Electronic Colloquium on Computational Complexity, Report No. 140 (2012)

How to Construct Quantum Random Functions

MARK ZHANDRY
Stanford University, USA

mzhandry@stanford.edu

Abstract

In the presence of a quantum adversary, there are two possible definitions of security for a
pseudorandom function. The first, which we call standard-security, allows the adversary to be
quantum, but requires queries to the function to be classical. The second, quantum-security,
allows the adversary to query the function on a quantum superposition of inputs, thereby giving
the adversary a superposition of the values of the function at many inputs at once. Existing
techniques for proving the security of pseudorandom functions fail when the adversary can
make quantum queries. We give the first quantum-security proofs for pseudorandom functions
by showing that some classical constructions of pseudorandom functions are quantum-secure.
Namely, we show that the standard constructions of pseudorandom functions from pseudorandom
generators or pseudorandom synthesizers are secure, even when the adversary can make quantum
queries. We also show that a direct construction from lattices is quantum-secure. To prove
security, we develop new tools to prove the indistinguishability of distributions under quantum
queries.

In light of these positive results, one might hope that all standard-secure pseudorandom
functions are quantum-secure. To the contrary, we show a separation: under the assumption
that standard-secure pseudorandom functions exist, there are pseudorandom functions secure
against quantum adversaries making classical queries, but insecure once the adversary can make
quantum queries.

Keywords: Quantum, Pseudorandom Function

1 Introduction

In their seminal paper, Goldreich, Goldwasser, and Micali [GGMS86] answer the question of how
to construct a function that looks random to classical adversaries. Specifically, they define a
pseudorandom function (PRF) as a function PRF with the following property: no efficient classical
algorithm, when given oracle access to PRF, can distinguish PRF from a truly random function.
They then construct such a pseudorandom function from pseudorandom generators. Since then,
pseudorandom functions have also been built from pseudorandom synthesizers [NR95], as well
as directly from hard problems [NR97, NRR0O, DY05, LW09, BMR10, BPR11]. Pseudorandom
functions have become an important tool in cryptography: for example, they are used in the
construction of identification protocols, block ciphers, and message authentication codes.

To define pseudorandom functions in the presence of a quantum adversary, two approaches are
possible. The first is what we call standard-security: the quantum adversary can only make classical
queries to the function, but all the computation between the queries may be quantum. The second,
which we call quantum-security, allows the adversary to make quantum queries to the function.

ISSN 1433-8092

That is, the adversary can send a quantum superposition of inputs to the function, and receives a
superposition of the corresponding outputs in return. We call pseudorandom functions that are
secure against quantum queries Quantum Pseudorandom Functions, or QPRFs. Constructing secure
QPRFs will be the focus of this paper.

Quantum-secure pseudorandom functions (QPRFs) have several applications. Whenever a
pseudorandom function is used in the presence of a quantum adversary, security against quantum
queries captures a wider class of attacks. Thus, the conservative approach to cryptosystem design
would dictate using a quantum-secure pseudorandom function. Further, in any instance where a
pseudorandom function might be evaluated on a superposition, quantum-security is required. For
example, classically, pseudorandom functions work as message authentication codes (MACs). In
the quantum world, however, it may be possible for a quantum adversary to query the MAC on a
superposition of messages, thus necessitating the use of a quantum-secure pseudorandom function.

Lastly, quantum-secure pseudorandom functions can be used to simulate quantum-accessible
random oracles [BDF*11]. Unlike the classical setting, where a random oracle can be simulated on
the fly, simulating a quantum-accessible random oracle requires defining the entire function up front
before any queries are made. Zhandry [Zhal2] observes that if the number of queries is a-priori
bounded by ¢, 2¢-wise independent functions are sufficient. However, whenever the number of
quantum queries is not known in advance, quantum-secure pseudorandom functions seem necessary
for simulating quantum-accessible random oracles.

1.1 Proving Quantum Security

Goldreich, Goldwasser, and Micali show how to build a pseudorandom function PRF from any
length-doubling pseudorandom generator G. This construction is known as the GGM construction.
Pseudorandom generators can, in turn, be built from any one-way function, as shown by Hastad et
al. [HILL99]. The security proof of Hastad et al. is entirely black-box, meaning that it carries over
to the quantum setting immediately if the underlying one-way function is secure against quantum
adversaries. However, we will now see that the classical proof of security for the GGM construction
does not hold in the quantum world.

At a high level, implicit in the GGM construction is a binary tree of depth n, where each leaf
corresponds to an input/output pair of PRF. To evaluate PRF, we start at the root, and follow the
path from root to the leaf corresponding to the input. The security proof consists of two hybrid
arguments: the first across levels of the tree, and the second across the nodes in a particular level.
The first step has only polynomially many hybrids since the tree’s depth is a polynomial. For the
second step, a classical adversary can only query PRF on polynomially many points, so the paths
used to evaluate PRF only visit polynomially many nodes in each level. Therefore, we only need
polynomially many hybrids for the second hybrid argument. This allows any adversary A that
breaks the security of PRF with probability € to be converted into an adversary B that breaks the
security of G with probability only polynomially smaller that e.

In the quantum setting, A may query PRF on a superposition of all inputs, so the response to
even a single query could require visiting all nodes in the tree. Each level of the tree may have
exponentially many nodes, so the second hybrid argument above would need exponentially many
hybrids in the quantum setting. This means B breaks the security of G with only exponentially small
probability. All existing security proofs for pseudorandom functions from standard assumptions
suffer from similar weaknesses.

1.2 Our Results

We answer the question of how to construct a function that looks random to quantum adversaries.
The answer is simple: many of the constructions of standard-secure pseudorandom functions are in
fact quantum-secure. However, as explained above, new techniques are required to actually prove
security.

We start by showing that, given the existence of a standard-secure pseudorandom function, there
are standard-secure pseudorandom functions that are not quantum-secure. Thus a standard-secure
PRF may not be secure as a QPRF.

Next, for several classical constructions of pseudorandom functions, we now can show how to
modify the classical security proof to prove quantum security. Our general technique is as follows:
first define a seemingly stronger security notion for the underlying cryptographic primitive. Next,
use ideas from the classical proof to show that any adversary A that breaks the quantum-security
of the pseudorandom function can be turned into an adversary B that breaks this stronger notion
of security for the primitive. Lastly, use new techniques to show the equivalence of this stronger
notion of security and the standard notion of security in the quantum setting.

We use this approach to prove the security of the following pseudorandom functions:

e The construction from length-doubling pseudorandom generators (PRGs) due to Goldreich,
Goldwasser, and Micali [GGMS&6]. Since pseudorandom generators can be built from one-way
functions in the quantum setting, this shows that one-way functions secure against quantum
adversaries imply quantum-secure pseudorandom functions.

e The construction from pseudorandom synthesizers due to Naor and Reingold [NR95].

e The direct construction based on the Learning With Errors problem due to Banerjee, Peikert,
and Rosen [BPR11].

1.3 Are Quantum Oracles Better Than Samples?

In the GGM proof, the first hybrid argument over the levels of the tree essentially transforms an
adversary for PRF into an algorithm solving the following problem: distinguish a random oracle
from an oracle whose outputs are random values from the underlying pseudorandom generator. The
next hybrid argument shows how to use such an algorithm do distinguish a single random value from
a single output of the pseudorandom generator, thus breaking the security of the pseudorandom
generator.

The first hybrid argument carries over into the quantum setting, but it is this second hybrid
that causes difficulties for the reasons outlined above. To complete the security proof, we need to
show that having quantum access to an oracle whose outputs are drawn from a distribution is no
better than having access to a single sample from the same distribution. We show exactly that:

Theorem 1.1. Let Dy and Dy be efficiently sampleable distributions on a set Y, and let X be some
other set. Let O and Oz be the distributions of functions from X to) where for each x € X, O;(x)
18 chosen independently according to D;. Then if A is an efficient quantum algorithm that uses
quantum queries to distinguish oracles drawn from Oy from oracles drawn from Oy, we can construct
an efficient quantum algorithm B that distinguishes samples from Dy and Ds.

In the classical case, any algorithm A making g queries to an oracle O only sees g outputs. Thus,
given ¢ samples from D; or Do, we can lazily simulate the oracles O; or O3, getting an algorithm
that distinguishes ¢ samples of D; from g samples of Ds. A simple hybrid argument shows how to
get an algorithm that distinguishes one sample.

In the quantum setting, any quantum algorithm A making even a single quantum query to O;
gets to “see” all the outputs at once, meaning we need exponentially many samples to simulate O;
exactly. However, while we cannot lazily simulate the oracles O; given g samples from D;, we can
approximately simulate O; given polynomially many samples from D;. Basically, for each input, set
the output to be one of the samples, chosen at random from the collection of samples. While not
quite the oracle O;, we show that this is sufficiently indistinguishable from O;. Thus, we can use A
to distinguish a polynomial number of samples of Dy from the same number of samples of Ds. Like
in the classical case, a simple hybrid argument shows how to distinguish just one sample.

2 Preliminaries and Notation

We say that e = e(n) is negligible if, for all polynomials p(n), e(n) < 1/p(n) for large enough n.

For an integer k, we will use non-standard notation and write [k] = {0, ...,k — 1} to be the set of
non-negative integers less than k. We write the set of all n bit strings as [2]". Let x = x1...x,, be a
string of length n. We write z, to denote the substring z,zq+1...%s.

2.1 Functions and Probabilities

Given two sets X and), define V¥ as the set of functions f: X —= Y. If a function f has maps X
to YV x Z, we can think of f as two functions: one that maps X to) and one that maps X to Z. In
other words, we can equate the sets of functions (Y x Z)* and Y* x Z*.

Given f € Y¥ and g € 27, let g o f be the composition of f and g. That is, g o f(z) = g(f(z)).
If F C Y%, let go F be the set of functions g o f for f € F. Similarly, if G C ZY, Go f is the set of
functions f o g where g € G. Define G o F accordingly.

Given a distribution D and some event event, we write Pr,. p[event] to represent the probability
that event happens when x is drawn from D. For a given set X, we will sometimes abuse notation
and write X to denote the uniform distribution on X.

Given a distribution D on Y% and a function g € 27, define the distribution g o D over Z%
where we first draw f from D, and output the composition g o f. Given f € Y¥ and a distribution
E over 2% define E o f and E o D accordingly.

Given a distribution D on a set), and another set X, define D¥ as the distribution on Y¥
where the output for each input is chosen independently according to D.

The distance between two distributions D7 and Dy over a set X is

|Di = Do| = Y | Di(x) — Da(2)]
zeX

If |D1 — Dy| <€, we say Dy and D9 are e-close. If |[Dy — Ds| > €, we say they are e-far.

2.2 Quantum Computation

Here we state some basic facts about quantum computation needed for the paper, and refer the
reader to Nielsen and Chuang [NCO00] for a more in depth discussion.

Fact 1. Any classical efficiently computable function f can be implemented efficiently by a quan-
tum computer. Moreover, f can be implemented as an oracle which can be queried on quantum
SUPETPOSItions.

The following is a result from Zhandry [Zhal2]:

Fact 2. For any sets X and Y, we can efficiently “construct” a random oracle from X to Y capable
of handling q quantum queries, where q is a polynomial. More specifically, the behavior of any
quantum algorithm making at most q queries to a 2q-wise independent function is identical to its
behavior when the queries are made to a random function.

Given an efficiently sampleable distribution D over a set), we can also “construct” a random
function drawn from DY as follows: Let Z be the set of randomness used to sample from D, and
let f(r) be the element y €) obtained using randomness r € Z. Then DY = f o Z¥, so we first
construct a random function O’ € Z¥, and let O(x) = f(O'(z)).

We will denote a quantum algorithm A given classical oracle access to an oracle O as A9, If A
has quantum access, we will denote this as Al9).

2.3 Cryptographic Primitives

In this paper, we always assume the adversary is a quantum computer. However, for any particular
primitive, there may be multiple definitions of security, based on how the adversary is allowed to
interact with the primitive. Here we define pseudorandom functions and two security notions, as
well as two definitions of indistinguishability for distributions. The definitions of pseudorandom
generators and synthesizers appear in the relevant sections.

Definition 2.1 (PRF). A pseudorandom function is a function PRF : I x X —), where K is the
key-space, and X and Y are the domain and range. K, X, and Y are implicitly functions of the
security parameter n. We write y = PRFy(z).

Definition 2.2 (Standard-Security). A pseudorandom function PRF is standard-secure if no efficient
quantum adversary A making classical queries can distinguish between a truly random function and
the function PRFy for a random k. That is, for every such A, there exists a negligible function
e = e(n) such that

Pr [APRFe() = 1] - Pr [A90) =1]|<e .

PrAT() = 1) = Pr [A°0) = 1]| <
Definition 2.3 (Quantum-Security). A pseudorandom function PRF is quantum-secure if no
efficient quantum adversary A making quantum queries can distinguish between a truly random
function and the function PRFy for a random k.

We call such quantum-secure pseudorandom functions Quantum Random Functions, or QPRFs.

We now provide some definitions of indistinguishablility for distributions. The standard notion
of indistinguishability is that no efficient quantum algorithm can distinguish a sample of one
distribution from a sample of the other:

Definition 2.4 (Indistinguishability). Two distributions D1 and Dy over a set) are computationally
(resp. statistically) indistinguishable if no efficient (resp. computationally unbounded) quantum
algorithm A can distinguish a sample of D1 from a sample of Ds. That is, for all such A, there is a
negligible function € such that

For our work, we will also need a new, seemingly stronger notion of security, which we call
oracle-indistinguishability. The idea is that no efficient algorithm can distinguish between oracles
whose outputs are distributed according to either D; or Ds:

Definition 2.5 (Oracle-Indistinguishability). Two distributions Dy and Dy over a set) are
computationally (resp. statistically) oracle-indistinguishable if, for all sets X, no efficient (resp.
computationally unbounded) quantum algorithm B can distinguish D5t from Dy using a polynomial
number of quantum queries. That is, for all such B and X, there is a negligible function € such that

Pr [B9(O=1- Pr [B9)=1]|<e .
O« D¢ O« Dy¥

For this paper, we will primarily be discussing computationally bounded adversaries, so we
will normally take indistinguishability and oracle-indistinguishability to mean the computational
versions.

These these definitions of indistinguishability in hand, we can now formulate Theorem 1.1 as
follows:

Theorem 1.1. Let D; and Ds be efficiently sampleable distributions over a set). Then D; and
Dy are indistinguishable if and only if they are also oracle-indistinguishable.

3 Separation Result

In this section, we show our separation result:
Theorem 3.1. If secure PRF's exist, then there are standard-secure PRFs that are not QPRFs.

Proof. Let PRF be a standard-secure pseudorandom function with key-space K, domain X, and
co-domain). We will construct a new pseudorandom function that is periodic with some large,
secret period. Classical adversaries will not be able to detect the period, and thus cannot distinguish
this new function from random. However, an adversary making quantum queries can detect the
period, and thus distinguish our new function from random.

Interpret X' as [N], where N is the number of elements in X. Assume without loss of generality
that) contains at least N2 elements (if not, we can construct a new pseudorandom function with
smaller domain but larger range in a standard way). We now construct a new pseudorandom
function PRF(; () = PRFi(z mod a) where:

e The key space of PRF' is K’ = K x A where A =7Z N (N/2,N]. That is, a key for PRF’ is a
pair (k,a) where k is a key for PRF, and a is an integer in the range (N/2, N].

e The domain is X’ = [N’] where N’ is the smallest power of 2 greater than 4N2.

The following two claims are proved in Appendix A:
Claim 1. If PRF is standard-secure, then so is PRF'.

Sketch of Proof. Since PRF is a standard-secure pseudorandom function, we can replace it with
a truly random function in the definition of PRF’, and no efficient adversary making classical queries
will notice. But we are then left with a function that has a large random period where every value
in the period is chosen randomly. This function will look truly random unless the adversary happens
to query two points that differ by a multiple of the period. But by the birthday bound, this will
only happen with negligible probability. O

Claim 2. If PRF is quantum-secure, then PRF' is not.

Sketch of Proof. If we allow quantum queries to PRF’, we can use the period finding algorithm
of Boneh and Lipton [BL95] to find a. With a, it is easy to distinguish PRF’ from a random oracle.
Unfortunately, the period finding algorithm requires PRF’ to have some nice properties, but these
properties are satisfied if PRF is quantum-secure. O

Thus one of PRF and PRF’ is standard-secure but not quantum-secure, as desired.]

We have shown that for pseudorandom functions, security against classical queries does not
imply security against quantum queries. In the next sections, we will show, however, that several of
the standard constructions in the literature are nevertheless quantum-secure.

4 Pseudorandom Functions from Pseudorandom Generators

We give the construction of pseudorandom functions from pseudorandom generators due to Goldreich,
Goldwasser, and Micali [GGMS86], the so-called GGM construction. We also prove its security in a
new way that makes sense in the quantum setting. First, we define pseudorandom generators:

Definition 4.1 (PRG). A pseudorandom generator (PRG) is a function G : X — Y. X and) are
implicitly indexed by the security parameter n.

Definition 4.2 (Standard-Security). A pseudorandom function G is standard-secure if the distri-
butions G o X and Y are computationally indistinguishable.

Construction 1 (GGM-PRF). Let G : K — K2 be a length-doubling pseudorandom generator.
Write G(x) = (Go(z), G1(x)) where G, G1 are functions from IC to K. Then we define the GGM
pseudorandom function PRF : IC x [2]" — K where

PRF(2) = G, (.G, (G, ())..)

That is, the function PRF takes a key k£ in K and an n-bit input string. It first applies G to k.
It keeps the left or right half of the output depending on whether the last bit of the input is 0 or
1. What remains is an element in X, so the function applies G again, keeps the left or right half
depending on the second-to-last bit, and so on.

As described in the introduction, the standard proof of security fails to prove quantum-security.
Using Theorem 1.1, we show how to work around this problem. We defer the proof of Theorem 1.1

to Section 7, and instead assume it is true. We first define a stronger notion of security for
pseudorandom generators, which we call oracle-security:

Definition 4.3 (Oracle-Security). A pseudorandom generator G : X — Y is oracle-secure if the
distributions G o X and Y are oracle-indistinguishable.

G o X is efficiently sampleable since we can sample a random value in X and apply G to it.
Then, G o X and) are both efficiently sampleable, so Theorem 1.1 gives:

Corollary 4.4. If G is a secure PRG, then it is also oracle-secure.

We now can prove the security of Construction 1.

Theorem 4.5. If G is a standard-secure PRG, then PRF from Construction 1 is a QPRF.

Proof. We adapt the security proof of Goldreich et al. to convert any adversary for PRF into an
adversary for the oracle-security of G. Then Corollary 4.4 shows that this adversary is impossible
under the assumption that G is standard-secure.

Suppose a quantum adversary A distinguishes PRF from a random oracle with probability e.
Define hybrids H; as follows: Pick a random function P < KRI"™
(n —4)-bit strings into K) and give A the oracle

0i(2) = Gay (- Gy (P)) -

(that is, random function from

Hy is the case where A’s oracle is random. When i = n, P + K" is a random function from the
set containing only the empty string to I, and hence is associated with the image of the empty string,
a random element in L. Thus H, is the case where A’s oracle is PRF. Let ¢; be the probability A
distinguishes H; from H,;1. That is,

e = Pr[AlOV() = 1] — Pr[AlO+)() = 1] .

A simple hybrid argument shows that |>, ¢;| = e.
We now construct a quantum algorithm B breaking the oracle-security of G. B is given quantum

n—1 n—
access to an oracle P : [2]"_1 — K2, and distinguishes P «+ (IC2)[2} from P + G o K@""'. That
is, B is given either a random function from (n — 1)-bit strings into X2, or G applied to a random
function from (n — 1)-bit strings into K, and distinguishes the two cases as follows:

e Pick a random ¢ in {0,...,n — 1}
o Let PO [2]" "1 — K2 be the oracle PO (z) = P(0%x)

Write P®) as (Péi), 1(1)) where Pb(i) :[2]"""! — K are the left and right halfs of the output
of P,

Construct the oracle O : [2]" — K where

O(zx) = Gm(...Gxi(Pz<jﬁ>+1(x[i+m))...) .

Simulate A with oracle O, and output whatever A outputs.

Notice that each quantum query to O results in one quantum query to P, so B makes the same
number of queries that A does.

Fix i, and let B; be the algorithm B using this . In the case where P is truly random, so is P(®),
as are P(9 and P1() Thus O = O;, the oracle 1n hybrid H;. When P is drawn from G o K" 3
then P) is distributed according to G o K" and so Py + Gy o K2 " Thus O = Oit1, the
oracle in hybrid H;4;. For fixed ¢, we then have that the quantity

pr BPO)=1- P [BP)=1
N P—Gokl21" !

is equal to €;. Averaging over all ¢ and taking the absolute value, we have that the distinguishing
probability of B,

P BPO=1- P [BP)=1],
<_(]c2)[2]"71 PGoKl2m 1

is equal to

=e€/n .

1
Y.
n
Thus B breaks the oracle security of G with probability only polynomially smaller than the
probability A distinguishes PRF from a random oracle.

O]

5 Pseudorandom Functions from Synthesizers

In this section, we show that the construction of pseudorandom functions from pseudorandom
synthesizers due to Naor and Reingold [NR95] is quantum-secure.

Definition 5.1 (Synthesizer). A pseudorandom synthesizer is a function S : X*> — Y. X and Y
are implicitly indexed by the security parameter n.

Definition 5.2 (Standard-Security). A pseudoreandom synthesizer S : X? — Y is standard-secure
if, for any set Z, no efficient quantum algorithm A making classical queries can distinguish a
random function from O(z1,z2) = S(O1(21),02(22)) where Oy <~ XZ. That is, for any such A and
Z, there exists a negligible function € such that

Pr [ASO102)y 11— Pr [A9)=1]| <
olﬁ,;z[(0 =1] OHyE’xZ[O=1]|<e,
O+ X2

where S(O1,02) means the oracle that maps (z1, z2) into S(O1(21), O2(22)).
Construction 2 (NR-PRF). Given a pseduorandom synthesizer S : ?_(2 — X, let £ be an integer
and n = 2¢. We let PRFy(z) = PRF](f)(:L') where PRF® (XQXT) x [2]* — X is defined as

PRFO) (2) = a1

a1,0,a1,1
i—1
PRy (2) = S(PRESCH, (i),

PRF' D (@119))
2

where

(i—1)
Ay = (al,Oaal,l,QQ,OaGQ,h ~--aa2i*1,0aa2i*1,1)

(i-1) _
Ay = (a21'—1+1,0, A2i-1411,02,0,02]1, .-, @2i g CL2i,1)

That is, PRF takes a key k consisting of 2 x 2¢ elements of X', and takes bit strings « of length
2¢ as input. It uses z to select 2¢ of the elements in the key, and pairs them off. It then applies S
to each of the pairs, obtaining 2¢~! elements of X'. Next, PRF pairs these elements and applies S
to these pairs again, and continues in this way until there is one element left, which becomes the
output.

The following theorem is proved in Appendix E:

Theorem 5.3. If S is a standard-secure synthesizer, then PRF from Construction 2 is a QPRF.

Sketch of Proof. The proof is very similar to that of the security of the GGM construction: we
define a new notion of security for synthesizers, called quantum-security, and use the techniques of
Naor and Reingold to prove that quantum-security implies that Construction 2 is quantum secure.
Unlike the GGM case, the equivalence of quantum- and standard-security for synthesizers is not an
immediate consequence of Theorem 1.1. Nevertheless, we prove the equivalence, completing the
proof of security for Construction 2. O

6 Direct Construction of Pseudorandom Functions

In this section, we present the construction of pseudorandom functions from Banerjee, Peikert, and
Rosen [BPR11]. We show that this construction is quantum-secure.

Let p, ¢ be integers with ¢ > p. Let |z] , be the map from Z, into Z, defined by first rounding x
to the nearest multiple of ¢/p, and then interpreting the result as an element of Z,. More precisely,
[z], = [(p/q)z] mod p where the multiplication and division in (p/q)z are computed in R.

Construction 3. Let p,q,m,(be integers with ¢ > p. Let K = Zg*™ x (Z™E. We define
PRF: K x [2]" — Zy™™ as follows: For a key k = (A,{S;}), let

L
PRFi(z) = {At II sﬂ
i=1

p

The function PRF uses for a key an n x m matrix A and ¢ different n x n matrices S;, where
elements are integers mod g. It uses its £-bit input to select a subset of the S;, which it multiplies
together. The product is then multiplied by the transpose of A, and the whose result is rounded
mod p.

Next is an informal statement of the security of PRF, whose proof appears in Appendix F:

Theorem 6.1. Let PRF be as in Construction 3. For an appropriate choice of integers p,q, m, £
and distribution x on Z, if we draw A < Zy*™ and S; < x"*" and the Learning With Errors
(LWE) problem is hard for modulus q and distribution x, then PRF is a QPRF.

10

Sketch of Proof. We follow the ideas from the previous sections and define a new notion of
hardness for LWE, which we call oracle-hard, and show its equivalence to standard hardness. We
then show that oracle-hardness implies Construction 3 is quantum-secure. This part is similar to
the proof of Banerjee et al., with some changes to get it to work in the quantum setting. O

7 Distinguishing Oracle Distributions

In this section, we describe some tools for arguing that a quantum algorithm cannot distinguish
between two oracle distributions, culminating in a proof for Theorem 1.1. Let X and) be sets. We
start by recalling two theorems of Zhandry [Zhal2]:

Theorem 7.1. Let A be a quantum algorithm making g quantum queries to an oracle H : Y. If
we draw H from some distribution D, then for every z, the quantity Pry. p[AH)() = 2] is a linear
combination of the quantities Pry. p[H(x;) = Vi € {1, ...,2q}] for all possible settings of the x;
and ;.

Theorem 7.2. Fix q, and let Dy be a family of distributions on Y indeved by X\ € [0,1]. Sup-
pose there is an integer d such that for every 2q pairs (z;,r;) € X x Y, the function p(\) =
Pry.p, [H(z;) = r;Vi € {1,...,2q}] is a polynomial of degree at most d in X\. Then for any quantum
algorithm A making q quantum queries, the output distributions under Dy and Do are 2\d>-close.

We now show a similar result:

Theorem 7.3. Fiz q, and let E, be a family of distributions on Y indexed by r € 7 |J{oo}.
Suppose there is an integer d such that for every 2q pairs (x;,r;) € X x Y, the function p(\) =
Prycp, \[H(zi) = Vi € {1,...,2q}] is a polynomial of degree at most d in A. Then for any
quantum algorithm A making q quantum queries, the output distributions under E, and Es are
m2d3 /3r-close.

Sketch of Proof. Let Dy = Ej;5. We see that the conditions of Theorems 7.3 and 7.2 are
identical, with the following exception: Theorem 7.2 requires D) to be a distribution for all A € [0, 1],
while Theorem 7.3 only requires D) to be a distribution when 1/ is an integer (and when A = 0).
The proof is thus similar in flavor to that of Theorem 7.2, with the following exception: the proof of
Theorem 7.2 uses well-known bounds on polynomials f where f(x) € [0, 1] for all x € [0,1]. However,
we need similar bounds on polynomials f where f(z) is only required to be in [0, 1] for x where
1/x is an integer. Such polynomials are far less understood, and we need to prove suitable bounds
under these relaxed assumptions. The proof is in Appendix B. O

In the next section, we apply Theorem 7.3 to a new class of distributions.

7.1 Small-Range Distributions

We now apply Theorem 7.3 to a new distribution on oracles, which we call small-range distributions.
Given a distribution D on), define SR (X) as the following distribution on functions from X to Y

e For each i € [r], chose a random value y; € Y according to the distribution D.

e For each z € X, pick a random i € [r] and set O(x) = y;.

11

We will often omit the domain X when is is clear from context.
The following is proved in Appendix C:

Lemma 7.4. Fixz k. For any X, the probabilities in each of the marginal distributions of SR,P(X)
over k inputs are polynomials in 1/r of degree k.

An alternate view of this function is to choose g < D"l and f « [T’]X, and output the composition
go f. That is, SRP(X) = DIl o [r]¥. In other words, we choose a random function f from X to
[r], and compose it with another random function g from [r] to), where outputs are distributed
according to D. We call this distribution a small-range distribution because the set of images of
any function drawn from the distribution is bounded to at most r points, which for r << Y will
be a small subset of the co-domain. Notice that, as r goes to infinity, f will be injective with
probability 1, and hence for each z, g(f(z)) will be distributed independently according to D. That
is, SRZ (X) = D¥. We can then use Theorem 7.3 to bound the ability of any quantum algorithm to
distinguish SRP(X) from SRZ (x) = D¥:

Corollary 7.5. The output distributions of a quantum algorithm making q quantum queries to an
oracle either drawn from SRP(X) or DX are £(q)/r-close, where £(q) = 7%(2¢)3/3 < 27¢°.

We observe that this bound is tight: in Appendix D we show that the quantum collision finding
algorithm of Brassard, Hgyer, and Tapp [BHT97] can be used to distinguish SR? (X) from DY with
optimal probability. This shows that Theorem 7.3 is tight.

7.2 The Equivalence of Indistinsguishability and Oracle-Indistinguishability

We now use the above techniques to explore the relationship between indistinguishability and
oracle-indistinguishability and to prove Theorem 1.1. Clearly, oracle-indistinguishability implies
standard indistinguishability: if A distinguishes D from Ds, then the algorithm B!9)() that picks
any € X and returns A(O(x)) breaks the oracle-indistinguishability.

In the other direction, in the classical world, if B makes g queries to O, we can simulate O using
q samples, and do a hybrid across the samples. This results in an algorithm that breaks the standard
indistinuishability. However, in the quantum world, each query might be over a superposition of
exponentially many inputs. Therefore there will be exponentially many hybrids, causing the proof
to fail.

In the statistical setting, this question has been answered by Boneh et al. [BDF*11]. They show
that if a (potentially unbounded) quantum adversary making ¢ queries distinguishes D from Dg
with probability €, then D; and Dy must Q(e2/q*)-far. We now have the tools to extend this result
to the computational setting (and improve the result for the statistical setting in the process) by
proving Theorem 1.1.

Proof of Theorem 1.1. Let B be an (efficient) quantum adversary that distinguishes Df¥ from
Dy with non-negligible probability e, for distributions D1 and Do over). That is, there is some
set X such that

Pr [B9()=1- Pr [BO9()=1]|=c¢.
O+ Dy O+ Dy

Our goal is to construct an (efficient) quantum algorithm A that distinguishes a sample of D
from a sample of Ds. To this end, choose r so that ¢(q)/r = €/4, where £(q) is the polynomial from

12

Corollary 7.5. That is, r = 4£(q)/e. No quantum algorithm can distinguish SR?(X) from D with
probability greater than ¢(q)/r = €¢/4. Thus, it must be that the quantity

Pr [B9O)=1- Pr [B9()=1]
0+SRP1 (x) 0+SRP2(x)

is at least €/2. We now define r + 1 hybrids H; as follows: For j =0, ..., — 1, draw y; from D;. For
j=14,...,7 —1, draw y; from Dy. Then give B the oracle O where for each z, O(x) is a randomly
selected y;. H, is the case where O + SR? 1, and Hj is the case where O <« SR? 2. Hence Hy and
H, are distinguished with probability at least /2. Let

_ 0)() = 1] — 0)() =
=, p [BTO=1- P [BH()=1]

be the probability that B distinguishes H;11 from H;. Then |}, €] > €/2.
We construct an algorithm A that distinguishes between D; and Dy with probability €/2r. A,
on inputs y, does the following:

e Choose a random ¢ € [r].

e Construct a random oracle Og < [r]”".

} Dgiﬂ,...,rq}_

e Construct random oracles O < Dio""’ifl and Oy «

e construct the oracle O where O(z) is defined as follows:

— Compute j = Op(x).

— If j =4, output y.

— Otherwise, if j < i, output O1(j) and if j > i, output O2(7).
e Simulate B with the oracle O, and output the output of B.

Let A; be the algorithm A using i. If y < D1, B sees hybrid H; 1. If y « Do, B sees H;.
Therefore, we have that

an Aily) =1 = Pr [Ai(y) =1]=e .

Averaging over all 7, we get that A’s distinguishing probability is
2
€

53
- €5 .
(it 8¢(q)

Thus, A is an (efficient) algorithm that distinguishes D; from Do with non-negligible probability.
Hence, it breaks the indistinguishability of Dy and Ds. O

Py [A(y) = 1]~ Py [Aly) = 1] =

y<—D1 y<—Do

€
> =
2r

Notice that by removing the requirement that B be an efficient algorithm, we get a proof
for the statistical setting as well, so that if any computationally unbounded quantum algorithm
making ¢ quantum queries distinguishes Di* from Ds with probability €, then D; and Dy must be
Q(e2/4(q)) = Q(e?/¢?)-far, improving the result of Boneh et al. by a factor of g.

Now that Theorem 1.1 is proved, we have completed the proof of security for the GGM
construction (Construction 1) in the quantum setting. With some modifications to the proof, we
can also prove prove the quantum security for Constructions 2 and 3, as shown in Appendix E and
Appendix F.

13

8 Conclusion

We have shown that not all pseudorandom functions secure against classical queries are also secure
against quantum queries. Nevertheless, we demonstrate the security of several constructions of
pseudorandom functions against quantum queries. Specifically, we show that the construction from
pseudorandom generators [GGMS86], the construction from pseudorandom synthesizers [NR95], and
the direct construction based on the Learning With Errors problem [BPR11] are all secure against
quantum algorithms making quantum queries. We accomplish these results by providing more tools
for bounding the ability of a quantum algorithm to distinguish between two oracle distributions.
We leave as an open problem proving the quantum security of some classical uses of pseudorandom
functions. We have two specific instances in mind:

e Pseudorandom permutations (Block Ciphers) secure against quantum queries. We know how
to build pseudorandom permutations from pseudorandom functions in the classical setting
([LR88, NR99]). Classically, the first step to prove security is to replace the pseudorandom
functions with truly random functions, which no efficient algorithm can detect. The second
step is to prove that no algorithm can distinguish this case from a truly random permutation.
For this construction to be secure against quantum queries, a quantum-secure pseudorandom
function is clearly needed. However, it is not clear how to transform the second step of the
proof to handle quantum queries.

e Message Authentication Codes (MACs) secure against quantum queries. MACs can be built
from pseudorandom functions and proven existentially unforgeable against a classical adaptive
chosen message attack. If we allow the adversary to ask for an authentication on a superposition
of messages, a new notion of security is required. One possible definition of security is that,
after ¢ queries, no adversary can produce g + 1 classical valid message/tag pairs. Given a
pseudorandom function secure against quantum queries, proving this form of security reduces
to proving the impossibility of the following: After ¢ quantum queries to a random oracle O,
output ¢ + 1 input/output pairs of O with non-negligible probability.

Acknowledgments

We would like to thank Dan Boneh for his guidance and many insightful discussions. This work
was supported by NSF and DARPA. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Department of Defense or the U.S. Government.

A Proof of the Separation Result

Here we finish the counter-example from Section 3 and the proof of Theorem 3.1 by proving Claims
1 and 2. Recall that we start with a pseudorandom function PRF with key-space K, domain [N],
and range) where |Y| > N2. We then construct a new pseudorandom function PRF" whose keys
are pairs (k,a) where k € K and a € A where A is the set of integers in (N/2, N]. We let N’ be the
smallest power of 2 greater than 4N?, and for x € [N'], define PRF’(kﬂ) () = PRFg(z mod a).

14

Proof of Claim 1. We prove that if PRF is standard-secure, so is PRF’. Suppose we have a
quantum adversary A making classical queries that distinguishes PRF’ from a random function with
non-negligible probability €. That is,

pr [APRFko ()= 1] = Pr [A° :1‘:
Tl O0=1]- Pr [4°0=1] =¢

This is equivalent to

PRFy(- mod a)\ _ 11 _ O — _
Pl 0=1- Py 490 =1] =

Consider the quantity

P AO(mod a) —1—- P AO -1
B] 0=1- P [4%0 =1

The left hand side is the case where O is a random function in ¥, @ is a random integer in
(N/2, N], and we give A the oracle O'(z) = O(x mod a). As long as A never queries its oracle on
two points z and z’ such that z = 2’ mod a, this oracle will look random. If A makes ¢ queries,
there are (g) possible differences between query points. Each difference is at most 8N2, so for
large N it can only be divisible by at most 2 different moduli a. Notice that [A| > (N —1)/2.
Each difference thus has a probability at most 2/|A| < 4/(N — 1) of being divisible by a, so the
total probability of querying x and 2’ such that = 2 mod a is at most 2¢?/(N — 1). Thus this
probability, and hence the ability of A to distinguish O’ from a random oracle, is negligible.

A simple hybrid argument then shows that

Pr [APRFR(moda)y 90 pp [4OC meda)())

>e—2¢*/(N -1
k+K,a+A O+YVX a+—A =€ 1 /()

Define a quantum algorithm B which distinguishes PRF from a random oracle. B has an oracle
O, chooses a random integer a € (N/2, N], and simulates A with the oracle O'(z) = O(z mod a).
When O = PRFy, we get the left side, and when O is random, we get the right side. Thus,

PrBPH) = 1) = P [BO0 = 1) 2 e~ 2¢/(V - 1)

Since N is exponential, B breaks the standard-security of PRF.]

Proof of Claim 2. We now show that PRF and PRF’ cannot both be quantum-secure. Suppose
PRF is quantum secure. We first consider the case where PRF’ is built from a truly random function
O : [N] = Y. That is, PRF,(z) = O(z mod a).

Since || > N?, the probability that there is a collision (x,z’) where O(z) = O(2’) is less than
1/2. In this case, we then notice that PRF’ is periodic with period a, and we can use the results of
Boneh and Lipton [BL95] to find this period in polynomial time by making quantum queries to the
oracle. Thus, we get a distinguisher that works as follows, given access to an oracle O':

e Use the period-finding algorithm of Boneh and Lipton to find the period a of O'.

15

e If a € (N/2, N], pick a random = € [N’ — a], and verify that O'(z) = O'(x + a). If so, output
1. Otherwise, output 0.

If O' = O(x mod a), then with probability at least 1/2, O will have no collisions, meaning we
will find a with probability 1 — o(1). O'(z) = O'(z + a) will always be true in this case, so we
output 1. If O’ is random, then for any x, the probability that there is any 2’ € x + (N/2, N| with
O'(2") = O'(x) is negligible, so the random oracle will fail the test with all but negligible probability.
Therefore, we distinguish PRF’ from random with probability at least 1/2 — o(1).

We now switch to the true definition of PRF’. That is, we replace the random oracle O with PRF.
Since PRF is quantum-secure, this only affects the behavior of our distinguisher negligibly. Therefore,
our distinguisher still distinguishes PRF’ from random with probability at least 1/2 — o(1). O

B Proof of Theorem 7.3

Here we prove Theorem 7.3. We will actually prove a more general version. Recall that we have a
family of distributions E, over Y% parametrized by r € Z7T U{oc}. For any 2q pairs (z;,7;), suppose
the function p(A) = Prycp, , [H(2:) = riVi € {1, ..., 2¢}] satisfies:

e p is represented by a polynomial in A\ of degree at most d.
e p((0), the ith derivative of p at 0, is 0 for each i € {1,...,A — 1}.

Setting A = 1 gives the conditions of the theorem.

We will show that any ¢ query quantum algorithm can only distinguish FE, from FE., with
probability at most 2272¢(2A)(1/r)2(d)3A.

Let A =1/r. We follow the same proof technique as in Zhandry [Zhal2].

By Theorem 7.1, for a g-query quantum algorithm A, Pry. g [A¥() = 2] is a linear combination
of the Pry g, [H(z;) = Vi € {1,...,2q}]. Thus, for any z, PrHeEl/A[AH() = z] is a polynomial in
A of degree d with the first A — 1 derivatives at A = 0 being 0.

Now, suppose that A distinguishes F/y from Eu, with probability €(A). That is

S| By [AT0 =)= Py (470 =] =0y

Let Z) be the set of z such that z is a more likely output under E;,) than E. That is,
PrHeEl/A[AH() = 2] > Pry. g [AT() = 2]. Tt is not difficult to show that

Pr [AH()ez]- P

He By)y LPr A7) € 2] =c(n)/2 .

Fix Ao, and consider the quantity

ORI SRS o, S EER
0

Then px(A) — pA(0) = €(N\)/2. Further, for each X\g, py, is a degree-d polynomial in A such that

pf\zo)(()) =0 fori € {1,...,A — 1}. It also lies in the range [0, 1] when A =0 or 1/\ € Z*. Thus, we
make use of the following theorem:

16

Theorem B.1. Let p(\) be a polynomial in X of degree d such that p®(0) = 0 fori e {1,...,A —1},
0<p0) <1, and0<p(l/r) <1 forallr € ZT. Then |p(1/r) — p(0)| < 2172¢(2A)(1/r)2d3> for
all v € Z, where ¢ is the Riemann Zeta function.

Before proving this theorem, we use it to finish the proof of Theorem 7.3. For each Ao, py,
satisfies the conditions of Theorem B.1, so we must have that py,(\) — px,(0) < 2'72¢(2A)N\Ad3A.
But then setting Ao = A, we get that

€(N) = 2(pa(N) — pA(0)) < 227ACRANAE

Replacing 1/A with r, we have shown that the output distributions of any ¢ query quantum
algorithm A under E, and E., are 2272¢(2A)(1/r)2d??-close, as desired.

Proof of Theorem B.1. We have a polynomial p of degree d with p(¥(0) = 0 for i € {1,...,A —1}.
Further, for r € Z* N {oo}, 0 < p(1/r) < 1. Now, let s(\) = %. Then s is a d — A-degree
polynomial. We will now interpolate this polynomial at d — A + 1 points: let

1

22
Then we can use the Lagrange interpolating polynomials to interpolate s(\). Let s; = s(\;). Then:

d—A+1

sA) = D sili(N)

=1

where ¢;(\) is the Lagrange polynomial

J=L1,j#i
Then we get
p(}\) B p(O) _ /\A d§:+1 p()\z))\A p(O) &(}\)
ian Z
= > aMNeO) —p(0)
1—1
where

Now, observe that 1/); are integers, so 0 < p()\;) < 1 by assumption. Since 0 < p(0) < 1 as well,
we must have that |p(\;) — p(0)| < 1. Therefore,

d—A+1

) =pO) = > la(N)] -

i=1

We now need to bound this sum.

17

Claim 3. If A < \; for all i, then 3, |a;(\)| < 2172¢(2A)A\A @34

Before proving this claim, we note that it proves Theorem B.1 when A <); for all i (equivalently,
A < A1). If A > Aq, then the bound we are trying to prove is at least

d—A+1)3 \°
L(Q_A:l)gm) > 2¢C(2A) > 2

2174¢(24) (

Which is already trivially satisfied by the assumption that p(1/r) € [0, 1]. O

Proof of Claim 3. First, notice that

WG IR = G0 I ()

J=Ly# J=Lj#i
Now, observe that A; > m and that
(d—A+1)3 (d—A+1)
A=Al = A { 22 _{ 252 J
- 242 \ (d=A+1)° (d-A+1)° .
— (d—A+1)37 22 22
Which can be simplified to
[~ 7| - sk
—A+1
[Ai = Ajl = Ay j2()

We notice that the numerator is minimized by making ¢ and j as large as possible, which is when
they are d — A 4+ 1 and d — A. In this case, the quantity becomes A; (3 — d_%“)/j{ which is
greater than 0 as longas d— A+ 1> 1 (if d — A <0, then p(\) is a constant, so the theorem is

trivial).
ai()\) _ 1\2 d—ﬁﬂ j2
D O i2 — 52| — I

Thus
J=Ll,j#1 (d—A+1)3
A
The (1/X;)® term is bounded by (M> . We now bound the other term:

Claim 4. For all integers D and i such that i < D, ap; < 2 where

D jQ
aDy; = H < 212]2>

j=1,j%#i 1% — 52| —

Proof. First, rewrite ap; as

D j2 D 1
ap;i =[] 2 — ;2] 11 1_ 2%
j=Li#i i=Li#i L — [@—ppe

18

The first term is

D .2 i—1) D)
I =t = o IT 6
j=1,j#i ’Z2_j2‘ j=1 (7’+])(2_J) j=i+1 (Z+j)<j—Z)
D1\ 2
. ((D) (%)
- —1)! |
CEG — 1)) | D (D — i)
o [2(in)? (D")?(24)!
B (20)!)\ (iH2(D —)Y(D +4)!
= 2(D)?*/(D —i)(D +1)!
For the second term, we will decompose 2i2j2/(i? — j2) as 1'2(z Lot m - 2) Then
D D 2 :2
1 1 217
H 2i252 < H 1+ 2’D3 <1+ 3 Z |i2fj2|
j=1 [i2—;2|D3 j=1,j#1 J=1j#i
YE=)
_1+£ Z_1<z ! 2)+ZD:<Z ! +2>
D3 Al P Ak A o
’LQ i—1 2i—1 D—i i D+1 i
= 1+ S+ > — 20—+ > —— > —+2(D—i)
3
D\ 5 0 js=173 ju=2i+1 74
;2 2i-1¢ 2 4
< 14 g |2AD-2i+1) +i Z_: 5+Z:5
7=1 7j=1
i (L1 22
< 1+ 552D +2+2 Zl—,—l <1+ﬁ(D+1+zlog21)
]:

Let Bp; = 2#&“)! (1 + QD%(D +1+ilog 2z)> Then ap,; < Bp,. For fixed i, the quantity

ﬁ(D +1+ilog 2@)) is positive and converges to 1 for large D. Also for fixed i, 2(D!)?/(D —
) (D + 1)! converges to 2. Thus, Bp; converges to 2 for for large D. We now show that Sp; < 2 by
showing that it is monotonically increasing in D. Indeed,

D+1)12 .)
5D+1,’L’ . (D+i-(‘r1)!(g—i+1)' (1 + (D+1) (D + 2 41 log 21))
Bp.i (D+£éQD—i)! (1 (D)3 (D+1+ilog 2@))
D3 (D +1)3 + 2i%(D + 2 + ilog 2i)

(D+i+1)(D—-i+1)(D+1) D3+2i2(D+1+ilog2i)
Using some algebraic manipulation, we get

BD-I—l,i — 1+ i2 D*—-3D3 + 01D2 + coD + c3
BD.i (D+1)(D+1+4+4)(D+1—14)(D3+2i%2(D+1+ilog2i))

19

Where
1 = 2(i% —6— 3ilog2i)
co = 2(2i* — 4 — 3ilog2i +i%log 2i)
cs = 2(i% —1)(1+ilog2i)

Now, each of the ¢ is positive and increasing for large ¢. For each ¢, we can find the minimum
with respect to ¢, assuming 7 > 1.

e (i) = 2(2i — 3log2i — 3), which is positive when i = 5. /(i) = 2(2 — 3/i), which is positive
for i > 2. Therefore, ¢ (i) is strictly increasing for i > 5. Testing ¢ = 1,2, 3, 4,5 shows that
the minimum occurs at ¢ = 5, and ¢;1(5) > —32

o ch(i) = 2((4i — 3) +i? + 3(i® — 1) log 2i), which is positive for i > 1. Therefore, the minimum
is when ¢ = 1, and c2(1) > 7.

e (3 is trivially non-negative for all ¢ > 1.
The results are thus ¢; > —32, co > —7, and c3 > 0. Thus,

- D*—-3D% —-32D%? - 17D
Bp+1,i o2 3 3 7

BD,i (D+1)(D+1+i)(D+1—14)(D3+2i2(D + 1+ ilog 2i))

The denominator is positive (since i < D), so % >1if D* —3D3—32D? —7D > 0. At D =8,
this polynomial is positive, as are the first four derivatives (the rest being 0). This means the
polynomial is positive for all D > 8. Thus, we have shown that Sp; approaches 2 for large D, and
for D > 8, Bp,; is strictly increasing in D. Therefore, for D > 8, we have that ap; < fp,; < 2.
For the case where D < 8, we have 28 (D,) pairs to check. Below, we have calculated ap; for
1<i<D<8

i=1 1.00 | 2.00 | 1.82 | 1.79 | 1.79 | 1.81 | 1.82
2 -10501]143]1.29|1.30|1.33 | 1.37
3 - -10.231]0.86|0.79 | 0.82 | 0.87
4 - - -10.10 | 0.46 | 0.43 | 0.47
5 - - - -10.04 | 0.22]| 0.22
6 - - - - -10.0110.10
7 - - - - - -10.01
All of these are at most 2, completing the proof of the claim.]

With this proved, we can now complete the proof of Claim 3.

d—A . A A
ai()\)’ < (1)A+1 H+1 £ o AN i I Y i
A2 TN |i2 — 52| — (2& - 242 — 7\ 22

J=1j#i d—A+1)3

This gives

|az()\)’ < AAd:SAQl_AiQT

20

Summing over all 7 from 1 to d — A + 1 gives

d—A+1 d—A+1 4
A j3A61—A

>l <A%PR278 3T 5

=1 =1

The sum on the right hand side is the truncated p series for p = 2A. This series sums to ((p), so
the truncation is strictly less than this value. Therefore,

d—A+1
S Jai(N)] < ARd3R2 8¢ (2A)
i=1

C Proof of Lemma 7.4

In this section, we prove Lemma 7.4.

Proof of Lemma 7.4. Our goal is to show that, for each of the marginal distributions over k
inputs to SR{? , each probability is a polynomial in 1/r of degree at most k.

Fix some x; and y; for i € [k]. We consider the probability that O(z;) = y; for all i € [k]. We can
assume without loss of generality that the z; are distinct. Otherwise, there are 4, j such that z; = ;.
If y; # yj;, then the probability is 0 (O is not a function in this case). If y; = y;, the O(z;) = y;
condition is redundant and can be removed, reducing this to the £ — 1 case. By induction on k, the
resulting probability is a polynomial of degree at most k — 1 < k.

Recall that SRP = DI o [#]* and D is a distribution on Y. Let Oy « [r]* and Oy < DIl Let
O/ be the restriction of O1 to {xo,...,zx_1}. Each O} then occurs with probability 1/7*. Now,

Pr [O(a:,) = yNz’ S [I{ZH = Pr [02(01({51)) = yNz € [I{ZH
O+SRP O1+[r]* ,024DI"]
_ Pr Pr[02(0) () = yi¥i € [k]]
O’e{rﬁzo """ 2k—1} Oy¢ DIl

- Z Pr [05(01(:)) = yi¥i € [k]]

02<—

We now associate with each O} a partition P of [k] into r disjoint subsets P; for j € [r]. The
elements of P; are the indicies ¢ such that O} (z;) = j. Thus:

Pr [O(z;) = yiVi € | Z Pr[O2(j) = vy € [r],Vi € Pj]
O+SRP)

Since Oy « DUl the distribution of outputs of Oy for each j are independent. Thus the
probabilities Pr[Os(j) = y;Vi € Pj] are also independently distributed. Thus,

Pr D[O(:L'l) =y;Vi € [Z H Pr[O2(j) = yiVi € Pj]
O3k ¥ pZ) el

21

Since there are only k elements, at most k of the P;s are non-empty. Thus, we can associate to
each partition P another partition @ of [k| into kg < k non-empty subsets, and a strictly increasing
function from fg from [kg] — [r]. The association is as follows: Qj = Py, (;y and P; = () if j has
no pre-image under fg. This allows us to write:

Pr [O(z;) =yVi € | Z Z H Pr[0a2(fq(i") = viVi € Q]

D
OSR; £ o2 (@) fq i'€lkq]

We now notice that, for fixed j’, if the y; are all equal for i € @Q;/, then since Oy DUl
Pr[O2(fo(j')) = yiVi € Qj] = D(y;) where i is any index in Q;. Otherwise, Pr[Oz(j) = y;Vi €
Qj'] = 0 since Oy needs to be a function. Thus we can write Pr[O2(j) = y;Vi € Q] = D(yi)o(Qjr)
where o(S) is 1 if y; are all equal for i € S, and 0 otherwise. Thus,

Pr [O(x;) = y;Vi € [k Z Z H D(y;)o

D
O=SR; Q=(Q,) fq j'€lkq]

The summand does not depend on fg, so let cg be the number of fg. Then we can write

‘ 1 . .
Pr D[O(xz-) =y Vi € [k]] = F Z cQ H Pr[Os(5') = yiVi € Q]
OSR; Q=Q;) J'€lkq]

The () we are summing over are independent of 7, as is the product in the above expression. cq
is equal to the number of ways of picking kg distinct elements of [r], which is (kg), and is thus
polynomial of degree k¢g in r (and hence a polynomial of degree at most k). Therefore, performing
the sum, Pry, sgp[O(z;) = y;Vi € [k]] is a polynomial of degree at most k in 7, divided by r*. The
result is a polyno;nial of degree at most k in 1/r.

O

D A Quantum Distinguisher for Small-Range Distributions

In this section, we give a quantum distinguisher that distinguishes SR%) from a random function
with probability (asymptotically) matching the bound of Corollary 7.5. Our algorithm is basically
the collision finding algorithm of Brassard, Hger, and Tapp [BHT97], with a check at the end to
verify that a collision is found. The algorithm has oracle access to a function O from X to), which
is either SR%’ or a random function. It is given as input the integer r, the number of queries ¢, and
operates as follows:

e Let p=(q—1)/2. Pick a set S of p points in X’ at random, and check that there is no collision
on S by making p classical queries to O. Sort the elements of S, and store the pairs (s, O(s))
as a table for efficient lookup.

1 ifx ¢ S and O(x) = O(s) for some s € S

e Construct the oracle O'(x) =)
0 otherwise

e Run Grover’s algorithm [Gro96] on O’ for p iterations to look for a point x such that O'(x) = 1.

22

e Check that there is an s € S such that O(z) = O(s) by making one more classical query to O.

Before analyzing this construction, we explain what Grover’s algorithm does. It takes as input
an oracle O’ mapping some space X into [2], and tries to find an z such that O’(x) = 1. Specifically,
if N points map to 1, then after ¢ queries to O, Grover’s algorithm will output an x such that
O'(x) = 1 with probability ©(¢>N/|X|)

We now analyze this construction. The first step takes p queries to O. If we find a collision,
we are done. Otherwise, we have p points that map to p different values. Call this set of values
T. The oracle O" outlined in the second step makes exactly one query to O for each query to
O’. The number of points in z such that O'(z) = 1 is the number of points z in X'\ S (which is
|X| — p) such that O(z) € T. In the random oracle case, the probability that O(x) is one of p
random values is p/|)Y|, so the expected number of such z is (|X| — p)p/|Y|. Thus, after p iterations,
Grover’s algorithm will output such an 2 with probability ©(p3(|X| — p)/|X||)])). In the SRY case,
since there are only r possible outputs, the probability that x maps to T" is p/r, so the expected
number of such x is p(|X| — p)/r. Thus, Grover’s algorithm will output such an = with probability
O*(|X| - p) /rIX]).

The difference in these probabilities is ©(p3(1/r — 1/|Y|)(|X| — p)/|X|. If we let || be at least
2r and |X| at least 2p + 1 = ¢, we see that we distinguish SR?K from random with probability
Q(p3/r) = Q(¢3/r), thus matching the bound of Corollary 7.5. This shows that the corollary is
optimal, and hence Theorem 7.3 is optimal for the case A = 0.

E Security Proof for the Synthesizer-Based PRF

Here, we prove Theorem 5.3 by showing that PRF from Construction 2 is quantum secure if the
underlying synthesizer S is standard-secure.

Recall the definition of standard-security for a synthesizer S : X2 —) from Definition 5.2: for
all sets Z, no efficient quantum algorithm A making classical queries to an oracle O from 22 —)
can tell if O(z1, z2) = S(O1(21), 02(22)) for random oracles O; < X% or if O is truly random.

Since all queries are classical, and only a polynomial number of queries are possible, a simple
argument shows that Definition 5.2 is equivalent to the case where |Z| € n®M). Further, if Z
is polynomial in size, we can query the entire set classically, so there is no advantage in having
quantum queries. Therefore, Definition 5.2 is equivalent to the following:

Definition E.1 (Standard-Security). A pseudoreandom synthesizer S : X% — Y is standard-secure

if, for any set Z where |Z| € nPW | no efficient quantum algorithm A making quantum queries can
distinguish O(z1,22) = S(01(21), O2(22)) where Oy + X% from O + YZ*Z.

Before proving security, we define the quantum-security of a pseudorandom synthesizer. The
definition is similar to Definition E.1, except that there is no bound on the size of Z:

Definition E.2 (Quantum-Security). A pseudoreandom synthesizer S : X% — Y is quantum-
secure if, for any set Z, no efficient quantum algorithm A making quantum queries can distinguish

O(z1,29) = S(O1(21),02(22)) where Oy < XZ from O < YZ*Z
We now show that the two definitions are equivalent:

Lemma E.3. If S is standard-secure, then it is also quantum-secure.

23

Proof. Let’s define a new oracle distribution, which we will denote AR, which stands for almost
random. AR is defined as follows:

e Pick random oracles P; and P, from [s]%.

e Pick a random oracle) from y[slz.
e Output the oracle O(z1,22) = Q(Pi(z1), Pa(22)).

Notice that as s goes to co, O1 and Os become injective with probability approaching 1, and thus
AR is the uniform distribution.

Now, let B be an adversary breaking the oracle-security of S with non-negligible probability e.
Define €(s) as the following quantity:

Pr [B5©102) () =1] — Pr [BY() =1]

els) =
() O1+XZ,02+ X% O+ARg

Then € = lims_,o €(s). Let 7 be an integer such that ¢(q)/r = €/8 where ¢ in the number of queries
made by B. We now replace O; with SR¥, and the P; (as a part of AR,) with SR/, Each of these
changes will only change the behavior of A by /8. Thus, a simple argument shows that

Pr [BS(O1,02)() =1 - Pr [BQ(Pl,Pg)() =1]

>€e(s)—¢€/2
0;«SRY PSR Qeyls)? > els) /

Notice that we can think of the oracle Q(P;, P») as the oracle
O'(21,22) = Q(S1 0 Ri(21), 82 © Ra(22)) = O(R1(21), Ra(22))

Where S; + [s]m, R; < [r]%, and O(wy,ws) = Q(S1(w1), Sa(ws)). As s goes to 0o, S; become
injective with probability converging to one, so O approaches a random function from [r]z —).
We now describe a new algorithm A which tries to break the standard-security of S according
to Definition E.1. A takes as input a quantum-accessible oracle O from [r]* to Y. A constructs
two random oracles Ry < [r]© and Ry < [r]Z, gives B the oracle O/(z1, 22) = O(R1(21), Ra(22)),
and simulates B. If O = S(T},T3) for random oracles Tj < XU"l, then the oracle seen by A is
O’ (21, 22) = S(01(21), O2(22)), where O and O are drawn from SR:¥. If O is a random oracle, then
the oracle seen by A is O'(21, 20) = O(R1(21), Ra(22)), where R; « [r]Z. This corresponds to the
case where s = 0o, and thus the advantage of A in distinguishing these two cases is €(c0) —€/2 = €/2.
If € is non-negligible, then there is a polynomial bounding r infinitely often, and in these cases, A
breaks the standard-security of S.
O

We are now ready to prove that Construction 2 is quantum-secure:

Proof of Theorem 5.3. Let A be a quantum adversary breaking the quantum-security of PRF
with probability €. That is,

Pr [APRFe()=1]— Pr [A9() =1]| =
L O=1-_Pr [A70=1]=e¢

24

Let hybrid H; be the game where the oracle seen by A is PRF, except that each instance of
PRF® is replaced with a truly random function from [2]22 into X. Since PRF(©) is already a random
function, Hy is equivalent to the case where the oracle is PRF. Similarly, Hy, is by definition the
case where the oracle is truly random. Thus a simple hybrid argument shows that there is an ¢ such
that A can distinguish H; from H;_; with probability at least €/¢.

We now describe an algorithm B which breaks the quantum-security of S. B is given an oracle

N2 i
from P from (X X [24_"]) into X', which is either S(Q1, Q2) for random oracles Qp < X% (27 op
a truly random oracle. It then constructs oracles

Py(x17x2) = P(<I17y)7 (.%'2, y))

Notice that there are 2¢=% possible y values, and that for fixed v, P, is either a random oracle from
X? into X, or it is S(Qy1, Qy 2) for random oracles Q) from X to X. We then construct the oracle
O which is PRF, except that we stop the recursive construction at PRF®. There are 20~ different
instances of PRF(i), so we use the 2677 P, oracles in their place. If P is S(Q1,Q2), this corresponds
to hybrid H;_1, whereas if P is a random oracle, this corresponds to H;. Thus, B distinguishes the
two cases with probability €/2.

However, under the assumption that S is standard-secure, Lemma E.3 shows that it is quantum-
secure, meaning the algorithm B is impossible. Therefore, PRF is quantum-secure.]

F Security Proof for the Direct Construction

Here we give a precise statement and proof for Theorem 6.1, which state’s that PRF from Construction
3 is quantum secure for the right parameters. First, we define the Learning With Errors (LWE)
problem:

Definition F.1 (Learning With Errors). Let ¢ > 2 an integer, n a security parameter, and
m = poly(n) and w = poly(n) be integers. For a distribution x over Z and a secret matriz
S € Zy*", the LWE distribution L\WEg is the distribution over Zg'™*™ x L' defined as follows:

o Choose a random matrizc A < ZZX’”.

e Choose a random error matriz E < x™*%

e Output (A",B' = A'S+E mod q)

The LWE problem is then to distinguish between a polynomial number of samples from L\WEs, for a
fized S <+ x™** mod ¢ from the same number of samples from the uniform distribution. The LWE
problem is hard if, for all efficient quantum adversaries A, the probability A distinguishes these two
cases is negligible in n.

We now define the oracle-LWE problem:

Definition F.2 (Oracle-LWE). The oracle-LWE problem is to distinguish an oracle O whose outputs
are generated by LWEg (for a fized S <— x"*" mod q) from a truly random oracle O. We say that
LWE is oracle-hard if, for all efficient adversaries A making quantum queries, A cannot distinguish
these two distributions with more than negligible probability.

25

Lemma F.3. If LWE is hard, it is also oracle-hard.

Proof. The proof is very similar to that of Theorem 1.1. Let A be an adversary breaking the
oracle-hardness of LWE using ¢ quantum queries with probability ¢. Let r be an integer such
that £(q)/r ~ €/4. We then construct an algorithm B, which takes as input r pairs (A!,B!), and
distinguishes when the pairs come from LWEg , for some fixed S < x"** from when the pairs are
random. B works as follows:

e Construct the oracle O where O(x) is selected at random from (Af, B)
e Simulate A with oracle O, and output the output of A.

Using the same analysis as in the proof of Theorem 1.1, we get that B distinguishes the two
cases with probability €/2. If € is non-negligible, then there is a polynomial that bounds r infinitely
often, and in these cases, the number of samples received by B is a polynomial, and hence B breaks
the hardness of LWE. O

Next, we need to define the discrete Gaussian distribution:

Definition F.4 (Discrete Gaussian). Let Dy, denote the discrete Gaussian distribution over Z,

where the probability of x is proportional to e~z /r?

We are now ready to state and prove Theorem 6.1:

Theorem 6.1. Let x = Dz, and ¢ > p - £(Crv/n + E)gnw(l) for some suitable universal constant
C. Let PRF be as in Construction 3, and suppose each S; is drawn from x"*™. If the LWE problem
is hard for modulus ¢ and distribution , then PRF from Construction 3 is a QPRF.

Proof. The proof is very similar to that of Banerjee et al. Notice that our theorem requires
qg>p-UCrvn+ E)enw(l) whereas the original only requires ¢ > p - E(Cn/ﬁ)zn“’(l). We will explain
why this is later. We first define a class of functions G : I x [2]k — Zg™" to be PRF without

rounding. That is,
l

Gi(z) = A'] S}

=1

Then PRFy(z) = |Gk (x)],. We also define a related class of functions G where G = G and

e G is a function from [2]° into Zg*" defined as follows: pick a random A € Zg*™, and set
GO (e) = At
e G

() is a function from Q]i into Zy"*" defined as follows: pick a random GU=1 pick S; + x"™*"
and for each 2’ € [2]""!, pick Ep < x™*". Then

GOz =a'z) =G V() - S¥ + 2;-Ey mod g
Let A be an adversary that distinguishes PRF from a random function with probability e.

First, consider the case where A sees a truly random function U : [Q]k — Zyy"™". Replace U with

|U"], where U’ is a truly random function from [2]F — Zy™™™. For each input, the bias introduced by

26

this rounding is negligible because ¢ > pn®("). Thus, by Theorem 1.1, the ability of A to distinguish
these two cases is negligible.
Now, let B = £(Crv/n + k)¢. Let BAD(y) be the event that

ly+[=B, B "], #{lyl,}

That is, BAD(y) is the event that y is very close to another element in Z, that rounds to a different
value in Z,. Banerjee et al. show that for each x, the probability that BAD(U’(x)) occurs is negligible.
Therefore, according to Theorem 1.1, BAD(U'(x)) as an oracle with outputs in {True, False} is
indistinguishable from the oracle that always outputs False. Hence, it is impossible for an algorithm
making quantum queries to U’ to find an x such that BAD(U’(x)) occurs, except with negligible
probability.

The next step is to prove that U’ and G are oracle-indistinguishable. Once we have accomplished
this, we replace U’ with G. Then the probability that A detects this change is negligible. Additionally,
it is also impossible to find an z such that BAD(G(z)) occurs, except with negligible probability.

Lastly, we replace G with G. Banerjee et al. show that as long as BAD(G(z)) does not

occur, {G(m)w = |Gk(z)], = PRFy(z) with all but negligible probability. Our modification to the
P

parameters of the theorem (replacing \/n with v/n + k) allows us to choose C' so that this probability
is actually 2~‘o for some negligible o. Summing over all 2¢ different z, we get that, except with
negligible overall probability, PRF(z) = {G’(m)w whenever BAD(G/(z)) does not occur.

P

Thus, if A distinguishes PRFy(x) from {@(x)w with non-negligible probability, it must be that
P

the sum over all queries made by A of the sum of the query magnitudes of all the x such that

BAD(G(x)) occurs is non-negligible (Theorems 3.1 and 3.3 of [BBBV97]). But this means we
can find an x such that BAD(G(z)) occurs with non-negligible probability (simply run A, and at
a randomly chosen query, halt and sample the query). But, as we have already shown, this is
impossible.

Hence, we have shown that PRF is indistinguishable from a random function.

It remains to show that U’ and G are oracle-indistinguishable. We show that this is true given
that the LWE problem is oracle-hard. Using Lemma F.3, we reach the same conclusion assuming
LWE is hard, thus completing the theorem.

Let B be an adversary that distinguishes U’ from G with probability e. Define hybrid H; as the
case where B is given the oracle O; where O; = G, except that, in the recursive definition of G, G
is replaced with a truly random function. Hy corresponds to the correct definition of G, and Hj,
corresponds to U’. Thus, there exists an 4 such that B distinguishes H; from H;_; with probability
e/t.

Construct an adversary C with access to an oracle P : [2]"1 — L™ x Zg™". P is either
a random function or each output is chosen according to the LWE distribution. In other words,
P(z) = (A!,B'), where either A(z) and B(z) are chosen at random for all z, or there is a secret
S «+ X" and B(z)! = A(z)'S + E(z) mod g where E(z) < x™*".

For each j > 4, C' constructs random oracles Q; : [2]/ "1 — Z"™*" where Q;(z) + x"™*". C also
generates S; < x"*" for j > ¢. Then C works as follows:

A(J}/)t if T; = 0

Let GO (¢ — a'z1) —

27

o Let GU)(z = 2'x;) = GUD(a!) - S;Ej + ;- Qj(z') mod g for j > 1.

o Let O(z) = G¥(x)

e Run B with oracle O.

When P is a random oracle, this corresponds to H;. When P is the LWE oracle, this corresponds
to H;—1. Thus, C distinguishes these two cases with probability at least ¢/¢. Under the assumption
that LWE is oracle hard, this quantity, and hence ¢, are negligible. We then use Lemma F.3 to
complete the theorem.

O

References

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths

[BDF*11]

[BHT97]

[BL95)

[BMR10]

[BPR11]

[DYO05]

[GGMS6]

[Gro96]

[HILL9Y]

and Weaknesses of Quantum Computing. SIAM Journal on Computing, 26:1510-1523,
1997.

Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random Oracles in a Quantum World. In Advances in Cryptology —
ASTACRYPT 2011, 2011.

Gilles Brassard, Peter Hgyer, and Alain Tapp. Quantum Algorithm for the Collision
Problem. ACM SIGACT News (Cryptology Column), 28:14-19, 1997.

Dan Boneh and Richard J. Lipton. Quantum Cryptanalysis of Hidden Linear Functions.
Advances in Cryptology — CRYPTO 1995, 1995.

Dan Boneh, Hart Montgomery, and Ananth Raghunathan. Algebraic Pseudorandom
Functions with Improved Efficiency from the Augmented Cascade. Proceedings of the
17th ACM Conference on Computer and Communications Security (CCS), pages 1-23,
2010.

Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom Functions and
Lattices. Advances in Cryptology — FUROCRYPT 2012, pages 1-26, 2011.

Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short
Proofs and Keys. Public Key Cryptography, 2005.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random
Functions. Journal of the ACM (JACM), 33(4):792-807, 1986.

Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. Proceedings
of the 28th Annual ACM Symposium on Theory of Computing (STOC), pages 212-219,
1996.

Johan Hastad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

28

[LR8S] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., 17(2):373-386, April 1988.

[LW09] Allison B. Lewko and Brent Water. Efficient Pseudorandom Functions From the Decisional
Linear Assumption and Weaker Variants. Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS), pages 1-17, 20009.

[NCO0] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Information.
American Journal of Physics, 70(5):558, 2000.

[NR95] Moni Naor and Omer Reingold. Synthesizers and Their Application to the Parallel
Construction of Pseudo-Random Functions. Proceedings of the 36th IEEE Symposium
on Foundations of Computer Science (FOCS), 1995.

[NR97] Moni Naor and Omer Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. Proceedings of the 38th IEEE Symposium on Foundations of Com-
puter Science (FOCS), 51(2):231-262, 1997.

[NR99] Moni Naor and Omer Reingold. On the Construction of Pseudorandom Permutations :
Luby-Rackoff Revisited. Journal of Cryptology, (356):29-66, 1999.

[NRROO] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-Random Functions and Factoring.
Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing (STOC),
pages 1-23, 2000.

[Zhal2] Mark Zhandry. Secure Identity-Based Encryption in the Quantum Random Oracle
Model. In Advances in Cryptology — CRYPTO 2012, 2012. Full version available at the
Cryptology ePrint Archives: http://eprint.iacr.org/2012/076/.

29

ECCC ISSN 1433-8092
http://eccc.hpi-web.de

http://eprint.iacr.org/2012/076/

