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Abstract

We give new combinatorial proofs of known almost-periodicity results for sumsets of sets
with small doubling in the spirit of Croot and Sisask [CS10], whose almost-periodicity lemma
has had far-reaching implications in additive combinatorics. We provide an alternative (and
Lp-norm free) point of view, which allows for proofs to easily be converted to probabilistic
algorithms that decide membership in almost-periodic sumsets of dense subsets of Fn

2 .
As an application, we give a new algorithmic version of the quasipolynomial Bogolyubov-Ruzsa

lemma recently proved by Sanders [San10]. Together with the results by the last two authors
[TW11], this implies an algorithmic version of the quadratic Goldreich-Levin theorem in which
the number of terms in the quadratic Fourier decomposition of a given function is quasipoly-
nomial in the error parameter ε, compared with an exponential dependence previously proved
by the authors. It also improves the running time of the algorithm to have quasipolynomial
dependence on ε instead of an exponential one.

We also give an application to the problem of finding large subspaces in sumsets of dense sets.
Green showed in [Gre05] that the sumset of a dense subset of Fn

2 contains a large subspace. Using
Fourier analytic methods, Sanders [San11a] proved that such a subspace must have dimension
Ω(αn). We provide an alternative (and Lp norm-free) proof of a comparable bound, which is
analogous to a recent result of Croot,  Laba and Sisask [C LS11] in the integers.
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1 Introduction

When Croot and Sisask introduced “A probabilistic technique for finding almost-periods of convo-
lutions” in 2009 [CS10], it created quite a splash in the additive combinatorics community. Roughly
speaking, their main result says that if A ⊆ Fn2 is a set whose sumset A+A = {a+a′ : a, a′ ∈ A} is
small, then there exists a dense set T such that the convolution 1A ∗1A(·) of the indicator function
of A with itself and its translate 1A ∗ 1A(· + t) are almost indistinguishable in the L2 norm (or
higher Lp norms) for all t ∈ T . This set T may then be referred to as the set of “almost-periods”.

Croot and Sisask’s original proof used a simple sampling technique combined with tailbounds for a
multinomial distribution, which Sanders replaced by the Marcinkiewicz-Zygmund inequality. Both
made crucial use of Lp norms, where in applications p is taken to be very large (a function of the
density α of a set A ⊆ Fn2 under investigation, such as logα−1).

Here we give a different proof of the Croot-Sisask lemma that proceeds entirely without recourse to
Lp norms, instead only relying on Chernoff-type tail estimates for sampling. It is our hope that this
proof will appeal to a larger part of the theoretical computer science community than the currently
existing ones, thereby increasing the likelihood of further novel applications of this lemma.

In the present paper we illustrate the use of this new technique by new and simplified proofs of
several known results as well as an algorithmic application. Let us describe these in more detail.

Applications. In its original form, the Bogolyubov-Ruzsa lemma states that if A ⊆ Fn2 is a set of
density α, then 4A := A + A + A + A contains a subspace of codimension at most 2α−2. One of
the first applications Croot and Sisask gave of their new technique was a weak Bogolyubov-Ruzsa
lemma, which asserted the existence of iterated sumsets of a dense set inside 4A. It was quickly
recognized by Sanders [San10] that the latter result could be boot-strapped, using a little Fourier
analysis, to a quasipolynomial version of the Bogolyubov-Ruzsa lemma in which the codimension
of the subspace that is found within 4A is polylogarithmic in the density of the set A (so the size
of this subspace is quasipolynomial in the density). This result has important implications for the



bounds in Freiman’s theorem which describes the structure of sets of integers with small sumsets
[Ruz99], and the inverse theorem for the Gowers U3 norm [Sam07, GT08]. It was also a crucial
ingredient in Sanders’s groudbreaking upper bound of C(log logN)5N/ logN for the size of a subset
of {1, . . . , N} not containing any 3-term arithmetic progressions [San11b].

In Section 4.1 we give a straightforward proof of Sanders’s quasipolynomial Bogolyubov-Ruzsa
lemma, specifically adapted to the setting of Fn2 , which avoids the use of higher-order Lp norms
and instead relies exclusively on Chernoff-type tail bounds.

Next we present an algorithmic application. The original motivation for this paper lies with work
by the last two authors on quadratic decomposition theorems. The aim of such theorems is to
decompose any bounded function f : Fn2 → C as a sum g + h, where g is quadratically uniform,
in the sense that the Gowers U3 norm ‖g‖U3 is small, and h is quadratically structured, in the
sense that it is a bounded sum of quadratically structured objects. These types of decompositions
constitute a higher-order analogue of classical Fourier decompositions, and had previously been
obtained in an abstract and non-constructive way (either using a form of the Hahn-Banach theorem
[GW12], or a so-called energy increment approach [Gre07]).

In [TW11], the authors gave a probabilistic algorithm that, given any function f : Fn2 → C,
would with high probability compute, in time polynomial in n, a quadratic decomposition for that
function with a specified U3 error ε. This essentially amounts to computing a “quadratic Fourier
decomposition” for f , and was therefore termed a quadratic Goldreich-Levin theorem in analogy
with the well-known linear case [GL89]. The quadratic Goldreich-Levin algorithm consisted of two
parts: a deterministic part which is able to construct the quadratically structured part of f under
the assumption that we have an algorithm which provides some quadratic phase functions that f
correlates with (if there is no such phase function, we just set g = f). The algorithm for finding
a quadratic phase function, which constitutes the second part of the overall algorithm, is basically
an algorithmic version of the proof of the inverse theorem for the U3 norm, which states that if a
bounded function f has large U3 norm, then it correlates with a quadratic phase.

As stated above, the Bogolyubov-Ruzsa lemma is crucial in the proof of the inverse theorem,
and hence a new proof with a quantitative improvement has implications for the efficiency of the
quadratic Goldreich-Levin algorithm outlined above. In Section 4.2 we tie the techniques developed
in the earlier sections of the paper into the algorithm given in [TW11] to obtain an improvement
(from exponential to quasipolynomial in the quadratic uniformity parameter ε) in the running time
as well as in the number of terms that are obtained in the final quadratic decomposition.

One of the main difficulties, encountered already in [TW11], is that the individual subroutines in
the quadratic Goldreich-Levin algorithm, which correspond to algorithmic versions of theorems in
additive combinatorics, are probabilistic in nature. Since they are applied in sequence, this means
that the input for the next subroutine comes with a certain amount of noise, and it is therefore
necessary to prove robust algorithmic versions of the theorems from additive combinatorics. This
applies in particular to the quasipolynomial Bogolyubov-Ruzsa lemma, for which we give robust
version in this paper. Roughly speaking, one of the core issues we deal with is that the proof
of the Bogolyubov-Ruzsa lemma assumes one has access to an indicator function for the sumset
A + A, whereas in algorithmic applications we have oracle access only to A’s indicator function,
and therefore certain nontrivial modifications to the proof are necessary. These modifications, as
well as a detailed introduction to the key concepts in additive combinatorics and quadratic Fourier
analysis needed for the proof, are postponed to the start of Section 4.

Our final application concerns the problem of finding large subspaces within sumsets of a dense
set. Green [Gre05] had shown that if A ⊆ Fn2 has density α, then A + A contains a subspace of
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dimension Ω(α2n). Sanders proved in [San11a] using a Fourier-iteration lemma that this subspace
must be of dimension at least Ω(αn), and remarked that a bound of comparable strength follows
implicitly from the techniques of Croot,  Laba and Sisask [C LS11], who addressed the more general
problem in the integers, asking for long arithmetic progressions in sumsets of dense sets.

In Section 5 we provide a simplified proof of the Croot- Laba-Sisask bound, again avoiding Fourier
analysis and using instead our sampling approach to Croot-Sisask almost-periodicity in Fn2 . It
requires a more careful analysis of our sampling technique, which we shall give in detail in the
appendix. We do not address the question in the integers, nor the non-abelian case, of which this
is a toy version.

Chernoff vs. Lp norms. It is of course well known that Lp bounds and Chernoff’s inequality are,
in a certain sense, equivalent. Specifically, a random variable X obeys a Chernoff-type tail bound
of the form

P[|X| ≥ t‖X‖2] ≤ C exp(−Ω(t2))

if and only if its Lp norm satisfies
‖X‖p ≤ C

√
p‖X‖2

for all p ∈ [2,∞), the latter representing a Khinchine-type inequality (from which Marcinkiewicz-
Zygmund can be derived). For a proof of this statement we refer the reader to the excellent lecture
notes by Sanders [San12].

We therefore do not claim that our proof of Croot and Sisask’s almost-periodicity results is radically
new. However, we do think it writes itself rather naturally in the special case of Fn2 , and it lends itself
more readily to applications in that setting. Moreover, these results can also be “algorithmified”
in what is in our opinion a more natural way.

Acknowledgements. The last two authors would like to thank Tom Sanders for numerous helpful
remarks and discussions. The first two authors would like to thank Shachar Lovett for sharing with
them his view of Sanders’s proof of the quasipolynomial Bogolyubov-Ruzsa lemma (cf. [Lov12]).

2 Preliminaries

In this section we fix our notation and collect some results that we shall use throughout the paper.
Fundamental to our approach will be the following Chernoff-type tail bound for sampling [TV06].

Lemma 2.1 (Hoeffding bound for sampling) If X is a random variable with |X| ≤ 1 and µ̂
is the empirical average obtained from t samples, then

P [|E [X]− µ̂| > γ] ≤ 2 exp(−2γ2t).

Throughout the paper we shall make use of the discrete Fourier transform, which we define as
follows. For f : Fn2 → C, let

f̂(t) = Ex∈Fn
2
f(x)(−1)x·t

for any t ∈ F̂n2 = Fn2 , where Ex∈Fn
2

simply stands for the normalized sum 2−n
∑

x∈Fn
2

and x · t =∑n
i=1 xiti for a pair of vectors x = (x1, . . . , xn), t = (t1, . . . , tn). The inversion formula states that

f(x) =
∑
t∈Fn

2

f̂(t)(−1)x·t
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for all x ∈ Fn2 , and Parseval’s identity takes the form

Ex∈Fn
2
f(x)g(x) =

∑
t∈Fn

2

f̂(t)ĝ(t),

for any two functions f, g : Fn2 → C. Finally, the convolution of two such functions is defined by

f ∗ g(x) = Ey∈Fn
2
f(y)g(x− y),

and the fact that the Fourier transform diagonlizes the convolution operator is expressed via the
idenity

f̂ ∗ g(t) = f̂(t)ĝ(t),

which holds for all t ∈ Fn2 .

The set of large Fourier coefficients determines the value of a function to a significant extent, and
for many arguments it is important to be able to estimate its size and determine its structure. For
a function f : Fn2 → C, let

Specρ(f) = {t ∈ Fn2 : |f̂(t)| ≥ ρ‖f‖1}. (1)

For a subset A ⊆ Fn2 we let 1A denote the indicator function of A and µA denote the function
1A · (2n/|A|) so that Ex∈Fn

2
[µA(x)] = 1. In the special case where f = 1A for a subset A ⊆ Fn2 of

density α, Parseval’s identity tells us that |Specρ(1A)| ≤ ρ−2 ·α−1. A more precise result is known:
Chang’s theorem [Cha02] states that Specρ(1A) is in fact contained in a subspace of dimension at
most Cρ−2 logα−1.

Theorem 2.2 (Chang’s theorem) Let ρ ∈ (0, 1] and A ⊆ Fn2 . Then there is a subspace V of Fn2
such that Specρ(1A) ⊆ V and

dim
(
V
)
≤ 8

log(2n/|A|)
ρ2

.

For an elegant recent proof of this result using entropy, see Impagliazzo et al. [IMR12].

Finally, for two real numbers α, β we write α ≈ε β to denote |α−β| ≤ ε and if |α−β| > ε we write
α 6≈ε β. All logarithms in this paper are taken to base 2.

3 Sampling-based proofs of almost-periodicity results

For comparison, we give the precise statement of the original result of Croot and Sisask (Proposition
1.3 in [CS10]). Since it is valid for general groups G, it is written in multiplicative notation.

Proposition 3.1 (Croot-Sisask Lemma, Lp local version) Let ε > 0 and let m ≥ 1 be an
integer. Let G be a group and let A,B ⊆ G be finite subsets such that |B · A| ≤ K|B|. Then there
is a set X ⊆ A of size |X| ≥ |A|/(2K)50m/ε such that for each x ∈ XX−1,

‖1A ∗ 1B(yx)− 1A ∗ 1B(y)‖2m2m ≤ max{εm|AB||B|m, ‖1A ∗ 1B‖mm}εm|B|m.

In the next section we prove our version of the Croot-Sisask lemma, given as Proposition 3.2 below.
In Section 3.2 we give a modified version in which the resulting set of almost-periods, appearing
as XX−1 in Proposition 3.1 above, can in fact taken to be a subspace, which is what we need in
applications.
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3.1 Croot-Sisask almost-periodicity

To state our result concisely, we define the following measure which will play a central role in what
follows. Given subsets A,B ⊂ Fn2 where A is finite, define the measure of additive containment
ρA→B : Fn2 → [0, 1] by

ρA→B(y) := P
a∈A

[y + a ∈ B] =
|(y +A) ∩B|

|A|
= µA ∗ 1B(y), (2)

for each y ∈ Fn2 . Notice that ρA→B(y) = 1 when y+A ⊆ B and ρA→B(y) = 0 when (y+A)∩B = ∅.

Proposition 3.2 (Almost-periodicity of sumsets) If A ⊂ Fn2 satisfies |2A| ≤ K|A|, then for
every integer t and set B ⊆ Fn2 there exists a set X with the following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[ρA→B(y) ≈2ε ρA→B(y + x)] ≥ 1− 8
|A+B|
|S|

· exp
(
−2ε2t

)
. (3)

Our proof differs from the original proof of Croot and Sisask in that it disposes of Lp-norms and
tail bounds for a multinomial distribution (or the Marcinkiewicz-Zygmund inequality), and replaces
them with sampling arguments relying on the Chernoff-Hoeffding bound.

We sketch the proof before giving the technical details. To obtain X we replace ρA→B by an
estimator function computed by taking a sequence of t independent random samples distributed
uniformly over A. Denoting the sample sequence by a = (a1, . . . , at), we estimate ρA→B(y) by the
fraction of ai ∈ a satisfying y + ai ∈ B. Denote the estimator function corresponding to a by ρ̂a.
Fixing y, the Chernoff-Hoeffding bound says that the probability that ρ̂a(y) differs from ρA→B(y)
by more than ε, i.e., the probability of the event “ρA→B(y) 6≈ε ρ̂a(y)” when a = (a1, . . . , at) is
distributed uniformly over At, is at most exp

(
−Ω

(
ε2t
))

.

The key observation in the construction of the set X is that there are many pairs of good estimator-
sequences a = (a1, . . . , at), â = (â1, . . . , ât) for which there exists a “special” element x ∈ Fn2 such
that â = x + a, where x + a := (x + a1, . . . , x + at). Such x are called “special” for the following
reason. We say y is “good” if both of the following conditions hold,

ρA→B(y) ≈ε ρ̂â(y) and ρA→B(y + x) ≈ε ρ̂a(y + x). (4)

Now if â = x+ a, then we have

ρ̂â(y) = ρ̂â(y + x+ x) = ρ̂â+x(y + x) = ρ̂a(y + x),

and combining this with (4) implies that for “good” y we have ρA→B(y) ≈2ε ρA→B(y + x). Thus,
to prove the proposition we only need to bound from below the number of “special” elements x,
which is done based on the assumption that A has small doubling. We now give the formal proof.

Proof of Proposition 3.2: To simplify notation let ρ(y) := ρA→B(y), and for a sequence
a = (a1, . . . , at) of length t, define the a-estimator of ρ to be the function ρ̂a : Fn2 → [0, 1] defined
for y ∈ Fn2 by

ρ̂a(y) :=
|{y + ai ∈ B | i = 1, . . . , t}|

t
.
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We say that a is an ε-good estimator for y if ρ(y) ≈ε ρ̂a(y).

Fix y ∈ Fn2 . Our first step towards constructing X is to show that most sample-sequences from A
are ε-good for y, provided that t, the sample size, is large enough with respect to 1/ε. Let Yi be
the indicator random variable for the event “y + ai ∈ B” when ai is chosen uniformly at random
from A. Then ρ̂a(y) = 1

t

∑t
i=1 Yi is the average of t i.i.d. indicator random variables each having

mean ρ(y), so the Chernoff-Hoeffding bound (Lemma 2.1) implies that for each y ∈ Fn2 ,

P
a∈At

[ρ(y) 6≈ε ρ̂a(y)] ≤ 2 exp
(
−2ε2t

)
. (5)

Now we proceed to show that most a ∈ At are ε-good estimators for most y. Let Za be the random
variable measuring the fraction of y ∈ A+B for which a is an ε-good estimator, that is,

Za := P
y∈A+B

[ρ(y) ≈ε ρ̂a(y)] .

Setting δ = 2 exp
(
−2ε2t

)
, we conclude from (5) via linearity of expectation that

Ea∈At [Za] ≥ 1− δ.

Markov’s inequality now shows that at least half of the sequences a ∈ At are ε-good estimators for
all but a (2δ)-fraction of y ∈ A+B, in which case we say that a is an (ε, 2δ)-good estimator for ρ.
Denote by G[ε, 2δ] ⊂ At the set of these sequences,

G[ε, 2δ] =

{
a ∈ At | P

y∈A+B
[ρ(y) ≈ε ρ̂a(y)] ≥ 1− 2δ

}
. (6)

To obtain X we partition G[ε, 2δ] as follows. Define a mapping ϕ : At 7→ {0}× (2A)t−1 by shifting
a sequence a = (a1, . . . , at) by its first element a1,

ϕ(a) = a + a1 := (a1 + a1, a1 + a2, . . . , a1 + at) (7)

Then ϕ maps the set G[ε, 2δ], which has size at least |A|t/2, into a set of size |2A|t−1 ≤ (K|A|)t−1
so by the pigeonhole principle, there is a subset G[ε, 2δ]b ⊂ G[ε, 2δ] that is mapped to the same
element b = (0, b2, . . . , bt). In addition, this subset is pretty large,

|G[ε, 2δ]b| ≥
|A|t

2Kt−1|A|t−1
=
|A|

2Kt−1 . (8)

Finally, fix an arbitrary â = (â1, . . . , ât) ∈ G[ε, 2δ]b and set

X = {â1 + a1 | (a1, . . . , at) ∈ G[ε, 2δ]b} .

To complete our proof we show that X has the three properties listed in the statement of the
lemma.

1. By definition, X ⊆ â1 +A.

2. The mapping G[ε, 2δ]b 7→ X given by (a1, . . . , at) 7→ â1 + a1 is invertible, because both â1
and b are fixed. Hence |X| = |G[ε, 2δ]b| and the size of X is bounded from below using (8).
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3. Suppose x = â1 + a1, where a1 is the first element of an (ε, 2δ)-good estimator a =
(a1, . . . , at) ∈ G[ε, 2δ]b. The key observation is that â + x = a. Indeed, the definition of
G[ε, 2δ]b implies ϕ(â) = ϕ(a), so using (7) we have

â1 + âi = a1 + ai, i = 1, . . . , t,

which, rearranging, comes out to

ai = x+ âi, i = 1, . . . , t.

In other words, â + x = a as claimed.

Recalling that â is an (ε, 2δ)-good estimator, we know that for all but a 2δ-fraction of y ∈
A+B,

ρ(y) ≈ε ρ̂â(y) (9)

and (9) also holds for all y /∈ A+B since in this case ρ̂â(y) = ρ(y) = 0. Hence we have that
(9) holds for all but a (2δ|A+B|/|S|)-fraction of y ∈ S.

Similarly, since a is an (ε, 2δ)-good estimator, we have that

ρ(y + x) ≈ε ρ̂a(y + x) (10)

for all but a (2δ|A+B|/|x+ S|)-fraction of y ∈ S. Using a union bound and the fact that
|S + x| = |S|, we find that for all but a (4δ|A+B|/|S|)-fraction of y ∈ S both (9) and (10)
hold. For such y we conclude that ρ(y) ≈2ε ρ(y+x) using the triangle inequality and the fact
that ρ̂â(y) = ρ̂â+x(y + x) = ρ̂a(y + x).

This completes the proof of the proposition.

By an inductive application of Proposition 3.2 (using the triangle inequality and the union bound),
one can prove the following iterated version.

Corollary 3.3 (Almost-periodicity of sumsets, iterated) If A ⊂ Fn2 satisfies |2A| ≤ K|A|,
then for every integer t and set B ⊆ Fn2 there exists a set X with the following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x1, . . . , x` ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[ρA→B(y) ≈2ε` ρA→B(y + x1 + . . .+ x`)] ≥ 1− 8`
|A+B|
|S|

· exp
(
−2ε2t

)
. (11)

Proof: The proof is by induction on `. Proposition 3.2 establishes the case ` = 1. For the
induction step, suppose that the lemma holds for some integer ` ≥ 1 with a set X ⊆ Fn2 . We shall
show that the same set X satisfies the above requirements for `+ 1.

Let δ := 8(|A+B|/|S|) ·exp
(
−2ε2t

)
. By the induction hypothesis, for at least a (1− `δ)-fraction of

y ∈ S, it is true that ρA→B(y) ≈2ε` ρA→B(y+x1 + . . .+x`). The case ` = 1 implies that for at least
a (1− δ)-fraction of y ∈ S, it is true that ρA→B(y + x1 + . . .+ x`) ≈2ε ρA→B(y + x1 + . . .+ x`+1).
Thus by a union bound we have that for at least a (1 − (` + 1)δ)-fraction of y ∈ S we have both
ρA→B(y) ≈2ε` ρA→B(y+ x1 + . . .+ x`) and ρA→B(y+ x1 + . . .+ x`) ≈2ε ρA→B(y+ x1 + . . .+ x`+1).
The proof is completed by noting that by the triangle inequality, for each such y, we also have
ρA→B(y) ≈2ε(`+1) ρA→B(y + x1 + . . .+ x`+1).

7



3.2 Almost-periodicity over a subspace

For applications one would like a version of Proposition 3.2 in which the set X of periods is in
fact a subspace. It was observed by Sanders [San10] that one can use iterated almost-periodicity
statements such as Corollary 3.3, combined with some Fourier analysis, to obtain such a subspace.
Here we use Sanders’s argument to deduce the following statement from Corollary 3.3.

Corollary 3.4 (Almost-periodicity of sumsets over a subspace) If A ⊂ Fn2 is a subset of
density α, then for every integer t and set B ⊆ Fn2 there exists a subspace V of codimension
codim(V ) ≤ 32 log(2/αt) with the following property.

For every v ∈ V , for all subsets S ⊆ Fn2 and for every ε, η > 0 and integer `,

P
y∈S

[ρA→B(y) ≈ε′ ρA→B(y + v)] ≥ 1− 16
`

η

|A+B|
|S|

· exp
(
−2ε2t

)
, (12)

where ε′ = 4ε`+ 2η + 2−`
√
|B|/|A|.

As we shall see in Sections 4 and 5, the proof of the quasipolynomial Bogolyubov-Ruzsa lemma
(Theorem 4.8) follows easily from the above lemma, and Green’s theorem on the existence of
subspaces in sumsets of dense sets (Theorem 5.2) follows easily from a refinement of the above
corollary (which we will give as Corollary 5.3 below). Note that for the proof of Corollary 3.4 we
need the stronger assumption that A has density at least α in Fn2 , instead of the doubling hypothesis
|2A| ≤ K|A|.
The idea of the proof of Corollary 3.4 is the following. Let X be the subset guaranteed by Corollary
3.3 for K = 1/α, and define the subspace V as V = Spec1/2(X)⊥ (see Section 2 for the definition of

Specρ). The intuition is that if X were a subspace then Spec1/2(X) = V ⊥, and hence V = X. Thus
V serves as an “approximate subspace” for X. Since A is dense in Fn2 , by Corollary 3.3 we also
have that X is dense in Fn2 and hence Chang’s theorem (Theorem 2.2) implies that the subspace
V is also dense in Fn2 (this is the only place where we need the stronger assumption on the density
of A).

In order to show that (12) holds we first show, using Corollary 3.3, a simple averaging argument
and the triangle inequality, that for most y ∈ S,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2ε`+η ρA→B(y) . (13)

Similarly, for all v ∈ V and for most y ∈ S,

E
x1,...,x`∈X

[ρA→B(y + v + x1 + . . .+ x`)] ≈2ε`+η ρA→B(y + v) . (14)

We then use Fourier analysis, following Sanders’s argument closely, to show that for all y ∈ Fn2 ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2−`
√
|B|/|A| E

x1,...,x`∈X
[ρA→B(y + v + x1 + . . .+ x`)] , (15)

where v is again an arbitrary element of V . The final conclusion follows from (13), (14) and (15)
using the union bound and the triangle inequality. We start by establishing (13) and (14).
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Lemma 3.5 Let ε, δ > 0, and let A,B,X, S ⊆ Fn2 be such that for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y) ≈ε ρA→B(y + x1 + . . .+ x`)] ≥ 1− δ .

Then for every η > 0 we have that

P
y∈S

[
ρA→B(y) ≈ε+η E

x1,...,x`∈X
[ρA→B(y + x1 + . . .+ x`)]

]
≥ 1− δ/η .

Proof: From Markov’s inequality it follows that for at least a (1 − δ/η)-fraction of y ∈ S, the
relation

ρA→B(y) ≈ε ρA→B(y + x1 + . . .+ x`)

holds for at least a (1−η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Thus for at least a (1−δ/η)-fraction
of y ∈ S, we have that∣∣∣∣ E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)]− ρA→B(y)

∣∣∣∣ ≤ E
x1,...,x`∈X

[|ρA→B(y + x1 + . . .+ x`)− ρA→B(y)|]

which is seen to be bounded above by (1− η) · ε+ η · 1 ≤ ε+ η.

The next lemma establishes (15).

Lemma 3.6 Let X ⊆ Fn2 , and let V ⊆ Spec1/2(X)⊥. Then for all y ∈ Fn2 and v ∈ V ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈ε′′ E
x1,...,x`∈X

[ρA→B(y + v + x1 + . . .+ x`)] , (16)

where ε′′ = 2−`
√
|B|/|A|.

Proof: We can write the difference between the two sides of (16) using the convolution operator
as

(µX)∗` ∗ µA ∗ 1B(y)− (µX)∗` ∗ µA ∗ 1B(y + v),

which in terms of the Fourier basis equals∑
t∈Fn

2

µ̂A(t) · (µ̂X(t))` · 1̂B(t) ·
(

(−1)y·t − (−1)(y+v)·t
)
.

This expression in turn is bounded in absolute value by∑
t∈Fn

2

|µ̂A(t)| · |µ̂X(t)|` ·
∣∣∣1̂B(t)

∣∣∣ · ∣∣(−1)y·t
∣∣ · ∣∣1− (−1)v·t

∣∣ =
∑
t∈Fn

2

|µ̂A(t)| · |µ̂X(t)|` ·
∣∣∣1̂B(t)

∣∣∣ · ∣∣1− (−1)v·t
∣∣ .

By definition of V as the orthogonal complement of Spec1/2(X), the right-hand side can be bounded
as ∑

t/∈V ⊥
|µ̂A(t)| · |µ̂X(t)|` ·

∣∣∣1̂B(t)
∣∣∣ · ∣∣1− (−1)v·t

∣∣ ≤ 2−`
∑
t/∈V ⊥

|µ̂A(t)| ·
∣∣∣1̂B(t)

∣∣∣ .
By the Cauchy-Schwarz inequality and Parseval’s indentity, this is bounded above by

2−`
√∑
t/∈V ⊥

(µ̂A(t))2
√∑
t/∈V ⊥

(1̂B(t))2 ≤ 2−`
√
Ey∈Fn

2
(µA(y))2

√
Ey∈Fn

2
(1B(y))2 = 2−`

√
|B|/|A| .
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We are now ready for the proof of Corollary 3.4.

Proof of Corollary 3.4: Let X be the set guaranteed by Corollary 3.3 for K = 1/α, and let
V = Spec1/2(X)⊥. First, note that Property 1 of Corollary 3.3 implies that |X| ≥ |A|/(2(1/α)t−1) ≥
αt · 2n−1. It now follows from Chang’s theorem (Theorem 2.2) that

dim(Spec1/2(X)) = codim(V ) ≤ 8
log(2/αt)

(1/2)2
= 32 log(2/αt).

It remains to show that (12) holds. Let δ := 8`(|A+B|/|S|) · exp
(
−2ε2t

)
. From Corollary 3.3 and

Lemma 3.5 we have that

ρA→B(y) ≈2ε`+η Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] (17)

for at least a (1− δ/η)-fraction of y ∈ S, and similarly that for all v ∈ V ,

ρA→B(y + v) ≈2ε`+η Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] (18)

for at least a (1 − δ/η)-fraction of y ∈ S. Moreover, Lemma 3.6 implies that for every y ∈ S and
v ∈ V ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2−`
√
|B/A| E

x1,...,x`∈X
[ρA→B(y + v + x1 + . . .+ x`)] . (19)

Applying the union bound and the triangle inequality to (17), (18) and (19), we conclude that

ρA→B(y) ≈ε′ ρA→B(y + v)

for ε′ = 4ε` + 2η + 2−`
√
|B|/|A| for at least a (1 − 2δ/η)-fraction of y ∈ S, which is the desired

conclusion.

4 An improved quadratic Goldreich-Levin theorem

Both in number theory and theoretical computer science, there are certain situations where we
may wish to decompose a bounded function f : Fn2 → C as a sum g + h, where g is a “uniform” or
“random-looking”, and h is a somewhat “structured” part. Such situations include the counting of
arithmetic progressions [Gre07], the analysis of Probabilistically Checkable Proofs (PCPs) [ST06]
and the approximation of matrices and tensors [FK99].

In the case where one is looking for “linear uniformity” in the function g, for example when
counting arithmetic progressions of length 3, such a decomposition is achieved by separating large
and small Fourier coefficients (corresponding to “linearly structured” and “linearly uniform” parts,
respectively). This task can be handled algorithmically by the Goldreich-Levin theorem ([GL89],
see Theorem 4.1 below), which provides an algorithm that computes, with high probability, the
large Fourier coefficients of f : Fn2 → {−1, 1} in time polynomial in n.

Theorem 4.1 (Goldreich-Levin Theorem) Let ν, δ > 0. There is a randomized algorithm
which, given oracle access to a function f : Fn2 → {−1, 1}, runs in time O(n2 log n ·
poly(1/ν, log(1/δ))) and outputs a decomposition

f =

k∑
i=1

ci · (−1)〈αi,x〉 + g

with the following guarantee.
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• k = O(1/ν2).

• P
[
∃i |ci − f̂(αi)| > ν/2

]
≤ δ.

• P
[
∀α such that |f̂(α)| ≥ ν, ∃i αi = α

]
≥ 1− δ.

However, these linear decompositions have been shown to not be sensitive enough to handle many
other situations, such as the counting of arithmetic progressions of length 4. In the latter case, one
instead needs the function g to be “quadratically uniform” in the sense of Gowers [Gow98]. We
say that a function g is quadratically uniform if it is small in the U3 norm, which is defined by the
formula

‖g‖8U3 = Ex,h1,h2,h3∈G
∏

ω∈{0,1}3
C |ω|g(x+ ω · h),

where ω · h is shorthand for
∑

i ωihi, and C |ω|g = g if
∑

i ωi is even and g otherwise.

A hint as to what might constitute the quadratically structured part of a decomposition in which g
is quadratically uniform is given by the so-called inverse theorem for the U3 norm, whose proof was
largely contained in Gowers’s proof of Szemerédi’s theorem but brought to the point by Samorodnit-
sky [Sam07] (in the case of characteristic 2) and by Green and Tao [GT08]. It states, qualitatively
speaking, that a function with large U3 norm correlates with a quadratic phase function, by which
we mean a function of the form (−1)q for a quadratic form q : Fn2 → F2.

The inverse theorem implies that the structured part h has quadratic structure in the case where g
is small in U3, and starting with [Gre07] a variety of such quadratic decomposition theorems have
come into existence: in one formulation [GW12], one can write f as

f =
∑
i

λi(−1)qi + g + l, (20)

where the qi are quadratic forms, the λi are real coefficients such that
∑

i |λi| is bounded, ‖g‖U3 is
small and l is a small `1 error (which is negligible in all known applications). Such a decomposition
is not unique and non-trivial since the quadratic phases ωq, unlike linear exponentials, do not form
an orthonormal basis. In analogy with the decomposition into Fourier characters, it is natural to
think of the coefficients λi as the quadratic Fourier coefficients of f .

An algorithmic version of a quadratic decomposition theorem was given by the last two authors
in [TW11]. Prior to [TW11], all quadratic decomposition theorems proved had been of a rather
abstract nature. In particular, work by Trevisan, Vadhan and the third author [TTV09] used
linear programming techniques and boosting, while Gowers and the last author [GW12] gave a
(non-constructive) existence proof using the Hahn-Banach theorem. The main result of [TW11]
then was the following.

Theorem 4.2 (Quadratic Goldreich-Levin theorem) Let ε, δ > 0, n ∈ N and B > 1.
Then there exists η = exp((B/ε)C) and a randomized algorithm running in time O(n4 log n ·
poly(1/η, log(1/δ))) which, given any function f : Fn2 → [−1, 1] as an oracle, outputs with probability
at least 1− δ a decomposition into quadratic phases

f = c1(−1)q1 + . . .+ ck(−1)qk + g + l

satisfying k ≤ 1/η2, ‖g‖U3 ≤ ε, ‖l‖1 ≤ 1/2B and |ci| ≤ η for all i = 1, . . . , k.
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The algorithm comprised two parts. The first was a (entirely deterministic) procedure for assem-
bling the quadratic phases with which the function f correlates into an actual decomposition, if
these quadratic phases can indeed be found.

Theorem 4.3 Let Q be a class of functions as above and let ε, δ > 0 and B > 1. Let A be an
algorithm which, given oracle access to a function f : X → [−B,B] satisfying ‖f‖S ≥ ε, outputs,
with probability at least 1 − δ, a function q ∈ Q such that 〈f, q〉 ≥ η for some η = η(ε,B). Then
there exists an algorithm which, given any function f : X → [−1, 1], outputs with probability at
least 1− δ/η2 a decomposition

f = c1q1 + . . .+ ckqk + g + l

satisfying k ≤ 1/η2, ‖g‖S ≤ ε, ‖l‖1 ≤ 1/2B and |ci| ≤ η for all i = 1, . . . , k.

The algorithm makes at most k calls to A.

Theorem 4.3 is proved using a boosting argument, for which we refer the reader to [TW11]. The
other key component in the quadratic Goldreich-Levin algorithm was the following self-correction
procedure for Reed-Muller codes of order 2 (which are simply truth-tables of quadratic phase
functions).

Theorem 4.4 Given ε, δ > 0, there exists η = exp(−1/εC) and a randomized algorithm
Find-Quadratic running in time O(n4 log n · poly(1/ε, 1/η, log(1/δ))) which, given oracle access
to a function f : Fn2 → {−1, 1}, either outputs a quadratic form q(x) or ⊥. The algorithm satisfies
the following guarantee.

• If ‖f‖U3 ≥ ε, then with probability at least 1 − δ it finds a quadratic form q such that
〈f, (−1)q〉 ≥ η.

• The probability that the algorithm outputs a quadratic form q with 〈f, (−1)q〉 ≤ η/2 is at most
δ.

This is essentially an algorithmic version of the U3 inverse theorem. The proof of Theorem 4.4
follows that of the inverse theorem very closely, except that many of the results from additive
combinatorics that are used in the process need to be replaced by new “sampling versions”: since
the subsets of Fn2 that appear in the proof are generally very dense, it is too expensive to even write
them down (let alone perform operations on them) if one is aiming for an algorithm that runs in
time polynomial in n.

A crucial ingredient in the proof of Theorem 4.4 was an algorithmic version of the Bogolyubov-
Ruzsa lemma (Lemma 5.3 in [TW11]), which reads as follows.

Lemma 4.5 (Algorithmic Bogolyubov-Ruzsa Lemma) There exists a randomized algorithm
Bogolyubov with parameters ρ and δ which, given oracle access to a function h : Fn2 → {0, 1} with
Eh ≥ α, outputs a subspace V 6 Fn2 of codimension at most O(α−3) (by giving a basis for V ⊥) such
that with probability at least 1 − δ, we have h ∗ h ∗ h ∗ h(x) > ρ4/2 for all x ∈ V . The algorithm
runs in time n2 log n · poly(1/α, log(1/δ)).

In Section 4.2 we develop a replacement for this lemma (Theorem 4.8 below) with much better
bounds. Inserting it into the framework of [TW11] reduces the dependence on ε in the running
time and the number of terms in the decomposition to quasipolynomial, allowing us to state the
following result.
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Theorem 4.6 (Quasipolynomial Quadratic Goldreich-Levin) Let ε, δ > 0, n ∈ N and B >
1. Then there exists η = exp(poly(B, log(1/ε))) and a randomized algorithm running in time
O(n4 log n · poly(1/η, log(1/δ))) which, given any function f : Fn2 → [−1, 1] as an oracle, outputs
with probability at least 1− δ a decomposition into quadratic phases

f = c1(−1)q1 + . . .+ ck(−1)qk + g + l

satisfying k ≤ 1/η2, ‖g‖U3 ≤ ε, ‖l‖1 ≤ 1/2B and |ci| ≤ η for all i = 1, . . . , k.

A further variant of Theorem 4.6 was proved in [TW11], in which the quadratic phases in the
decomposition were replaced with slightly more complicated quadratic object, namely so-called
quadratic averages, which were first introduced in [GW12] by Gowers and the last author. In this
case the authors of [TW11] obtained a bound on the number of terms in the decomposition that was
polynomial in ε−1 in time exponential in ε−1, at the cost of the description size of each quadratic
average being exponential in ε−1. Inserting the Quasipolynomial Algorithmic Bogolyubov-Ruzsa
Lemma (Theorem 4.8) in the work of Section 5 in [TW11], we obtain an algorithm which finds a
decomposition into polynomially many quadratic averages in time quasipolynomial in ε−1, where
the description size of each average is now quasipolynomial in ε−1. We leave the details to the
interested reader.

4.1 The quasipolynomial Bogolyubov-Ruzsa lemma

In the context of Fn2 , the traditional Bogolyubov-Ruzsa lemma states that if a set A has density
at least α in its ambient group, then its fourfold sumset A + A + A + A contains a subspace of
codimension at most 2α−2. It is easily proved using a few lines of Fourier analysis: the orthogonal
complement of the subspace is given by the frequencies at which the indicator function of A has
relatively large Fourier coefficients.

The bound on the codimension of V was improved to O(log4(α−1)) by Sanders [San10]. This
improvement has far-reaching quantitative implications for other problems, in particular the bound
in Roth’s theorem [San11b] and the U3 inverse theorem. We now deduce the quasipolynomial
Bogloyubov-Ruzsa lemma from Corollary 3.4. In Section 4.2 we give an algorithmic version of the
proof, which allows us to explicitly find a basis for V ⊥.

Theorem 4.7 (Quasipolynomial Bogloyubov-Ruzsa Lemma) Let A ⊆ Fn2 be a subset of
density α. Then there exists a subspace V of Fn2 satisfying V ⊆ 4A and

codim(V ) = O(log4(α−1)).

Proof of Theorem 4.7: Applying Corollary 3.4 with B = 2A, S = A, ` = log(302/α)/2,
η = 1/60, ε = 1/(120`) and t = O(log3(1/α)), we conclude the existence of a subspace V of
codim(V ) = O(log4(1/α)) which has the property that for all v ∈ V ,

P
a∈A

[ρA→2A(a) ≈ε′ ρA→2A(a+ v)] ≥ 1− 16
`

η

|3A|
|A|
· exp

(
−2ε2t

)
,

where ε′ = 4ε`+ 2η + 2−`
√
|2A|/|A| ≤ 1/30 + 1/30 + (

√
α/30) ·

√
1/α ≤ 1/10.
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Since ρA→2A(a) = 1 for all a ∈ A, this implies that

P
a∈A

[ρA→2A(a+ v) ≥ 0.9] ≥ 1− 16
`

η

|3A|
|A|
· exp

(
−2ε2t

)
≥ 0.9,

where the last inequality is a result of our choice of parameters.

Recalling the definition of ρA→B in (2), the inequality above implies that for all v ∈ V ,

P
a,a′∈A

[a+ a′ + v ∈ 2A] ≥ 0.92 = 0.81.

By averaging, there therefore exists a pair a, a′ ∈ A such that Pv∈V [a + a′ + v ∈ 2A] ≥ 0.81, or
equivalently |V ∩ (a + a′ + 2A) |≥ 0.81|V |. But it is easy to see that if |V ∩ B| > 1

2 |V | for some
subset B ⊆ Fn2 , then V ⊆ 2B (since every element v ∈ V has precisely |V | different representations
as v = v1 + v2 where v1, v2 ∈ V ). We conclude that V ⊆ 2(a + a′ + A + A) ⊆ 4A, which finishes
the proof.

4.2 The quasipolynomial Bogolyubov-Ruzsa lemma – algorithmic version

Here we develop an algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma. In
other words, we give an efficient (probabilistic) algorithm for finding a basis for the orthogonal
complement of the subspace V in Theorem 4.7.

Theorem 4.8 (Algorithmic Quasipolynomial Bogolyubov-Ruzsa Lemma) There exists a
randomized algorithm Quasipolynomial-Bogolyubov with input parameters α and γ′ which, given
oracle access to a function h : Fn2 → {0, 1} with Eh ≥ α, outputs a subspace V 6 Fn2 of codimension
at most O(log4(1/α)) (by giving a basis for V ⊥) such that with probability at least 1− γ′, we have

h∗h∗h∗h(v) > 0 for each v ∈ V . The algorithm runs in time 2O(log4(1/α)) ·polylog(1/γ′) ·n3 log n.

Note that if the function h equals the indicator function of a subset A ⊆ Fn2 , then the condition
h∗h∗h∗h(v) > 0 implies that v ∈ 4A, and if this condition is satisfied for all v ∈ V , then V ⊆ 4A.
While it will be convenient to think of the set A = {x ∈ Fn2 | h(x) = 1} in the proof, we will actually
apply the theorem to the output of a randomized algorithm, for which the statement in terms of a
function makes more sense. We also assume for convenience that Eh is exactly α.

In the combinatorial proof we considered the measure ρA→2A(y) = Pa∈A [y + a ∈ 2A], and the
subspace V was defined in terms of a set X which was described using this measure. However,
now this measure is difficult to compute since it might not be possible to test membership simply
using oracle access to h, which is the indicating function for A. We give a robust version of the
combinatorial proof by noting that y + a ∈ 2A is equivalent to saying that h ∗ h(a + y) > 0. But
since we do not have noise-free access to h ∗ h, we cannot test this function directly. Instead, we
test if h ∗ h(a+ y) ≥ ζα2 for some ζ > 0. For this purpose, we define the set

Zζ :=
{
x ∈ Fn2 | h ∗ h(x) ≥ ζ · α2

}
.

The following procedure tests membership in Zζ by estimating h ∗ h using few samples.

Z-Test (x)

- Estimate h ∗ h(x) = Ey∈Fn
2
h(y) · h(x− y) using r samples of elements y ∈ Fn2 .

- Answer 1 if the estimate is at least ζα2 and 0 otherwise.

However, since we are estimating the value of h ∗ h, we only have the following kind of guarantee.
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Claim 4.9 Given γ1 > 0, the output of Z-Test(x) with r = O((1/(ζ2α4)) · log(1/γ1)) queries
satisfies the following guarantee with probability at least 1− γ1.

• Z-Test(x) = 1 =⇒ x ∈ Zζ/2.

• Z-Test(x) = 0 =⇒ x /∈ Z3ζ/2.

Proof: This follows immediately from the Hoeffding bound (Lemma 2.1).

Let Z denote the (random) set containing all elements for which Z-Test(x) = 1, that is Z =
{x ∈ Fn2 | Z-Test(x) = 1}. Then the measure

ρ(y) := ρA→Z(y) = P
a∈A

[a+ y ∈ Z] =
1

α
· h ∗ 1Z(y) .

can be efficiently estimated by sampling.

The main ingredient in the proof of Theorem 4.8 is an algorithmic version of Corollary 3.3, that
is, a procedure to test for membership in the set X which satisfies the iterated almost-periodicity
condition in Corollary 3.3. We will present such an algorithmic version for the special case in which
B = Z and S = Fn2 .

Lemma 4.10 (Iterated almost-periodicity of sumsets, algorithmic version) Let γ2 > 0
and let h be the indicator function of a subset A ⊆ Fn2 of density α. Then for any inte-
gers t, ` there exists a randomized procedure X-Test with outputs in {0, 1} which makes at most
O
(
αO(t) · exp(Ω(ε2t)) · log4(`/γ2) · (1/ε2)

)
calls to Z-Test and has the following properties.

• With probability 1− γ2,

Px∈Fn
2

[X-Test(x) = 1] ≥ α2t/4.

• For all x1, . . . , x` ∈ Fn2 , we have with probability at least 1− γ2,

∀i ∈ [`] X-Test(xi) = 1 =⇒

P
y∈Fn

2

[ρA→Z(y) ≈4ε` ρA→Z(y + x1 + . . .+ x`)] ≥ 1− 4` exp
(
−Ω(ε2t)

)
.

For the proof we proceed as follows. First, as in the proof of Proposition 3.2, define G[ε, δ] to be
the set of sequences a ∈ (Fn2 )t which can be used to estimate ρ well (for our new definition of ρ).
For a = (a1, . . . , at) ∈ At, define

ρ̂a(y) :=
|{y + ai ∈ Z | i = 1, . . . , t}|

t
.

G[ε, δ] :=

{
a ∈ At | P

y∈Fn
2

[ρ(y) ≈ε ρ̂a(y)] ≥ 1− δ
}
.

Note that in the definition of G[ε, δ] above, the probability is taken over all elements y ∈ Fn2 , and
not only over the elements y ∈ A+ Z as in proposition 3.2 (cf., (6)). The reason is that it will be
easier for us to test membership in G[ε, δ] when the probability is taken over all elements y ∈ Fn2 .
As above, we will only be able to test membership in G[ε, δ] approximately, using the following
randomized procedure.
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G-Test (a = (a1, . . . , at))

- Check if h(a1) = . . . = h(at) = 1. If not output 0.

- Pick r independent samples y1, . . . , yr ∈ Fn2 .

- For each yi, estimate ρ(yi) using r′ independent samples. Also compute ρ̂a(yi) for
each yi.

- If |{yi | |ρ(yi)− ρ̂a(yi)| ≥ ε}| > δr then output 0, else output 1.

We prove the following guarantee for the above test.

Claim 4.11 Given γ3 > 0, the output of G-Test(a) with r = O((1/δ2) · log(1/γ3)) and r′ =
O((1/ε2) · log(r/γ3)) queries, satisfies the following guarantee with probability at least 1− γ3.

• G-Test(a) = 1 =⇒ a ∈ G[2ε, 2δ].

• G-Test(a) = 0 =⇒ a /∈ G[ε/2, δ/2].

Proof: Again, this is a direct consequence of the Hoeffding bound (Lemma 2.1).

Note that the definition of the procedure G-Test actually depends on the parameters ε, δ and the
error parameter γ3, for choosing the appropriate values of r and r′. However, we choose to hide
this dependence for the sake of readability. From now on let G(a) denote the output of G-Test on
the input a. We will now find an element â ∈ (Fn2 )t such that G(â) = 1 and G(â + x) = 1 for large
number of elements x ∈ Fn2 .

Claim 4.12 Given γ4 > 0, there exists an algorithm which makes O((1/α6t) · log2(1/γ4)) calls to
G-Test with error parameter γ3 < 0.04 and δ = exp(−Ω(ε2t)), and finds an â ∈ (Fn2 )t such that
with probability 1− γ4, we have G(â) = 1 and Ex∈Fn

2
[G(â + x)] ≥ α2t/4.

Proof: As in the proof of Proposition 3.2, the Hoeffding bound gives that at least 0.99
∣∣At∣∣

sequences a ∈ At satisfy that Py∈A+Z [ρ(y) ≈ε ρ̂a(y)] ≥ 1 − δ′ for δ′ = exp(−Ω(ε2t)). Noting that
ρ(y) = ρ̂a(y) = 0 for every y /∈ A + Z, this implies in turn that Py∈Fn

2
[ρ(y) ≈ε ρ̂a(y)] ≥ 1 − δ

for δ = exp(−Ω(ε2t)). Consequently, |G[ε/2, δ/2]| ≥ 0.99
∣∣At∣∣ for δ = exp(−Ω(ε2t)). Since A has

density α in Fn2 we have for γ3 < 0.04 that Ea∈(Fn
2 )

t [G(a)] ≥ (1 − γ3) · (0.99αt) ≥ 0.95αt. Using
convexity gives

E
a∈(Fn

2 )
t,x∈Fn

2

[G(a) ·G(a + x)] = E
a∈(Fn

2 )
t,x,x′∈Fn

2

[
G(a + x) ·G(a + x′)

]
= E

a∈(Fn
2 )

t

[(
E

x∈Fn
2

[G(a + x)]

)2
]

≥
(

E
a∈(Fn

2 )
t,x∈Fn

2

[G(a + x)]

)2

≥ (0.95 · αt)2 ≥ 0.9 · α2t .

Hence, by Markov’s inequality

P
a∈(Fn

2 )
t

[
G(a) · E

x∈Fn
2

[G(a + x)] ≥ α2t/2

]
≥ α2t/4 .
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The algorithm then simply tries random sequences a until it finds one for which G(a) = 1. For
such an a, it estimates Ex∈Fn

2
[G(a + x)] using O((1/α4t) · log(1/γ4)) samples. With probabilbity

1−γ4/2, the estimate is accurate to within an additive α2t/8. The algorithm stops and outputs an
â for which G(â) = 1 and the estimate computed by the algorithm is at least 3α2t/8. By the above,
it finds such an â with probability at least 1− γ4/2 in at most O((1/α2t) · log(1/γ4)) attempts, and
Ex∈Fn

2
[G(â + x)] ≥ α2t/4 for such an â. If not, it simply outputs a random â.

We are now ready for the proof of Lemma 4.10.

Proof of Lemma 4.10: Given â as above, we define X to be the set

X := {x ∈ Fn2 | G(â + x) = 1} .

Note that G(â) = 1 and |X| ≥ (α2t/4) · 2n with probability 1− γ4. Also, membership in X can be
tested efficiently. We simply define the procedure X-Test as

X-Test(x) = G-Test(â + x) .

We now prove that this X suffices for our purposes. We will prove using induction that for x1, . . . , x`
satisfying X-Test(xi) = 1 ∀i ∈ [`], we have with probability 1− γ2 that

P
y∈Fn

2

[ρA→Z(y) ≈4ε` ρA→Z(y + x1 + . . .+ x`)] ≥ 1− 4` exp
(
−Ω(ε2t)

)
.

By Claims 4.11 and 4.12 we have that â, â +x1, . . . , . . . , â +x` ∈ G[2ε, 2δ] with probability at least
1 − (` + 1)γ3 − γ4. We will prove that whenever â, x1, . . . , x` satisfy this condition, then for all
r = 1, . . . , ` we have

P
y∈Fn

2

[ρ(y) ≈4εr ρ(y + x1 + . . .+ xr)] ≥ 1− 4rδ

for δ = exp(−Ω(ε2t)).

For the base case, note that the fact that â ∈ G[2ε, 2δ] implies that ρ(y) ≈2ε ρ̂â(y) for all but a 2δ-
fraction of y ∈ Fn2 . Similarly, since â+x1 ∈ G[2ε, 2δ], we have that ρ(y+x1) ≈2ε ρ̂â+x1(y+x1) for all
but a 2δ-fraction of y ∈ Fn2 . This implies that for all but a 4δ-fraction of y ∈ Fn2 both ρ(y) ≈2ε ρ̂â(y)
and ρ(y + x1) ≈2ε ρ̂â+x1(y + x1) hold. For such y we conclude that ρ(y) ≈4ε ρ(y + x1) using the
triangle inequality and the fact that ρ̂â(y) = ρ̂â+x1(y + x1).

Next assume by induction that for x1, . . . , xr we have that ρ(y) ≈4εr ρ(y + x1 + . . . + xr) for at
least (1− 4rδ)-fraction of y ∈ Fn2 . The case base case implies that for at least a (1− 4δ)-fraction of
y ∈ Fn2 , it is true that ρ(y + x1 + . . .+ xr) ≈4ε ρ(y + x1 + . . .+ xr+1). Thus by a union bound we
have that for at least a (1−4(r+1)δ)-fraction of y ∈ Fn2 we have both ρ(y) ≈4εr ρ(y+x1 + . . .+xr)
and ρ(y + x1 + . . .+ xr) ≈4ε ρ(y + x1 + . . .+ xr+1). The proof is completed by noting that by the
triangle inequality, for each such y, we also have ρ(y) ≈4(r+1)ε ρ(y + x1 + . . .+ xr+1).

To get the required bounds we choose γ3 = γ2/(2(` + 1)) and γ4 = γ2/2. For this choice of
parameters, the procedure in Claim 4.12 makes O((1/α6t) · log2(γ2)) calls to G-Test. Also, the
procedure G-Test makes O

(
log2(`/γ2) · exp(Ω(ε2t)) · (log(1/α)/α) · (1/ε)2

)
calls to Z-Test. This

gives a total number of O
(
αO(t) · exp(Ω(ε2t)) · log4(`/γ2) · (1/ε2)

)
queries to Z-Test.

Next we prove the following algorithmic analogue of Corollary 3.4.
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Lemma 4.13 (Almost-periodicity of sumsets over a subspace, algorithmic version)
Let γ′ > 0 and let h be the indicator function of a subset A ⊆ Fn2 of density α. Then for every
integers t, ` and for every η, ε > 0 there exists a randomized algorithm V-Test which outputs a
subspace V 6 Fn2 of codimension at most O(log(1/α2t)) (by giving a basis for V ⊥) such that with
probability at least 1− γ′, we have that for all v ∈ V ,

P
y∈Fn

2

[ρA→Z(y) ≈ε′ ρA→Z(y + v)] ≥ 0.99− 8
`

η
exp

(
−Ω(ε2t)

)
.

where ε′ = 8ε` + 2η + 2−`
√
|Z|/|A|. The algorithm makes at most n2 log n · poly(1/α)t · log(1/γ′)

queries to X-Test with error parameter γ2 < min {η/200, γ′/4}.

For the proof we shall need the following algorithmic analogue of Lemma 3.5.

Lemma 4.14 Let ε, δ > 0, let X-Test be a randomized algorithm with output in {0, 1} and let X
denote the set of all elements in Fn2 for which X-Test outputs 1. Suppose that X-Test satisfies
that for all x1, . . . , x` ∈ X, with probability at least 1− γ2 it holds that

P
y∈Fn

2

[ρA→Z(y) ≈ε ρA→Z(y + x1 + . . .+ x`)] ≥ 1− δ .

Then for every η > 0 we have that

P
y∈Fn

2

[
ρA→Z(y) ≈ε+η E

x1,...,x`∈X
[ρA→Z(y + x1 + . . .+ x`)]

]
≥ 1− (δ + γ2)/η .

Proof: From Markov’s inequality it follows that for at least a (1− (δ+ γ2)/η)-fraction of y ∈ Fn2 ,
the relation

ρA→Z(y) ≈ε ρA→Z(y + x1 + . . .+ x`)

holds for at least a (1−η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Thus for at least a (1−(δ+γ2)/η)-
fraction of y ∈ Fn2 , we have that∣∣∣∣ E
x1,...,x`∈X

[ρA→Z(y + x1 + . . .+ x`)]− ρA→Z(y)

∣∣∣∣ ≤ E
x1,...,x`∈X

[|ρA→Z(y + x1 + . . .+ x`)− ρA→Z(y)|]

which is seen to be bounded above by (1− η) · ε+ η · 1 ≤ ε+ η.

Proof: Let X be the set defined in Lemma 4.10. Define the subspace V0 as

V0 :=
(
Spec1/2(X)

)⊥
=
{
ξ ∈ Fn2 |

∣∣∣1̂X(ξ)
∣∣∣ ≥ 1̂X(0)/2

}⊥
.

To find (an approximation to) V0, we first estimate 1̂X(0) = E [1X ] = Px∈Fn
2

[X-Test(x) = 1] using
O((1/α4t) · log(1/γ′)) samples so that with probability 1 − γ′/4, the error is at most α2t/8. By
Lemma 4.10, with probability 1− γ2, the quantity Px∈Fn

2
[X-Test(x) = 1] is at least α2t/4. Taking

γ2 = γ′/4, we get that with probability 1− γ′/2, the estimate is at least 3α2t/8. Call this estimate
µ0.

We now need a procedure which determines the large Fourier coefficients of 1X with reasonable
accuracy. This procedure is given by the Goldreich-Levin theorem (Theorem 4.1). We run Theorem
4.1 with error parameter δ = γ′/2 and an oracle access to the procedure X-Test, to find all
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characters with Fourier coefficients larger than ν = µ0/8 in absolute value, up to an additive
accuracy of µ0/16. Let K be the list of characters given by the algorithm. We take

V = {ξ ∈ Fn2 | ξ ∈ K}
⊥ .

Now with probability at least 1 − γ′, the trivial coefficient 1̂X(0) is at least α2t/4, K contains all
ξ such that |1̂X(ξ)| ≥ 1̂X(0)/2 and |1̂X(ξ)| ≥ 1̂X(0)/32 for all ξ ∈ K, so Spec1/2(X) ⊆ K ⊆
Spec1/32(X) . By Chang’s theorem (Theorem 2.2) and our choice of parameters, the codimension

of V is then at most O(log(1/α2t)).

Let δ := 4` exp
(
−Ω(ε2t)

)
. From Lemma 4.10 and Lemma 4.14 we have that

ρA→Z(y) ≈4ε`+η Ex1,...,x`∈X [ρA→Z(y + x1 + . . .+ x`)] (21)

for at least a (1− (γ2 + δ)/η)-fraction of y ∈ Fn2 , and similarly that for all v ∈ V ,

ρA→Z(y + v) ≈4ε`+η Ex1,...,x`∈X [ρA→Z(y + v + x1 + . . .+ x`)] (22)

for at least a (1−(γ2+δ)/η)-fraction of y ∈ Fn2 . Moreover, Lemma 3.6 implies that for every y ∈ Fn2
and v ∈ V ,

E
x1,...,x`∈X

[ρA→Z(y + x1 + . . .+ x`)] ≈2−`
√
|Z/A| E

x1,...,x`∈X
[ρA→Z(y + v + x1 + . . .+ x`)] . (23)

Applying the union bound and the triangle inequality to (21), (22) and (23), we conclude that

ρA→Z(y) ≈ε′ ρA→Z(y + v)

for ε′ = 8ε` + 2η + 2−`
√
|Z|/|A| for at least a (1 − 2(γ2 + δ)/η)-fraction of y ∈ Fn2 , which by our

choice of γ2 < η/200 gives the desired conclusion.

The running time is dominated by the O(n2 log n · poly((1/α)t, log(1/γ′))) calls made by the
Goldreich-Levin algorithm to the procedure X-Test.

We now proceed to the proof of our main Theorem 4.8.

Proof of Theorem 4.8: Applying Lemma 4.13 with ` = log(10/α), ε = 1/(120`), η = 10−4 and
t = O(log3(1/α)), where the basic procedure Z-Test is run with γ1 = 3ζ/(2α2) and ζ = 10−4, we
obtain with probability 1 − γ′ a subspace V of codim(V ) ≤ O(log4(1/α)) which has the property
that for all v ∈ V ,

P
y∈Fn

2

[
ρA→Z(y) ≈1/20 ρA→Z(y + v)

]
≥ 1− 0.1/α.

Since A has density α in Fn2 this implies in turn that for all v ∈ V ,

P
a∈A

[
ρA→Z(a) ≈1/20 ρA→Z(a+ v)

]
≥ 0.9.

Next we show that the value of ρA→Z(a) is close to one for most elements a ∈ A.
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E
a∈A

[ρA→Z(a)] = Ea,a′∈A[1Z(a+ a′)]

=
1

α2
· 〈h ∗ h,1Z〉

=
1

α2
· 〈h ∗ h, 1〉 − 1

α2
· 〈h ∗ h, (1− 1Z)〉

= 1− 1

α2
· 〈h ∗ h, (1− 1Z)〉

From Claim 4.9, with probability at least 1 − γ1, h ∗ h is at most 3ζα2/2 when 1 − 1Z = 1,
and consequently the inner product in the second term is at most 3ζα2/2 + γ1. This gives
Ea∈A [ρA→Z(a)] ≥ 1 − 3ζ/2 − (γ1/α

2). Hence we have that ρA→Z(a) = 1 −
√

3ζ/2 + (γ1/α2)
for at least (1 −

√
3ζ/2 + (γ1/α2))-fraction of a ∈ A, which by the choice of γ1 = 3ζ/(2α2) and

ζ = 10−4 implies that for all v ∈ V ,

P
a∈A

[ρA→Z(a+ v) ≥ 0.9] ≥ 0.9.

Recalling the definition of ρA→Z , this inequality implies that for all v ∈ V ,

P
a,a′∈A

[a+ a′ + v ∈ Z] ≥ 0.92 = 0.81.

By averaging, there therefore exists a pair a, a′ ∈ A such that Pv∈V [a + a′ + v ∈ Z] ≥ 0.81, or
equivalently |V ∩ (a + a′ + Z) |≥ 0.81|V |. But it is easy to see that if |V ∩ B| > 1

2 |V | for some
subset B ⊆ Fn2 , then V ⊆ 2B (since every element v ∈ V has precisely |V | different representations
as v = v1 + v2 where v1, v2 ∈ V ). We conclude that V ⊆ 2(a+ a′ + Z + Z) = 2Z, which implies in
turn that h ∗ h ∗ h ∗ h(v) > 0 for all v ∈ V .

It remains to analyze the running time. The procedure V-Test makes O(n2 log n ·
poly((1/α)t, log(1/γ′))) calls to the procedure X-Test with error parameter γ2 < min {η/200, γ′/4}.
The procedure X-Test makes in turn O

(
αO(t) · exp(Ω(ε2t)) · log4(`/γ2) · (1/ε2)

)
queries to Z-Test

with error parameter γ1 = 3ζ/(2α2) and ζ = 10−4. Assuming the query to Z-Test can be an-
swered in constant time and it takes O(n) time to write down the input, the running time for
Z-Test is O((1/α4) log(1/α) · n). For our choice of parameters, this implies a running time of

2O(log4(1/α)) · polylog(1/γ′) · n3 log n.

5 Sumsets of dense sets contain large subspaces

Inspired by the question of whether dense subsets of {1, . . . , N} contain long arithmetic progressions,
which has received extensive coverage in the literature [Bou90, Gre02, San08], Ben Green asked an
analogous question in the finite field setting and obtained the following result [Gre05].

Theorem 5.1 (Green’s theorem on subspaces in sumsets) Let A ⊆ Fn2 be a subset of den-
sity α. Then A+A contains a subspace V of Fn2 of dimension

dim(V ) = Ω(α2n).
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In [San11a] Sanders showed, using a Fourier-based density-increment strategy, that one can in fact
take the subspace V to have dimension dim(V ) = Ω(αn). He remarks that a bound of similar
strength could be obtained via a finite field analogue of the methods of Croot,  Laba and Sisask
[C LS11]. Our main theorem in this section is the following, replicating the result from [C LS11],
which falls slightly short of Sanders’s bound [San11a].

Theorem 5.2 (Sumsets of dense sets contain large subspaces) Let A ⊆ Fn2 be a subset of
density α. Then A+A contains an affine subspace V of Fn2 of dimension

dim(V ) = Ω

(
α

log3(1/α)
n

)
.

For the proof of the above theorem we shall need a refined version of the almost-periodicity results
from Section 3. In particular, we shall need the following refined version of Corollary 3.4.

Corollary 5.3 (Refined almost-periodicity of sumsets over a subspace) Let A ⊂ Fn2 be a
subset of density α. Then for every integer t and set B ⊆ Fn2 , there exists a subspace V of codi-
mension codim(V ) ≤ 32 log(2/αt) with the following property.

For every v ∈ V , for all subsets S ⊆ Fn2 and for every η, ε > 0 and integer `,

P
y∈S

[
ρA→B(y)− ρA→B(y + v) ≤ ε′

]
≥ 1− 16

`

η

|A+B|
|S|

· exp
(
−ε2t/4

)
, (24)

where ε′ = 4ε`
√
ρA→B(y) + 2η + 2−`

√
|B|/|A|.

The main difference between the above corollary and Corollary 3.4 lies in the term
√
ρA→B(y)

which appears in the expression for ε′ in the above corollary. This term makes ε′ smaller which in
turn makes the above corollary stronger. For the sake of simplicity, we only consider in the above
corollary one-sided bounds of the form ρA→B(y) − ρA→B(y + v) ≤ ε′ instead of two-sided bounds
of the form ρA→B(y) ≈ε′ ρA→B(y + v). This will suffice for the proof of Theorem 5.2.

The proof of Corollary 5.3 is similar to the proof of Corollary 3.4, and the main difference is that
in the proof of Corollary 5.3 we perform a more detailed analysis of the distribution 1B(a + y)
when a is distributed uniformly over A and y is a fixed point in Fn2 and use information on the
variance of this distribution. More specifically, in the proof Corollary 5.3, instead of using the
regular Hoeffding bound for sampling (Lemma 2.1), we use the following well-known refinement
involving the variance [TV06].

Lemma 5.4 (Refined Hoeffding bound for sampling) If X is a random variable satisfying
|X− E [X] | ≤ 1 and µ̂ is the empirical average obtained from t samples, then

P [|E [X]− µ̂| > γ] ≤ 2 exp

(
− γ2t

4σ2(X)

)
provided that γ < 2σ2.

Since the proof of Corollary 5.3 presents some technical complications, we include it in full in
Appendix A. The rest of this section is devoted to the proof of Theorem 5.2 assuming that Corollary
5.3 is true.
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The idea of the proof of Theorem 5.2 is as follows. Applying Corollary 5.3 with B = A implies the
existence of a relatively large subspace V such that for every v ∈ V , for a large fraction of y ∈ Fn2 ,
it holds that ρA→A(y + v) > 0. Our goal will be to show that an affine shift of V is contained in
2A, or equivalently to show the existence of an affine shift y ∈ Fn2 such that ρA→A(y+v) > 0 for all
v ∈ V . Suppose that we have chosen the parameters in Corollary 5.3 in such a way that for every
v ∈ V , at least (1 − δ)-fraction of y ∈ Fn2 satisfy that ρA→A(y + v) > 0. Then the union bound
implies that at least a (1 − |V |δ)-fraction of y ∈ Fn2 satisfy the condition ρA→A(y + v) > 0 for all
v ∈ V . Thus in order to guarantee the existence of the desired affine shift y, it suffices to choose
the parameters in Corollary 5.3 in such a way that |V |δ < 1.

Note that we wouldn’t have gained anything from considering the variance in the proof of the
quasipolynomial Bogolyubov-Ruzsa lemma (Theorem 4.7) since there Corollary 3.4 is applied to
elements y for which ρA→B(y) is very large (between 0.9 and 1), and we have no better handle
on the variance. In contrast, here the typical element to which we apply Corollary 5.3 satisfies
ρA→A(y) = α, so that the variance is small as well.

For the proof of Theorem 5.2 we shall need the following simple lemma.

Lemma 5.5 Let f(t) = t2 − bt − c for b > 0, c ≥ 0, and suppose that 0 ≤ t′ ≤ t′′ are such that
f(t′) > 0. Then f(t′) ≤ f(t′′).

Proof: The fact that b > 0, c ≥ 0 implies that f(t) has a root t1 ≤ 0 and another root t2 > 0.
Thus we have that f(t) is negative in the interval (0, t2) and is positive in the interval (t2,∞). The
fact that t′ ≥ 0 and f(t′) > 0 thus implies that t′ > t2. The lemma follows by noting that f is
monotonically increasing in the interval (t2,∞).

Proof of Theorem 5.2: Apply Corollary 5.3 with B = A, η = α/24, ` = log(12/α), ε =√
2α/(48`), t to be determined later on and

S = {y ∈ Fn2 | ρA→A(y) ≥ α/2}.

Noting that

Ey∈Fn
2
[ρA→A(y)] = P

y∈Fn
2 ,a∈A

[a+ y ∈ A] = Ea∈A
[

P
y∈Fn

2

[a+ y ∈ A]

]
= α,

Markov’s inequality implies that |S| ≥ (α/2) · 2n.

With this choice of parameters Corollary 5.3 implies that for every v ∈ V ,

P
y∈S

[
ρA→A(y + v) ≥ ρA→A(y)− α/6−

√
2α · ρA→A(y)

12

]
≥ 1− 16

`

η
· |2A|
|S|
· exp(−ε2t/4)

Let δ := 16(`/η) · (|2A|/|S|) · exp(−ε2t/4). Since ρA→A(y) ≥ α/2 for every y ∈ S, the inequality
above implies that

P
y∈S

[ρA→A(y + v) ≥ α/4] = P
y∈S

[
ρA→A(y + v) ≥ α/2− α/6−

√
2α · α/2

12

]

≥ P
y∈S

[
ρA→A(y + v) ≥ ρA→A(y)− α/6−

√
2α · ρA→A(y)

12

]
≥ 1− δ
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where the first inequality follows by applying Lemma 5.5 with f(t) = t2 −
(√

2α/12
)
t − α/6,

t′ =
√
α/2, t′′ =

√
ρA→A(y), and noting that our assumptions imply that 0 ≤ t′ ≤ t′′ and that

f(t′) = α/4 > 0.

A union bound then implies that

P
y∈S

[ρA→A(y + v) ≥ α/4 ∀v ∈ V ] ≥ 1− |V | · δ.

To conclude the proof we shall show that for sufficiently small integer t one can guarantee that
|V |δ < 1. This in turn will imply the existence of an affine shift y ∈ S such that ρA→A(y + v) > 0
for every v ∈ V , and consequently y + V ⊆ 2A. Our choice of parameters implies that

|V |δ =

(
αt

2

)32

· 2n · 16 · `
η
· |2A|
|S|
· exp(−ε2t/4)

≤ exp

(
− t
(

32 log(1/α) +
2α

4 · 482 · log2(12/α)

)
+

(
2 log(1/α) + n+ log log(12/α)

))
Thus, |V |δ < 1 is guaranteed by letting

t =
2 log(1/α) + n+ log log(12/α)

32 log(1/α) + 2α
4·482·log2(12/α)

=
n+O(log(1/α))

32 log(1/α) + Ω(α/ log2(1/α))
.

But for such a choice of t we have that

dim(V ) = n− 32 log(1/α)t− 32 = Ω

(
α

log3(1/α)
n

)
.
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A Appendix: Proof of Corollary 5.3

In order to prove Corollary 5.3, we start with refined versions of Proposition 3.2 and Corollary 3.3,
given as Proposition A.1 and Corollary A.2 below.

Proposition A.1 (Refined version of almost-periodicity of sumsets) Let A ⊂ Fn2 be a sub-
set satisfying |2A| ≤ K|A|. Then for every integer t and set B ⊆ Fn2 there exists a set X with the
following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[
ρA→B(y)− ρA→B(y + x) ≤ 2ε

√
ρA→B(y)

]
≥ 1− 8

|A+B|
|S|

· exp
(
−ε2t/4

)
. (25)

Proof: The proof is very similar to the proof of Proposition 3.2 and we only point out the
differences here. As in Proposition 3.2, let ρ(y) := ρA→B(y) and for a vector a = (a1, . . . , at) ∈ At
let

ρ̂a(y) =
|{y + ai ∈ B | i = 1, . . . , t}|

t
.

For the purpose of this proof, we say that a is an ε-good estimator for y if ρ(y) ≈ε′ ρ̂a(y) for
ε′ = ε

√
ρ(y) (this is the main point in which this proof differs from the proof of Proposition 3.2).

Fix y ∈ Fn2 , and let Yi be the indicator random variable for the event “y + ai ∈ B” where ai is
chosen uniformly at random from A. Then ρ̂a(y) = 1

t

∑t
i=1 Yi is the average of t i.i.d. indicator

random variables each having mean ρ(y) and variance ρ(y)(1−ρ(y)) ≤ ρ(y), so the refined Chernoff-
Hoeffding bound (Lemma 5.4) implies that for all y ∈ Fn2 ,

P
a∈At

[
ρ(y) 6≈

ε
√
ρ(y)

ρ̂a(y)
]
≤ 2 exp

(
−ε2t/4

)
. (26)

Set δ := 2 exp
(
−ε2t/4

)
. Similarly to the proof of Proposition 3.2, by an averaging argument we

get that at least half of the sequences a ∈ At are ε-good estimators for all but (2δ)-fraction of
y ∈ A + B, in which case we say that a is (ε, 2δ)-good estimator for ρ. From here we continue as
in the proof of Proposition 3.2, letting G[ε, 2δ] be the set of (ε, 2δ)-good estimators, that is

G[ε, 2δ] =

{
a ∈ At | P

y∈A+B

[
ρ(y) ≈

ε
√
ρ(y)

ρ̂a(y)
]
≥ 1− 2δ

}
,

and defining G[ε, 2δ]b, â and X accordingly.

It can be easily verified that the first two properties listed in the statement are satisfied. Next we
show that the third one is satisfied as well.

Suppose x = â1 + a1, where a1 is the first element of an (ε, 2δ)-good estimator a = (a1, . . . , at) ∈
G[ε, 2δ]b. Recalling that â is an (ε, 2δ)-good estimator, we know that for all but a (2δ|A+B|/|S|)-
fraction of y ∈ S,

ρ(y) ≈
ε
√
ρ(y)

ρ̂â(y). (27)
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Similarly, we have that
ρ(y + x) ≈

ε
√
ρ(y+x)

ρ̂a(y + x) (28)

for all but a (2δ|A+B|/|x+ S|)-fraction of y ∈ S. Using a union bound and the fact that |S+x| =
|S|, for all but a (4δ|A+B|/|S|)-fraction of y ∈ S both (27) and (28) hold. For such y we conclude
ρ(y) ≈ε′ ρ(y + x) for ε′ = ε

√
ρ(y) + ε

√
ρ(y + x) using the triangle inequality and the fact that

ρ̂â(y) = ρ̂â+x(y+x) = ρ̂a(y+x). The proof is completed by noting that ρ(y)−ρ(y+x) ≤ 2ε
√
ρ(y)

holds trivially if ρ(y+x) ≥ ρ(y), and hence without loss of generality we may assume that ρ(y+x) ≤
ρ(y). This implies in turn that ε′ ≤ 2ε

√
ρ(y).

As before, by an inductive application of Proposition A.1 one can prove the following iterated
version.

Corollary A.2 (Refined almost-periodicity of sumsets, iterated) If A ⊂ Fn2 satisfies
|2A| ≤ K|A| then for every integer t and set B ⊆ Fn2 there exists a set X with the following
properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x1, . . . , x` ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[
ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ 2ε`

√
ρA→B(y)

]
≥ 1− 8`

|A+B|
|S|

· exp
(
−ε2t/4

)
.

(29)

Proof of Corollary A.2: Proposition A.1 establishes the case ` = 1. For the induction step,
suppose that the lemma holds for some integer ` ≥ 1 with a set X, and we shall prove that the
lemma holds for `+ 1 with the same set X.

Let δ := 8(|A+ B|/|S|) · exp
(
−ε2t/4

)
, and fix x1, . . . , x`+1 ∈ X. By the induction hypothesis, for

at least (1− `δ)-fraction of y ∈ S it holds that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ 2ε`
√
ρA→B(y). (30)

The ` = 1 case implies that for at least (1− δ)-fraction of y ∈ S it holds that

ρA→B(y + x1 + . . .+ x`)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε
√
ρA→B(y + x1 + . . .+ x`). (31)

Thus by union bound we have that at least (1 − (` + 1)δ)-fraction of y ∈ S satisfy both (30) and
(31). This implies in turn that for at least (1− (`+ 1)δ)-fraction of y ∈ S it holds that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε`
√
ρA→B(y) + 2ε

√
ρA→B(y + x1 + . . .+ x`). (32)

If ρA→B(y + x1 + . . .+ x`) ≤ ρA→B(y), Equation (32) implies that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε(`+ 1)
√
ρA→B(y)

and hence we are done.
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Otherwise assume that ρA→B(y+x1 + . . .+x`) ≥ ρA→B(y). Without loss of generality we may also
assume that ρA→B(y)−2ε

√
ρA→B(y) > 0 since otherwise the fact that ρA→B(y+x1+. . .+x`+1) ≥ 0

implies that

ρA→B(y + x1 + . . .+ x`+1) ≥ ρA→B(y)− 2ε
√
ρA→B(y)

≥ ρA→B(y)− 2ε(`+ 1)
√
ρA→B(y)

and hence we are done.

Equation (31) then implies that

ρA→B(y + x1 + . . .+ x`+1) ≥ ρA→B(y + x1 + . . .+ x`)− 2ε
√
ρA→B(y + x1 + . . .+ x`)

≥ ρA→B(y)− 2ε
√
ρA→B(y)

≥ ρA→B(y)− 2ε(`+ 1)
√
ρA→B(y),

where the second inequality follows from Lemma 5.5 by letting f(t) = t2 − 2εt, t′ =
√
ρA→B(y),

t′′ =
√
ρA→B(y + x1 + . . .+ x`) and noting that our assumptions imply that 0 ≤ t′ ≤ t′′ and

f(t′) > 0.

One final ingredient needed for the proof of Corollary 5.3 is the following refined version of Lemma
3.5.

Lemma A.3 Let δ > 0, and let ε : (Fn2 )`+1 → [0, 1] be an arbitrary function in `+ 1 variables. Let
A,B,X, S ⊆ Fn2 be such that for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ ε(y, x1, . . . , x`)] ≥ 1− δ.

Then for every η > 0 we have

P
y∈S

[ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ Ex1,...,x`∈X [ε(y, x1, . . . , x`)] + η] ≥ 1− δ/η.

Similarly, if for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y + x1 + . . .+ x`)− ρA→B(y) ≤ ε(y, x1, . . . , x`)] ≥ 1− δ,

then for every η > 0 we have

P
y∈S

[Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)]− ρA→B(y) ≤ Ex1,...,x`∈X [ε(y, x1, . . . , x`)] + η] ≥ 1− δ/η.

Proof: We shall prove only the first part of the lemma, the second part being almost identical.
It follows from Markov’s inequality that for at least a (1− δ/η)-fraction of y ∈ S, we have

ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ ε(y, x1, . . . , x`)

for at least a (1 − η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Taking expectations, we find that for
at least a (1− δ/η)-fraction of y ∈ S,

ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ Ex1,...,x`∈X [ε(y + x1 + . . .+ x`)] + η.
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We are now ready for the proof of Corollary 5.3.

Proof of Corollary 5.3: Again, let V = Spec1/2(X)⊥. As before, Chang’s theorem (Theorem
2.2) implies that codim(V ) ≤ 32 log(2/αt).

Let δ := 8`(|A+B|/|S|) · exp
(
−ε2t/4

)
. From Lemma A.2 and Lemma A.3 we have that

ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ 2ε`
√
ρA→B(y) + η (33)

for at least (1− δ/η)-fraction of y ∈ S, and similarly that for all v ∈ V ,

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− ρA→B(y + v)

≤ 2ε` · Ex1,...,x`∈X [
√
ρA→B(y + v + x1 + . . .+ x`)] + η

≤ 2ε`
√

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] + η (34)

for at least (1− δ/η)-fraction of y ∈ S, where the last inequality is due to convexity.

From Lemma 3.6 we have that for every y ∈ S and v ∈ V it holds that

Ex1,...,x`∈X [ρA→B(y+x1 + . . .+x`)]−Ex1,...,x`∈X [ρA→B(y+v+x1 + . . .+x`)] ≤ 2−`
√
|B|/|A|. (35)

If Ex1,...,x`∈X [ρA→B(y+ v+ x1 + . . .+ x`)] ≤ ρA→B(y) then applying the union bound to (33), (34)
and (35) we conclude that

ρA→B(y)− ρA→B(y + v)

≤ 2ε`
√
ρA→B(y) + 2ε`

√
Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] + 2η + 2−`

√
|B|/|A|

≤ 4ε`
√
ρA→B(y) + 2η + 2−`

√
|B|/|A|

for at least (1− 2δ/η)-fraction of y ∈ S, thus arriving at the desired conclusion.

Otherwise, assume that Ex1,...,x`∈X [ρA→B(y + v + x1 + . . . + x`)] ≥ ρA→B(y). Without loss of
generality we may also assume that ρA→B(y)−2ε`

√
ρA→B(y)−η > 0 since otherwise we have that

ρA→B(y + v) ≥ ρA→B(y)− 2ε`
√
ρA→B(y)− η ≥ ρA→B(y)− ε′

and hence we are done. Inequality (34) then implies that ρA→B(y + v) is at least

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− 2ε`
√

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− η

≥ ρA→B(y)− 2ε`
√
ρA→B(y)− η

≥ ρA→B(y)− ε′

where the first inequality follows from Lemma 5.5 by letting f(t) = t2 − 2ε`t− η, t′ =
√
ρA→B(y),

t′′ =
√
Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] and noting that our assumptions imply that 0 ≤

t′ ≤ t′′ and f(t′) > 0.
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