
Lower bounds for myopic DPLL algorithms with a cut
heuristic∗

Dmitry Itsykson†and Dmitry Sokolov†

October 23, 2012

Abstract

The paper is devoted to lower bounds on the time complexity of DPLL algo-
rithms that solve the satisfiability problem using a splitting strategy. Exponential
lower bounds on the running time of DPLL algorithms on unsatisfiable formulas
follow from the lower bounds for resolution proofs. Lower bounds on satisfiable
instances are also known for some classes of DPLL algorithms; this lower bounds
are usually based on reductions to unsatisfiable instances. In this paper we con-
sider DPLL algorithms with a cut heuristic that may decide that some branch of the
splitting tree will not be investigated. DPLL algorithms with a cut heuristic always
return correct answer on unsatisfiable formulas while they may err on satisfiable
instances. We prove the theorem about effectiveness vs. correctness trade-off for
deterministic myopic DPLL algorithms with a cut heuristic. Myopic algorithms can
see formulas with erased signs of negations; they may also request a small number
of clauses to read them precisely.

We construct a family of unsatisfiable formulas Φ(n) and for every deterministic
myopic algorithm A we construct polynomial time samplable ensemble of distribu-
tions Rn concentrated on satisfiable formulas such that if A gives a correct answer
with probability 0.01 on a random formula from the ensemble Rn then A runs
exponential time on the formulas Φ(n).

One of the consequences of our result is the existence of a polynomial time sam-
plable ensemble of distributions Qn concentrated on satisfiable formulas such that
every deterministic myopic algorithm that gives a correct answer with probability
1− o(1) on a random formula from the ensemble Qn runs exponential time on the
formulas Φ(n).

Other consequence is the following statement: for every deterministic myopic
algorithm A we construct a family of satisfiable formulas Ψ(n) and polynomial time
samplable ensemble of distributions Rn concentrated on satisfiable formulas such
that if A gives a correct answer with probability 0.01 on a random formula from
the ensemble Rn then A runs exponential time on the formulas Ψ(n).

∗Preliminary version appeared in ISAAC 2011[IS11b].
†Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia,

dmitrits@pdmi.ras.ru, sokolov.dmt@gmail.com. The work is partially supported by Federal Target
Programme “Scientific and scientific-pedagogical personnel of the innovative Russia” 2009-2013, the
president grants MK-4108.2012.1, by RFBR grants 12-01-31239 mol a and 11-01-12135-ofi-m-2011 and
by RAS Program for Fundamental Research.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 141 (2012)

1 Introduction

DPLL (are named by the authors: Davis, Putnam, Logemann and Loveland) algorithms
are one of the most popular approaches to the problem of satisfiability of Boolean formulas
(SAT). DPLL algorithm is a recursive algorithm that takes the input formula φ, uses a
procedure A to choose a variable x, uses a procedure B to choose the value a ∈ {0, 1} for
the variable x that would be investigated first, and makes two recursive calls on inputs
φ[x := a] the φ[x := 1−a]. Note that the second call is not necessary if the first discovers
that the formula is satisfiable.

There are a number of works concerning lower bounds for DPLL algorithms: for
unsatisfiable formulas exponential lower bounds follow from lower bounds on the com-
plexity of resolution proofs [Urq87], [Tse68]. In case of satisfiable formulas we have no
hope to prove superpolynomial lower bound since if P = NP, then procedure B may
always choose the correct value of the variable according to some satisfying assignment.
Papers [ABM04b, ABM04a, Nik02] give exponential lower bounds on satisfiable formu-
las for several specific DPLL algorithms: GUC, UC, ORDERED-DLL and Randomized
GUC. The paper [AHI05] gives exponential lower bounds for two wide enough classes of
DPLL algorithms: myopic and drunken algorithms. In the myopic case procedures A
and B can see formula with erased signs of negation, they can request the number of
positive and negative occurrences for every variable and also may read K = n1−ε clauses
precisely. Note that this definition generalizes the notion of myopic algorithms intro-
duced in [AS00]. In the drunken algorithms the procedure A may be arbitrary while the
procedure B chooses the value uniformly at random. GUC, UC and ORDERED-DLL
[ABM04b] are myopic algorithms and Randomized GUC [Nik02] is drunken. The paper
[CEMT09] shows that myopic algorithms invert Goldreich’s function ([Gol00]) based on
a random graph in at least exponential time, [Its10] and [Mil09] extend this result for
drunken algorithms. The paper [IS11a] presents the explicit Goldreich’s function based
on any expander that is hard to invert for drunken and myopic algorithms.

All discussed lower bounds for satisfiable instances are based on the fact that during
several first steps an algorithm falls into a hard unsatisfiable formula, and an algorithm
should investigate its whole splitting tree. In this work we extend the class of DPLL
algorithms by adding the procedure C that may decide that some branch of the splitting
tree will not be investigated since it is not too “perspective”. More precisely, before
each recursive call an algorithm calls the procedure C that decides whether to make this
recursive call or not. DPLL algorithms with cut heuristic always give a correct answer
on unsatisfiable formulas; however they may err on satisfiable formulas. On the other
hand if the presence of a cut heuristic gives the substantial improvement on the time
complexity while the bad instances (i.e. instances on which the algorithm errs) are not
easy to find, then such algorithms become reasonable.

In this work we show that it is possible to construct the family of unsatisfiable formulas
Φ(n) in polynomial time such that for every myopic deterministic heuristics A and C there
exists a polynomial time samplable ensemble of distributions Rn such that the DPLL
algorithm based on procedures A,B and C for some B either errs on 99% of random
inputs according Rn or runs exponential time on formulas Φ(n). In case A and C are not
restricted we show that a statement similar to above is equivalent to P 6= NP. The case
of randomized myopic procedures A and C is left open.

2

In the proof of the main result we use the technique of closures for expander graphs
invented by Alekhnovich. We suggest a constructive variant of the closure notion and
apply it to the construction of the ensemble of distributions Rn.

We also give similar lower bound on satisfiable instances but in case of satisfiable
formulas it is impossible to prove precisely the same statement since myopic algorithm
may be trained for particular satisfiable formula Ψ(n). Therefore in the satisfiable case the
construction of formula Ψ(n) is depended on procedures A and B. And we also assume
that B is myopic.

The constructed distribution Rn depends on procedures A and C. We also construct
a universal ensemble of distributions Qn that dominates all possible ensembles Rn. In
particular we prove that if myopic DPLL with a cut heuristic errs with o(1) probability
on a random formula from the ensemble Qn, then it runs exponential time on formulas
Φ(n).

Heuristic acceptors. The study of DPLL algorithms with cut heuristic was also mo-
tivated by the study of heuristic acceptors [HIMS12]. The distributional proving problem
is a pair (L,D) of a language L and a polynomial time samplable distribution D concen-
trated on the complement of L. An algorithm A is called a heuristic acceptor if it has
additional input d that represents the parameter of the error and for every x ∈ L and
d ∈ N, A(x, d) returns 1 and Prx←Dn [A(x) = 1] < 1/d for every integer n. We call an
acceptor polynomially bounded if for every x ∈ L running time of A(x, d) is bounded by
polynomial in |x| ·d. The paper [HIMS12] shows that the existence of distributed proving
problems that have no polynomially bounded acceptors is equivalent to the existence of
infinitely often one-way functions.

Let D be some distribution concentrated on satisfiable formulas. We consider a DPLL
algorithm with a cut heuristic supplied with an additional parameter d that is available
for procedures A,B,C. We call such an algorithm a heuristic DPLL acceptor if it satisfies
the definition of a heuristic acceptor. Our result implies that there are no deterministic
polynomially bounded myopic DPLL acceptors for the proving problem (UNSAT,Q).

Priority branching tree. Priority branching trees were introduced in the paper
[ABBO+09] as a computational model that extends the ideas of dynamic programming
and backtracking algorithms. We briefly describe its special case for SAT. A formula
is represented as set of data items. Every data item consists of a variable and all
clauses that contain this variable. The formula is described by the set of all data
items: D = {D1, D2, . . . , Dn}. Branching tree is determined by two families of func-
tions rk : Dk×{0, 1}k → O(D) and ck : Dk+1×{0, 1}k → O({0, 1,⊥)}, where O(S) is the
set of all orders on the set S. Every vertex of branching tree is marked by a data item
from D and a branching is based on the value of variable from the current data item.
The data item in the current vertex is chosen according to the function rk that gets on
the input all data items and values of variables on the path from the root to the current
vertex. Function rk returns the order on data items; the current data item equals the
first unused data item according to the order. Function ck determines the order in which
values of a variable are investigated. A tree includes branches for values that precede ⊥
in the order. So the priority branching tree may be incomplete and some solutions may
be lost.

3

The paper [ABBO+09] gives exponential lower bound on the depth first size of the
priority branching tree on formulas that code a system of linear equalities modulo 2 under
the assumption that the algorithm correctly solves all the problems of that type. In this
paper (as it was in [ABBO+09]) we consider formulas of the type Ax = b with expander
based matrix A such that the number of nonzero elements on every row is bounded
by a constant. Priority branching trees for such formulas actually represent splitting
trees of myopic algorithms with a cut heuristic. If functions rk and ck are polynomially
bounded our result may be extended to the correctness vs effectiveness tradeoff for priority
branching trees.

Related conditional result. The paper [GSTS07] gives the following nice result: if
P 6= NP, then for every polynomial time SAT algorithm A there exists a polynomial
time generator of hard instances G. That is for almost all n the algorithm G(1n) returns
a satisfiable formula such that A fails to find its satisfying assignment. Our result is
unconditional but it may be applied to very restricted class of algorithms. We also note
that our lower bound is not just superpolynomial but it is subexponential however the
distribution of hard instances is samplable in polynomial time.

2 Preliminaries

By partial substitution we mean the set of assignments xi := ai, where xi is a propositional
variable and ai ∈ {0, 1} such that every propositional variable has at most one occurrence
in it. For partial substitution ρ we denote by vars(ρ) the set of variable that appears
in ρ. For propositional formula φ we denote by φ|ρ the formula that is obtained from φ
after applying all assignments from ρ and performing elementary simplifications.

An ensemble of distributions is a family Dn, where Dn is a distribution on the finite
set of strings. The ensemble of distributions Dn is polynomial time samplable if there is
a polynomial time randomized algorithm S (a sampler) such that for every n outputs of
S(1n) are distributed according to Dn.

2.1 DPLL algorithms with a cut heuristic

We define a family of algorithms that solve the satisfiability problem of CNF formulas.
DPLL algorithms with a cut heuristic are parameterized by three procedures: A,B and
C. The procedure A takes a formula as the input and returns a variable for splitting; the
procedure B takes a formula and a variable as the input and returns a value that would
be investigated first; the procedure C takes a formula, variable and its value and decides
whether an algorithm should investigate this branch.

Formally algorithm DA,B,C is defined by the following way.

Algorithm 2.1. Algorithm DA,B,C.

� Input: formula ϕ

� If ϕ contains no clauses, return 1.

� If ϕ contains empty clause, return 0.

4

� x := A(ϕ);

� b := B(ϕ, x);

� If C(ϕ, x, b) = 1, then if DA,B,C(ϕ[x := b]) = 1, return 1.

� If C(ϕ, x,¬b) = 1, then if DA,B,C(ϕ[x := ¬b]) = 1, return 1.

� Return 0.

Let 1 denote the constant 1 function. Algorithm DA,B,1 obviously correctly solves the
satisfiability problem. For every procedures A,B,C the algorithm DA,B,C returns the
correct answer on all unsatisfiable formulas, however its answer on satisfiable formulas
may be incorrect.

For every formula ϕ execution of an algorithm DA,B,C may be represented as splitting
tree. Vertices of a splitting tree correspond to recursive calls, edges correspond to sub-
stitutions of a value to a variable. Every leaf of a splitting tree corresponds to one of the
three possible situations: 1) some clause of initial formula is refuted; 2) the substitution
is a satisfying assignment; 3) the procedure C reports 0 two times. It is not hard to
see that if procedures A and B are deterministic, then the splitting tree of DA,B,C is a
subtree of the splitting tree of DA,B,1; if the input formula ϕ is unsatisfiable, then the
above statement holds even if only A is deterministic.

By the running time of an algorithm DA,B,C we mean the number of recursive calls
that equals to the number of vertices in the splitting tree.

Our main goal is to prove lower bounds for almost correct DPLL algorithms with a cut
heuristic. Namely we construct the polynomial time samplable ensemble of distributions
Rn concentrated on satisfiable formulas and the sequence of unsatisfiable formulas Φ(n)

such that if DA,B,C with high probability correctly solves the satisfiability problem for
instances distributed according to Rn, then the algorithm DA,B,C runs exponential time
on formulas Φ(n). Without restrictions on procedures A,B,C it is unlikely that we prove
the above statement since if P = NP, the polynomial time procedure C may cut all
unsatisfiable branches. Therefore we need to restrict the power of heuristic C and we
require it to be myopic.

A myopic procedure has access to the formula with erased signs of negations. For
every variable it also has access to the number of its positive and negative occurrences.
A myopic procedure is also able to read K = n1−ε clauses of the formula precisely (with
all negations).

However it is not enough to restrict only the procedure C since the procedure A may
transmit information to the procedure C; for example A may return lexicographically first
variable for satisfiable formulas and lexicographically last value for unsatisfiable formulas
and the procedure C will just cut unsatisfiable branches. Therefore we restrict A to be
myopic. We also require for A and C to be deterministic. The case of randomized myopic
A and C is left open.

3 Distribution

Here and after we assume that procedures A and C are deterministic polynomial time
myopic algorithms.

5

Let Φ be an unsatisfiable formula and TΦ be the splitting tree of DA,B,1(Φ). We say
that the set of vertices {v1, v2, . . . , vS} of the tree TΦ is the system of myopic copies of Φ,
if the following conditions are satisfied:

� for every i, j ∈ {1, . . . , S} a vertex vi is not a descendant of vj;

� For every vertex vi there exists a satisfiable formula Φi with the only satisfying
assignment such that the substitution made on the path from the root of TΦ to vi
is consistent with the satisfying assignment of Φi.

� Myopic algorithms A and C can’t distinguish formulas Φi and Φ on the path from
the root of TΦ to vi. Formally it means that for every substitution ρ that corresponds
to this path formulas Φi|ρ and Φ|ρ with erased negation signs have no differences;
every variable has the same number of positive and negative occurrences and sets
of clauses that A and C read with negations are the same for formulas Φi|ρ and
Φ|ρ.

We call formulas {Φ1,Φ2, . . . ,ΦS} myopic representatives of Φ.

Lemma 3.1. Let Φ be an unsatisfiable formula and {v1, v2, . . . , vS} is the system of
myopic copies of Φ with myopic representatives {Φ1,Φ2, . . . ,ΦS}. Let UΦ be a uniform
distribution on the set of formulas {Φ1,Φ2, . . . ,ΦS}. Suppose that Prφ←UΦ

[DA,B,C(φ) =
1] ≥ 1− ε, then the running time of DA,B,C(Φ) is at least (1− ε)S. (The probability also
includes random bits of the algorithm B).

Proof. Note that the usage of random bits by B does not affect the running time of
DA,B,C on unsatisfiable formulas. We fix the sequence of random bits in such a way that
if B uses this sequence then Prφ←UΦ

[DA,B,C(φ) = 1] ≥ 1− ε. Since now we assume that
B uses only this sequence of random bits.

Let’s consider one of the formulas Φj such that DA,B,C(Φj) = 1. We note that the
splitting tree of DA,B,C on the input Φj contains the path from the root to vj from the
tree TΦ. Since the only satisfying assignment of Φj is consistent with the substitution
made by this path, if DA,B,C diverges from this path it will necessary come back since
Φj has the unique satisfying assignment. Along this path the procedure A will select
the same variables for splitting since it can’t distinguish Φ from Φj. The procedure C
also can’t distinguish Φ from Φj along this path, therefore the vetrex vj is necessary in
the splitting tree of DA,B,C on the input Φ. Thus at least (1− ε)S vertices from the set
{v1, . . . , vS} must be visited by DA,B,C on the input Φ.

So our goal is the construction of the formula Φ that has the system of myopic copies
of exponential size. And moreover the uniform distribution on the myopic representatives
of Φ should be polynomial time samplable.

We consider formulas that code a system of linear equations Ax = b over the field F2,
where A is a n× n matrix.

We require that in every row of the matrix A the number of ones is bounded by the
constant d. In this case the linear system consists of equations of type xi1 +xi2 +· · ·+xis =
bi, where s ≤ d. Such equation may be written in d-CNF form with at most 2d clauses.
Note that if two equalities differ only in their right hand sides, then their d-CNF form
differs only in the literal signs and the number of positive and negative occurrences for

6

every variable is also the same. Therefore myopic procedure can’t see a bit of the right
hand side until it requests at least one of the corresponding clauses. In what follows
we say that a myopic procedure opens a bit of the vector b if it requests a clause that
corresponds to this bit.

We will choose a nonsingular matrix A, in this case the system Ax = b has a unique
solution. It means that the variable x1 can’t take some value α ∈ {0, 1}. The formula Φ
denotes the formula that encodes the system Ax = b after the substitution x1 := α. Φ is
unsatisfiable by the choice of α.

Now we may describe some intuition how to construct the system of myopic repre-
sentatives of the formula Φ. For vertices vi from the splitting tree of DA,B,1 we have to
find b′ ∈ {0, 1}n such that the solution of the system Ax = b′ would be consistent with
substitutions made along the path form the root to vi and with x1 := α. However it is
not clear why it is possible. We will do it by the appropriate choice of matrix A.

4 Boundary expanders and the closure

We consider a bipartite graph G (multiple edges are allowed), we denote its parts by X
and Y . The boundary of the set I ⊂ Y is a set δ(I) = {x ∈ X | there is exactly one
edge between I and x }. The graph G is called (r, d, c)-boundary expander if (1) the
degrees of all vertices from Y do not exceed d and (2) for every set I ⊆ Y if |I| ≤ r, then
|δ(I)| ≥ c|I|.

Let G be an (r, d, c)-boundary expander. Let’s J ⊆ X; a closure of the set J is the
maximum subset I ⊆ Y that satisfies the following properties: 1) |I| ≤ r; 2) δ(I) ⊆ J .
The closure may be defined not uniquely; we denote lexicographically first closure of the
set J by Cl(J).

Proposition 4.1. Let G be an (r, d, c)-boundary expander with c ≥ 1, then the following

properties hold. 1) If I is a closure of the set J , then |I| ≤ |J |
c

. 2) If |J | < r/2, there is
the unique closure of the set J . 3) Let’s J ⊆ J ′ and |J ′| < r/2, then Cl(J) ⊆ Cl(J ′).

Proof. 1) Since |I| ≤ r and δ(I) ⊆ J , we get |J | ≥ δ(I) ≥ c|I|. 2) Let I1, I2 be two

closures of the set J . By item 1 of the Proposition we get that |Ij| ≤ |J |
c
< r/2. It is not

hard to see that δ(I1 ∪ I2) ⊆ δ(I1) ∪ δ(I2) ⊆ J and |I1 ∪ I2| ≤ r. From the maximality
of a closure we get I1 = I2. 3) Since |J | ≤ |J ′| < r/2, there are unique closures for
J and J ′ by item 2 of the Proposition. Let’s consider the set Cl(J) ∪ Cl(J ′), obviously
δ(Cl(J)∪Cl(J ′)) ⊆ J ′, also item 1 of the Proposition implies |Cl(J)∪Cl(J ′)| ≤ 2|J ′|/c <
r. Therefore Cl(J ′) = Cl(J) ∪ Cl(J ′).

For every bipartite graph G with parts X and Y we define a |Y | × |X| matrix A.
Elements of X correspond to columns, elements of Y correspond to rows. Ay,x is the
number of edges between x and y modulo 2. Let G be an (r, d, c)-boundary expander
with c ≥ 1. We call A an adjacency matrix of G. We consider a linear system Ax = b,
where x is a vector of unknowns of size |X|. Let ρ be a partial substitution for variables
of x. A partial substitution ρ is called locally consistent if |ρ| < r/2 and the system of
equalities Ax|Cl(vars(ρ)) = b|Cl(vars(ρ)) has a solution that is consistent with ρ. Here and
after for vector z by z|E we denote the projection of z to the coordinates from a set E.

7

Lemma 4.1 ([AHI05]). If a partial substitution ρ is locally consistent, then for every
I ⊆ Y, |I| ≤ r/2 the system Ax|I = b|I has a solution that is consistent with ρ.

Proof. Let’s consider the minimal set I, |I| ≤ r/2 that does not satisfy the statement
of the Lemma. Assume that δ(I) 6⊆ vars(ρ), let y ∈ I such that for some vertex z ∈
X \ vars(ρ) there is exactly one edge from z to I and it connects z with y. From the
minimality of I we get that I ′ = I \ {y} satisfies the statement of the Lemma; i.e. there
is x ∈ {0, 1}|X| such that x is consistent with ρ and Ax|I′ = b|I′ . But we may satisfy
the equation corresponding to the vertex y (probably we should change the value of the
variable z in the assignment x), we get a contradiction. Thus δ(I) ⊆ vars(ρ), then
δ(I ∪ Cl(vars(ρ))) ⊆ vars(ρ) and |I ∪ Cl(vars(ρ))| ≤ r since item 1 of Proposition 4.1
|Cl(vars(ρ))| ≤ |ρ| < r/2. The maximality of Cl(vars(ρ)) implies I ⊆ Cl(vars(ρ)) and
the Lemma follows.

5 Refined splitting tree

We prove the following Lemma in the Section 6.

Lemma 5.1. There exists an algorithm that given n ∈ N as an input in polynomial
in n time returns an (r, d, c)-boundary expander G with n vertices in each part with
nonsingular adjacency matrix, where r = Ω(n), c > 2, d is a constant and degrees of all
vertices from X are bounded by a constant D.

Let G be a graph from Lemma 5.1 and A be its adjacency matrix. Let x1 := α be
such a substitution to the variable x1 that makes the system Ax = b unsatisfiable. Let
formula Φ encode the system of equalities Ax = b after the substitution x1 := α.

We consider the splitting tree TΦ made by algorithm DA,B,1 on the input Φ. We may
assume that every vertex of TΦ has a partial substitution that consists of all substitutions
made on the path from the root to the current vertex. We also include x1 := α in all
such substitutions.

We go through all vertices of the tree TΦ in the order of increasing of their depth. For
some vertices we delete the subtree rooted by them from TΦ. If a vertex is deleted we
will not consider it latter. Suppose we consider a vertex v; if the partial substitution ρv
that corresponds to v is not locally consistent, then we remove the subtree rooted by v
from TΦ. We denote the resulting tree by T ′Φ.

Lemma 5.2. 1) The length of every path in T ′Φ from the root to a leaf is at least r/2−2.
2) At least one half of first r/2 − 3 vertices on every path from the root to a leaf in T ′Φ
are splitting points (that is they have two direct descendants).

Proof. 1) Since c > 2 we get Cl({x1}) = ∅ and therefore the substitution {x1 := α}
is locally consistent. Let ρ be a locally consistent substitution that corresponds to a
vertex v in the tree TΦ. Let xv be a splitting variable in v and |ρ| < r/2 − 1; item 1
of Proposition 4.1 implies Cl(vars(ρ) ∪ {xv}) < r/2. Since ρ is locally consistent, there
exists such αv that ρ∪ {xv := αv} is locally consistent. Finally we note that a leaf of the
tree TΦ can’t correspond to a locally consistent substitution since Φ is unsatisfiable.

2) Let v be some vertex of T ′Φ that belongs to the path from the root of length at most
r/2−3, and u be the vertex that belongs to the path from the root to a leaf that contains

8

v, and the length of the path from the root to u equals dr/2e − 1. Let |ρv| ≤ r/2 − 2
and ρv be locally consistent. Let ρ′v = ρv ∪ {xv := αv} be not locally consistent. The
latter means that the value of xv follows from the substitution ρv and equalities that
correspond to Cl(vars(ρ′v)). The item 3 of Proposition 4.1 implies that Cl(vars(ρ′v)) ⊆
Cl(vars(ρu)). We split the set vars(ρu) into P and Q, where P corresponds to variables
in splitting vertices (i.e. vertices that have two direct descendants) and Q corresponds
to variables with unique descendant. The values of variables from Q follow from the
values of variables P and equalities corresponding to the set Cl(vars(ρu)). Note that
equalities corresponding to the partial substitution ρu are linearly independent. Therefore
|Q| ≤ |Cl(vars(ρu))| ≤ |vars(ρu)|

c
< |vars(ρu)|

2
.

Corollary 5.1. The size of T ′Φ (and therefore TΦ) is at least 2r/4−2.

Let K be the upper bound on the number of bits of right the hand side of the linear
system that procedures A and C can open per step. Now we construct the system of
myopic copies for the formula Φ. Let’s consider the tree T ′Φ; on every path from the root
to a leaf we select a vertex such that among its ancestors there are exactly N splitting
points, where N ≤ r/4−2

K
. Lemma 5.2 implies that the distance from every selected vertex

to the root is at most 2N and the number of selected vertices equals 2N . Let’s denote the
set of selected vertices by {v1, v2, . . . , v2N}. We consider the execution of DA,B,C along
the path from the root to vi. Along this path procedures A and C open at most 2NK
bits of b. Since 2NK < r/2 and the substitution ρvi is locally consistent there exists a
vector b′ such that the system Ax = b′ has a solution that is consistent with ρvi and b
and b′ agree on all bits open along the path. Let Φi be a formula that encodes the linear
system Ax = b′ after the substitution x1 := α.

We still have to prove that the uniform distribution on formulas Φi is polynomial time
samplable. Assume that there exists a polynomial time algorithm that given a vertex
from TΦ decides whether it has one or two direct descendants in the tree T ′Φ and if it
has only one descendant it says which one. Under this assumption we may generate
uniform distribution on the set {v1, v2, . . . , v2N}. Namely we simulate the running of the
algorithm DA,B,1 in the following way: the procedure A chooses a variable for splitting.
If the current vertex is a splitting point, then we choose a value for the variable uniformly
at random, otherwise we choose the value that leads to the descendant in T ′Φ. We stop
after N splitting points; let vi be the vertex where we stopped. We also should save the
bits of b opened by procedures A and C. Based on this information it is not hard to
construct the formula Φi by Gaussing elimination.

Now we have to describe a way to determine whether a given vertex is a splitting
point or not, and if it is not a splitting point, to find a correct descendant. Unfortunately
it is not so obvious since it is not clear whether we may calculate a closure in polynomial
time. Other idea is to check local consistency in a straightforward manner and to find
the minimal unsatisfiable part of the linear system; unfortunately in general the search
for the minimal unsatisfiable part of a linear system is the NP-hard problem (it is also
known as the minimal codeword problem) and even the best known approximate solution
[APY09] is not enough for our purposes.

However Lemma 4.1 implies that the substitution is locally consistent if it is consistent
with every set of rows of size at most r/2. If the substitution is not locally correct then
it contradicts the set of rows corresponding to the closure and therefore to any superset

9

of the closure. So it is sufficient to construct a superset of the closure of size at most r/2
a polynomial time. To do this we show that the closure of the set J is contained in a
relatively small neighborhood of the set J . And this neighborhood is an easy computable
superset of Cl(J).

Let Γk(J) denote the set of all vertices connected with J by a path of a length at
most k.

Lemma 5.3. If |J | < r/2, then Cl(J) ⊆ Γk(J), where k = O(log |J |).

Proof. Let I = Cl(J). We split I into disjoint parts I1 = I∩Γ1(J), Ij+1 =
(
I \
⋃j
i=1 Ii

)
∩

Γ2j+1(J); let I` be the last nonempty set. We denote Si = ∪`j=iIj. Proposition 4.1
implies that |Si| ≤ |I| < r/2. Since δ(I) ⊆ J , then for i ≥ 2 the following is satisfied
δ(Si) ⊆ Γ(Ii−1). Hence c|Si| ≤ d|Ii−1|. The latter inequality implies |Si| cd ≤ |Ii−1|, hence

|Si|(1+ c
d
) ≤ |Si−1|. And therefore 1 ≤ |I`| = |S`| ≤ |J |

(1+ c
d

)`−1 , hence ` ≤ log1+c/d |J |+1.

By Lemma 5.1 degrees of all vertices from G are bounded by a constant, therefore we
may conclude the following corollary.

Corollary 5.2. There exists δ > 0 such that if |J | < nδ, then the inequality |Γk(J)| < r/2
is satisfied.

So we proved the following statement.

Lemma 5.4. There exists a polynomial time algorithm that given n ∈ N returns an
unsatisfiable formula Φ; there exist a constant δ such that for all myopic polynomial time
procedures A and C there exists a system of myopic copies for Φ of size 2N with myopic
representatives Φ1,Φ2, . . . ,Φ2N in the splitting tree of DA,B,1 for any heuristic B, where

N = min{nδ, r/4−2
K
} and K is a total number of clauses that procedures A,C may request

per step. Moreover the uniform distribution on the set {Φ1,Φ2, . . . ,Φ2N} is samplable in
time polynomial in n.

Lemma 3.1 and Lemma 5.4 imply

Theorem 5.1. There exists a polynomial time algorithm that outputs unsatisfiable for-
mula Φ(n) in polynomial in n time. There exists δ > 0 such that for every myopic
polynomial time procedures A and C there exists polynomial time samplable ensemble
of distributions Rn concentrated on satisfiable formulas such that if for some procedure
B and some ε > 0 the inequality Prφ←Rn [DA,B,C(φ) = 1] ≥ 1− ε is satisfied, then running
time of DA,B,C(Φ) is at least (1− ε)2N , where N = min{nδ, r/K} and r = Ω(n).

5.1 Universal distribution

Based on the fact that formula Φ(n) doesn’t depend on procedures A and C and that
sampling time of Rn is bounded by a polynomial in running time of A and C, we construct
the universal distribution that would dominate all others distributions. Let (R(i), ci) be
an enumeration of all samplers R(i) with time bounded by nci for all distributions given
by Theorem 5.1 for all DPLL algorithms based on myopic polynomial time procedures
A and C. We construct a sampler Q, that defines the ensemble of distributions Qn.

10

Q on the input 1n with probability 1
2i

outputs the answer of the sampler R(i)(1bn
1/cic)

executed on at most nci steps for all 1 ≤ i ≤ n, and with probability 1
2n

outputs some
fixed satisfiable formula φ0.

Theorem 5.2. For every polynomial time myopic procedures A and C there exists such
a positive ε that for every procedure B if algorithm DA,B,C for all n errs on a random
formula distributed according to Qn with probability less than ε, then for all large enough
n the running time of DA,B,C on the input Φ(n) is at least 2N−1, where N = min{nδ, r/K}
and r = Ω(n), δ is a positive constant.

Proof. Let Ri be a sampler that corresponds to procedures A and C and its running
time is bounded by nci . Then for all n ≥ i the sampler R(i) is present in the enumeration
in the definition of Q. Let ε = 1

2i+1 ; for i ≥ n the algorithm DA,B,C works correctly on a

random input according to R
(i)

bn1/cic with probability at least 1
2
, where R

(i)
n is an ensemble

of distributions generated by R(i). Let m = bn1/cic; then the algorithm DA,B,C runs on
the input Φm at least 2N−1 steps, where N = min{mδ, r/K(m)} and r = Ω(m), δ is a
positive constant from Theorem 5.1. We are done since m goes through all large enough
natural numbers.

5.2 Lower bound on satisfiable instances

If we restrict procedure B to be myopic then it is possible to prove the result that is
similar to the Theorem 5.1 but for satisfiable formulas Φ(n).

Theorem 5.3. There exists δ > 0 such that for every myopic polynomial time procedures
A, B and C there exists a polynomial time algorithm that outputs satisfiable formula
Ψ(n) in polynomial in n time and there exists a polynomial time samplable ensemble of
distributions Rn concentrated on satisfiable formulas such that if for some ε > 0 the
inequality Prφ←Rn [DA,B,C(φ) = 1] ≥ 1− ε is satisfied, then running time of DA,B,C(Ψ) is
at least (1− ε)2N , where N = min{nδ, r/K} and r = Ω(n).

Proof. Consider the matrix A that was used in the construction of formula Φ(n) in the
proof of the Theorem 5.1. Let b0 = 0n; we execute algorithm DA,B,C on the formula
Ax = b0. Consider the first substitution that DA,B,C makes. W.l.o.g. we assume that
the first substitution is x1 := α1 and the algorithm opens bits from a set Z1. We choose
formula Ψ(n) as a satisfiable formula of the form Ax = b where all bits of b from Z1 are
zeros and formula Ax = b after the substitution x1 := α1 becomes unsatisfiable. The
substitution x1 := α1 is obviously locally consistent since c > 2; therefore such satisfiable
formula Ψ(n) indeed exists.

Now we may take the distribution Rn from the Theorem 5.1 for formula Φ(n) that
corresponds to Ax = b after the substitution x1 := α1. Finally we note that running time
of DA,B,C on the input Ψ(n) is at least its running time on the input Φ(n) since the first
substitution that the algorithm makes is x1 := α1.

6 Construction of expander

In this section we give an explicit construction of (r, d, c)-boundary expanders with n
vertices in every part, where r = Ω(n), c > 2 that have two additional properties:

11

� degrees of all vertices from X are bounded by a constant;

� the adjacency matrix of this graph is nonsingular.

Definition 6.1. The bipartite graph G with parts X and Y is an (r, d, c)-expander, if
degrees of all vertices from Y do not exceed d and for every set I ⊆ Y, |I| ≤ r the
inequality |Γ(I)| ≥ c|I| holds. Here Γ(I) denotes the set of all vertices that are adjacent
with at least one vertex from I.

Lemma 6.1 ([AHI05]). Every (r, d, c)-expander is a (r, d, 2c− d)-boundary expander.

We say that a family of graphs Gn is explicit if it is possible to construct Gn in
polynomial in n time.

Theorem 6.1. [CRVW02] For every ε > 0 there exists k ≥ 1 and exists an explicit
construction of an (r, d, (1 − ε)d)-expander with sizes of parts |X| = m and |Y | = n,
where r = n

kd
, d = polylog(n

m
).

Corollary 6.1. For every large enough d and every n there exists an explicit construction
of (n

kd
, d, 0.95d)-expanders with |X| = n, |Y | = 2n, where k is a constant.

Lemma 6.2. For every large enough d and every n there exists an explicit construction
of (r, d, 0.75d)-expanders with |X| = |Y | = n, r = Ω(n) and degrees of all vertices from
X are at most 20kd.

Proof. We construct graph G according to Corollary 6.1. We find the set of vertices
T ⊆ X with degrees greater than 20kd. Since the number of edges is at most 2nd we
have |T | ≤ 2nd

20kd
= n

10k
. If |T | < b n

10k
c, we add several vertices in T to make |T | = b n

10k
c.

Let Z be a set of vertices from Y that are connected with T by at least d
5

edges. Let
|Z| ≥ n

kd
and Z ′ ⊆ Z, |Z ′| = b n

kd
c. There are at least 1

5
|Z ′|d edges that connect Z ′ and T .

Therefore |Γ(Z ′)| ≤ |T | + 4
5
d|Z ′| ≤ 0.9n

k
< 0.95d|Z ′| for n large enough; this contradicts

with the expansion property. Hence for n large enough we have |Z| < n
kd

. We remove
from the graph sets T and Z and several vertices from Y to make sizes of X and Y equal
to dn(1− 1/kd)e. Since we remove several edges that are adjacent to some vertices from
Y , the resulting graph is an (n

kd
, d, 0.75d)-expander.

Lemma 6.3. For every d large enough and every n there exists an explicit construction
of (r, d + 2, 0.75d)-expanders with |X| = |Y | = n, r = Ω(n), degrees of all vertices from
X are at most 20kd+ 2 and the adjacency matrix of G is nonsingular over F2.

Proof. First of all we prove an auxiliary statement

Proposition 6.1. Let a = (α1, α2, . . . , αn) ∈ {0, 1}n and
∑n

i=1 αi = 0 mod 2. Then
vectors b1 = a+ (1, 0, . . . , 0), b2 = a+ (0, 1, 0, . . . , 0), . . . , bn = a+ (0, . . . , 0, 1) are linearly
independent over F2.

Proof. The sum of the elements of every bi is odd, hence the sum of the odd number of
bi can’t be zero. Let ei be the i-th vector of a standard basis (the unique 1 is situated on
the i-th place). bi1 + · · · + bi2` = 2` · a + ei1 + · · · + ei2` = ei1 + · · · + ei2` 6= 0, since the
sum of the basis vectors can’t be zero.

12

We construct the graph G according to Lemma 6.3. We consider some matching
between vertices of X and Y (it is not necessary that matched variables are connected by
an edge). For every vertex from Y with odd degree we add an edge to its pair. Finally
we increase degrees in X and in Y by at most 1 and all degrees in Y become even.

We consider the adjacency matrix of new bipartite graph. Let k be its rank and
k < n. We consider k linear independent rows of this matrix; we will not modify them.
We apply the following operation to every remaining n − k rows: we add 1 to one of
the positions in the row in order to increase the rank exactly by one (this is possible by
Proposition 6.1). At the end we add to the initial matrix a new matrix with n− k ones
such that the rank of the sum is n. The latter means that all added ones were situated
in different columns.

Corollary 6.2. The graph from the statement of the Lemma by Lemma 6.1 is a (r, d+
2, 1

2
d− 2)-boundary expander.

Acknowledgments The authors thank Edward A. Hirsch for the statement of the
problem and also thank Ilya Posov, Elena Ikonnikova and anonymous reviewers for useful
comments.

References

[ABBO+09] Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell
Impagliazzo, Avner Magen, and Toniann Pitassi. Toward a model for back-
tracking and dynamic programming. Computational Complexity, pages 1–62,
2009. 10.1007/s00037-011-0028-y.

[ABM04a] Dimitris Achlioptas, Paul Beame, and Michael Molloy. Exponential bounds
for dpll below the satisfiability threshold. In in Proc. 15th ACM-SIAM Symp.
Discrete Algorithms, pages 132–133, 2004.

[ABM04b] Dimitris Achlioptas, Paul Beame, and Michael Molloy. A sharp threshold
in proof complexity yields lower bounds for satisfiability search. J. Comput.
Syst. Sci., 68(2):238–268, March 2004.

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponen-
tial lower bounds for the running time of DPLL algorithms on satisfiable
formulas. J. Autom. Reason., 35(1-3):51–72, 2005.

[APY09] Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approxi-
mation algorithms for the nearest codeword problem. In Proceedings of the
12th International Workshop and 13th International Workshop on Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX ’09 / RANDOM ’09, pages 339–351, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[AS00] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for
random 3-sat. In In Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science, pages 590–600. IEEE, 2000.

13

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldre-
ich’s one-way function candidate and myopic backtracking algorithms. In
Proceedings of TCC, pages 521–538. Springer-Verlag, 2009.

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness
conductors and constant-degree expansion beyond the degree/2 barrier. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 659–668, 2002.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs.
Technical Report 00-090, Electronic Colloquium on Computational Com-
plexity, 2000.

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages
are hard on the worst-case, then it is easy to find their hard instances.
Computational Complexity, 16(4):412–441, 2007.

[HIMS12] Edward A. Hirsch, Dmitry Itsykson, Ivan Monakhov, and Alexander Smal.
On optimal heuristic randomized semidecision procedures, with applica-
tions to proof complexity and cryptography. Theory of Computing Sys-
tems, 51(2):179–195, 2012. Extended abstract appeared in the proceedings
of STACS-2010.

[IS11a] D. Itsykson and D. Sokolov. The complexity of inversion of explicit Gol-
dreichs function by DPLL algorithms. In Proceedings of CSR 2011, volume
6651 of Lecture Notes in Computer Science, pages 134–147. Springer, 2011.

[IS11b] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for myopic DPLL al-
gorithms with a cut heuristic. In Proceedings of the 22nd international con-
ference on Algorithms and Computation, ISAAC’11, pages 464–473, Berlin,
Heidelberg, 2011. Springer-Verlag.

[Its10] D. Itsykson. Lower bound on average-case complexity of inversion of Gol-
dreich function by drunken backtracking algorithms. In Proceedings of III
International Computer Science Symposium in Russia, volume 6072 of Lec-
ture Notes in Computer Science, pages 204–215. Springer, 2010.

[Mil09] Rachel Miller. Goldreich’s one-way function candidate and drunken back-
tracking algorithms. Master’s thesis, University of Virginia, 2009. Distin-
guished Majors Thesis.

[Nik02] S. Nikolenko. Hard satisfaible formulas for DPLL-algorithms. Zapiski nauch-
nyh seminarov POMI, 293:139–148, 2002.

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968. English translation
of this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

[Urq87] A. Urquhart. Hard examples for resolution. JACM, 34(1):209–219, 1987.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

