variable yi,j

then this can be simulated by a sequence of multiplications by the variables pi,j+1, pi,j+2, . . . , pi,n. For
this, one additional space is needed to keep the intermediate polynomials of the form

∏r
t=j+1 pi,t · Q,

15

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

j + 1 ≤ r < n, in memory. Since the configuration Ci+1 contains both polynomials Q and yi,jQ and
has space at most s, this implies that the space of the intermediate polynomial

∏r
t=j+1 pi,t ·Q is at most

s/2. Hence the monomial space increases by a factor of at most 3/2.
Finally, suppose that Ci+1 was obtained from Ci via an axiom download. An axiom of the form yi,0

is substituted with
∏

j∈[n] pi,j , which is indeed a PC translation of an axiom in PHPm
n . The axiom yi,n

is substituted with 0, and thus can be eliminated from the refutation. A generic axiom yi,j−1 ∨ pi,j ∨ yi,j

evaluates to
(
1−

∏n
t=j pi,t

)
pi,j
∏n

t=j+1 pi,t =
∏n

t=j pi,t −
∏n

t=j p2
i,t. The latter polynomial can be

derived in constant monomial space from the axioms p2
i,j − pi,j . A similar procedure can be employed

to infer the evaluation of any axiom y2
i,j − yi,j .

A natural question is whether the lower bound given in Corollary 4.6 is tight. We show that when
m = n + 1 this is indeed the case (up to a constant factor). Note that an application of Theorem 3.1
will only give an upper bound of O(n2) on the PC space of P̃HPn+1

n since the number of variables
in P̃HPn+1

n is Θ(n2). Instead we shall use the fact that SpPC
(
F̃ ` ⊥

)
≤ SpPC

(
F ` ⊥

)
+ O(1) for

every CNF formula F , and thus in order to prove the upper bound on P̃HPn+1
n it suffices to prove the

following.

Lemma 4.7. For any m > n, it holds that SpPC
(
PHPm

n `⊥
)
≤ n + O(1).

Putting together Corollary 4.6 and Lemma 4.7 we obtain Theorem 1.2. For the proof of Lemma 4.7
we shall need the following claim, which will also be useful for us later when proving Theorem 7.4.

Claim 4.8. For a > 0, b > 0 and clauses X, Y let F be the CNF formula(
X ∨

a∨
i=1

xi

)
∧

Y ∨
b∨

j=1

yj

 ∧

 a∧
i=1

b∧
j=1

(xi ∨ yj)

 .

Then X ∨ Y can be derived from F in resolution in clause space 4. Furthermore, if xi and yj are all
positive literals and X, Y contain only positive literals then X ∨ Y can be derived from F in resolution
in clause space 4 and total negative space 4 (as per Definition 3.5) simultaneously.

Proof. Without loss of generality we may assume that X, Y are empty clauses, thus we aim to derive
the empty clause. The general case follows by weakening. For any fixed i we derive xi in the following
way: resolve

∨b
j=1 yj with the axioms xi ∨ y1, . . . , xi ∨ yb one by one, and after every step erase from

memory both premises. In this way we can derive any unit clause xi in clause space 3. Thus we can reach
the empty clause by resolving all such unit clauses with

∨a
t=1 xt. The whole inference can be carried in

clause space 4. Notice that assuming positivity of X , Y and the literals xi and yj , at most 4 negative
literals are simultaneously in memory.

We now proceed to the proof of Lemma 4.7.

Proof of Lemma 4.7. We focus on the case m = n+1. Observe that when m > n all clauses of PHPn+1
n

are also clauses of PHPm
n , so that is without loss of generality.

For the proof we use a resolution refutation of PHPn+1
n from [BP98, Lemma 1]. Based on this

refutation, we show that PHPn+1
n can be refuted in resolution in clause space n + O(1) and in total

negative space O(1) simultaneously. Once we have such an efficient resolution refutation we apply
Lemma 3.6 to get a PC-refutation which meets the claimed bound.

The refutation of PHPn+1
n is best explained in an inference system specialized for such a formula.

We will later see how to simulate this refutation efficiently in the resolution system. For any sets D ⊆
[n + 1] and R ⊆ [n] we denote by (D → R) the positive clause

∨
i∈D

∨
j∈R pi,j . In our new inference

system, denoted by P , the axioms will be all pigeon axioms ({i} → [n]). For subsets A,B ⊆ [n + 1]
and j ∈ [n] the inference rule is defined as follows:

(A → {j}) (B → {j})
(A ∩B → {j})

(4.1)

16

5 A PCR Space Lower Bound for Bit-Graph PHP Formulas

We show by induction on |D| that for any non-empty D ⊆ [n + 1] the clause (D → [n + 1− |D|])
can be derived in P in clause space at most |D|+ 2. This will imply that the empty clause ([n + 1] → ∅)
is derivable in P in space at most n + 3.

For |D| = 1 this is immediate since the clause is an axiom. For |D| > 1, fix D := {a1, a2, . . . at},
fix j := n + 1 − |D| + 1, and fix F := (D → [n + 1 − |D|]). Note that by the inductive hypothesis,
each formula F ∨ (D \ {ai} → {j}) is a weakening of a formula which can be derived in clause space
|D|+ 1. Hence, F can be derived in space |D|+ 2 as follows:

F ∨ (D \ {a1} → {j}) F ∨ (D \ {a2} → {j})
F ∨ (D \ {a1, a2} → {j}) F ∨ (D \ {a3} → {j})

...
F ∨ (D \ {a1, a2, . . . , at−1} → {j}) F ∨ (D \ {at} → {j})

F ∨ (∅ → {j})
Next we show how to simulate the above refutation in resolution. Note that all clauses in the above

refutation are valid clauses in resolution and contain only positive literals, so we just need to show how
to simulate the inference rule (4.1) without increasing the clause space and the total negative space by
more than a constant. Letting X = Y = (A∩B → {j}), and recalling that we have an axiom pi,j ∨pi′,j

for any i 6= i′ ∈ [n + 1], j ∈ [n], Claim 4.8 implies that the inference rule (4.1) can be simulated in
resolution by increasing both the clause space and the total negative space by at most a constant.

Concluding, we have that the PHPn+1
n formulas can be refuted in clause space n+O(1) and in O(1)

total negative space simultaneously. Lemma 3.6 then implies that PHPn+1
n can be refuted in monomial

space n + O(1). As we already observed, this also holds for any PHPm
n with m > n.

5 A PCR Space Lower Bound for Bit-Graph PHP Formulas

In this section, we present a PCR space lower bound for an encoding of the pigeonhole principle that
has clauses of only logarithmic width. The lower bound we get is linear in the number of holes, just
as in [ABRW02], but measured in the initial width of the clauses it is an exponential improvement. In
Section 6, we will improve this further to a qualitatively similar bound for CNF formulas of bounded
width, resolving an open problem in [ABRW02]. We believe that the result in this section is of indepen-
dent interest, however, since the lower bound holds for a natural family of CNF formulas, whereas the
formulas in Section 6 are more contrived and are designed specifically to get PCR space lower bounds.

The formulas we consider are so-called bit-graph pigeonhole principle formulas, which are encod-
ings of the functional pigeonhole principle where the functionality condition that every pigeon should
only go into one hole does not require extra axiom clauses but is hard-coded in the variable representa-
tion. Such an encoding arises naturally in bounded arithmetic. In what follows, we write [i, j] to denote
the set {i, i + 1, . . . , j}, and [i, j) to denote {i, i + 1, . . . , j − 1}.

Definition 5.1 (Bit-graph PHP formula). Let n = 2`. The bit-graph pigeonhole principle formula
BPHPm

n has propositional variables x[p, i] for each p ∈ [0,m) and i ∈ [0, `). We think of [0,m) as a
set of pigeons and of [0, n) as a set of holes. Each pigeon p is thought of as mapping to the hole whose
binary encoding is given by the string x[p, ` − 1] · · ·x[p, 1]x[p, 0], and we say that the variables x[p, i]
are associated with the pigeon p.

The formula BPHPm
n then asserts that no two pigeons map to the same hole. For every two pigeons

p1 6= p2 ∈ [0,m) and every hole h ∈ [0, n) we have a hole axiom

H(p1, p2, h) =
`−1∨
i=0

x[p1, i]1−hi ∨
`−1∨
i=0

x[p2, i]1−hi ,

stating that either p1 is not mapped to h or p2 is not mapped to h, where h`−1 · · ·h1h0 is the binary
encoding of h.

17

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Recall the notational convention adopted in the preliminaries that for a variable v we have v0 ≡ v
and v1 ≡ v, so that vb = 0 (i.e., vb is true) if and only if v = b. Then what the axiom clause H(p1, p2, h)
says is that for at least one of the pigeons p1 or p2, the binary expansion of the hole this pigeon is sent to
does not match the binary expansion of h.

Fix n = 2` ≥ 1 and m > n. We will prove a PCR space lower bound for BPHPm
n using a similar

construction to that in Alekhnovich et al. [ABRW02]. As in [ABRW02], our proof also applies to the
much stronger functional calculus proof system (see Definition 2.11). Notice that we can identify total
truth value assignments α to the variables of BPHPm

n with functions fα : [0,m) → [0, n) mapping
pigeons to holes. In what follows, we will switch freely back and forth between these two ways of
looking at assignments.

Definition 5.2 (Well-behaved assignment). Let α be a total assignment to the variables of BPHPm
n and

let S ⊆ [0,m) be a set of pigeons. We say that α is well-behaved on S if the holes assigned by α to the
pigeons in S are all distinct.

Definition 5.3 (Commitment). A disjunctive commitment, or just commitment, is a clause of the form
x[p1, i1]b1 ∨ x[p2, i2]b2 , where p1 and p2 are distinct pigeons.

A commitment set is a set of commitments where all pigeons are distinct. We think of a commitment
set as the conjunction of its constituent commitments. The domain of a commitment set A, written
dom A, is the set of pigeons mentioned in A. The size of a commitment set A, denoted |A|, is the number
of commitments in A.

An assignment α is well-behaved on and satisfies a commitment set A if α is well-behaved on dom A
and satisfies A.

The following observation is central to our argument. It states that given a one-to-one assignment of
fewer than n/2 pigeons to holes and a literal concerning a new pigeon, we can always find some new
hole to assign to that pigeon so that the literal is satisfied.

Lemma 5.4. Suppose S is any set of fewer than n/2 pigeons, α is an assignment well-behaved on S,
and x[p, i]b is a literal associated with a pigeon p /∈ S. Then we can modify α by reassigning p in such
a way that the new assignment is well-behaved on S ∪ {p} and satisfies the literal x[p, i]b.

Proof. There are exactly n/2 holes for pigeon p that will satisfy the literal x[p, i]b if p is sent there.
Fewer than n/2 holes are taken by the pigeons in S so there is a hole h, not assigned to any pigeon in S,
whose assignment to p will satisfy x[p, i]b.

Corollary 5.5. Let S, T be two disjoint sets of pigeons such that |S ∪ T | ≤ n/2, and let X be a set
containing exactly one literal associated with pigeon p for each p ∈ T . Then any assignment which
is well-behaved on S can be modified, by reassigning pigeons in T , into an assignment which is well-
behaved on S ∪ T and satisfies all literals in X .

Proof. Consider the pigeons in T one by one, and apply Lemma 5.4.

Definition 5.6 (Entailment). Given a commitment set A and a PCR-configuration P, we say that A
entails P over well-behaved assignments if every assignment α which is well behaved on and satisfies A
also satisfies P.

The idea of the lower bound is that, given a purported refutation using small space, we can inductively
construct a commitment set At for each configuration Pt in the proof in such a way that the commitment
set At entails the configuration Pt. The following lemma, based on a similar lemma in [ABRW02], is
the technical heart of the lower bound. We will use it to show that as long as the configurations do not
get too big, we never need to use a commitment set that is more than twice as large as its configuration.
We can then use Corollary 5.5 to show that all the configurations are satisfiable, giving a contradiction.

18

5 A PCR Space Lower Bound for Bit-Graph PHP Formulas

m1

m2

m3

m4

m5

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C9

C10

(a) Bipartite graph with monomials
mi ∈ P and commitments Cj ∈ A.

m1

m2

m3

m4

m5

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C9

C10m′
4

m′
5

(b) Hall’s theorem applied on M \ Γ
(with monomial copies) and A \N(Γ).

m1

m2

m3

m4

m

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C ′

C ′′

(c) Graphs with Γ and matchings
constructed at end of argument.

Figure 1: Illustration of argument in proof of the Locality lemma.

Lemma 5.7 (Locality lemma). Let A be a commitment set and P be a PCR-configuration such that
A entails P over well-behaved assignments and |A| ≤ n/4. Then there is a commitment set B of size
|B| ≤ 2 · Sp(P) such that B entails P over well-behaved assignments.

Proof. Consider a bipartite graph with the left vertex set being the set M of all distinct monomials in P,
and the right vertex set being the set of all disjunctive commitments in A. We draw an edge between a
monomial m ∈ M on the left and a commitment C ∈ A on the right if there is a pigeon p mentioned in
both (that is, there is some variable x[p, i]b in m and some literal x[p, i′]b

′
in C, where i may be different

from i′, and b from b′). To follow the rest of the argument, it might be helpful for the reader to consider
the illustration in Figure 1(a).

Let Γ ⊆ M be a set of maximal size such that |N(Γ)| ≤ 2 · |Γ|. Note that Γ is not necessarily unique,
but such a maximal set always exists, since Γ = ∅ satisfies the requirement.

It must hold for all S ⊆ M \Γ that |N(S) \N(Γ)| > 2 · |S|, since otherwise we could add S to Γ to
get a larger set. But this implies that there is a matching of every m ∈ M \Γ to two distinct commitments
C ′, C ′′ ∈ A \N(Γ) such that no two m,m′ share any commitments. To see this, just make two copies of
each monomial/vertex in m ∈ M \ Γ with the same edges from both copies to the vertices on the right,
apply Hall’s theorem, and then identify the two copies of the monomial again (this step is depicted in
Figure 1(b), where Γ and N(Γ) are in the upper half of the graph).

Fix such a monomial m ∈ M\Γ and suppose it has been matched to the two disjunctive commitments
C ′ = x[p′, i′]b

′ ∨ x[q′, j′]c
′

and C ′′ = x[p′′, i′′]b
′′ ∨ x[q′′, j′′]c

′′
as shown in Figure 1(c). By construction,

m mentions at least one pigeon each from C ′ and C ′′, so suppose without loss of generality that p′ and
p′′ are such pigeons. (It can be the case that m also mentions q′ or q′′ or both, but by construction we
are guaranteed that m mentions at least one pigeon in each commitment and this is all we will need
here.) Thus, there exist literals x[p′, i1]b1 and x[p′′, i2]b2 such that m = x[p′, i1]b1 · x[p′′, i2]b2 ·m′. We
construct a new commitment Cm = x[p′, i1]b1 ∨ x[p′′, i2]b2 . We construct commitments in this way for
every m ∈ M \ Γ, and let our new commitment set be B = N(Γ) ∪ {Cm | m ∈ M \ Γ}, that is, the
union of all these new commitments with the old commitments from A in N(Γ). We claim that this is
the commitment set we are looking for.

Firstly, it is easily verified that B is indeed a commitment set. This is so since all pigeons mentioned
in A are different, and the pigeons in B are just a subset of the pigeons in A. Secondly, with regard to
size it clearly holds that |B| ≤ 2 · |Γ| + |M \ Γ| ≤ 2 · |M | ≤ 2 · Sp(P) (taking a look at Figure 1(c)
might be helpful in verifying this). However, we also need to show that B entails P over well-behaved

19

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

assignments. That is, we must prove that every β that is well-behaved on and satisfies B also satisfies P.
Note that this is a priori not clear. We know that this holds for A by assumption, but dom A is potentially
much larger than dom B and so A only has to deal with much more well-behaved assignments. Also,
and more seriously, the commitments in B are not a subset of those in A, and on the contrary might be in
conflict with A in the sense that satisfying literals in B falsifies literals in A.

We prove that B entails P over well-behaved assignments in a slightly roundabout way by finding,
given any assignment β well-behaved on and satisfying B, another assignment α such that

1. P(α) = P(β), and

2. α is well-behaved on and satisfies A.

By item 2 it follows from the inductive hypothesis that α satisfies P. But if so, then β also satisfies P by
item 1, which is what we want to prove.

To this end, let S be the set of pigeons in dom B, and let T be the set of pigeons in dom A \ dom B
(notice that dom B ⊆ dom A). Let X be the set of literals that for each p ∈ T includes the (unique)
literal x[p, i]b associated with p and appearing in A. Notice that each commitment in A \N(Γ) will have
at least one literal in X (some commitments will potentially have both literals in X). Since |A| ≤ n/4,
we have |S ∪ T | ≤ n/2. Apply Corollary 5.5 to S, T , and β to get a truth value assignment α that is
well-behaved on S ∪ T , agrees with β on pigeons outside T , and satisfies all literals in X . We claim
that this is the assignment that we need.

To see this, note first that no monomial in Γ mentions pigeons in T (by construction), so α and β
agree on monomials in Γ. For m ∈ M \Γ, all β satisfying B must set the monomial m to zero, since this
is how the new commitments were constructed. Reassigning pigeons in T can change variables in m, but
there is still at least one variable that is set to zero, zeroing the whole monomial. So for all m ∈ M \ Γ,
the assignment α gives the same value to m as does β, namely 0. Hence α and β agree on all monomials
in M and P(α) = P(β). This takes care of item 1 above. By Corollary 5.5, α is well-behaved on
S ∪ T = dom A. Also, since α satisfies all literals in X as well as N(Γ), consequently α satisfies A.
This takes care of item 2, and as already discussed it now follows that P(α) = 0. Thus, every β that is
well-behaved on and satisfies B must also satisfy P. The lemma follows.

Using this Locality lemma, we can prove our PCR space lower bound for bit-graph PHP formulas.

Theorem 5.8 (Detailed version of Theorem 1.3). SpPCR(BPHPm
n `⊥) > n/8.

Proof. Let π = {P0, . . . , PN} be a PCR-refutation of BPHPm
n in monomial space at most n/8, with

P0 = ∅ and 1 ∈ PN . We will construct by induction a sequence of commitment sets A0, . . . , AN such
that for each step t, it holds that |At| ≤ 2 · Sp(Pt) and At entails Pt over well-behaved assignments. In
particular, by Corollary 5.5 (with S = ∅) this will imply that every configuration Pt is satisfiable, which
gives a contradiction for PN .

Clearly we may define A0 to be the empty commitment. Now suppose we have defined At. To define
At+1 we consider three cases, depending on which step is used to obtain Pt+1 from Pt.

Axiom download. We distinguish two download cases: (a) complementarity axioms of the form
x + x − 1 or boolean axioms of the form x2 − x and (b) hole axioms H(p1, p2, h). In the former case,
we can simply set At+1 = At since any truth value assignment satisfies such an axiom by definition, so
let us focus on hole axiom downloads.

Suppose that Pt+1 is Pt together with some hole axiom H(p1, p2, h). Suppose first that the pigeons
mentioned in H(p1, p2, h) are already in dom At. Then we put At+1 = At. Let α be any assignment
well-behaved on and satisfying At+1. Then α satisfies Pt by the inductive hypothesis, and must also
satisfy H(p1, p2, h) since it is well-behaved on the pigeons in H(p1, p2, h).

Otherwise, there are either one or two pigeons mentioned in H(p1, p2, h) which are not in dom At.
Then for each such pigeon pi we add a “dummy” commitment Cpi to At whose sole purpose is to put pi

into the domain of At+1. We can take Cpi to be x[pi, 0] ∨ x[p′, 0], where p′ is any pigeon which has not
been used so far.

20

6 A PCR Space Lower Bound for XOR-PHP Formulas

In both cases, we add at most two new commitments, and so |At+1| ≤ 2 · Sp(Pt+1).
Inference. Suppose Pt+1 = Pt ∪ {P}, where P semantically follows from Pt. We put At+1 = At.

Clearly |At+1| ≤ 2 · Sp(Pt+1). Suppose now that α is an assignment which is well-behaved on and
satisfies At+1. The induction hypothesis implies that α satisfies Pt. Since P semantically follows from
Pt+1, α also satisfies P .

Erasure. Suppose Pt+1 ⊂ Pt. Since |At| ≤ 2 · Sp(Pt) ≤ n/4, Lemma 5.7 applies, and furnishes us
with a commitment set At+1 such that |At+1| ≤ 2 · Sp(Pt+1) and At+1 entails Pt+1 over well-behaved
assignments.

A nice feature of this lower bound is that it applies equally well to functional calculus (FC). Recall
that in FC, polynomials are replaced by arbitrary Boolean functions (more accurately, Boolean-valued
functions of Boolean variables). The space of a configuration P is the minimal number s such that for
some s clauses C1, . . . , Cs (which we consider as Boolean functions), any function in P can be written
as a function g(C1, . . . , Cs) of the clauses. Such a minimal set of clauses is known as a defining set
of clauses. The space of a functional calculus refutation is the maximal space of any configuration
encountered during the refutation.

Here is a simple example to illustrate the definition. Consider the Boolean functions f1 = x ∨ y ∨ z
and f2 = x∧ y and let P be the configuration {f1, f2}. Both functions f1, f2 can be written as functions
of the two monomials C1 = x ∨ y and C2 = z, in the following way: f1 = C1 ∨ C2, f2 = ¬C1. Since
no single monomial suffices for this purpose, the space of P is exactly 2.

The proof of Lemma 5.7 applies equally well under the functional calculus definition of space. In
the first step of the proof, we construct a bipartite graph between the set of monomials M appearing in
the given configuration P and the set of commitments A. For PCR, M is simply the set of monomials
appearing in P. For the functional calculus, we use a defining set of clauses for P. The rest of the proof
carries over without changes.

In more detail, the proof constructs a new, smaller set of commitments B. Given any assignment β
that is well-defined on and satisfies B, the proof constructs a new assignment α that is well-defined on
and satisfies A, with the additional property that all monomials in M have the same value in both α
and β. Since A entails P over well-behaved assignments, P(α) = 0. As all monomials retain their values
in β, also P(β) = 0. The conclusion is that B also entails P over well-behaved assignments.

The proof of Theorem 5.8 applies with only one small modification. Given a small-space functional
calculus refutation P0, . . . , PN of BPHPm

n , the proof constructs a matching sequence A0, . . . , AN of
commitment sets such that Ai entails Pi over well-behaved assignments, and furthermore |Ai| ≤ 2 ·
Sp(Pi). Corollary 5.5 then implies that PN is satisfiable, contrary to the assumption that 1 ∈ PN .

The commitment sets A0, . . . , AN are constructed inductively, starting with the empty commitment
set for A0. An inference step requires no changes to the commitment set, and erasures are handled
directly by Lemma 5.7. When an axiom H(p1, p2, h) is downloaded during step t, there are two cases.
If both pigeons mentioned in H(p1, p2, h) are already in the commitment set At, no changes are needed.
Otherwise, either one or two new commitments are added to At+1. This could invalidate the invariant
|At+1| ≤ 2 · Sp(Pt+1), since it might be the case that Sp(Pt+1) = Sp(Pt) (this cannot occur for PCR
under our definition of space, although it could occur under the laxer definition of [ABRW02] that only
counts distinct monomials). An application of Lemma 5.7 mitigates the issue.

6 A PCR Space Lower Bound for XOR-PHP Formulas

Let us now apply the machinery developed in Section 5 to a different encoding of the pigeonhole princi-
ple: a slightly obfuscated version using exclusive or and “hole indicators” to specify which pigeons are
placed in which holes. In this way, we can obtain strong PCR space lower bounds for CNF formulas of
constant width.

Definition 6.1 (XOR PHP formula). The XOR pigeonhole principle formula XPHPm
n has propositional

variables x[i, j] for each i ∈ [0,m) and j ∈ [0, n]. (Recall that [0,m) = {0, . . . ,m − 1} and [0, n] =

21

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

{0, . . . , n}.) We think of [0,m) as a set of pigeons and [0, n] as a set of hole indicators. Each pigeon i
gives a 0 or 1 value to every hole indicator j, recorded in the variable x[i, j].

The hole indicators indicate assignments of pigeons to holes indirectly: a pigeon i ∈ [0,m) is
assigned to a hole j ∈ [0, n) when x[i, j] 6≡ x[i, j + 1] is true, that is when x[i, j] and x[i, j + 1] have
different truth values. This assignment need not be unique: the formula will only ensure that each pigeon
is assigned to an odd number of holes.

The formula XPHPm
n asserts the following:

1. Every pigeon gives different values to the first and last hole indicators. That is, for each i ∈ [0,m),
x[i, 0] 6≡ x[i, n].

2. At most one pigeon is assigned to any given hole. That is, for all distinct i, i′ ∈ [0,m) and all
j ∈ [0, n), (x[i, j] ≡ x[i, j + 1]) ∨ (x[i′, j] ≡ x[i′, j + 1]).

Formally, we think of this as a 4-CNF formula including the clauses

x[i, 0] ∨ x[i, n]

x[i, 0] ∨ x[i, n]

}
for each i ∈ [0,m),

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

 for all j ∈ [0, n), i, i′ ∈ [0,m), i 6= i′.

Written in this way, condition 1 translates into 2m clauses of width 2 (pigeon axioms) and condition 2
into 4

(
m
2

)
n clauses of width 4 (hole axioms).

For m > n, XPHPm
n is a contradiction. To see this notice that, by condition 1, for each pigeon

i ∈ [0,m) there must be at least one hole j ∈ [0, n) for which i gives different values to indicators j and
j + 1; say that such a j is assigned to i. Since n < m, by the pigeonhole principle there must be some
pair of distinct pigeons which are assigned the same hole. But this contradicts condition 2.

Notice that for any pigeon i and any hole indicator j, it is possible to fix the value of x[i, j] to 0 or 1
without putting any constraint on the holes which are assigned to i.

Fix n ≥ 1. We will prove a PCR space lower bound for XPHPm
n by essentially the same argument

as in Section 5, with the difference that it is a little easier for us to satisfy Lemma 6.4, which leads to a
space lower bound of n/4 rather than n/8.

Definition 6.2 (Well-behaved assignment). Let α be an assignment to all the variables of XPHPm
n and

let S ⊆ [0,m) be a set of pigeons. We say that α is well-behaved on S if two things hold. Firstly, for
each pigeon i ∈ S, α assigns exactly one hole j to i by either

1. setting x[i, j′] to 0 for all j′ in [0, j] and to 1 for all j′ in [j + 1, n], or

2. setting x[i, j′] to 1 for all j′ in [0, j] and to 0 for all j′ in [j + 1, n].

Secondly, the holes assigned by α to the pigeons in S are all distinct.

Definition 6.3 (Commitment). As before, a commitment is the disjunction of two literals. A commitment
set is a set of commitments in which no pigeon appears twice.

Lemma 6.4. Suppose S is any set of fewer than n pigeons, α is an assignment well-behaved on S, and
x[i, j]b is a literal associated with a pigeon i /∈ S. Then we can modify α by reassigning the pigeon i in
such a way that the new assignment is well-behaved on S ∪ {i} and satisfies the literal x[i, j]b.

22

6 A PCR Space Lower Bound for XOR-PHP Formulas

Proof. Choose a hole k which is not already occupied by any pigeon in S. Then assign hole k to pigeon
i using an assignment either of type 1 or of type 2 from Definition 6.2. One of these assignments will
satisfy x[i, j]b.

Corollary 6.5. Let S, T be two disjoint sets of pigeons such that |S ∪ T | ≤ n, and let X be a set
containing one literal associated with pigeon i for each i ∈ T . Then any assignment which is well-
behaved on S can be modified, by reassigning pigeons in T , into an assignment which is well-behaved
on S ∪ T and satisfies all literals in X .

Proof. Consider the pigeons in T one by one, and apply the lemma.

Definition 6.6 (Entailment). Given a commitment set A and a configuration P, we say that A entails P
over well-behaved assignments if, for every assignment α which is well-behaved on dom A, if α satisfies
A then α also satisfies P.

Lemma 6.7 (Locality lemma). Let A be a commitment set and P be a configuration such that A entails P
over well-behaved assignments and |A| ≤ n/2. Then there is a commitment set B of size |B| ≤ 2 ·Sp(P)
such that B entails P over well-behaved assignments.

Proof. The proof of this lemma is virtually the same as the proof of Lemma 5.7.
Consider the bipartite graph with on one side the set M of all monomials in P, and on the other side

the set of all commitments in A. We draw an edge between a monomial and a commitment if there is
a pigeon mentioned in both. Let Γ be a maximal set of monomials such that |N(Γ)| ≤ 2|Γ|. By Hall’s
theorem, there exist two injective functions f1, f2 : M \ Γ 7→ P \N(Γ) with disjoint ranges.

The new commitment set B consists of N(Γ) together with one additional commitment Cm for
each monomial m ∈ M \ Γ. It immediately follows that |B| ≤ 2Sp(P). To define Cm, consider
the two commitments C1, C2 matched to m. The commitment C1 mentions some pigeon i1 which has
an associated literal x[i1, j1]b1 appearing in m. Similarly, C2 mentions some pigeon i2 which has an
associated literal x[i2, j2]b2 appearing in m. We define Cm = x[i1, j1]b1 ∨ x[i2, j2]b2 . As a result, any
assignment satisfying Cm will zero the monomial m.

We proceed to show that B entails P over well-behaved assignments. Let α be an assignment which
is well-behaved on and satisfies B. We will define a new assignment β such that each monomial in M
gets the same value in both α and β, but also such that β is well-behaved on and satisfies A, implying
that P(β) = 0 and hence that P(α) = 0.

Let S be the set of pigeons appearing in dom B, and let T be the set of pigeons appearing in dom A\
dom B. With a view to applying Corollary 6.5, let X be the set of literals that for each pigeon i ∈ T
includes the (unique) literal x[i, j]b appearing in A.

Since |A| ≤ n/2, we know that |S ∪ T | ≤ n, and so we can apply Corollary 6.5 to the assignment
α to get an assignment β which is well-behaved on S ∪ T , is identical to α on pigeons outside T , and
satisfies X . As α and β differ only on T , all monomials in Γ get the same value in both assignments.
Every other monomial in M is zeroed in both assignments. Since α and β are identical on S, β satisfies
all commitments N(Γ). The choice of X guarantees that it satisfies all other commitments in A.

Theorem 6.8 (Detailed version of Theorem 1.4). SpPCR(XPHPm
n `⊥) > n/4.

Proof. The proof of this theorem is virtually identical to that of Theorem 5.8.
Thus, in order to derive a contradiction, suppose that π = {P0, . . . , PN} is a PCR-refutation of

XPHPm
n in space at most n/4, with P0 = ∅ and 1 ∈ PN . We will construct inductively a sequence of

commitment sets A0, . . . , AN such that at each time t it holds that |At| ≤ 2|Pt| and At entails Pt over
well-behaved assignments. In particular, by Corollary 6.5 this will imply that every configuration Pt is
satisfiable, which then leads to the desired contradiction for PN .

We define A0 to be the empty commitment. Suppose now that we have defined At. To define At+1,
we consider three cases, depending on which step is used to obtain Pt+1 from Pt.

23

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Axiom download. There are three kinds of axioms: logical axioms, pigeon axioms and hole axioms.
Logical axioms are handled in the same way as semantic inferences.

Suppose that Pt+1 is Pt together with some axiom D which is either a pigeon axiom or a hole axiom.
Suppose first that the pigeons mentioned in D (one pigeon in the case of a pigeon axiom, two pigeons
in the case of a hole axiom) are already in At. Then we put At+1 = At. Let α be any assignment well-
behaved on and satisfying At+1. Then α satisfies Pt by the inductive hypothesis, and must also satisfy
D since it is well-behaved on the pigeons in D.

Otherwise, there are either one or two pigeons mentioned in D which are not in dom At. For each
such pigeon i we add a “dummy” commitment Ci to At whose sole purpose is to put i into the domain
of At+1. We can take Ci to be x[i, 0]∨ x[i′, 0], where i′ is any unused so far pigeon. We add at most two
new commitments, and so |At+1| ≤ 2Sp(Pt+1).

Inference. Suppose Pt+1 = Pt ∪ {P}, where P semantically follows from Pt. We put At+1 = At.
Any assignment α which is well-behaved on and satisfies At+1 satisfies Pt by the induction hypothesis.
Since P semantically follows from Pt, α also satisfies P .

Erasure. Suppose Pt+1 ⊂ Pt. Since |At| ≤ 2Sp(Pt) ≤ n/2, Lemma 6.7 applies and furnishes us
with a commitment set At+1 such that |At+1| ≤ 2Sp(Pt+1) and At+1 entails Pt+1 over well-behaved
assignments.

The lower bound also applies to the functional calculus, using the same arguments as in Section 5.

7 Space Complexity of 3-CNF Versions of Wide CNF Formulas

Although this paper reports progress on understanding space complexity for polynomial calculus, and in
particular establishes the first nontrivial space lower bounds for k-CNF formulas with k constant, space
is still not a very well-understood measure. This is especially true for algebraic proof systems like PCR,
where it is not clear how much useful information can be encoded in sparse polynomial equations.

Perhaps one of the most annoying open questions is that although we obtain space lower bounds for
k-CNF formulas in this paper, we can do so only for k ≥ 4. Thus, it is still consistent with state of the art
that all 3-CNF formulas would be easy for PCR with respect to space, although this appears absurd. In
this context, one especially simple and intriguing open problem is the following. Suppose that we have
a CNF formula F with wide clauses, and that we convert it to its canonical equivalent 3-CNF version F̃
as described in Definition 4.2. What is the space complexity of F̃ compared to that of F ? Clearly, the
space needed to refute the 3-CNF version cannot increase by more than a small additive constant. But
are there formulas for which the conversion to 3-CNF can decrease the space complexity substantially?
If the answer would be no, then one way of getting strong space lower bounds for 3-CNF formulas would
be to take a formula with wide clauses where we know that the space complexity is large and consider
its 3-CNF extended version.

Although the question how the space complexities of F and F̃ are related remains open in the general
case, we are able to show for a particular class of CNF formulas which we call weight-constrained that
the space complexity of their extended versions stays essentially the same (up to a constant factor) in both
resolution and PCR. One interesting CNF formula belonging to this class is the functional pigeonhole
principle FPHPm

n (the definition of which is given below for completeness). Thus, our result implies
that in order to prove space lower bounds for the extended version of the functional pigeonhole principle
in PCR it suffices to prove space lower bounds for the standard version with wide clauses. We start with
the definition of a weight-constrained formula.

Definition 7.1 (Weight-constrained formula). Let F be a CNF formula. We say that F is a weight-
constrained formula if for every clause l1 ∨ l2 ∨ . . .∨ lm with m ≥ 4 contained in F , the formula F also
contains clauses li ∨ lj for all 1 ≤ i < j ≤ m.

Thus, a weight-constrained CNF F encodes explicitly that exactly one literal in each of its wide
clauses must be true. One natural weight-constrained CNF formula is the functional pigeonhole principle

24

7 Space Complexity of 3-CNF Versions of Wide CNF Formulas

FPHPm
n , which is similar to the regular pigeonhole principle FPHPm

n but with the additional constraint
that a single pigeon cannot occupy more than one hole.

Definition 7.2 (Functional pigeonhole principle). The functional pigeonhole principle FPHPm
n is an

unsatisfiable CNF formula over the variables {pi,j | i ∈ [m], j ∈ [n]}. We think of [m] as a set of
pigeons and of [n] as a set of holes. The FPHPm

n formula consists of the following clauses:

•
∨n

j=1 pi,j for every i ∈ [m];

• pi1,j ∨ pi2,j for all distinct i1, i2 ∈ [m] and all j ∈ [n];

• pi,j1 ∨ pi,j2 for all i ∈ [m] and all distinct j1, j2 ∈ [n].

Recall the definition of the extended version of a CNF formula F given in Definition 4.2. Our first
main result says that for any such weight-constrained CNF F , the space complexity of F and of its
extended version F̃ are roughly the same in resolution.

Theorem 7.3 (Theorem 1.5 for resolution). Let F be a weight-constrained CNF and let F̃ be its ex-
tended version. Then it holds that

SpR(F `⊥) = SpR
(
F̃ `⊥

)
+ O(1) .

Proof. For one direction, observe that we can derive any clause of F from F̃ in space 3.
For the other direction, let π = {C1, . . . , Ct} be a resolution refutation of F̃ . Our goal will be

to show a resolution refutation of F which uses only a constant additional space. For this end we
will define a map which substitutes extension variables with sub-clauses in the original variables. Let
C = a1 ∨ a2 ∨ . . . ∨ an be a clause in F , and let {y0} ∪ {yi−1 ∨ ai ∨ yi | 1 ≤ i ≤ n} ∪ {yn} be
its extended version. Intuitively, setting the extension variable yi to true implies that at least one of the
variables ai+1, . . . an is true while setting yi to false implies that at least one of the variables a1, . . . , ai

is true. Our substitution will try to capture exactly this intuition.
More precisely, the substitution into an extension variable yi will be defined as follows:

yi 7→
n∨

t=i+1

at yi 7→
i∨

t=1

at yn 7→ ⊥ yn 7→ > . (7.1)

Let π′ = {C′
1, . . . , C′

t} be the sequence of configurations obtained from π by substituting each extension
variable in a configuration in π according to the above substitution. Our goal will be to show that π′ can
be turned into a syntactic small space resolution refutation of F . Clearly, the space complexity of π′ is
the same as the space complexity of π. It remains to show that all transitions from C′

i to C′
i+1 can be

carried out syntactically in the resolution proof system with only additional constant space. We split into
cases according to the way in which Ci+1 was obtained from Ci in the refutation π of F̃ .

Erasure. Clearly, in this case the transition from C′
i to C′

i+1 can be made by applying the same rule
without increasing the space complexity.

Axiom download. Suppose that Ci+1 was obtained from Ci by downloading an axiom A ∈ F̃ .
It can be verified that in this case the substitution turns A into either > or a clause C in F , and thus
the transition from C′

i to C′
i+1 can be made by downloading the axiom C without increasing the space

complexity.
Inference rules. Suppose that Ci+1 was obtained from Ci by resolving on a variable which is not an

extension variable. Then in this case C′
i+1 can be obtained from C′

i by applying the same rule. Suppose
otherwise that Ci+1 was obtained from Ci by resolving the clauses A ∨ yi and B ∨ yi on the extension
variable yi. Let X and Y be the clauses obtained from A and B respectively after the substitution. Our
goal will be to show that X ∨Y can be obtained from X ∨

∨n
t=i+1 ai and Y ∨

∨i
t=1 ai in constant clause

space, where C = a1 ∨ a2 . . . ∨ an is a clause of F . But since F is weight-constrainted we have that
ai ∨ aj is a clause of F for all 1 ≤ i < j ≤ n. Thus the desired conclusion follows from Claim 4.8.

25

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Our second main result is an analogue of the above theorem for the PCR proof system.

Theorem 7.4 (Theorem 1.5 for PCR). Let F be a weight-constrained CNF and let F̃ be its extended
version. Then it holds that

SpPCR(F `⊥) = Θ
(
SpPCR

(
F̃ `⊥

))
.

Proof. The proof is quite similar to the proof of Theorem 7.3 except that we now define a substitution of
extension variables with products of variables instead of sub-clauses. Formally, let C = a1∨a2∨. . .∨an

be a clause of F , and let {y0} ∪ {yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ n} ∪ {yn} be its extended version. The
substitution into an extension variable yi will be defined as follows:

yi 7→
n∏

t=i+1

at yi 7→
i∏

t=1

at yn 7→ 1 yn 7→ 0 . (7.2)

As was the case in the proof of Theorem 7.3, let π = {C1, . . . , Ct} be a PCR refutation of F̃ , and
let π′ = {C′

1, . . . , C′
t} be the sequence of configurations obtained from π by substituting each extension

variable in a configuration in π according to the above substitution. As was the case before, the monomial
space of π′ is the same as that of π and it remains to show that all transitions from C′

i to C′
i+1 can be

carried out syntactically in the PCR proof system in small space. We split into cases according to the
way in which Ci+1 was obtained from Ci in the refutation π of F̃ .

Erasure. Clearly, in this case the transition from C′
i to C′

i+1 can be made by applying the same rule.
Axiom download of a clause in F̃ . Suppose that Ci+1 was obtained from Ci by downloading the

axiom A ∈ F̃ . It can be verified that the substitution turns the PCR translation of A either into the PCR
translation of a clause in C ∈ F or to the polynomial 0. Thus the transition from C′

i to C′
i+1 can be made

by downloading the axiom C ∈ F without increasing the monomial space.
Inference rules. Clearly, if Ci+1 was obtained from Ci via the addition rule or via multiplication by

a variable which is not an extension variable then C′
i+1 can be obtained from C′

i using the same rule. If
Ci+1 was obtained from Ci via multiplication of a polynomial Q by an extension variable yi then this can
be simulated by a sequence of multiplications by the variables ai+1, ai+2, . . . , an. For this one additional
space is needed for keeping the intermediate polynomials of the form

∏r
t=i+1 at · Q, i + 1 ≤ r < n,

in memory. Since the configuration Ci+1 contains both polynomials Q and yiQ and has space at most
s, this implies that the space of the intermediate polynomial

∏r
t=i+1 at · Q is at most s/2. Thus the

monomial complexity increases by a factor of at most 3/2. A multiplication by an extension variable yi

can be simulated in PCR similarly.
Logical axioms. If Ci+1 was obtained from Ci by downloading an axiom of the form x2 − x where

x is not an extension variable then C′
i+1 can be obtained from C′

i by downloading the same axiom.
Consider now the logical axioms y2

i − yi and y2
i − yi for an extension variable yi. The corresponding

polynomials after substitution have the form m2 −m for some square-free monomial m = v1 · · · vl and
we deduce them in constant space: for each 0 ≤ i ≤ l we download v2

i − vi and we multiply to obtain

(v1 · · · vi−1)v2
i (v

2
i+1 · · · v2

l)− (v1 · · · vi−1)vi(v2
i+1 · · · v2

l) . (7.3)

The sum of all these polynomials results in m2−m. Notice that a constant number of these polynomials
is sufficient to be kept in memory in order to do the sum, and a constant number of monomials is sufficient
to produce each of them.

It remains to show how to handle the logical axioms of the form yi + yi − 1. In particular we want
to deduce

∏n
t=i+1 at +

∏i
t=1 at − 1 using constant space. The fact that F is weight-constrained allows

to use Claim 4.8: there is a constant space resolution refutation for clauses
∨i

t=1 at and
∨n

t=i+1 at. PCR
simulates resolution space efficiently, so it is possible to deduce 1 from polynomials p :=

∏i
t=1 at and

q :=
∏n

t=i+1 at in constant monomial space. Multiply every line in the latter deduction by (p−1)(q−1)
to get that p(p − 1)(q − 1) and q(p − 1)(q − 1) infer (p − 1)(q − 1) in at most 4 times the original
monomial space. Polynomials p(p − 1)(q − 1) and q(p − 1)(q − 1) are multiple of p2 − p and q2 − q,

26

8 Concluding Remarks

respectively, so they follow in constant space from logical axioms. With (p − 1)(q − 1) in memory we
can download pq, which is the encoding of initial clause C: the difference pq− (p− 1)(q− 1) is exactly
the desired polynomial p + q − 1.

8 Concluding Remarks

In this paper, we prove the first lower bounds on space in polynomial calculus (PC) and polynomial
calculus resolution (PCR) for CNF formulas of constant width. This resolves a relatively longstanding
open question from [ABRW02]. We also establish nontrivial upper bounds for proof size and space
in PC, showing that for CNF formulas of constant width the worst-case behaviour is the same as for
resolution and PCR. Finally, we study how the space complexity of a CNF formula is related to the space
complexity of its standard transformation to 3-CNF, and show that for a certain class of CNF formulas,
including the functional pigeonhole principle, the space complexity of a wide formula and its 3-CNF
version coincide asymptotically for both resolution and PCR.

However, the concept of space is still a fairly poorly understood in polynomial calculus. This is all the
more true for the cutting planes proof system discussed in the introduction, for which no nontrivial space
lower bounds are known. Thus, many interesting and natural problems regarding space in polynomial
calculus and cutting planes remain open. We conclude this paper by giving a (non-exhaustive) list of
such problems which we believe merit further study.

1. Prove lower bounds on monomial space in PCR, or as a first step in PC, that match the worst-case
upper bounds up to constant factors. That is, we are looking for formulas (preferably of constant
width) such that the monomial space lower bound is linear in the size of the formula. All lower
bounds proven in this paper are sublinear even in the number of variables, not to mention the size
of the formula (which for a k-CNF formula is asymptotically the same as the number of clauses).

2. Prove lower bounds on space in PCR or at least PC for random k-CNF formulas. (These formu-
las are excellent candidates for having space complexity matching the worst case upper bound as
discussed above.)6

3. Separate size and space in PCR by proving (or perhaps on the contrary ruling out) that there are
k-CNF formulas that have small PCR-refutations but require large PCR-space.

4. Prove (or rule out, although that would be surprising) time-space trade-offs for PCR or at least
for PC. That is, find formulas, preferably in constant width, which are easy with respect to mono-
mial space and also have proofs of small size, but for which optimizing one of these measures
must cause a dramatic blow-up in the other. In view of the recent paper [HN12], a natural can-
didate for such results are the so-called pebbling formulas studied in [BN08, BN11], and another
recent time-space trade-offs paper that might be relevant is [BBI12].7

5. Prove any nontrivial space lower bounds or time-space trade-offs for cutting planes, or indeed any
lower bound on proof size for formulas such as random k-CNFs or Tseitin contradictions.

6. Can the space required in resolution or PCR for refuting the standard 3-CNF version F̃ of a CNF
formula be asymptotically less than that of the original, wide formula F ? Or is it the case that the
space complexity of F and F̃ always coincide (asymptotically or even up to an additive term)? As
a concrete example, is it true that the 3-CNF versions P̃HPm

n of the pigeonhole principle formulas
require space linear in n for PCR?

6As noted in Section 1.3, Bonacina and Galesi [BG12] announced such a result just as the final version of this paper was
being prepared, which also resolves the problem in item 1. Interestingly, however, so far their techniques work only for k ≥ 4
and not for k = 3.

7Again as noted in Section 1.3, results along these lines have now been reported in [BNT12].

27

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

Acknowledgements

This article is the result of a long process, and various subsets of the authors would like to acknowledge
useful discussions had during the last few years with various subsets of Paul Beame, Eli Ben-Sasson,
Michael Brickenstein, Arkadev Chattopadhyay, Trinh Huynh, Johan Håstad, Alexander Razborov, and
Iddo Tzameret. We are also grateful to Mladen Mikša and Marc Vinyals for carefully reading this
manuscript and finding numerous typos and other mistakes that needed to be fixed. Needless to say,
any remaining ones are solely the responsibility of the authors.

The work presented in this paper was initiated at the Banff International Research Station workshop
on proof complexity (11w5103) in October 2011 and part of the work was also performed during the
special semester on Logic and Complexity at the Charles University in in Prague in the autumn of 2011
supported by the Marie Curie Initial Training Network MALOA (Mathematical Logic and Applications).

The research of the first author has received funding from the European Union’s Seventh Framework
Programme (FP7/2007–2013) under grant agreement no 238381. The second author was supported
by the Eduard Čech Center for Algebra and Geometry, and also performed part of this work while at
Sapienza – Università di Roma. The third author was supported by Swedish Research Council grant
621-2010-4797 and by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007–2013) / ERC grant agreement no 279611. The research of the fourth author was
supported by the Israel Ministry of Science and Technology. Also, part of the work of the fourth author
was performed while visiting KTH Royal Institute of Technology supported by the foundations Johan
och Jakob Söderbergs stiftelse, Stiftelsen Längmanska kulturfonden, and Helge Ax:son Johnsons stiftelse.
The fifth author was supported by grant IAA100190902 of GA AV ČR, by the Center of Excellence CE-
ITI under grant P202/12/G061 of GA ČR and by RVO: 67985840.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version appeared in STOC ’00.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width.
Journal of Computer and System Sciences, 74(3):323–334, May 2008. Preliminary ver-
sion appeared in CCC ’03.

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. Journal of Artificial Intelligence Re-
search, 40:353–373, January 2011. Preliminary version appeared in SAT ’09.

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calcu-
lus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35,
2003. Available at http://people.cs.uchicago.edu/∼razborov/files/
misha.pdf. Preliminary version appeared in FOCS ’01.

[BBI12] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:
Superpolynomial lower bounds for superlinear space. In Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC ’12), pages 213–232, May 2012.

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner-
basis computations with Boolean polynomials. Journal of Symbolic Computation,
44(9):1326–1345, September 2009.

[BDG+09] Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus Wedler, and Oliver
Wienand. New developments in the theory of Gröbner bases and applications to formal
verification. Journal of Pure and Applied Algebra, 213(8):1612–1635, August 2009.

28

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

References

[Bea04] Paul Beame. Proof complexity. In Steven Rudich and Avi Wigderson, editors, Com-
putational Complexity Theory, volume 10 of IAS/Park City Mathematics Series, pages
199–246. American Mathematical Society, 2004.

[Ben09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution.
Random Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version
appeared in CCC ’01.

[BG12] Ilario Bonacina and Nicola Galesi. Pseudo-partitions, transversality and locality: A com-
binatorial characterization for the space measure in algebraic proof systems. Technical Re-
port TR12-119, Electronic Colloquium on Computational Complexity (ECCC), Septem-
ber 2012.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of Com-
puter and System Sciences, 62(2):267–289, March 2001. Preliminary version appeared in
CCC ’99.

[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Reso-
lution refinements that characterize DLL-algorithms with clause learning. Logical Meth-
ods in Computer Science, 4(4:13), December 2008.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009.

[BI10] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial
calculus. Computational Complexity, 19:501–519, 2010. Preliminary version appeared in
FOCS ’99.

[BJ10] Eli Ben-Sasson and Jan Johannsen. Lower bounds for width-restricted clause learning on
small width formulas. In Proceedings of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in
Computer Science, pages 16–29. Springer, July 2010.

[BKPS02] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of res-
olution and Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075,
2002. Preliminary versions of these results appeared in FOCS ’96 and STOC ’98.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago, 1937.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separa-
tion of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Sepa-
rations and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innova-
tions in Computer Science (ICS ’11), pages 401–416, January 2011. Full-length version
available at http://eccc.hpi-web.de/report/2010/125/.

[BNT12] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polyno-
mial calculus. Submitted, 2012.

29

http://eccc.hpi-web.de/report/2010/125/

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS

[BP98] Samuel R. Buss and Toniann Pitassi. Resolution and the weak pigeonhole principle. In
Proceedings of the 11th International Workshop on Computer Science Logic (CSL ’97),
volume 1414 of Lecture Notes in Computer Science, pages 149–156. Springer, 1998.

[BPR95] Maria Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing (STOC ’95), pages 575–584, May 1995.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared
in STOC ’99.

[CCT87] William Cook, Collette Rene Coullard, and Gyorgy Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Sym-
posium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99.

[FLN+12] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and Noga Ron-Zewi.
Space complexity in polynomial calculus. In Proceedings of the 27th Annual IEEE Con-
ference on Computational Complexity (CCC ’12), pages 334–344, June 2012.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying commu-
nication complexity hardness to time-space trade-offs in proof complexity. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing (STOC ’12), pages 233–248,
May 2012.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial cal-
culus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating proof
complexity measures and practical hardness of SAT. In Proceedings of the 18th Inter-
national Conference on Principles and Practice of Constraint Programming (CP ’12),

30

References

volume 7514 of Lecture Notes in Computer Science, pages 316–331. Springer, October
2012.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for
satisfiability. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’96), pages 220–227, November 1996.

[NH08] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length
in resolution (Extended abstract). In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC ’08), pages 701–710, May 2008.

[Nor09a] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in res-
olution. SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary version
appeared in STOC ’06.

[Nor09b] Jakob Nordström. A simplified way of proving trade-off results for resolution. Information
Processing Letters, 109(18):1030–1035, August 2009. Preliminary version appeared in
ECCC report TR07-114, 2007.

[Nor12] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science, 2012. To appear. Available at http://www.csc.kth.
se/∼jakobn/research/.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone com-
putations. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Com-
plexity, 7(4):291–324, December 1998.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, January 1965.

[SAT] The international SAT Competitions. http://www.satcompetition.org.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,
13(4):482–537, December 2007.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
January 1987.

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.csc.kth.se/~jakobn/research/
http://www.csc.kth.se/~jakobn/research/
http://www.satcompetition.org

