
On the correlation of parity and small-depth

circuits

Johan H̊astad∗

KTH - Royal Institute of Technology

February 12, 2014

Abstract

We prove that the correlation of a depth-d unbounded fanin circuit of

size S with parity of n variables is at most 2−Ω(n/(log S)d−1).

1 Introduction

Proving absolute lower bounds for concrete computational problems in realistic
models of computation is a holy grail for the area of computational complexity.
The general program of proving lower bounds for simple computational models
with important early contributions by Furst, Saxe, and Sipser [4], Sipser [9],
Ajtai [1], Yao [11], H̊astad [5], Smolensky [10], and Razborov [7] seemed to
be a promising road of establishing such lower bounds but came to an almost
complete halt in late 1980’s. One possible explanation for the lack of progress
might be that lower bounds for stronger models of computation need other
methods. This is made formal by the concept of “Natural proofs” introduced
by Razborov and Rudish [8].

Possibly the simplest non-trivial model of computation is that of bounded-
depth Boolean circuits of unbounded fanin. Such a circuit contains AND-gates
and OR-gates of unbounded fanin, takes as inputs literals (i.e. variables in pos-
itive or negated form) and has a depth that is bounded by a constant indepen-
dent of the number of variables. It was a major step forward when Ajtai [1]
and Furst, Saxe, and Sipser [4] independently proved that the simple function
of parity requires circuits of superpolynomial size to be computed in this model.

These bounds were later improved by Yao [11] and H̊astad [5] establishing

that size exp(nΘ(1
d−1)) was necessary and sufficient to compute the parity of n

variables by a depth-d circuit.
These results were based on the concept of random restrictions where most

inputs of a circuit are fixed to constants in order to simplify the circuit. The
key observation is that the simplified circuit should compute the parity (or

∗Research supported by ERC Advanced grant 226 203.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 137 (2012)

possible the negation of this function) on the remaining variables and thus if
these simplifications are substantial enough a contradiction is obtained. To be
more concrete, by tuning parameters, it is possible to choose a restriction such
that one can remove one level of the circuit. This is achieved by applying the
switching lemma of H̊astad [5] which says that it possible to switch an and-of-ors
into an or-of-ands keeping, with high probability, the bottom fanin small.

It is not difficult to see that all the proofs based on restrictions in fact
established that any small circuit of constant depth only agrees with parity for
marginally more than half of the inputs. Apart from being an interesting result
in itself, this fact is central to Cai’s result [3] that a random oracle separates
PSPACE from the polynomial time hierarchy.

In this paper we are interested in obtaining exact bounds on the best possible
agreement and if this fraction is (1 + c)/2 let us call c “the correlation”. It
follows, more or less immediately, from the proof of H̊astad that a circuit of size

2s and depth d only has correlation exp(−Ω(n
1

d−1)) with parity provided that

s ≤ o(n
1

d−1). The bottleneck in this argument is the estimate for the probability
that we are not able to do the required switching. It is curious that the estimate
of the correlation gets only marginally better with decreasing values of s and

obtaining a bound better than exp(−Ω(n
1

d−2)) for this correlation seems to
require some new idea.

Somewhat surprisingly, Ajtai [1], who did not get as strong bounds for the
size of depth-d circuits computing parity exactly, proved the stronger bound
exp(−Ω(n1−ε)) for the correlation of parity and the output of polynomial size
circuits of depth d.

The correlation was recently proved to be much smaller by Beame, Impagli-

azzo and Srinivasan [2] who established the unusual bound of exp(−Ω(n/(22ds4/5)))
for the correlation of circuits of size 2s and depth d with parity. Motivated by
this result and the techniques used we now revisit the old techniques based on
the switching lemma with the aim of strengthening the bounds for the correla-
tion of small circuits with parity.

Before turning to discussing our methods and results, let us describe how
to construct a set of depth-d circuits of reasonably small size that have a non-
trivial correlation with parity. Dividing the inputs into groups of size sd−1 it
is possible to compute the parity exactly of each such group of inputs with a
circuit of size roughly 2s and depth d. Circuits with this property can be chosen
to have either an ∧-gate or ∨-gate as their output gate and let us assume the
latter. Taking the disjunction of all these circuits we maintain depth d and get
a circuit that mostly outputs 1 but whenever it outputs 0, it always agrees with
the parity of the inputs. The correlation of this circuit with parity is easily seen
to be 2−g where g ≈ n/sd−1 is the number of groups. The purpose of this paper
is to prove that this construction is, up to the constants involved, optimal.

The proof is very much based on an extension of the switching lemma, where
we do not allow the failure to do the required switching but instead, with small
probability, fix some additional variables not set by the original randomized
restriction.

2

Similar bounds, by related but not identical methods, have been obtained
independently by Impagliazzo, Matthews, and Paturi [6]. The paper by Im-
pagliazzo et al. has as main goal to obtain a satisfiability algorithm for AC0

and the bound for the correlation of parity and small-depth circuits is obtained
as a corollary. Our more direct approach leads to, in our eyes, a considerably
simpler argument. The bounds obtained by [6] are in most cases identical (apart
from some involved constants) to ours but for circuits of size n1+o(1) their results
are stronger.

2 Preliminaries

We study circuits consisting of unbounded fanin ∧- and ∨-gates. We reserve the
letter n for the number of inputs to this circuit. We denote by xi, 1 ≤ i ≤ n
the inputs to this circuit and we assume that we have a unique output gate as
we are interested in circuits computing Boolean functions.

The size of the circuit is defined to be the number of gates it contains, not
counting the inputs (and in fact most of the time we do not even count the gates
next to the inputs). The depth is defined to be longest path from any input to
the output. We assume that the gates appear in alternating layers of ∧-gates
and ∨-gates as if we have two layers of the same type we can directly move
the inputs of the lower gate the higher gate. By introducing dummy gates of
fanin one we can assume that the circuit is layered with gates at level i getting
inputs from layer i − 1. This causes at most a constant blow-up in the size of
the circuit and this small change is not important for us. As stated above we
allow arbitrary fanin of the gates and as we are dealing with circuits, also the
fan-out is arbitrary. We use 1 to denote “true” and 0 to denote “false”.

We study the sub-circuits of depth 2 given by the two layers closest to the
inputs. We sometimes treat these as disjoint circuits, but in these situations
we only include the gates of distance at least two away from the input in the
size count and thus we can duplicate any common gates to make the circuits
disjoint.

Let p ∈ [0, 1] be a real number and a random restriction from the space Rp
is defined by, for each variable xi independently, keeping it as a variable with
probability p and otherwise setting it to one of the constants 0 and 1 with equal
probability. A typical restriction is denoted by ρ and the notation for keeping a
variable is ρ(xi) = ∗ while the other two outputs of ρ are 0 and 1, interpreted in
the natural way. For a function f we let fdρ be the function in the untouched
variables obtained by making the substitutions described by ρ.

We analyze many conditional probabilities and in particular we are interested
in sets of restrictions that are monotone in ρ in the sense that fixing the value
of more variables can only make ρ more likely to belong to the set.

Definition 2.1 A set F of restrictions is downward closed if whenever ρ ∈ F
and ρ′(xi) = ρ(xi) for all xi such that ρ(xi) ∈ {0, 1} then ρ′ ∈ F .

3

An equivalent definition is to say that for any ρ ∈ F changing the value on
any input from the value ∗ to either non-∗ value, the resulting restriction is also
an element of F .

The classical conditioning for the switching lemma of [5] is to focus on con-
ditions of the form F dρ≡ 1 for a Boolean function F . It is easy to see that the
set of restrictions that satisfy such a condition is downward closed but there are
many downward closed sets that are not on this form. One example would be
the set of restrictions such that the value of F dρ is independent of the remaining
variables (but can be either 0 or 1).

The following simple lemma follows immediately from the definition.

Lemma 2.2 Let F and F ′ be two downward closed sets of restrictions. Then
the set F ∩ F ′ is also downward closed.

We assume that the reader is familiar with the concept of a decision tree
and we need the following extension.

Definition 2.3 A set of functions (gi)
S
i=1 has a common s-partial decision tree

of depth d, if there is a decision tree of depth d such that at each leaf of this
decision tree, each function gi is computable by an ordinary decision tree of
depth s of the variables not queried on the given path.

Said differently, each path of the decision tree defines a restriction π that
gives values to the queried variables. The claim is that gidπ can be computed by
a decision tree of depth s for each i. Finally, let us formally define correlation.

Definition 2.4 A function f has correlation c with a function g iff

Pr[f(x) = g(x)] = (1 + c)/2,

where the probability is taken over a uniformly chosen x.

3 The Main argument

Let us first state our main theorem.

Theorem 3.1 Let f : {0, 1}n 7→ {0, 1} be computed by a depth d circuit of
bottom fanin t which contains at most S gates of distance at least 2 from the
inputs. Then the correlation of f with parity is bounded by

2−cdn/t(logS)d−2

,

where cd is a positive constant depending only on d.

We have an immediate corollary.

4

Corollary 3.2 Let f , {0, 1}n 7→ {0, 1} be computed by a depth d circuit of size
S. Then the correlation of f with parity is bounded by

2−cdn/(logS)d−1

,

where cd is a positive constant depending only on d.

Proof: This follows from Theorem 3.1 as we can consider a depth d circuit as
a depth d + 1 circuit with bottom fanin one. Gates at distance two from the
inputs in this new circuit corresponds to gates in the original circuit.

We now turn to the proof of Theorem 3.1. As discussed in the introduc-
tion, the proof is very much based on the proof of the switching lemma of [5]
and let us start by stating this lemma and recalling its proof. In the process
we slightly generalize the lemma in that we allow a conditioning of the form
that the restriction belongs to an arbitrary set that is downward closed. This
generalization follows from the original proof but we are not aware that this
strengthening has been stated explicitly anywhere.

Lemma 3.3 Let f be computed by a depth-2 circuit of bottom fanin t. Let F
be a downward closed set of restrictions and ρ a random restriction from Rp.
Let depth(fdρ) be the minimal depth of a decision tree computing fdρ. Then

Pr[depth(fdρ) ≥ s | ρ ∈ F] ≤ (5pt)s.

Proof: Suppose, without loss of generality, that f is a CNF, i.e. that it can
be written as

f = ∧mi=1Ci

where each Ci is a disjunction of at most t literals. The proof is by induction
over m and the base case is when m = 0 in which case fdρ is always computable
by a decision tree of depth 0. Whenever needed we can clearly assume that
5pt ≤ 1 as otherwise the lemma is meaningless.

We divide the analysis into two cases depending on whether C1 is forced to
1 or not. Let us for notational convenience assume that C1 is the disjunction
of x1, x2 . . . xt0 for some t0 ≤ t. Clearly we can bound the probability of the
lemma as the maximum of

Pr[depth(fdρ) ≥ s | ρ ∈ F ∧ C1dρ≡ 1],

and

Pr[depth(fdρ) ≥ s | ρ ∈ F ∧ C1dρ 6≡ 1]. (1)

The first term is taken care of by induction applied to f without its first con-
junction (and thus having size at most m− 1) using Lemma 2.2 to ensure that
the conditioning is of the correct form. We need to consider the second case
given by (1).

5

Since (1) implies that C1dρ 6≡ 1, to avoid that fdρ≡ 0 there must be some
nonempty set, Y of size r > 0 of variables appearing in C1 which are given the
value ∗ by ρ. Let us for the moment assume that r < s and we later verify that
the resulting estimate is valid also when r ≥ s. We construct a decision tree by
first querying the variables in Y . One of the 2r answers forces f to 0 and this
will not result in a decision tree of depth at least s. Let π be an assignment to
the variables in Y . We can now bound (1) as∑
π,Y

Pr[depth(fdπρ) ≥ s− r ∧ ρ(Y) = ∗ ∧ ρ(C1/Y) = 0 | ρ ∈ F ∧ C1dρ 6≡ 1],

where Y is a nonempty set of size r. A key lemma is the following.

Lemma 3.4 If Y is a set of size r containing variables from C1 then

Pr[ρ(Y) = ∗ | ρ ∈ F ∧ C1dρ 6≡ 1] ≤
(

2p

1 + p

)r
.

Proof: Assume that a restriction ρ contributes to the probability in question.
Consider all the ways of constructing restrictions ρ′ by changing, in all possible
ways, the values taken by the restriction on the set Y , taking values only 0
and ∗ (remember that ρ gives the value ∗ to all variables in Y). Note that
any constructed ρ′ still satisfies the conditioning and that each ρ′ is constructed
from a unique ρ as the two restrictions agree outside Y . If ρ′ is changed to take
the value 0 for k different inputs then

Pr[ρ′] =

(
1− p

2p

)k
Pr[ρ],

and as

r∑
i=0

(
r

i

)
xi = (1 + x)r, (2)

we conclude that the total probability of all restrictions constructed from ρ is
at least (

1 + p

2p

)r
Pr[ρ]

and the lemma follows.

Finally we estimate

Pr[depth(fdπρ) ≥ s− r | ρ(Y) = ∗ ∧ ρ(C1/Y) = 0 ∧ ρ ∈ F ∧ C1dρ 6≡ 1],

by induction. We need to check that the conditioning defines a downward closed
set but this is more or less obvious as we are considering restrictions on variables
outside Y (as these are already fixed by π). Changing the value of ρ on any
variable not contained in C1 from ∗ to a non-∗ value cannot violate any of the
four conditions.

6

Thus we can conclude that the probability of obtaining a decision tree of
depth at least s is at most

∑
Y

(2|Y | − 1)(5pt)s−|Y |
(

2p

1 + p

)|Y |
. (3)

Before ending the proof let us observe that this bound is correct also in the case
r = |Y | ≥ s, as in this case the depth of the decision tree is always at least s and

the probability of this case happening is, by Lemma 3.4, bounded by
(

2p
1+p

)r
,

which is smaller than the corresponding term in (3) as we are assuming that
5pt ≤ 1.

Using (2) again we see that we get the final estimate

(5pt)s

((
1 +

4

5t(1 + p)

)|C1|

−
(

1 +
2

5t(1 + p)

)|C1|
)
.

This is an increasing function of |C1| and thus we can assume that this number
equals t. The second factor is of the form (1 + 2x)t − (1 + x)t and, as this is
an increasing function of x and (1 + 2x) ≤ (1 + x)2, it is bounded by y2 − y
where y = (1 + 2

5t)
t. Finally, as 1 + x ≤ ex, this can be upper bounded by

e4/5 − e2/5 < 1 and this finishes the inductive step.

The above proof is an induction but it is not difficult to unravel the induc-
tion and given a circuit for f and a restriction ρ to explicitly give a recursive
procedure that constructs a decision tree for fdρ. As this process is important
for us, let us describe it in more detail, and it is not difficult to see that it works
as follows.

Procedure DT-create(f, ρ)

1. Find the first clause, C, not forced to 1 by ρ.

2. Let Y be the set of variables appearing in C given the value ∗ by ρ.
Suppose |Y | = r and let Y be the first r variables queried in the decision
tree. For each of the 2r assignments, π, to these variables we recurse by
looking at fdπ.

We can note that with a good probability (about 1 − 2pt) the clause C
does not contain any variable given the value ∗ by ρ and in this situation the
construction of decision tree is completed. The proof also uses that one of the
assignments on Y forces f to be false and no recursion is needed. This gives a
better constant in the lemma but this is not essential for the proof to work. To
make it easier to reason about conditioning in the proof below we highlight the
assignments used in the above construction.

Let τ be a binary string of length s to used for the choices in DT-create. To
be more precise, whenever a set Y of size r is found we use the next r unused
bits of τ as values on this set. If fewer than r unused bits remain in τ the

7

procedure terminates. We call τ “the advice”. Let us say that “τ suggests that
fdρ requires a decision tree of size at least s” if all the bits of τ are used or
we do not have a sufficient number of unused bits and terminate. We use the
shorthand Sugg(τ, f, ρ) = s′ to denote the fact that the size of the union of all
the sets Y seen in DT-create(f, ρ) is s′ when τ is used as the advice. We denote
a typical union of Y ’s by T and use the notation Prod(τ, f, ρ) = T . Note that
it might be the case that s′ > s which happens in the case when a discovered
Y has size larger than the number of unused bits remaining in τ .

We use the term “suggests” as it is not a strict implication. Indeed if some
assignment suggests that fdρ requires a deep decision tree, this is not necessarily
true as some other process might find a small depth decision tree for fdρ. On
the other hand it is not difficult to see that if fdρ requires a decision tree of
depth s then this is suggested by some advice.

Lemma 3.5 If depth(fdρ) ≥ s then Sugg(τ, f, ρ) ≥ s for at least one τ ∈
{0, 1}s.

Proof: Indeed if fdρ requires a decision tree of depth s then any process trying
to create a decision of smaller depth fails. In particular DT-create(f, ρ) must
result in some path of length at least s and this implies the existence of the
advice τ .

We have also given the essential part of the proof of the following lemma.

Lemma 3.6 Let τ ∈ {0, 1}s. Then

Pr[Sugg(τ, f, ρ) ≥ s′] ≤ (3pt)s
′

for any s′ ≥ 0. This remains true conditioned on ρ ∈ F for any downward
closed set F .

Proof: The proof is essentially a repeat of the proof of Lemma 3.3 up to
equation (3) where the factor 2|Y |−1 is not needed as τ gives a set of unique
values to the variables of Y . Clearly we also get a different bound from the
induction case and thus the final calculation turns into∑

Y 6=∅

(3pt)s−|Y |
(

2p

1 + p

)|Y |
= (3pt)s

((
1 +

2

3t(1 + p)

)|Y |
− 1

)
(4)

≤ (3pt)s
(
e2/3 − 1

)
≤ (3pt)s. (5)

As there are 2s different τ , Lemma 3.5 and Lemma 3.6 together give the
upper bound (6pt)s for the probability bounded by (5pt)s by Lemma 3.3. The
main reason for the slightly worse bound is that we did not use the fact that
giving the values 0 to all variables in Y forces f to zero and hence cannot suggest
that f has a decision tree of depth s when s > |Y |.

Let us state a simple lemma that will be useful in handling conditioning. It
essentially states that Prod has downward closure property.

8

Lemma 3.7 Suppose τ suggests that fdρ requires a decision tree of depth s and
that Prod(ρ, f, τ) = T . Let ρ′ and i0 6∈ T be such that ρ′(xi) = ρ(xi) for i 6= i0
and that ρ(xio) = ∗. Then τ suggests that fdρ′ requires a decision tree of depth
s and Prod(ρ′, f, τ) = T .

Proof: Any clause forced to 1 by ρ is also forced to 1 by ρ′. The clauses not
forced to 1 by ρ and inspected during DT-create(f, ρ) using advice τ , cannot
contain xi0 as i0 does not belong to T and all the other variables occurring in
these clauses are fixed by ρ, while ρ(xi0) = ∗. From this it follows that T is
produced also by DT-create(f, ρ′) under advice τ .

Remark. The argument in the above proof might sound robust but let us point
out a rather fragile point. A conditioning of the form ”DT-create(f, ρ) does not
find a τ that suggests that fdρ requires a decision tree of depth at most s” does
not give a downward closed set. To see this, look at the depth-2 function

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄2 ∨ x5 ∨ x6)

and let ρ be the restriction that gives ∗ to all variables while ρ′ sets ρ′(x1) = 1.
Then while processing ρ one constructs a decision tree of depth 4 (first x1 and
x2, and then two more variables depending on the value of x2). On the other
hand while processing ρ′ there is no need to query x2 at first since the first clause
is true independent of the value of x2 and thus one ends up with a decision tree
of depth 5. This is not in violation of the above lemma as ρ and ρ′ take different
values on x1 and 1 appears in any T produced on any advice τ .

After this detour let us return to the main path and state our main lemma.

Lemma 3.8 Let (fi)
S
i=1 be a collection of depth-2 circuits each of bottom fanin

t and let s be a parameter satisfying 2s ≥ 2S. Let F be a downward closed set
of restrictions and ρ a random restriction from Rp. Then the probability that
(fidρ)Si=1 is not computable by a common s-partial decision tree of depth m is
at most S(24pt)m. This statement is true conditioned on ρ ∈ F .

Proof: The idea of the proof is to follow the proof of the Lemma 3.3 (or to be
more precise, its variant proving Lemma 3.6 where we also have an advice τ) and
whenever we run into trouble, we query the offending variables in the decision
tree. Let us start the formal proof. All probabilities below are conditioned on
ρ ∈ F but we leave this conditioning implicit to give shorter formulas.

We prove the lemma by induction over S and the number of variables n.
Clearly the lemma is true if either of these numbers is 0. Similarly to the proof
of Lemma 3.3 we divide the analysis into two cases depending on whether f1dρ
is computable by a decision tree of depth s. Let us first discuss the case when
this is indeed true.

The set of restrictions such that f1dρ is computable by a decision tree of
depth at most s is obviously downward closed as changing ρ from ∗ to a non-
∗ value on any input maintains the property that f1dρ can be computed by a
decision tree of a given depth. Now we apply the inductive version of the lemma

9

to (fi)
S
i=2 and F replaced with the subset of F which has the property that

depth(f1dρ) ≤ s (which is a downward closed set by Lemma 2.2). A common
s-partial decision tree for (fidρ)Si=2 is clearly such a decision tree even if we
include f1dρ and thus the probability of needing more than depth m and being
in this case is, by induction, bounded by (S − 1)(24pt)m.

Now let us look at the more interesting case that f1dρ cannot be computed
by a decision tree of depth s. Let us use f as shorthand for the collection
of functions (fi)

S
i=1 and let c-s-d(f) ≥ m denote the event that the common

s-partial decision tree of the collection requires depth at least m.
In this case, by Lemma 3.5, there exists at least one τ ∈ {0, 1}s that suggests

that f1 requires a decision tree of depth s′ for some s′ ≥ s. Thus in this case
we can estimate the probability of the event of the lemma from above by

∑
s′≥s

∑
τ∈{0,1}s

Pr[c-s-d(fdρ) ≥ m | Sugg(τ, f1, ρ) = s′]Pr[Sugg(τ, f1, ρ) = s′]

If Sugg(τ, f1, ρ) = s′ then there is a unique T of size s′ such that Prod(τ, f1, ρ) =
T . Let us first assume that s′ ≤ m and later verify that the estimate obtained
is true also when s′ > m. If fdρ does not have a common s-partial decision tree
of depth m then there must be some assignment, π on T such that fdρπ does
not have a common s-partial decision tree of depth m − s′. This implies that
we can estimate the probability as∑
s′≥s

∑
τ,π

Pr[c-s-d(fdρπ) ≥ m− s′ | Sugg(τ, f1, ρ) = s′]Pr[Sugg(τ, f, ρ) = s′],

where the sum is over τ ∈ {0, 1}s and π ∈ {0, 1}s′ . Now, by Lemma 3.6, we
know that the second probability is bounded by (3pt)s

′
. We claim that the first

probability is, by induction, bounded by (24pt)m−s
′
, and this follows if we can

establish that conditioning is of the correct form, i.e., if it gives a downward
closed set.

By Lemma 2.2 we only need to check that the newly introduced conditioning
is of the correct form. As π sets all variables in T we only need to check
downwards closure when changing variables outside T . For those variables, this
property follows by Lemma 3.7 and thus we can apply induction to each term.
As we have 2s+s

′
terms we get the overall bound

S(24pt)m−s
′
2s+s

′
(3pt)s

′
= S2s−2s′(24pt)m.

Let us first note that this estimate is also true in the case when s′ > m as we
then have the total estimate 2s+s

′
(3pt)s

′
= 2s−2s′(24pt)s

′
using only Lemma 3.5.

Now, summing over s′ ≥ s and using 2s ≥ 2S we see that the probability of
this case is bounded by (24pt)m and adding this probability to the probability
(S − 1)(24pt)m obtained in the first case, finishes the proof.

Let us finally wrap up the proof of Theorem 3.1.

10

Proof: (Of Theorem 3.1) We prove the result by induction over d. Let us see
how to establish the base case d = 2 directly from Lemma 3.3. Take a depth
two circuit of bottom fanin t and apply a restriction with p = 1

10t . In this

situation, except with probability 2−Ω(n/t) we have pn/2 variables remaining
and the resulting function is computed by a decision tree of depth strictly less
than pn/2. In this case the restricted function has no correlation with parity.
In other cases the correlation is at most 1 and the result follows.

For the induction step, let (fi)
k
i=1 with k ≤ S be the sub-circuits of depth 2

appearing in C and apply a restriction with p = 1
48t . We see that, except with

probability 2−pn/4, this collection of functions can be computed by a common
(1 + logS)-partial decision tree of depth at most pn/4. It is also the case that
except with probability 2−Ω(pn), at least pn/2 variables are given the value ∗ by
ρ.

This implies that, with probability 1− 2−Ω(pn), at any leaf of this common
1 + logS-partial decision tree, the restriction of f can be computed by a depth
d− 1 circuit of bottom fanin at most 1 + logS. By the induction hypothesis the
correlation of such a function with parity of the remaining variables (which are
at least pn/4) is bounded by

2Ω(−pn/ logS(logS)d−3),

and the theorem follows.

Acknowledgement. I thank Andrej Bogdanov for reminding me that one has
to be careful with conditioning. The input from two anonymous referees was also
essential in helping me make the proof crisper. As this research was initiated
and partially completed during a workshop at Schloss Dagstuhl, I want to thank
Schloss Dagstuhl for creating a great environment for research and discussions.

References

[1] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied

Logic, 24:1–48, 1983.

[2] P. Beame, R. Impagliazzo, and S. Srinivasen. Approximating AC0 by small
height decision tress and a deterministic algorithm for #AC0SAT . In
Proceedings IEEE Conference on Computational Complexity, pages 117–
125, 2012.

[3] J.-Y. Cai. With probability one, a random oracle separates pspace from
the polynomial-time hierarchy. Journal of Computer and System Sciences,
38:68–85, 1989.

[4] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

11

[5] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Pro-
ceedings of the eighteenth annual ACM symposium on Theory of computing,
STOC ’86, pages 6–20, New York, NY, USA, 1986. ACM.

[6] R. Impagliazzo, W. William, and R. Paturi. A satisfiability algorithm for
ac0. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 961–972. SIAM, 2012.

[7] A. Razborov. Bounded-depth formulae over the basis { AND,XOR} and
some combintorial problems (in russian). Problems of Cybernetics. Com-
plexity Theory and Applied Mathematical Logic, pages 149–166, 1988.

[8] A. Razborov and S. Rudich. Natural proofs. Journal of Computer and
System Science, 55:24–35, 1997.

[9] M. Sipser. Borel sets and circuit complexity. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, STOC ’83, pages 61–69,
New York, NY, USA, 1983. ACM.

[10] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, STOC ’87, pages 77–82, New York, NY,
USA, 1987. ACM.

[11] A. C-C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’85,
pages 1 –10. IEEE, 1985.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

