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Abstract

We give new and simple combinatorial proofs of almost-periodicity results for sumsets of sets
with small doubling in the spirit of Croot and Sisask [CS10], whose almost-periodicity lemma
has had far-reaching implications in additive combinatorics. We provide an alternative point
of view which relies only on Chernoff’s bound for sampling, and avoids the need for Lp-norm
estimates used in the original proof of Croot and Sisask.

We demonstrate the usefulness of our new approach by showing that one can easily deduce
from it two significant recent results proved using Croot and Sisask almost-periodicity – the
quasipolynomial Bogolyubov-Ruzsa lemma due to Sanders [San10] and a result on large subspaces
contained in sumsets of dense sets due to Croot, Laba and Sisask [C LS11].

We then turn to algorithmic applications, and show that our approach allows for almost-
periodicity proofs to be converted in a natural way to probabilistic algorithms that decide
membership in almost-periodic sumsets of dense subsets of Fn

2 . Exploiting this, we give a new
algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma.

Together with the results by the last two authors [TW11], this implies an algorithmic version
of the quadratic Goldreich-Levin theorem in which the number of terms in the quadratic Fourier
decomposition of a given function, as well as the running time of the algorithm, are quasipolyno-
mial in the error parameter ε. The algorithmic version of the quasipolynomial Bogolyubov-Ruzsa
lemma also implies an improvement in running time and performance of the self-corrector for
the Reed-Muller code of order 2 at distance 1/2− ε in [TW11].
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1 Introduction

When Croot and Sisask introduced “A probabilistic technique for finding almost-periods of convo-
lutions” in 2009 [CS10], it created quite a splash in the additive combinatorics community. Roughly
speaking, their main result says that if A ⊆ Fn2 is a set whose sumset A+A = {a+a′ : a, a′ ∈ A} is
small, then there exists a dense set X such that the convolution 1A ∗1A(·) of the indicator function
of A with itself, and its translates 1A ∗ 1A(·+ x) for x ∈ X, are almost indistinguishable in the L2

and higher Lp norms. This set X may then be referred to as the set of “almost periods”.

The two main combinatorial applications of the above technique were the proof of the quasipoly-
nomial Bogolyubov-Ruzsa lemma due to Sanders [San10] and a result saying that sumsets of dense
sets contain large subspaces due to Croot,  Laba and Sisask [C LS11]. Both applications made crucial
use of the Lp-norm estimates of Croot and Sisask, where p was taken to be very large (a function
of the density α of the set A ⊆ Fn2 under investigation, such as logα−1).

Our main result is a simple combinatorial proof of almost-periodicity results in the spirit of Croot
and Sisask that proceeds entirely without recourse to Lp-norms, instead only relying on the Chernoff
bound for sampling. This is in contrast to Croot and Sisask’s approach which obtained Lp-norm es-



timates using a simple sampling technique combined with tailbounds for a multinomial distribution,
which Sanders replaced by the Marcinkiewicz-Zygmund inequality. It is our hope that this proof
will appeal to a larger part of the theoretical computer science community than the currently ex-
isting ones, thereby increasing the likelihood of further novel applications of the almost-periodicity
techniques.

We prove our almost-periodicity results in Section 4. We stress that our almost-periodicity ap-
proach works for arbitrary abelian groups, but for simplicity we state our results only over Fn2 .
We illustrate the use of our new approach by presenting simplified combinatorial proofs of known
additive combinatorics results as well as new algorithmic applications. Let us describe these in
more detail.

1.1 Combinatorial applications

In Section 5 we show that both the quasipolynomial Bogolyubov-Ruzsa lemma [San10] and the
results of Croot, Laba and Sisask on large subspaces contained in dense sets [C LS11] can be easily
deduced from our almost-periodicity approach.

The quasipolynomial Bogolyubov-Ruzsa lemma. In its original form, the Bogolyubov-
Ruzsa lemma states that if A ⊆ Fn2 is a set of density α, then 4A := A + A + A + A contains
a subspace of codimension at most 2α−2. One of the first applications Croot and Sisask gave
of their new technique was a quasipolynomial Bogolyubov-Ruzsa lemma, which asserted that 4A
contains iterated sumsets, of density at least 2−O(log4(1/α)) inside Fn2 . It was quickly recognized by
Sanders [San10] that the latter result could be boot-strapped, using a little Fourier analysis, to a
quasipolynomial version of the Bogolyubov-Ruzsa lemma in which the codimension of the subspace
that is found within 4A is at most O(log4(α−1)).

This result has important implications for the bounds in Freiman’s theorem, which describes
the structure of sets with small sumsets [Ruz99], and to the inverse theorem for the Gowers U3

norm [Sam07, GT08]. It is also a crucial ingredient in Sanders’s groundbreaking upper bound of
C(log logN)5N/ logN for the size of a subset of {1, . . . , N} not containing any 3-term arithmetic
progressions [San11b]. An improvement to O(log(1/α)) of the bound on the codimension of the
subspace which is contained in 4A implies the polynomial Freiman-Ruzsa conjecture in additive com-
binatorics, which has found several applications to complexity theory so far [BZ11, BLR12, BDL13].
See the survey of Green [Gre05] for more information on the polynomial Freiman-Ruzsa conjecture
and its combinatorial applications.

Sumsets of dense sets contain large subspaces. Our second combinatorial application con-
cerns the problem of finding large subspaces within sumsets of a dense set. Green [Gre05] had
shown that if A ⊆ Fn2 has density α, then A + A contains a subspace of dimension Ω(α2n). This
was improved by Sanders who proved in [San11a] using a Fourier-iteration lemma that this sub-
space must be of dimension at least Ω(αn). Croot,  Laba and Sisask [C LS11], who addressed the
more general problem in the integers, asking for long arithmetic progressions in sumsets of dense
sets, remarked that a slightly worse bound of the form Ω

(
α

log3(1/α)
n
)

follows implicitly from their

techniques.

In Section 5.2 we show that the finite-field analogue of the Croot- Laba-Sisask bound also follows
from our almost-periodicity approach. This requires a more careful analysis of our sampling tech-
nique, which we shall give in detail in the appendix.
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1.2 Algorithmic applications

An advantage of our sampling-based almost-periodicity proofs is that they can be turned into
algorithms that decide membership in almost-periodic sumsets of dense subsets of Fn2 in a rather
natural way. In particular, using our new techniques we present in Section 6.1 an algorithmic
version of the quasipolynomial Bogolyubov-Ruzsa lemma. This is an algorithm which runs in time
polynomial in n and quasipolynomial in 1/α, which, given an oracle access to an indicator function
of a set A of density at least α inside Fn2 , finds, with high probability, a basis to a subspace V ⊆ 4A
of codimension O(log4(1/α)).

The main problem we encounter when converting our almost-periodicity proofs into such an algo-
rithm is that our combinatorial proofs produce large subsets of Fn2 of size exponential in n. Since
we are interested in an algorithm which runs in time polynomial in n, we cannot afford to store or
compute with these sets explicitly. Instead, we develop probabilistic procedures to efficiently test
membership in such sets. We elaborate on these procedures in Section 2.

Combined with the results of [TW11], the algorithmic version of the quasipolynomial Bogolyubov-
Ruzsa lemma implies an improvement in the running time and performance guarantee of a self-
correction procedure for the Reed-Muller code of order 2 at distance 1/2 − ε, given in [TW11].
This in turn leads to an improved quadratic Goldreich-Levin theorem in which the running time
of the algorithm, as well as the number of terms in the quadratic Fourier decomposition of a given
function, are quasipolynomial in the error parameter ε. We elaborate on these applications below.

One major difficulty with obtaining the above applications from the algorithmic version of the
quasipolynomial Bogolyubov-Ruzsa lemma, encountered already in [TW11], is that the individual
subroutines in these applications, which correspond to algorithmic versions of theorems in additive
combinatorics, are probabilistic in nature. Since they are applied in sequence, this means that the
input for the next subroutine comes with a certain amount of noise, and it is therefore necessary
to prove robust algorithmic versions of the theorems from additive combinatorics. This applies
in particular to the quasipolynomial Bogolyubov-Ruzsa lemma, of which we prove such a robust
version in Section 6.1.

An improved self-corrector for the Reed-Muller code of order 2. A central ingredient
in the quadratic Goldreich-Levin theorem of [TW11] is a self-correction procedure for the Reed-
Muller code of order 2 at distance 1/2− ε. More precisely, the authors present a procedure which
runs in time polynomial in n and exponential in 1/ε, which given a function f : Fn2 → {−1, 1} of
distance at least 1/2 − ε from a quadratic phase (−1)q (which is a codeword of the Reed-Muller
code of order 2), finds a quadratic phase (−1)q

′
which has distance at most 1/2− η(ε) from f for

η(ε) = exp(−1/ε).

This self-correction procedure is essentially an algorithmic version of the proof of the inverse theorem
for the U3 norm [Sam07, GT08], which states that if a bounded function f has large U3 norm, then
it correlates with a quadratic phase. As stated above, the Bogolyubov-Ruzsa lemma is crucial in the
proof of the inverse theorem, and hence plugging our new algorithmic proof of the quasipolynomial
Bogolyubov-Ruzsa lemma into the self-correction procedure of [TW11] we improve the running
time of the procedure, as well as the parameter η, to depend only quasipolynomially on 1/ε. We
elaborate on this in Section 6.2.

We remark that the list decoding radius of the Reed-Muller code of order 2 is 1/4 [GKZ08, Gop10],
and hence at distance 1/2 − ε one cannot expect to find all codewords of distance 1/2 − ε from a
given codeword. Instead our self-correction procedure (as well as that of [TW11]) returns only a
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single codeword that correlates with the original codeword.

An improved quadratic Goldreich-Levin theorem. As mentioned above, the self-correction
procedure for the Reed-Muller code of order 2 at distance 1/2 − ε plays a substantial role in the
work on quadratic decomposition theorems by the last two authors. The aim of such theorems is to
decompose any bounded function f : Fn2 → C as a sum g + h, where g is quadratically uniform, in
the sense that the Gowers U3 norm ‖g‖U3 is small, and h is quadratically structured, in the sense
that it is a bounded sum of quadratic phases. These types of decompositions constitute a higher-
order analogue of classical Fourier decompositions, and they have found several number-theoretic
applications [Can10, GW10b, GW12, GW10a, HL11]. Such decomposition theorems had previously
been obtained in an abstract and non-constructive way (either using a form of the Hahn-Banach
theorem [GW12], or a so-called energy increment approach [Gre07]).

From a computer science perspective, it is a natural question to ask whether such a decomposition
could be computed efficiently. In [TW11], the authors gave a probabilistic algorithm that, given
any function f : Fn2 → C, would with high probability compute, in time polynomial in n and
exponential in 1/ε, a quadratic decomposition for that function with a specified U3 error ε, in
which the number of quadratic terms is exponential in 1/ε. This essentially amounts to computing
a “quadratic Fourier decomposition” for f , and was therefore termed a quadratic Goldreich-Levin
theorem in analogy with the well-known linear case [GL89].

The quadratic Goldreich-Levin algorithm consists of two parts: a deterministic part which is able to
construct the quadratically structured part of f under the assumption that we have an algorithm
which provides some quadratic phase function that f correlates with (if there is no such phase
function, we just set g = f). The algorithm for finding a quadratic phase function, which constitutes
the second part of the overall algorithm, is basically the self-correction procedure for the Reed-
Muller code of order 2 at distance 1/2 − ε described above. Using our improved self-correction
procedure we improve the running time, as well as the number of terms that are obtained in the
final quadratic decomposition, to depend only quasipolynomially in the uniformity parameter ε.
More details are given in Section 6.3.

Acknowledgements. The last two authors would like to thank Tom Sanders for numerous helpful
remarks and discussions. The first two authors would like to thank Shachar Lovett for sharing with
them his view of Sanders’s proof of the quasipolynomial Bogolyubov-Ruzsa lemma (cf. [Lov12]).

2 Techniques

2.1 Sampling-based proofs of almost-periodicity results

The following is the precise statement of the original almost-periodicity lemma of Croot and Sisask
(Proposition 1.3 in [CS10]). Since it is valid for general abelian groups G, it is written in multi-
plicative notation.

Proposition 2.1 (Croot-Sisask Lemma, Lp local version) Let ε > 0 and let m ≥ 1 be an
integer. Let G be an abelian group and let A,B ⊆ G be finite subsets such that |B · A| ≤ K|B|.
Then there is a set X ⊆ A of size |X| ≥ |A|/(2K)50m/ε such that for each x ∈ XX−1,

‖1A ∗ 1B(yx)− 1A ∗ 1B(y)‖2m2m ≤ max{εm|AB||B|m, ‖1A ∗ 1B‖mm}εm|B|m.
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It is known that Lp bounds and Chernoff’s inequality are, in a certain sense, equivalent. Specifically,
a random variable X obeys a Chernoff-type tail bound of the form

P[|X| ≥ t‖X‖2] ≤ C exp(−Ω(t2))

if and only if its Lp-norm satisfies
‖X‖p ≤ C

√
p‖X‖2

for all p ∈ [2,∞), the latter representing a Khinchine-type inequality (from which Marcinkiewicz-
Zygmund can be derived). For a proof of this statement we refer the reader to the excellent lecture
notes by Sanders [San12].

Thus it is natural to ask whether one could formulate an ’Lp-norm free’ almost-periodicity statement
that suffices for applications and whether such a statement could be proven without recourse to
Lp-norms. In Section 4.1 we answer this question in the affirmative by proving Proposition 2.2
below. We stress again that this proposition holds over any abelian group, but for simplicity we
state it only for the special case of Fn2 .

To state Proposition 2.2 we start with fixing some notation. For a subset A ⊆ Fn2 we let 1A denote
the indicator function of A and µA denote the function 1A · (2n/|A|). For two real numbers α, β we
write α ≈ε β to denote |α − β| ≤ ε and if |α − β| > ε we write α 6≈ε β. Given subsets A,B ⊂ Fn2 ,
define the measure of additive containment ρA→B : Fn2 → [0, 1] by

ρA→B(y) := P
a∈A

[y + a ∈ B] =
|(y +A) ∩B|

|A|
= µA ∗ 1B(y), (1)

for each y ∈ Fn2 . Notice that ρA→B(y) = 1 when y+A ⊆ B and ρA→B(y) = 0 when (y+A)∩B = ∅.

Proposition 2.2 (Almost-periodicity of sumsets) If A ⊂ Fn2 satisfies |2A| ≤ K|A|, then for
every integer t and set B ⊆ Fn2 there exists a set X with the following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[ρA→B(y) ≈2ε ρA→B(y + x)] ≥ 1− 8
|A+B|
|S|

· exp
(
−2ε2t

)
. (2)

Our proof differs from the original proof of Croot and Sisask in that it disposes of Lp-norms and
tail bounds for a multinomial distribution (or the Marcinkiewicz-Zygmund inequality), and replaces
them with sampling arguments relying on the Chernoff-Hoeffding bound.

We now sketch the proof. To obtain X we replace ρA→B by an estimator function computed by
taking a sequence of t independent random samples distributed uniformly over A. Denoting the
sample sequence by a = (a1, . . . , at), we estimate ρA→B(y) by the fraction of ai ∈ a satisfying
y + ai ∈ B. Denote the estimator function corresponding to a by ρ̂a. Fixing y, the Chernoff-
Hoeffding bound says that the probability that ρ̂a(y) differs from ρA→B(y) by more than ε, i.e., the
probability of the event “ρA→B(y) 6≈ε ρ̂a(y)” when a = (a1, . . . , at) is distributed uniformly over
At, is at most exp

(
−Ω

(
ε2t
))

.

The key observation in the construction of the set X is that there are many pairs of good estimator
sequences a = (a1, . . . , at), â = (â1, . . . , ât) for which there exists a “special” element x ∈ Fn2 such
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that â = x + a, where x + a := (x + a1, . . . , x + at). Such x are called “special” for the following
reason. We say y is “good” if both of the following conditions hold,

ρA→B(y) ≈ε ρ̂â(y) and ρA→B(y + x) ≈ε ρ̂a(y + x). (3)

Now if â = x+ a, then we have

ρ̂â(y) = ρ̂â(y + x+ x) = ρ̂â+x(y + x) = ρ̂a(y + x),

and combining this with (3) implies that for “good” y we have ρA→B(y) ≈2ε ρA→B(y + x). Thus,
to prove the proposition we only need to bound from below the number of “special” elements x,
which is done based on the assumption that A has small doubling.

For applications, one would like a version of almost-periodicity in which the set X is replaced
with a subspace. It was observed by Sanders [San10] that such a version could be deduced from
Proposition 2.1 above using Fourier analysis arguments. In Section 4.2 we use Sanders’s approach to
deduce such a version also from our Proposition 2.2. In Section 5 we show how known combinatorial
results can easily be deduced from this version. We now turn to describing the techniques used in
our algorithmic version of almost-periodicity results.

2.2 Algorithmic versions of almost-periodicity results

With a view to algorithmic applications, we prove an algorithmic version of our almost-periodicity
results in Section 6.1. As previously noted, the main difficulty in obtaining such an algorithmic
version is that the combinatorial proofs of these results use the description of large subsets of
Fn2 , whose size is exponential in n. Since we are interested in an algorithm which runs in time
polynomial in n we do not have time to describe and inspect these sets as a whole. Instead, we use
random sampling methods to decide efficiently membership in such sets.

For instance, one of the first issues we need to deal with is that for our algorithmic applications
we need to compute the measure ρA→2A(y) = Pa∈A[a+ y ∈ 2A]. In order to compute this measure
algorithmically one has to have access to the indicator function for the sumset 2A, whereas we
only have oracle access to the indicator function of A. In order to deal with this, we observe that
an element y ∈ Fn2 satisfies a + y ∈ 2A if and only if 1A ∗ 1A(a + y) > 0, and that the latter
quantity can be estimated using sampling. In order to handle possible error in the estimation of
1A ∗ 1A(a+ y) > 0 we need to make some further modifications in the combinatorial proof.

Another core issue that we need to deal with is how to efficiently find the set X of almost periods.
In the combinatorial proof the existence of the set X is shown in a non-constructive way using
the pigeonhole principle. In order to find the set X in a constructive manner we prove that for a
random string â = (a1, . . . , at) ∈ (Fn2 )t many translates â + x := (a1 + x, . . . , at + x) of â, as well
as â itself, will be good estimator sequences. In particular, one can take the set X to be the set of
all x ∈ Fn2 such that â + x is a good estimator sequence. For this one needs an efficient procedure
for testing whether a given sequence is a good estimator sequence, and we obtain such a procedure
using the above-mentioned idea for estimating ρA→2A(y).

Finally, in our combinatorial proof we show that X can be approximated by a subspace V using
Fourier analysis. It follows that in order to find the subspace V , it suffices to inspect the large
Fourier coefficients of 1X . This can be done efficiently using the (standard) Goldreich-Levin theorem
(Theorem 6.7).
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3 Preliminaries

In this section we fix our notation and collect some results that we shall use throughout the paper.
Fundamental to our approach will be the following Chernoff-type tail bound for sampling [TV06].

Lemma 3.1 (Hoeffding bound for sampling) If X is a random variable with |X| ≤ 1 and µ̂
is the empirical average obtained from t samples, then

P [|E [X]− µ̂| > γ] ≤ 2 exp(−2γ2t).

Throughout the paper we shall make use of the discrete Fourier transform, which we define as
follows. For f : Fn2 → C, let

f̂(t) = Ex∈Fn
2
f(x)(−1)x·t

for any t ∈ F̂n2 = Fn2 , where Ex∈Fn
2

simply stands for the normalized sum 2−n
∑

x∈Fn
2

and x · t =∑n
i=1 xiti for a pair of vectors x = (x1, . . . , xn), t = (t1, . . . , tn) ∈ Fn2 . The inversion formula states

that
f(x) =

∑
t∈Fn

2

f̂(t)(−1)x·t

for all x ∈ Fn2 , and Parseval’s identity takes the form

Ex∈Fn
2
f(x)g(x) =

∑
t∈Fn

2

f̂(t)ĝ(t),

for any two functions f, g : Fn2 → C. Finally, the convolution of two such functions is defined by

f ∗ g(x) = Ey∈Fn
2
f(y)g(x− y),

and the fact that the Fourier transform diagonlizes the convolution operator is expressed via the
idenity

f̂ ∗ g(t) = f̂(t)ĝ(t),

which holds for all t ∈ Fn2 .

The set of large Fourier coefficients determines the value of a function to a significant extent, and
for many arguments it is important to be able to estimate its size and determine its structure. For
a function f : Fn2 → C, let

Specρ(f) = {t ∈ Fn2 : |f̂(t)| ≥ ρ‖f‖1}. (4)

For a subset A ⊆ Fn2 we let 1A denote the indicator function of A and µA denote the function
1A · (2n/|A|) so that Ex∈Fn

2
[µA(x)] = 1. In the special case where f = 1A for a subset A ⊆ Fn2 of

density α, Parseval’s identity tells us that |Specρ(1A)| ≤ ρ−2 ·α−1. A more precise result is known:
Chang’s theorem [Cha02] states that Specρ(1A) is in fact contained in a subspace of dimension at
most Cρ−2 logα−1.

Theorem 3.2 (Chang’s theorem) Let ρ ∈ (0, 1] and A ⊆ Fn2 . Then there is a subspace V of Fn2
such that Specρ(1A) ⊆ V and

dim
(
V
)
≤ 8

log(2n/|A|)
ρ2

.

For an elegant recent proof of this result using entropy, see Impagliazzo et al. [IMR12].

Finally, for two real numbers α, β we write α ≈ε β to denote |α−β| ≤ ε and if |α−β| > ε we write
α 6≈ε β. All logarithms in this paper are taken to base 2.
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4 Sampling-based proofs of almost-periodicity results

4.1 Croot-Sisask almost-periodicity

We start with the proof of Proposition 2.2 which we restate below for convenience.

Proposition 2.2 (restated). If A ⊂ Fn2 satisfies |2A| ≤ K|A|, then for every integer t and set
B ⊆ Fn2 there exists a set X with the following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[ρA→B(y) ≈2ε ρA→B(y + x)] ≥ 1− 8
|A+B|
|S|

· exp
(
−2ε2t

)
.

Proof: Recall the definition of ρA→B(y) given in (1). To simplify notation let ρ(y) := ρA→B(y),
and for a sequence a = (a1, . . . , at) of length t, define the a-estimator of ρ to be the function
ρ̂a : Fn2 → [0, 1] defined for y ∈ Fn2 by

ρ̂a(y) :=
|{y + ai ∈ B | i = 1, . . . , t}|

t
.

We say that a is an ε-good estimator for y if ρ(y) ≈ε ρ̂a(y).

Fix y ∈ Fn2 . Our first step towards constructing X is to show that most sample-sequences from A
are ε-good for y, provided that t, the sample size, is large enough with respect to 1/ε. Let Yi be
the indicator random variable for the event “y + ai ∈ B” when ai is chosen uniformly at random
from A. Then ρ̂a(y) = 1

t

∑t
i=1 Yi is the average of t i.i.d. indicator random variables each having

mean ρ(y), so the Chernoff-Hoeffding bound (Lemma 3.1) implies that for each y ∈ Fn2 ,

P
a∈At

[ρ(y) 6≈ε ρ̂a(y)] ≤ 2 exp
(
−2ε2t

)
. (5)

Now we proceed to show that most a ∈ At are ε-good estimators for most y. Let Za be the random
variable measuring the fraction of y ∈ A+B for which a is an ε-good estimator, that is,

Za := P
y∈A+B

[ρ(y) ≈ε ρ̂a(y)] .

Setting δ = 2 exp
(
−2ε2t

)
, we conclude from (5) via linearity of expectation that

Ea∈At [Za] ≥ 1− δ.

Markov’s inequality now shows that at least half of the sequences a ∈ At are ε-good estimators for
all but a (2δ)-fraction of y ∈ A+B, in which case we say that a is an (ε, 2δ)-good estimator for ρ.
Denote by G[ε, 2δ] ⊂ At the set of these sequences,

G[ε, 2δ] =

{
a ∈ At | P

y∈A+B
[ρ(y) ≈ε ρ̂a(y)] ≥ 1− 2δ

}
. (6)
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To obtain X we partition G[ε, 2δ] as follows. Define a mapping ϕ : At 7→ {0}× (2A)t−1 by shifting
a sequence a = (a1, . . . , at) by its first element a1,

ϕ(a) = a + a1 := (a1 + a1, a1 + a2, . . . , a1 + at) (7)

Then ϕ maps the set G[ε, 2δ], which has size at least |A|t/2, into a set of size |2A|t−1 ≤ (K|A|)t−1
so by the pigeonhole principle, there is a subset G[ε, 2δ]b ⊂ G[ε, 2δ] that is mapped to the same
element b = (0, b2, . . . , bt). In addition, this subset is pretty large,

|G[ε, 2δ]b| ≥
|A|t

2Kt−1|A|t−1
=
|A|

2Kt−1 . (8)

Finally, fix an arbitrary â = (â1, . . . , ât) ∈ G[ε, 2δ]b and set

X = {â1 + a1 | (a1, . . . , at) ∈ G[ε, 2δ]b} .

To complete our proof we show that X has the three properties listed in the statement of the
lemma.

1. By definition, X ⊆ â1 +A.

2. The mapping G[ε, 2δ]b 7→ X given by (a1, . . . , at) 7→ â1 + a1 is invertible, because both â1
and b are fixed. Hence |X| = |G[ε, 2δ]b| and the size of X is bounded from below using (8).

3. Suppose x = â1 + a1, where a1 is the first element of an (ε, 2δ)-good estimator a =
(a1, . . . , at) ∈ G[ε, 2δ]b. The key observation is that â + x = a. Indeed, the definition of
G[ε, 2δ]b implies ϕ(â) = ϕ(a), so using (7) we have

â1 + âi = a1 + ai, i = 1, . . . , t,

which, rearranging, comes out to

ai = x+ âi, i = 1, . . . , t.

In other words, â + x = a as claimed.

Recalling that â is an (ε, 2δ)-good estimator, we know that for all but a (2δ)-fraction of
y ∈ A+B,

ρ(y) ≈ε ρ̂â(y) (9)

and (9) also holds for all y /∈ A+B since in this case ρ̂â(y) = ρ(y) = 0. Hence we have that
(9) holds for all but a (2δ|A+B|/|S|)-fraction of y ∈ S.

Similarly, since a is also an (ε, 2δ)-good estimator, we have that

ρ(y + x) ≈ε ρ̂a(y + x) (10)

for all but a (2δ|A+B|/|x+ S|)-fraction of y ∈ S. Using a union bound and the fact that
|S + x| = |S|, we find that for all but a (4δ|A+B|/|S|)-fraction of y ∈ S both (9) and (10)
hold. For such y we conclude that ρ(y) ≈2ε ρ(y+x) using the triangle inequality and the fact
that ρ̂â(y) = ρ̂â+x(y + x) = ρ̂a(y + x).

This completes the proof of the proposition.
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By an inductive application of Proposition 2.2 (using the triangle inequality and the union bound),
one can prove the following iterated version.

Corollary 4.1 (Almost-periodicity of sumsets, iterated) If A ⊂ Fn2 satisfies |2A| ≤ K|A|,
then for every integer t and set B ⊆ Fn2 , there exists a set X with the following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x1, . . . , x` ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[ρA→B(y) ≈2ε` ρA→B(y + x1 + . . .+ x`)] ≥ 1− 8`
|A+B|
|S|

· exp
(
−2ε2t

)
. (11)

Proof: The proof is by induction on `. Proposition 2.2 establishes the case ` = 1. For the
induction step, suppose that the lemma holds for some integer ` ≥ 1 with a set X ⊆ Fn2 . We shall
show that the same set X satisfies the above requirements for `+ 1.

Let δ := 8(|A+B|/|S|) ·exp
(
−2ε2t

)
. By the induction hypothesis, for at least a (1− `δ)-fraction of

y ∈ S, it is true that ρA→B(y) ≈2ε` ρA→B(y+x1 + . . .+x`). The case ` = 1 implies that for at least
a (1− δ)-fraction of y ∈ S, it is true that ρA→B(y + x1 + . . .+ x`) ≈2ε ρA→B(y + x1 + . . .+ x`+1).
Thus by a union bound we have that for at least a (1 − (` + 1)δ)-fraction of y ∈ S we have both
ρA→B(y) ≈2ε` ρA→B(y+ x1 + . . .+ x`) and ρA→B(y+ x1 + . . .+ x`) ≈2ε ρA→B(y+ x1 + . . .+ x`+1).
The proof is completed by noting that by the triangle inequality, for each such y, we also have
ρA→B(y) ≈2ε(`+1) ρA→B(y + x1 + . . .+ x`+1).

4.2 Almost-periodicity over a subspace

For applications one would like a version of Proposition 2.2 in which the set X of periods is in
fact a subspace. It was observed by Sanders [San10] that one can use iterated almost-periodicity
statements such as Corollary 4.1, combined with some Fourier analysis, to obtain such a subspace.
Here we use Sanders’s argument to deduce the following statement from Corollary 4.1.

Corollary 4.2 (Almost-periodicity of sumsets over a subspace) If A ⊂ Fn2 is a subset of
density α, then for every integer t and set B ⊆ Fn2 there exists a subspace V of codimension
codim(V ) ≤ 32 log(2/αt) with the following property.

For every v ∈ V , for all subsets S ⊆ Fn2 and for every ε, η > 0 and integer `,

P
y∈S

[ρA→B(y) ≈ε′ ρA→B(y + v)] ≥ 1− 16
`

η

|A+B|
|S|

· exp
(
−2ε2t

)
, (12)

where ε′ = 4ε`+ 2η + 2−`
√
|B|/|A|.

As we shall see in Section 5, the proof of the quasipolynomial Bogolyubov-Ruzsa lemma (Theorem
5.1) follows easily from the above corollary, and the result of Croot, Laba and Sisask on the existence
of subspaces in sumsets of dense sets (Theorem 5.3) follows easily from a refinement of the above
corollary (which we will give as Corollary 5.4 below). Note that for the proof of Corollary 4.2 we
need the stronger assumption that A has density at least α in Fn2 , instead of the doubling hypothesis
|2A| ≤ K|A|.
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The idea of the proof of Corollary 4.2 is the following. Let X be the subset guaranteed by Corollary
4.1 for K = 1/α, and define the subspace V as V = Spec1/2(X)⊥ (see Section 3 for the definition of

Specρ). The intuition is that if X were a subspace then Spec1/2(X) = V ⊥, and hence V = X. Thus
V serves as an “approximate subspace” for X. Since A is dense in Fn2 , by Corollary 4.1 we also
have that X is dense in Fn2 and hence Chang’s theorem (Theorem 3.2) implies that the subspace
V is also dense in Fn2 (this is the only place where we need the stronger assumption on the density
of A).

In order to show that (12) holds we first show, using Corollary 4.1, a simple averaging argument
and the triangle inequality, that for most y ∈ S,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2ε`+η ρA→B(y) . (13)

Similarly, for all v ∈ V and for most y ∈ S,

E
x1,...,x`∈X

[ρA→B(y + v + x1 + . . .+ x`)] ≈2ε`+η ρA→B(y + v) . (14)

We then use Fourier analysis, following Sanders’s argument closely, to show that for all y ∈ Fn2 ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2−`
√
|B|/|A| E

x1,...,x`∈X
[ρA→B(y + v + x1 + . . .+ x`)] , (15)

where v is again an arbitrary element of V . The final conclusion follows from (13), (14) and (15)
using the union bound and the triangle inequality. We start by establishing (13) and (14).

Lemma 4.3 Let ε, δ > 0, and let A,B,X, S ⊆ Fn2 be such that for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y) ≈ε ρA→B(y + x1 + . . .+ x`)] ≥ 1− δ .

Then for every η > 0 we have that

P
y∈S

[
ρA→B(y) ≈ε+η E

x1,...,x`∈X
[ρA→B(y + x1 + . . .+ x`)]

]
≥ 1− δ/η .

Proof: From Markov’s inequality it follows that for at least a (1 − δ/η)-fraction of y ∈ S, the
relation

ρA→B(y) ≈ε ρA→B(y + x1 + . . .+ x`)

holds for at least a (1−η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Thus for at least a (1−δ/η)-fraction
of y ∈ S, we have that∣∣∣∣ E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)]− ρA→B(y)

∣∣∣∣ ≤ E
x1,...,x`∈X

[|ρA→B(y + x1 + . . .+ x`)− ρA→B(y)|]

which is seen to be bounded above by (1− η) · ε+ η · 1 ≤ ε+ η.

The next lemma establishes (15).

Lemma 4.4 Let X ⊆ Fn2 , and let V ⊆ Spec1/2(X)⊥. Then for all y ∈ Fn2 and v ∈ V ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈ε′′ E
x1,...,x`∈X

[ρA→B(y + v + x1 + . . .+ x`)] , (16)

where ε′′ = 2−`
√
|B|/|A|.
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Proof: We can write the difference between the two sides of (16) using the convolution operator
as

(µX)∗` ∗ µA ∗ 1B(y)− (µX)∗` ∗ µA ∗ 1B(y + v),

which in terms of the Fourier basis equals∑
t∈Fn

2

µ̂A(t) · (µ̂X(t))` · 1̂B(t) ·
(

(−1)y·t − (−1)(y+v)·t
)
.

This expression in turn is bounded in absolute value by∑
t∈Fn

2

|µ̂A(t)| · |µ̂X(t)|` ·
∣∣∣1̂B(t)

∣∣∣ · ∣∣(−1)y·t
∣∣ · ∣∣1− (−1)v·t

∣∣ =
∑
t∈Fn

2

|µ̂A(t)| · |µ̂X(t)|` ·
∣∣∣1̂B(t)

∣∣∣ · ∣∣1− (−1)v·t
∣∣ .

By definition of V as the orthogonal complement of Spec1/2(X), the right-hand side can be bounded
as ∑

t/∈V ⊥
|µ̂A(t)| · |µ̂X(t)|` ·

∣∣∣1̂B(t)
∣∣∣ · ∣∣1− (−1)v·t

∣∣ ≤ 2−`
∑
t/∈V ⊥

|µ̂A(t)| ·
∣∣∣1̂B(t)

∣∣∣ .
By the Cauchy-Schwarz inequality and Parseval’s indentity, this is bounded above by

2−`
√∑
t/∈V ⊥

(µ̂A(t))2
√∑
t/∈V ⊥

(1̂B(t))2 ≤ 2−`
√
Ey∈Fn

2
(µA(y))2

√
Ey∈Fn

2
(1B(y))2 = 2−`

√
|B|/|A| .

We are now ready for the proof of Corollary 4.2.

Proof of Corollary 4.2: Let X be the set guaranteed by Corollary 4.1 for K = 1/α, and let
V = Spec1/2(X)⊥. First, note that Property 2 of Corollary 4.1 implies that |X| ≥ |A|/(2(1/α)t−1) ≥
αt · 2n−1. It now follows from Chang’s theorem (Theorem 3.2) that

dim(Spec1/2(X)) = codim(V ) ≤ 8
log(2/αt)

(1/2)2
= 32 log(2/αt).

It remains to show that (12) holds. Let δ := 8`(|A+B|/|S|) · exp
(
−2ε2t

)
. From Corollary 4.1 and

Lemma 4.3 we have that

ρA→B(y) ≈2ε`+η Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] (17)

for at least a (1− δ/η)-fraction of y ∈ S, and similarly that for all v ∈ V ,

ρA→B(y + v) ≈2ε`+η Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] (18)

for at least a (1 − δ/η)-fraction of y ∈ S. Moreover, Lemma 4.4 implies that for every y ∈ S and
v ∈ V ,

E
x1,...,x`∈X

[ρA→B(y + x1 + . . .+ x`)] ≈2−`
√
|B/A| E

x1,...,x`∈X
[ρA→B(y + v + x1 + . . .+ x`)] . (19)

Applying the union bound and the triangle inequality to (17), (18) and (19), we conclude that

ρA→B(y) ≈ε′ ρA→B(y + v)

for ε′ = 4ε` + 2η + 2−`
√
|B|/|A| for at least a (1 − 2δ/η)-fraction of y ∈ S, which is the desired

conclusion.
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5 Combinatorial applications

5.1 The quasipolynomial Bogolyubov-Ruzsa lemma

In the context of Fn2 , the traditional Bogolyubov-Ruzsa lemma states that if a set A has density
at least α in its ambient group, then its fourfold sumset A + A + A + A contains a subspace of
codimension at most 2α−2. It is easily proved using a few lines of Fourier analysis: the orthogonal
complement of the subspace is given by the frequencies at which the indicator function of A has
relatively large Fourier coefficients.

The bound on the codimension of V was improved to O(log4(α−1)) by Sanders [San10]. This
improvement has far-reaching quantitative implications for other problems, in particular to the
bounds in Freiman’s theorem [Ruz99], the U3 inverse theorem [Sam07, GT08] and the bound in
Roth’s theorem [San11b]. We now deduce the quasipolynomial Bogloyubov-Ruzsa lemma of Sanders
from Corollary 4.2. In Section 6.1 we give an algorithmic version of the proof, which allows us to
explicitly find a basis for V ⊥.

Theorem 5.1 (Quasipolynomial Bogloyubov-Ruzsa Lemma) Let A ⊆ Fn2 be a subset of
density α. Then there exists a subspace V of Fn2 satisfying V ⊆ 4A and

codim(V ) = O(log4(α−1)).

Proof of Theorem 5.1: Applying Corollary 4.2 with B = 2A, S = A, ` = log(302/α)/2,
η = 1/60, ε = 1/(120`) and t = O(log3(1/α)), we conclude the existence of a subspace V of
codim(V ) = O(log4(1/α)) which has the property that for all v ∈ V ,

P
a∈A

[ρA→2A(a) ≈ε′ ρA→2A(a+ v)] ≥ 1− 16
`

η

|3A|
|A|
· exp

(
−2ε2t

)
,

where ε′ = 4ε`+ 2η + 2−`
√
|2A|/|A| ≤ 1/30 + 1/30 + (

√
α/30) ·

√
1/α ≤ 1/10.

Since ρA→2A(a) = 1 for all a ∈ A, this implies that

P
a∈A

[ρA→2A(a+ v) ≥ 0.9] ≥ 1− 16
`

η

|3A|
|A|
· exp

(
−2ε2t

)
≥ 0.9,

where the last inequality is a result of our choice of parameters.

Recalling the definition of ρA→B in (1), the inequality above implies that for all v ∈ V ,

P
a,a′∈A

[a+ a′ + v ∈ 2A] ≥ 0.92 = 0.81.

By averaging, there therefore exists a pair a, a′ ∈ A such that Pv∈V [a + a′ + v ∈ 2A] ≥ 0.81, or
equivalently |V ∩ (a + a′ + 2A) |≥ 0.81|V |. But it is easy to see that if |V ∩ B| > 1

2 |V | for some
subset B ⊆ Fn2 , then V ⊆ 2B (since every element v ∈ V has precisely |V | different representations
as v = v1 + v2 where v1, v2 ∈ V ). We conclude that V ⊆ 2(a + a′ + A + A) ⊆ 4A, which finishes
the proof.
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5.2 Sumsets of dense sets contain large subspaces

Inspired by the question of whether dense subsets of {1, . . . , N} contain long arithmetic progressions,
which has received extensive coverage in the literature [Bou90, Gre02, San08], Ben Green asked an
analogous question in the finite field setting and obtained the following result [Gre05].

Theorem 5.2 (Green’s theorem on subspaces in sumsets) Let A ⊆ Fn2 be a subset of den-
sity α. Then A+A contains a subspace V of Fn2 of dimension

dim(V ) = Ω(α2n).

In [San11a] Sanders showed, using a Fourier-based density-increment strategy, that one can in
fact take the subspace V to have dimension dim(V ) = Ω(αn). Croot,  Laba and Sisask [C LS11]
remark that a bound of the form Ω

(
α

log3(1/α)
n
)

could be obtained via a finite-field analogue of their

methods. Our main theorem in this section is the following, replicating the result from [C LS11].

Theorem 5.3 (Sumsets of dense sets contain large subspaces) Let A ⊆ Fn2 be a subset of
density α. Then A+A contains an affine subspace V of Fn2 of dimension

dim(V ) = Ω

(
α

log3(1/α)
n

)
.

For the proof of the above theorem we shall need a refined version of the almost-periodicity results
from Section 4. In particular, we shall need the following refined version of Corollary 4.2.

Corollary 5.4 (Refined almost-periodicity of sumsets over a subspace) If A ⊂ Fn2 is a
subset of density α, then for every integer t and set B ⊆ Fn2 , there exists a subspace V of codimen-
sion codim(V ) ≤ 32 log(2/αt) with the following property.

For every v ∈ V , for all subsets S ⊆ Fn2 and for every ε, η > 0 and integer `,

P
y∈S

[
ρA→B(y)− ρA→B(y + v) ≤ ε′

]
≥ 1− 16

`

η

|A+B|
|S|

· exp
(
−ε2t/4

)
, (20)

where ε′ = 4ε`
√
ρA→B(y) + 2η + 2−`

√
|B|/|A|.

The main difference between the above corollary and Corollary 4.2 lies in the term
√
ρA→B(y)

which appears in the expression for ε′ in the above corollary. This term makes ε′ smaller which in
turn makes the above corollary stronger. For the sake of simplicity, we only consider in the above
corollary one-sided bounds of the form ρA→B(y) − ρA→B(y + v) ≤ ε′ instead of two-sided bounds
of the form ρA→B(y) ≈ε′ ρA→B(y + v). This will suffice for the proof of Theorem 5.3.

The proof of Corollary 5.4 is similar to the proof of Corollary 4.2, and the main difference is that
in the proof of Corollary 5.4 we perform a more detailed analysis of the distribution 1B(a + y)
when a is distributed uniformly over A and y is a fixed point in Fn2 and use information on the
variance of this distribution. More specifically, in the proof Corollary 5.4, instead of using the
regular Hoeffding bound for sampling (Lemma 3.1), we use the following well-known refinement
involving the variance [TV06].
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Lemma 5.5 (Refined Hoeffding bound for sampling) If X is a random variable satisfying
|X− E [X] | ≤ 1 and µ̂ is the empirical average obtained from t samples, then

P [|E [X]− µ̂| > γ] ≤ 2 exp

(
− γ2t

4σ2(X)

)
provided that γ < 2σ2.

For completeness, we include the proof of Corollary 5.4 in full in Appendix A. The rest of this
section is devoted to the proof of Theorem 5.3 assuming that Corollary 5.4 is true.

The idea of the proof of Theorem 5.3 is as follows. Applying Corollary 5.4 with B = A implies the
existence of a relatively large subspace V such that for every v ∈ V , for a large fraction of y ∈ Fn2 ,
it holds that ρA→A(y + v) > 0. Our goal will be to show that an affine shift of V is contained in
2A, or equivalently to show the existence of an affine shift y ∈ Fn2 such that ρA→A(y+v) > 0 for all
v ∈ V . Suppose that we have chosen the parameters in Corollary 5.4 in such a way that for every
v ∈ V , at least a (1 − δ)-fraction of y ∈ Fn2 satisfy that ρA→A(y + v) > 0. Then the union bound
implies that at least a (1 − |V |δ)-fraction of y ∈ Fn2 satisfy the condition ρA→A(y + v) > 0 for all
v ∈ V . Thus in order to guarantee the existence of the desired affine shift y, it suffices to choose
the parameters in Corollary 5.4 in such a way that |V |δ < 1.

Note that we wouldn’t have gained anything from considering the variance in the proof of the
quasipolynomial Bogolyubov-Ruzsa lemma (Theorem 5.1) since there Corollary 4.2 is applied to
elements y for which ρA→B(y) is very large (between 0.9 and 1), and we have no better handle
on the variance. In contrast, here the typical element to which we apply Corollary 5.4 satisfies
ρA→A(y) = α, so that the variance is small as well.

For the proof of Theorem 5.3 we shall need the following simple lemma.

Lemma 5.6 Let f(t) = t2 − bt − c for b > 0, c ≥ 0, and suppose that 0 ≤ t′ ≤ t′′ are such that
f(t′) > 0. Then f(t′) ≤ f(t′′).

Proof: The fact that b > 0, c ≥ 0 implies that f(t) has a root t1 ≤ 0 and another root t2 > 0.
Thus we have that f(t) is negative in the interval (0, t2) and is positive in the interval (t2,∞). The
fact that t′ ≥ 0 and f(t′) > 0 thus implies that t′ > t2. The lemma follows by noting that f is
monotonically increasing in the interval (t2,∞).

Proof of Theorem 5.3: Apply Corollary 5.4 with B = A, η = α/24, ` = log(12/α), ε =√
2α/(48`), t to be determined later on and

S = {y ∈ Fn2 | ρA→A(y) ≥ α/2}.

Noting that

Ey∈Fn
2
[ρA→A(y)] = P

y∈Fn
2 ,a∈A

[a+ y ∈ A] = Ea∈A
[

P
y∈Fn

2

[a+ y ∈ A]

]
= α,

Markov’s inequality implies that |S| ≥ (α/2) · 2n.

With this choice of parameters Corollary 5.4 implies that for every v ∈ V ,

P
y∈S

[
ρA→A(y + v) ≥ ρA→A(y)− α/6−

√
2α · ρA→A(y)

12

]
≥ 1− 16

`

η
· |2A|
|S|
· exp(−ε2t/4)
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Let δ := 16(`/η) · (|2A|/|S|) · exp(−ε2t/4). Since ρA→A(y) ≥ α/2 for every y ∈ S, the inequality
above implies that

P
y∈S

[ρA→A(y + v) ≥ α/4] = P
y∈S

[
ρA→A(y + v) ≥ α/2− α/6−

√
2α · α/2

12

]

≥ P
y∈S

[
ρA→A(y + v) ≥ ρA→A(y)− α/6−

√
2α · ρA→A(y)

12

]
≥ 1− δ

where the first inequality follows by applying Lemma 5.6 with f(t) = t2 −
(√

2α/12
)
t − α/6,

t′ =
√
α/2, t′′ =

√
ρA→A(y), and noting that our assumptions imply that 0 ≤ t′ ≤ t′′ and that

f(t′) = α/4 > 0.

A union bound then implies that

P
y∈S

[ρA→A(y + v) ≥ α/4 ∀v ∈ V ] ≥ 1− |V | · δ.

To conclude the proof we shall show that for sufficiently small integer t one can guarantee that
|V |δ < 1. This in turn will imply the existence of an affine shift y ∈ S such that ρA→A(y + v) > 0
for every v ∈ V , and consequently y + V ⊆ 2A. Our choice of parameters implies that

|V |δ =

(
αt

2

)32

· 2n · 16 · `
η
· |2A|
|S|
· exp(−ε2t/4)

≤ exp

(
− t
(

32 log(1/α) +
2α

4 · 482 · log2(12/α)

)
+

(
2 log(1/α) + n+ log log(12/α)

))
Thus, |V |δ < 1 is guaranteed by letting

t =
2 log(1/α) + n+ log log(12/α)

32 log(1/α) + 2α
4·482·log2(12/α)

=
n+O(log(1/α))

32 log(1/α) + Ω(α/ log2(1/α))
.

But for such a choice of t we have that

dim(V ) = n− 32 log(1/α)t− 32 = Ω

(
α

log3(1/α)
n

)
.

6 Algorithmic applications

6.1 Algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma

Here we develop a robust algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma.
In other words, we give an efficient (probabilistic) algorithm for finding a basis for the orthogonal
complement of the subspace V in Theorem 5.1.

Theorem 6.1 (Algorithmic Quasipolynomial Bogolyubov-Ruzsa Lemma) There exists a
randomized algorithm Quasipolynomial-Bogolyubov with input parameters γ′ ≥ α > 0 which,
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given oracle access to a function h : Fn2 → {0, 1} with Eh ≥ α, outputs a subspace V ⊆ Fn2 of
codimension at most O(log4(1/α)) (by giving a basis for V ⊥) such that with probability at least

1 − γ′, we have h ∗ h ∗ h ∗ h(v) > 0 for each v ∈ V . The algorithm runs in time 2O(log4(1/α)) ·
polylog(1/γ′) · n3 log2 n.

Note that if the function h equals the indicator function of a subset A ⊆ Fn2 , then the condition
h ∗ h ∗ h ∗ h(v) > 0 implies that v ∈ 4A, and if this condition is satisfied for all v ∈ V , then
V ⊆ 4A. While it will be convenient to think of the set A = {x ∈ Fn2 | h(x) = 1} in the proof, in
the applications described in Sections 6.2 and 6.3 we will actually apply the theorem to the output
of a randomized algorithm, and hence we shall need a robust version that works for any function
h : Fn2 → {0, 1} for which Eh ≥ α. We also assume for convenience that Eh is exactly α.

In the combinatorial proof we considered the measure ρA→2A(y) = Pa∈A [y + a ∈ 2A], and the
subspace V was defined in terms of a set X which was described using this measure. However,
now this measure is difficult to compute since it might not be possible to test membership in 2A
simply using oracle access to h, which is the indicator function of A. We give a robust version of
the combinatorial proof by noting that y + a ∈ 2A is equivalent to saying that h ∗ h(a + y) > 0.
But since we do not have noise-free access to h ∗ h, we cannot test this function directly. Instead,
we test if h ∗ h(a+ y) ≥ ζα2 for some ζ > 0. For this purpose, we define the set

Zζ :=
{
x ∈ Fn2 | h ∗ h(x) ≥ ζ · α2

}
.

The following procedure tests membership in Zζ by estimating h ∗ h using few samples.

Z-Test (x)

- Estimate h ∗ h(x) = Ey∈Fn
2
h(y) · h(x− y) using r samples of elements y ∈ Fn2 .

- Answer 1 if the estimate is at least ζα2 and 0 otherwise.

However, since we are estimating the value of h ∗ h, we only have the following kind of guarantee.

Claim 6.2 Given γ1 > 0, the output of Z-Test(x) with r = O((1/(ζ2α4)) · log(1/γ1)) queries
satisfies the following guarantee with probability at least 1− γ1.

• Z-Test(x) = 1 =⇒ x ∈ Zζ/2.

• Z-Test(x) = 0 =⇒ x /∈ Z3ζ/2.

Proof: This follows immediately from the Hoeffding bound (Lemma 3.1).

Let Z denote the (random) set containing all elements for which Z-Test(x) = 1, that is Z =
{x ∈ Fn2 | Z-Test(x) = 1}. Then the measure

ρ(y) := ρA→Z(y) = P
a∈A

[a+ y ∈ Z] =
1

α
· h ∗ 1Z(y) .

can be efficiently estimated by sampling.

The main ingredient in the proof of Theorem 6.1 is an algorithmic version of Corollary 4.1, that
is, a procedure to test for membership in the set X which satisfies the iterated almost-periodicity
condition in Corollary 4.1. We will present such an algorithmic version for the special case in which
B = Z and S = Fn2 .
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Lemma 6.3 (Iterated almost-periodicity of sumsets, algorithmic version) Let γ2 > 0
and let h be the indicator function of a subset A ⊆ Fn2 of density α. Then for any integers t, `
and ε > 0 there exists a randomized procedure X-Test with outputs in {0, 1} which makes at most
O
(
(1/α)O(t) · exp(O(ε2t)) · log4(`/γ2) · (1/ε2)

)
calls to Z-Test and has the following properties.

• With probability at least 1− γ2,

Px∈Fn
2

[X-Test(x) = 1] ≥ α2t/4.

• For all x1, . . . , x` ∈ Fn2 , we have with probability at least 1− γ2,

∀i ∈ [`] X-Test(xi) = 1 =⇒

P
y∈Fn

2

[ρA→Z(y) ≈4ε` ρA→Z(y + x1 + . . .+ x`)] ≥ 1− 4` exp
(
−Ω(ε2t)

)
.

For the proof we proceed as follows. First, as in the proof of Proposition 2.2, define G[ε, δ] to be
the set of sequences a ∈ (Fn2 )t which can be used to estimate ρ well (for our new definition of ρ).
For a = (a1, . . . , at) ∈ At, define

ρ̂a(y) :=
|{y + ai ∈ Z | i = 1, . . . , t}|

t
.

G[ε, δ] :=

{
a ∈ At | P

y∈Fn
2

[ρ(y) ≈ε ρ̂a(y)] ≥ 1− δ
}
.

Note that in the definition of G[ε, δ] above, the probability is taken over all elements y ∈ Fn2 , and
not only over the elements y ∈ A + Z as in the proof of proposition 2.2 (cf., (6)). The reason is
that it will be easier for us to test membership in G[ε, δ] when the probability is taken over all
elements y ∈ Fn2 . As above, we will only be able to test membership in G[ε, δ] approximately, using
the following randomized procedure.

G-Test (a = (a1, . . . , at))

- Check if h(a1) = . . . = h(at) = 1. If not output 0.

- Pick r independent samples y1, . . . , yr ∈ Fn2 .

- For each yi, estimate ρ(yi) using r′ independent samples. Also compute ρ̂a(yi) for
each yi.

- If |{yi | |ρ(yi)− ρ̂a(yi)| ≥ ε}| > δr then output 0, else output 1.

We prove the following guarantee for the above test.

Claim 6.4 Given γ3 > 0, the output of G-Test(a) with r = O((1/δ2) · log(1/γ3)) and r′ =
O((1/ε2) · log(r/γ3)) queries, satisfies the following guarantee with probability at least 1− γ3.

• G-Test(a) = 1 =⇒ a ∈ G[2ε, 2δ].

• G-Test(a) = 0 =⇒ a /∈ G[ε/2, δ/2].

Proof: Again, this is a direct consequence of the Hoeffding bound (Lemma 3.1).
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Note that the definition of the procedure G-Test actually depends on the parameters ε, δ and the
error parameter γ3, for choosing the appropriate values of r and r′. However, we choose to hide
this dependence for the sake of readability. From now on let G(a) denote the output of G-Test on
the input a.

The following claim is the key step in the proof of Lemma 6.3. It gives an efficient method for
constructing the set X which was found in the combinatorial proof in a non-constructive manner
using the pigeonhole principle. In order to construct the set X we will now show that a random
sequence â ∈ (Fn2 )t will satisfy with high probability that G(â) = 1 and G(â + x) = 1 for large
number of elements x ∈ Fn2 . This will enable us to define the set X as the set of all elements x ∈ Fn2
such that G(â + x) = 1. Membership in X can be then easily tested using the procedure G-Test

above.

Claim 6.5 Given γ4 > 0, there exists an algorithm which makes O((1/α6t) · log2(1/γ4)) calls to
G-Test with error parameter γ3 < 0.04 and δ = exp(−Ω(ε2t)), and finds an â ∈ (Fn2 )t such that
with probability at least 1− γ4, we have G(â) = 1 and Ex∈Fn

2
[G(â + x)] ≥ α2t/4.

Proof: As in the proof of Proposition 2.2, the Hoeffding bound gives that at least 0.99
∣∣At∣∣

sequences a ∈ At satisfy that Py∈A+Z
[
ρ(y) ≈ε/2 ρ̂a(y)

]
≥ 1−δ/2 for δ = exp(−Ω(ε2t)). Noting that

ρ(y) = ρ̂a(y) = 0 for every y /∈ A+ Z, this implies in turn that Py∈Fn
2

[
ρ(y) ≈ε/2 ρ̂a(y)

]
≥ 1− δ/2.

Consequently, |G[ε/2, δ/2]| ≥ 0.99
∣∣At∣∣ for δ = exp(−Ω(ε2t)). Since A has density α in Fn2 we have

for γ3 < 0.04 that Ea∈(Fn
2 )

t [G(a)] ≥ (1− γ3) · (0.99αt) ≥ 0.95αt. Using convexity gives

E
a∈(Fn

2 )
t,x∈Fn

2

[G(a) ·G(a + x)] = E
a∈(Fn

2 )
t,x,x′∈Fn

2

[
G(a + x) ·G(a + x′)

]
= E

a∈(Fn
2 )

t

[(
E

x∈Fn
2

[G(a + x)]

)2
]

≥
(

E
a∈(Fn

2 )
t,x∈Fn

2

[G(a + x)]

)2

≥ (0.95 · αt)2 ≥ 0.9 · α2t .

Hence, by Markov’s inequality

P
a∈(Fn

2 )
t

[
G(a) · E

x∈Fn
2

[G(a + x)] ≥ α2t/2

]
≥ α2t/4 .

The algorithm then simply tries random sequences a until it finds one for which G(a) = 1. For
such an a, it estimates Ex∈Fn

2
[G(a + x)] using O((1/α4t) · log(1/γ4)) samples. Using the Hoeffding

bound once more, we have that with probability at least 1−γ4/2, the estimate is accurate to within
an additive α2t/8. The algorithm stops and outputs an â for which G(â) = 1 and the estimate
computed by the algorithm is at least 3α2t/8. By the above, it finds such an â with probability at
least 1− γ4/2 in at most O((1/α2t) · log(1/γ4)) attempts, and Ex∈Fn

2
[G(â + x)] ≥ α2t/4 for such an

â. If not, it simply outputs a random â.

We are now ready for the proof of Lemma 6.3.

Proof of Lemma 6.3: We apply Claim 6.5 with parameters to be specified later on to find â,
and define X to be the set

X := {x ∈ Fn2 | G(â + x) = 1} .
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Note that G(â) = 1 and |X| ≥ (α2t/4) · 2n with probability at least 1− γ4. Also, membership in X
can be tested efficiently. We simply define the procedure X-Test as

X-Test(x) = G-Test(â + x),

where G-Test is applied with input parameters ε and δ.

We now prove that this set X suffices for our purposes. We will prove using induction that for
x1, . . . , x` satisfying X-Test(xi) = 1 ∀i ∈ [`], we have with probability at least 1− γ2 that

P
y∈Fn

2

[ρ(y) ≈4ε` ρ(y + x1 + . . .+ x`)] ≥ 1− 4` exp
(
−Ω(ε2t)

)
.

By Claims 6.4 and 6.5 we have that â, â + x1, . . . , . . . , â + x` ∈ G[2ε, 2δ] with probability at least
1−(`+1)γ3−γ4. We will prove, by induction on r, that whenever â, x1, . . . , x` satisfy this condition,
then for all r = 1, . . . , ` we have

P
y∈Fn

2

[ρ(y) ≈4εr ρ(y + x1 + . . .+ xr)] ≥ 1− 4rδ

for δ = exp(−Ω(ε2t)).

For the base case, note that the fact that â ∈ G[2ε, 2δ] implies that ρ(y) ≈2ε ρ̂â(y) for all but a
(2δ)-fraction of y ∈ Fn2 . Similarly, since â+x1 ∈ G[2ε, 2δ], we have that ρ(y+x1) ≈2ε ρ̂â+x1(y+x1)
for all but a (2δ)-fraction of y ∈ Fn2 . This implies that for all but a (4δ)-fraction of y ∈ Fn2 both
ρ(y) ≈2ε ρ̂â(y) and ρ(y+x1) ≈2ε ρ̂â+x1(y+x1) hold. For such y we conclude that ρ(y) ≈4ε ρ(y+x1)
using the triangle inequality and the fact that ρ̂â(y) = ρ̂â+x1(y + x1).

Next assume by induction that for x1, . . . , xr we have that ρ(y) ≈4εr ρ(y+x1 + . . .+xr) for at least
a (1− 4rδ)-fraction of y ∈ Fn2 . The base case implies that for at least a (1− 4δ)-fraction of y ∈ Fn2 ,
it is true that ρ(y + x1 + . . . + xr) ≈4ε ρ(y + x1 + . . . + xr+1). Thus by a union bound we have
that for at least a (1 − 4(r + 1)δ)-fraction of y ∈ Fn2 we have both ρ(y) ≈4εr ρ(y + x1 + . . . + xr)
and ρ(y + x1 + . . .+ xr) ≈4ε ρ(y + x1 + . . .+ xr+1). The proof is completed by noting that by the
triangle inequality, for each such y, we also have ρ(y) ≈4(r+1)ε ρ(y + x1 + . . .+ xr+1).

To get the required bounds we choose γ3 = γ2/(2(` + 1)) and γ4 = γ2/2. For this choice of
parameters, the procedure in Claim 6.5 makes O((1/α6t) · log2(1/γ2)) calls to G-Test. Also, the
procedure G-Test makes O

(
log2(`/γ2) · exp(O(ε2t)) · (1/ε)2

)
calls to Z-Test. This gives a total

number of O
(
(1/α)O(t) · exp(O(ε2t)) · log4(`/γ2) · (1/ε2)

)
queries to Z-Test.

Next we prove the following algorithmic analogue of Corollary 4.2 which replaces the set X of
almost-periods with a subspace V .

Lemma 6.6 (Almost-periodicity of sumsets over a subspace, algorithmic version) Let
γ′ > 0 and let h be the indicator function of a subset A ⊆ Fn2 of density α. Then for every integers
t, ` and for every η, ε > 0 there exists a randomized algorithm V-Test which outputs a subspace
V ⊆ Fn2 of codimension at most O(log(1/α2t)) (by giving a basis for V ⊥) such that with probability
at least 1− γ′, we have that for all v ∈ V ,

P
y∈Fn

2

[ρA→Z(y) ≈ε′ ρA→Z(y + v)] ≥ 0.99− 24
`

γ′η
exp

(
−Ω(ε2t)

)
.

where ε′ = 8ε`+ 2η+ 2−`
√
|Z|/|A|. The algorithm makes at most n2 log n · poly((1/α)t · log(1/γ′))

queries to X-Test with error parameter γ2 < γ′η/600.
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As was the case in the combinatorial proof, we define V to be the subspace orthogonal to the large
Fourier coefficients of 1X , where X is the set of elements for which the procedure X-Test from
Lemma 6.3 outputs 1. For this we need a procedure which determines the large Fourier coefficients
of 1X with reasonable accuracy. This procedure is given by the Goldreich-Levin theorem below.

Theorem 6.7 (Goldreich-Levin Theorem, [GL89]) Let ν, δ > 0. There is a randomized al-
gorithm which, given oracle access to a function f : Fn2 → {−1, 1}, runs in time O(n2 log n ·
poly(1/ν, log(1/δ))) and outputs a decomposition

f =
k∑
i=1

ci · (−1)〈αi,x〉 + g

with the following guarantee.

• k = O(1/ν2).

• P
[
∃i |ci − f̂(αi)| > ν/2

]
≤ δ.

• P
[
∀α such that |f̂(α)| ≥ ν, ∃i αi = α

]
≥ 1− δ.

For the proof of Lemma 6.6 we shall also need the following algorithmic analogue of Lemma 4.3.

Lemma 6.8 Let ε, δ > 0, let X-Test be a randomized algorithm with outputs in {0, 1} and let X
denote the set of all elements in Fn2 for which X-Test outputs 1. Suppose that X-Test satisfies
that for all x1, . . . , x` ∈ X, with probability at least 1− γ2 it holds that

P
y∈Fn

2

[ρA→Z(y) ≈ε ρA→Z(y + x1 + . . .+ x`)] ≥ 1− δ .

Then for every η, γ > 0 we have that with probability at least 1− γ,

P
y∈Fn

2

[
ρA→Z(y) ≈ε+η E

x1,...,x`∈X
[ρA→Z(y + x1 + . . .+ x`)]

]
≥ 1− (δ + γ2)/(γη) .

Proof: From Markov’s inequality it follows that with probability at least 1 − γ, for at least a
(1− (δ + γ2)/(γη))-fraction of y ∈ Fn2 , the relation

ρA→Z(y) ≈ε ρA→Z(y + x1 + . . .+ x`)

holds for at least a (1−η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Thus for at least a (1−(δ+γ2)/(γη))-
fraction of y ∈ Fn2 , we have that∣∣∣∣ E
x1,...,x`∈X

[ρA→Z(y + x1 + . . .+ x`)]− ρA→Z(y)

∣∣∣∣ ≤ E
x1,...,x`∈X

[|ρA→Z(y + x1 + . . .+ x`)− ρA→Z(y)|]

which is seen to be bounded above by (1− η) · ε+ η · 1 ≤ ε+ η.
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Proof of Lemma 6.6: Let X be the set of elements for which the procedure X-Test from Lemma
6.3 outputs 1. Define the subspace V0 as

V0 :=
(
Spec1/2(X)

)⊥
=
{
ξ ∈ Fn2 |

∣∣∣1̂X(ξ)
∣∣∣ ≥ 1̂X(0)/2

}⊥
.

To find (an approximation to) V0, we first estimate 1̂X(0) = E [1X ] = Px∈Fn
2

[X-Test(x) = 1] using
O((1/α4t) · log(1/γ′)) samples so that with probability at least 1− γ′/6, the error is at most α2t/8.
By Lemma 6.3, with probability at least 1−γ2, the quantity Px∈Fn

2
[X-Test(x) = 1] is at least α2t/4.

Taking γ2 < γ′/6, we get that with probability at least 1−γ′/3, the estimate is at least α2t/8. Call
this estimate µ0.

Next, the Goldreich-Levin theorem (Theorem 6.7) enables us to determine the large Fourier coeffi-
cients of 1X with reasonable accuracy. We run Theorem 6.7 with error parameter δ = γ′/6 and an
oracle access to the procedure X-Test, to find all characters with Fourier coefficients larger than
ν = µ0 in absolute value, up to an additive accuracy of ν/2 = µ0/2. Let K be the list of characters
given by the algorithm. We take

V = {ξ ∈ Fn2 | ξ ∈ K}
⊥ .

Now with probability at least 1 − 2γ′/3, the trivial coefficient 1̂X(0) is at least α2t/4, K contains
all ξ such that |1̂X(ξ)| ≥ 1̂X(0)/2 and |1̂X(ξ)| ≥ 1̂X(0)/4 for all ξ ∈ K, so Spec1/2(X) ⊆ K ⊆
Spec1/32(X) . By Chang’s theorem (Theorem 3.2) and our choice of parameters, the codimension

of V is then at most O(log(1/α2t)).

Let δ := 4` exp
(
−Ω(ε2t)

)
. From Lemma 6.3 and Lemma 6.8 we have that with probability at least

1− γ′/3,
ρA→Z(y) ≈4ε`+η Ex1,...,x`∈X [ρA→Z(y + x1 + . . .+ x`)] (21)

for at least a (1− 3(γ2 + δ)/(γ′η))-fraction of y ∈ Fn2 , and also that for all v ∈ V ,

ρA→Z(y + v) ≈4ε`+η Ex1,...,x`∈X [ρA→Z(y + v + x1 + . . .+ x`)] (22)

for at least a (1− 3(γ2 + δ)/(γ′η))-fraction of y ∈ Fn2 . Moreover, Lemma 4.4 implies that for every
y ∈ Fn2 and v ∈ V ,

E
x1,...,x`∈X

[ρA→Z(y + x1 + . . .+ x`)] ≈2−`
√
|Z/A| E

x1,...,x`∈X
[ρA→Z(y + v + x1 + . . .+ x`)] . (23)

Applying the union bound and the triangle inequality to (21), (22) and (23), we conclude that

ρA→Z(y) ≈ε′ ρA→Z(y + v)

for ε′ = 8ε`+ 2η+ 2−`
√
|Z|/|A| for at least a (1− 6(γ2 + δ)/(γ′η))-fraction of y ∈ Fn2 , which by our

choice of γ2 < γ′η/600 gives the desired conclusion.

The running time is dominated by the O(n2 log n · poly((1/α)t, log(1/γ′))) calls made by the
Goldreich-Levin algorithm to the procedure X-Test.

We now proceed to the proof of our main Theorem 6.1.
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Proof of Theorem 6.1: Applying Lemma 6.6 with ` = log(602/α)/2, ε =
1/(480`), η = 1/120 and t = O(log3(1/α) + log(1/γ′)) = O(log3(1/α)) (provided that
γ′ ≥ α), where the basic procedure Z-Test is run with ζ = 1/300 and γ1 =

min

{
3ζα2/2, γ′ ·

(
n2 log n · poly log(1/γ′) · 2O(log4(1/α))

)−1}
, we obtain with probability at least

1− γ′ a subspace V of codim(V ) ≤ O(log4(1/α)) which has the property that for all v ∈ V ,

P
y∈Fn

2

[
ρA→Z(y) ≈1/20 ρA→Z(y + v)

]
≥ 1− 0.1 · α.

Since A has density α in Fn2 this implies in turn that for all v ∈ V ,

P
a∈A

[
ρA→Z(a) ≈1/20 ρA→Z(a+ v)

]
≥ 0.9.

Next we show that, with high probability, the value of ρA→Z(a) is close to one for most elements
a ∈ A.

E
a∈A

[ρA→Z(a)] = Ea,a′∈A[1Z(a+ a′)]

=
1

α2
· 〈h ∗ h,1Z〉

=
1

α2
· 〈h ∗ h, 1〉 − 1

α2
· 〈h ∗ h, (1− 1Z)〉

= 1− 1

α2
· 〈h ∗ h, (1− 1Z)〉

From Claim 6.2, with probability at least 1 − γ1, h ∗ h is at most 3ζα2/2 when 1 − 1Z = 1,
and consequently the inner product in the second term is at most 3ζα2/2 + γ1. This gives
Ea∈A [ρA→Z(a)] ≥ 1 − 3ζ/2 − (γ1/α

2). Hence we have that ρA→Z(a) ≥ 1 −
√

3ζ/2 + (γ1/α2)
for at least a (1 −

√
3ζ/2 + (γ1/α2))-fraction of a ∈ A, which by the choice of γ1 ≤ 3ζα2/2 and

ζ = 1/300 implies that for all v ∈ V ,

P
a∈A

[ρA→Z(a+ v) ≥ 0.9] ≥ 0.9.

Recalling the definition of ρA→Z , this inequality implies that for all v ∈ V ,

P
a,a′∈A

[a+ a′ + v ∈ Z] ≥ 0.92 = 0.81.

By averaging, there therefore exists a pair a, a′ ∈ A such that Pv∈V [a + a′ + v ∈ Z] ≥ 0.81, or
equivalently |V ∩ (a + a′ + Z) |≥ 0.81|V |. But it is easy to see that if |V ∩ B| > 1

2 |V | for some
subset B ⊆ Fn2 , then V ⊆ 2B (since every element v ∈ V has precisely |V | different representations
as v = v1 + v2 where v1, v2 ∈ V ). We conclude that V ⊆ 2(a+ a′ + Z + Z) = 2Z. This implies in
turn that h ∗ h ∗ h ∗ h(v) > 0 for all v ∈ V , provided that γ1 is sufficiently small such that with
probability at least 1−γ′, the procedure Z-Test does not err on any of the elements queried during
the execution of the algorithm.

It remains to analyze the running time. The procedure V-Test makes O(n2 log n ·
poly((1/α)t, log(1/γ′))) calls to the procedure X-Test with error parameter γ2 < γ′η/600
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for η = 1/120. The procedure X-Test makes in turn O
(
(1/α)O(t) · exp(O(ε2t)) ·

log4(`/γ2) · (1/ε2)
)

queries to Z-Test with ζ = 1/300 and error parameter γ1 =

min

{
3ζα2/2, γ′ ·

(
n2 log n · poly log(1/γ′) · 2O(log4(1/α))

)−1}
. This choice of γ1 guarantees that

with probability at least 1− γ′, the procedure Z-Test does not err on any of the elements queried
the execution of the algorithm.

Assuming the query to Z-Test can be answered in constant time and it takes O(n) time to write
down the input, the running time for Z-Test is O((1/α4) log(1/γ1)·n). For our choice of parameters,

this implies a total running time of 2O(log4(1/α)) · polylog(1/γ′) · n3 log2 n.

6.2 An improved self-corrector for the Reed-Muller code of order 2

A key component in the quadratic Goldreich-Levin algorithm of [TW11] was the following self-
correction procedure for the Reed-Muller code of order 2 (whose codewords are simply truth tables
of quadratic phase functions). It is essentially an algorithmic version of the U3 inverse theorem of
[Sam07, GT08] and it states, qualitatively speaking, that a function with large U3 norm correlates
with a quadratic phase function, by which we mean a function of the form (−1)q for a quadratic
form q : Fn2 → F2. The U3 norm was defined for by Gowers for the purpose of counting arithmetic
progressions of length 4, and is defined for g : Fn2 → C by the formula

‖g‖8U3 = Ex,h1,h2,h3∈G
∏

ω∈{0,1}3
C |ω|g(x+ ω · h),

where ω · h is shorthand for
∑

i ωihi, and C |ω|g = g if
∑

i ωi is even and g otherwise.

Theorem 6.9 Given ε, δ > 0, there exists η = exp(−1/εC) and a randomized algorithm
Find-Quadratic running in time O(n4 log n · poly(1/ε, 1/η, log(1/δ))) which, given oracle access
to a function f : Fn2 → {−1, 1}, either outputs a quadratic form q(x) or ⊥. The algorithm satisfies
the following guarantee.

• If ‖f‖U3 ≥ ε, then with probability at least 1 − δ it finds a quadratic form q such that
〈f, (−1)q〉 ≥ η.

• The probability that the algorithm outputs a quadratic form q with 〈f, (−1)q〉 ≤ η/2 is at most
δ.

It can be easily verified that if 〈f, (−1)q〉 ≥ ε for some quadratic form q then ‖f‖U3 ≥ ε. Con-
sequently, the above theorem implies a self-corrector for the Reed-Muller code of order 2 which
given a function f : Fn2 → {−1, 1} which satisfies 〈f, (−1)q〉 ≥ ε for some quadratic form q, finds a
quadratic form q′ which satisfies 〈f, (−1)q

′〉 ≥ η for η(ε) = exp(−1/εC).

The proof of Theorem 6.9 follows that of the inverse theorem very closely, except that many of
the results from additive combinatorics that are used in the process need to be replaced by new
“sampling versions”: since the subsets of Fn2 that appear in the proof are generally very dense, it
is too expensive to even write them down (let alone perform operations on them) if one is aiming
for an algorithm that runs in time polynomial in n.

A crucial ingredient in the proof of Theorem 6.9 was an algorithmic version of the Bogolyubov-
Ruzsa lemma (Lemma 5.3 in [TW11]), which reads as follows.
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Lemma 6.10 (Algorithmic Bogolyubov-Ruzsa Lemma) There exists a randomized algo-
rithm Bogolyubov with input parameters α and δ which, given oracle access to a function
h : Fn2 → {0, 1} with Eh ≥ α, outputs a subspace V ⊆ Fn2 of codimension at most O(α−3) (by
giving a basis for V ⊥) such that with probability at least 1− δ, we have h ∗ h ∗ h ∗ h(v) > 0 for all
v ∈ V . The algorithm runs in time n2 log n · poly(1/α, log(1/δ)).

Replacing the above algorithm with our new algorithmic version of the quasipolynomial
Bogolyubov-Ruzsa lemma (Theorem 6.1) improves the dependency of η on ε in Theorem 6.9 to be
η = exp(−polylog(1/ε)). This in turn reduces the dependence on ε in the number of terms in a
quadratic decomposition of a function, as well as in the running time of the quadratic decomposition
algorithm, to quasipolynomial, as explained in the next section.

6.3 An improved quadratic Goldreich-Levin theorem

Both in number theory and theoretical computer science, there are certain situations where we
may wish to decompose a bounded function f : Fn2 → C as a sum g + h, where g is a “uniform” or
“random-looking”, and h is a somewhat “structured” part. Such situations include the counting of
arithmetic progressions [Gre07], the analysis of Probabilistically Checkable Proofs (PCPs) [ST06]
and the approximation of matrices and tensors [FK99].

In the case where one is looking for “linear uniformity” in the function g, for example when
counting arithmetic progressions of length 3, such a decomposition is achieved by separating large
and small Fourier coefficients (corresponding to “linearly structured” and “linearly uniform” parts,
respectively). This task can be handled algorithmically by the Goldreich-Levin theorem (Theorem
6.7), which provides an algorithm that computes, with high probability, the large Fourier coefficients
of f : Fn2 → {−1, 1} in time polynomial in n.

However, these linear decompositions have been shown to not be sensitive enough to handle many
other situations, such as the counting of arithmetic progressions of length 4. In the latter case, one
instead needs the function g to be “quadratically uniform” in the sense of Gowers [Gow98]: we say
that a function g is quadratically uniform if it is small in the U3 norm.

A hint as to what might constitute the quadratically structured part of a decomposition in which g
is quadratically uniform is given by the so-called inverse theorem for the U3 norm, whose proof was
largely contained in Gowers’s proof of Szemerédi’s theorem but brought to the point by Samorod-
nitsky [Sam07] (in the case of characteristic 2) and by Green and Tao [GT08].

The inverse theorem implies that the structured part h has quadratic structure in the case where g
is small in U3, and starting with [Gre07] a variety of such quadratic decomposition theorems have
come into existence: in one formulation [GW12], one can write f as

f =
∑
i

ci(−1)qi + g + l, (24)

where the qi are quadratic forms, the ci are real coefficients such that
∑

i |ci| is bounded, ‖g‖U3 is
small and l is a small `1 error (which is negligible in all known applications). Such a decomposition
is not unique and clearly non-trivial since the quadratic phases (−1)q, unlike linear exponentials,
do not form an orthonormal basis. In analogy with the decomposition into Fourier characters, it is
natural to think of the coefficients ci as the quadratic Fourier coefficients of f .

An algorithmic version of a quadratic decomposition theorem was given by the last two authors
in [TW11]. Prior to [TW11], all quadratic decomposition theorems proved had been of a rather
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abstract nature. In particular, the work by Trevisan, Vadhan and the third author [TTV09] used
linear programming techniques and boosting, while Gowers and the last author [GW12] gave a
(non-constructive) existence proof using the Hahn-Banach theorem. The main result of [TW11]
then was the following.

Theorem 6.11 (Quadratic Goldreich-Levin theorem) Let ε, δ > 0, n ∈ N and B > 1.
Then there exists η = exp(−(B/ε)C) and a randomized algorithm running in time O(n4 log n ·
poly(1/η, log(1/δ))) which, given any function f : Fn2 → [−1, 1] as an oracle, outputs with probabil-
ity at least 1− δ a decomposition into quadratic phases

f = c1(−1)q1 + . . .+ ck(−1)qk + g + l

satisfying k ≤ 1/η2, ‖g‖U3 ≤ ε, ‖l‖1 ≤ 1/(2B) and |ci| ≤ η for all i = 1, . . . , k.

The algorithm comprised two parts. The first was a (entirely deterministic) procedure for assem-
bling the quadratic phases with which the function f correlates into an actual decomposition, if
these quadratic phases can indeed be found.

Theorem 6.12 Let ε, δ > 0 and B > 1. Let A be an algorithm which, given oracle access to a
function f : X → [−B,B] satisfying ‖f‖U3 ≥ ε, outputs, with probability at least 1− δ, a quadratic
phase (−1)q such that 〈f, (−1)q〉 ≥ η for some η = η(ε,B). Then there exists an algorithm which,
given any function f : X → [−1, 1], outputs with probability at least 1− δ/η2 a decomposition

f = c1(−1)q1 + . . .+ ck(−1)qk + g + l

satisfying k ≤ 1/η2, ‖g‖U3 ≤ ε, ‖l‖1 ≤ 1/(2B) and |ci| ≤ η for all i = 1, . . . , k.

The algorithm makes at most k calls to A.

Theorem 6.12 is proved using a boosting argument, for which we refer the reader to [TW11]. The
other key component in the quadratic Goldreich-Levin algorithm is the self-correction procedure for
the Reed-Muller code of order 2 at distance 1/2− ε, described in previous section (Theorem 6.9).
Inserting our improved self-correction procedure we obtain the following quasipolynomial version
of the quadratic Goldreich-Levin Theorem.

Theorem 6.13 (Quasipolynomial Quadratic Goldreich-Levin) Let ε, δ > 0, n ∈ N and B >
1. Then there exists η = exp(−poly(B, log(1/ε))) and a randomized algorithm running in time
O(n4 log n · poly(1/η, log(1/δ))) which, given any function f : Fn2 → [−1, 1] as an oracle, outputs
with probability at least 1− δ a decomposition into quadratic phases

f = c1(−1)q1 + . . .+ ck(−1)qk + g + l

satisfying k ≤ 1/η2, ‖g‖U3 ≤ ε, ‖l‖1 ≤ 1/(2B) and |ci| ≤ η for all i = 1, . . . , k.

A further variant of Theorem 6.12 was proved in [TW11], in which the quadratic phases in the
decomposition were replaced with slightly more complicated quadratic object, namely so-called
quadratic averages, which were first introduced in [GW12] by Gowers and the last author. In this
case the authors of [TW11] obtained a bound on the number of terms in the decomposition that was
polynomial in ε−1 in time exponential in ε−1, at the cost of the description size of each quadratic
average being exponential in ε−1. Inserting the Algorithmic Quasipolynomial Bogolyubov-Ruzsa
Lemma (Theorem 6.1) in the work of Section 5 in [TW11], we obtain an algorithm which finds a
decomposition into polynomially many quadratic averages in time quasipolynomial in ε−1, where
the description size of each average is now quasipolynomial in ε−1. We leave the details to the
interested reader.
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323–326, Structure theory of set addition.

[Sam07] Alex Samorodnitsky, Low-degree tests at large distances, stoc, 2007, pp. 506–515.

[San08] Tom Sanders, Additive structures in sumsets, Math. Proc. Cambridge Philos. Soc. 144
(2008), no. 2, 289–316.

[San10] , On the Bogolyubov-Ruzsa lemma, To appear, Anal. PDE (2010).

[San11a] , Green’s sumset problem at density one half, Acta Arith. 146 (2011), no. 1, 91–
101.

[San11b] , On Roth’s theorem on progressions, Ann. of Math. (2) 174 (2011), no. 1, 619–
636.

[San12] , Lecture notes on applications of commutative harmonic analysis,
http://people.maths.ox.ac.uk/∼sanders (2012).

[ST06] Alex Samorodnitsky and Luca Trevisan, Gowers uniformity, influence of variables, and
PCPs, STOC, 2006, pp. 11–20.

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan, Boosting, regularity and efficiently
simulating every high-entropy distribution, Proceedings of the 24th IEEE Conference on
Computational Complexity, 2009.

[TV06] Terence Tao and Van Vu, Additive combinatorics, Cambridge University Press, 2006.

[TW11] Madhur Tulsiani and Julia Wolf, Quadratic Goldreich-Levin theorems, FOCS, 2011,
pp. 619–628.

28



A Appendix: Proof of Corollary 5.4

In order to prove Corollary 5.4, we start with refined versions of Proposition 2.2 and Corollary 4.1,
given as Proposition A.1 and Corollary A.2 below.

Proposition A.1 (Refined version of almost-periodicity of sumsets) Let A ⊂ Fn2 be a sub-
set satisfying |2A| ≤ K|A|. Then for every integer t and set B ⊆ Fn2 there exists a set X with the
following properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[
ρA→B(y)− ρA→B(y + x) ≤ 2ε

√
ρA→B(y)

]
≥ 1− 8

|A+B|
|S|

· exp
(
−ε2t/4

)
. (25)

Proof: The proof is very similar to the proof of Proposition 2.2 and we only point out the
differences here. As in Proposition 2.2, let ρ(y) := ρA→B(y) and for a vector a = (a1, . . . , at) ∈ At
let

ρ̂a(y) =
|{y + ai ∈ B | i = 1, . . . , t}|

t
.

For the purpose of this proof, we say that a is an ε-good estimator for y if ρ(y) ≈ε′ ρ̂a(y) for
ε′ = ε

√
ρ(y) (this is the main point in which this proof differs from the proof of Proposition 2.2).

Fix y ∈ Fn2 , and let Yi be the indicator random variable for the event “y + ai ∈ B” where ai is
chosen uniformly at random from A. Then ρ̂a(y) = 1

t

∑t
i=1 Yi is the average of t i.i.d. indicator

random variables each having mean ρ(y) and variance ρ(y)(1−ρ(y)) ≤ ρ(y), so the refined Chernoff-
Hoeffding bound (Lemma 5.5) implies that for all y ∈ Fn2 ,

P
a∈At

[
ρ(y) 6≈

ε
√
ρ(y)

ρ̂a(y)
]
≤ 2 exp

(
−ε2t/4

)
. (26)

Set δ := 2 exp
(
−ε2t/4

)
. Similarly to the proof of Proposition 2.2, by an averaging argument we

get that at least half of the sequences a ∈ At are ε-good estimators for all but a (2δ)-fraction of
y ∈ A + B, in which case we say that a is (ε, 2δ)-good estimator for ρ. From here we continue as
in the proof of Proposition 2.2, letting G[ε, 2δ] be the set of (ε, 2δ)-good estimators, that is

G[ε, 2δ] =

{
a ∈ At | P

y∈A+B

[
ρ(y) ≈

ε
√
ρ(y)

ρ̂a(y)
]
≥ 1− 2δ

}
,

and defining G[ε, 2δ]b, â and X accordingly.

It can be easily verified that the first two properties listed in the statement are satisfied. Next we
show that the third one is satisfied as well.

Suppose x = â1 + a1, where a1 is the first element of an (ε, 2δ)-good estimator a = (a1, . . . , at) ∈
G[ε, 2δ]b. Recalling that â is an (ε, 2δ)-good estimator, we know that for all but a (2δ|A+B|/|S|)-
fraction of y ∈ S,

ρ(y) ≈
ε
√
ρ(y)

ρ̂â(y). (27)
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Similarly, we have that
ρ(y + x) ≈

ε
√
ρ(y+x)

ρ̂a(y + x) (28)

for all but a (2δ|A+B|/|x+ S|)-fraction of y ∈ S. Using a union bound and the fact that |S+x| =
|S|, for all but a (4δ|A+B|/|S|)-fraction of y ∈ S both (27) and (28) hold. For such y we conclude
ρ(y) ≈ε′ ρ(y + x) for ε′ = ε

√
ρ(y) + ε

√
ρ(y + x) using the triangle inequality and the fact that

ρ̂â(y) = ρ̂â+x(y+x) = ρ̂a(y+x). The proof is completed by noting that ρ(y)−ρ(y+x) ≤ 2ε
√
ρ(y)

holds trivially if ρ(y+x) ≥ ρ(y), and hence without loss of generality we may assume that ρ(y+x) ≤
ρ(y). This implies in turn that ε′ ≤ 2ε

√
ρ(y).

As before, by an inductive application of Proposition A.1 one can prove the following iterated
version.

Corollary A.2 (Refined almost-periodicity of sumsets, iterated) If A ⊂ Fn2 satisfies
|2A| ≤ K|A| then for every integer t and set B ⊆ Fn2 there exists a set X with the following
properties.

1. The set X is contained in an affine shift of A.

2. The size of X is at least |A|/(2Kt−1).

3. For all x1, . . . , x` ∈ X and for all subsets S ⊆ Fn2 ,

P
y∈S

[
ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ 2ε`

√
ρA→B(y)

]
≥ 1− 8`

|A+B|
|S|

· exp
(
−ε2t/4

)
.

(29)

Proof of Corollary A.2: Proposition A.1 establishes the case ` = 1. For the induction step,
suppose that the lemma holds for some integer ` ≥ 1 with a set X, and we shall prove that the
lemma holds for `+ 1 with the same set X.

Let δ := 8(|A+ B|/|S|) · exp
(
−ε2t/4

)
, and fix x1, . . . , x`+1 ∈ X. By the induction hypothesis, for

at least a (1− `δ)-fraction of y ∈ S it holds that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ 2ε`
√
ρA→B(y). (30)

The ` = 1 case implies that for at least a (1− δ)-fraction of y ∈ S it holds that

ρA→B(y + x1 + . . .+ x`)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε
√
ρA→B(y + x1 + . . .+ x`). (31)

Thus by union bound we have that at least a (1− (`+ 1)δ)-fraction of y ∈ S satisfy both (30) and
(31). This implies in turn that for at least a (1− (`+ 1)δ)-fraction of y ∈ S it holds that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε`
√
ρA→B(y) + 2ε

√
ρA→B(y + x1 + . . .+ x`). (32)

If ρA→B(y + x1 + . . .+ x`) ≤ ρA→B(y), Equation (32) implies that

ρA→B(y)− ρA→B(y + x1 + . . .+ x`+1) ≤ 2ε(`+ 1)
√
ρA→B(y)

and hence we are done.
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Otherwise assume that ρA→B(y+x1 + . . .+x`) ≥ ρA→B(y). Without loss of generality we may also
assume that ρA→B(y)−2ε

√
ρA→B(y) > 0 since otherwise the fact that ρA→B(y+x1+. . .+x`+1) ≥ 0

implies that

ρA→B(y + x1 + . . .+ x`+1) ≥ ρA→B(y)− 2ε
√
ρA→B(y)

≥ ρA→B(y)− 2ε(`+ 1)
√
ρA→B(y)

and hence we are done.

Equation (31) then implies that

ρA→B(y + x1 + . . .+ x`+1) ≥ ρA→B(y + x1 + . . .+ x`)− 2ε
√
ρA→B(y + x1 + . . .+ x`)

≥ ρA→B(y)− 2ε
√
ρA→B(y)

≥ ρA→B(y)− 2ε(`+ 1)
√
ρA→B(y),

where the second inequality follows from Lemma 5.6 by letting f(t) = t2 − 2εt, t′ =
√
ρA→B(y),

t′′ =
√
ρA→B(y + x1 + . . .+ x`) and noting that our assumptions imply that 0 ≤ t′ ≤ t′′ and

f(t′) > 0.

One final ingredient needed for the proof of Corollary 5.4 is the following refined version of Lemma
4.3.

Lemma A.3 Let δ > 0, and let ε : (Fn2 )`+1 → [0, 1] be an arbitrary function in `+ 1 variables. Let
A,B,X, S ⊆ Fn2 be such that for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ ε(y, x1, . . . , x`)] ≥ 1− δ.

Then for every η > 0 we have

P
y∈S

[ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ Ex1,...,x`∈X [ε(y, x1, . . . , x`)] + η] ≥ 1− δ/η.

Similarly, if for all x1, . . . , x` ∈ X,

P
y∈S

[ρA→B(y + x1 + . . .+ x`)− ρA→B(y) ≤ ε(y, x1, . . . , x`)] ≥ 1− δ,

then for every η > 0 we have

P
y∈S

[Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)]− ρA→B(y) ≤ Ex1,...,x`∈X [ε(y, x1, . . . , x`)] + η] ≥ 1− δ/η.

Proof: We shall prove only the first part of the lemma, the second part being almost identical.
It follows from Markov’s inequality that for at least a (1− δ/η)-fraction of y ∈ S, we have

ρA→B(y)− ρA→B(y + x1 + . . .+ x`) ≤ ε(y, x1, . . . , x`)

for at least a (1 − η)-fraction of `-tuples (x1, . . . , x`) ∈ X`. Taking expectations, we find that for
at least a (1− δ/η)-fraction of y ∈ S,

ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ Ex1,...,x`∈X [ε(y + x1 + . . .+ x`)] + η.
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We are now ready for the proof of Corollary 5.4.

Proof of Corollary 5.4: Again, let V = Spec1/2(X)⊥. As before, Chang’s theorem (Theorem
3.2) implies that codim(V ) ≤ 32 log(2/αt).

Let δ := 8`(|A+B|/|S|) · exp
(
−ε2t/4

)
. From Lemma A.2 and Lemma A.3 we have that

ρA→B(y)− Ex1,...,x`∈X [ρA→B(y + x1 + . . .+ x`)] ≤ 2ε`
√
ρA→B(y) + η (33)

for at least a (1− δ/η)-fraction of y ∈ S, and similarly that for all v ∈ V ,

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− ρA→B(y + v)

≤ 2ε` · Ex1,...,x`∈X [
√
ρA→B(y + v + x1 + . . .+ x`)] + η

≤ 2ε`
√

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] + η (34)

for at least a (1− δ/η)-fraction of y ∈ S, where the last inequality is due to convexity.

From Lemma 4.4 we have that for every y ∈ S and v ∈ V it holds that

Ex1,...,x`∈X [ρA→B(y+x1 + . . .+x`)]−Ex1,...,x`∈X [ρA→B(y+v+x1 + . . .+x`)] ≤ 2−`
√
|B|/|A|. (35)

If Ex1,...,x`∈X [ρA→B(y+ v+ x1 + . . .+ x`)] ≤ ρA→B(y) then applying the union bound to (33), (34)
and (35) we conclude that

ρA→B(y)− ρA→B(y + v)

≤ 2ε`
√
ρA→B(y) + 2ε`

√
Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] + 2η + 2−`

√
|B|/|A|

≤ 4ε`
√
ρA→B(y) + 2η + 2−`

√
|B|/|A|

for at least a (1− 2δ/η)-fraction of y ∈ S, thus arriving at the desired conclusion.

Otherwise, assume that Ex1,...,x`∈X [ρA→B(y + v + x1 + . . . + x`)] ≥ ρA→B(y). Without loss of
generality we may also assume that ρA→B(y)−2ε`

√
ρA→B(y)−η > 0 since otherwise we have that

ρA→B(y + v) ≥ ρA→B(y)− 2ε`
√
ρA→B(y)− η ≥ ρA→B(y)− ε′

and hence we are done. Inequality (34) then implies that ρA→B(y + v) is at least

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− 2ε`
√

Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)]− η

≥ ρA→B(y)− 2ε`
√
ρA→B(y)− η

≥ ρA→B(y)− ε′

where the first inequality follows from Lemma 5.6 by letting f(t) = t2 − 2ε`t− η, t′ =
√
ρA→B(y),

t′′ =
√
Ex1,...,x`∈X [ρA→B(y + v + x1 + . . .+ x`)] and noting that our assumptions imply that 0 ≤

t′ ≤ t′′ and f(t′) > 0.
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