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We consider the complexity of computing the determinant over arbitrary finite-
dimensional algebras. We first consider the case that A is fixed. We obtain the
following dichotomy: If A/ radA is noncommutative, then computing the deter-
minant over A is hard. “Hard” here means #P-hard over fields of characteristic
0 and ModpP-hard over fields of characteristic p > 0. If A/ radA is commutative
and the underlying field is perfect, then we can compute the determinant over A
in polynomial time.

We also consider the case when A is part of the input. Here the hardness is closely
related to the nilpotency index of the commutator ideal of A. The commutator
ideal com(A) of A is the ideal generated by all elements of the form xy − yx with
x, y ∈ A. We prove that if the nilpotency index of com(A) is linear in n, where n×n
is the format of the given matrix, then computing the determinant is hard. On the
other hand, we show the following upper bound: Assume that there is an algebra
B ⊆ A with B = A/ rad(A). (If the underlying field is perfect, then this is always
true.) The center Z(A) of A is the set of all elements that commute with all other
elements. It is a commutative subalgebra. We call an ideal J a complete ideal of
noncommuting elements if B +Z(A) + J = A. If there is such a J with nilpotency
index o(n/ log n), then we can compute the determinant in subexponential time.
Therefore, the determinant cannot be hard in this case, assuming the counting
version of the exponential time hypothesis.

Our results answer several open questions posed by Chien et al. [4].

1 Introduction

The determinant of a matrix M = (mi,j) ∈ kn×n is given by the well-known formula

detM =
∑
σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n).

The determinant plays a central role in linear algebra. It can be efficiently computed, for
instance, by Gaussian elimination. In fact, there are even efficient algorithms when the matrix
M has entries from some commutative algebra, see [12] and the references given therein.

A related polynomial is the permanent of M , given by

perM =
∑
σ∈Sn

m1,σ(1) · · ·mn,σ(n).
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If M is {0, 1}-valued, then perM is the number of perfect matchings of the bipartite graph
defined by M . While the determinant is easy over commutative algebras, the permanent is
hard already over the rationals. Valiant [15] showed that evaluating the {0, 1}-permanent over
the rationals is at least as hard as counting the number of satisfying assignments of a formula
in 3-CNF.

Since the determinant and the permanent have similar formulas, it is tempting to try to
modify algorithms for the determinant and use them to compute the permanent. Godsil and
Gutman [9] used the determinant to approximate the permanent. They designed a matrix-
valued random variable. In expectation, the square of the determinant of this random variable
is the permanent. However, the variance is huge. Karmarkar et al. [11] showed how to lower
the variance by extending the underlying field to the complex numbers. Chien et al. [6],
building upon the work by Barvinok [2], showed that if one could compute the determinant of
an n×n-matrix the entries of which are themselves matrices of size cn× cn for some constant
c, then there is a fully polynomial time randomized approximation scheme for the permanent
of {0, 1}-matrices. See [13] for further results in this direction. (Of course, there is a fully
polynomial randomized approximation scheme based on Markov chains, see [10]. However, if
we could evaluate noncommutative determinants as fast as commutative ones, then we would
get much faster approximation schemes.)

Therefore, it is important to understand the complexity of the determinant over arbitrary
finite-dimensional algebras, especially over noncommutative ones, and not only over fields
or commutative algebras. The first to study this problem was Nisan [14]. He proved an
exponential lower bound for the size of an algebraic branching program for computing the
determinant over the free noncommutative algebra k〈Xi,j〉. While the lower bound is strong,
the setting is limited, because it only applies to a restricted circuit model and only to a
very “powerful” algebra. Chien and Sinclair [5] extended these bounds to a wide range of
“concrete” algebras by analysing their polynomial identities, for instance to matrix algebras
and the Hamiltonian quaternions, albeit only in the algebraic branching program model.

Recently Arvind and Srinivasan [1] showed that the noncommutative determinant cannot
have small circuits unless the permanent has small circuits. Finally, Chien et al. [4] made
further progress by proving the #P-hardness and ModpP-hardness of the determinant for odd
p for large classes of algebras.

The fundamental question behind these results is: Which properties of the algebra makes
the determinant hard? In this work, we prove that this is exactly noncommutativity.

1.1 A crash course on the structure of algebras

An associative algebra A over some field k is a k-vector space together with a bilinear mapping
· : A × A → A, the multiplication in A. Multiplication is associative and distributes over
addition. If λ ∈ k, then λ(x · y) = (λx) · y = x · (λy) for all x, y ∈ A. We will always assume
that A is finite-dimensional (as a vector space) and contains a unit element, which we denote
by 1.

A left (right, twosided) ideal of an algebra is a vector space that is closed under multiplication
with arbitrary elements of A from the left (right, both sides). If S is a subset of A, then the left
(right, twosided) ideal of A generated by S is the intersection of all left (right, twosided) ideals
that contain S. Alternatively, it can be defined as the linear span generated by all elements
xs (sy, xsy) with x, y ∈ A and s ∈ S.

A left (right, twosided) ideal I is called nilpotent, if Is = {0} for some positive integer s.
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The nilpotency index of I is the smallest s such that Is = {0}. If there is no such s, then the
index is infinite.

The sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which contains every
nilpotent right ideal of A. This twosided ideal is called the radical of A and is denoted by
radA. The quotient algebra A/ radA contains no nilpotent ideals other than the zero ideal.
Since A is finite dimensional, we can alternatively define the radical of A as the intersection of
all maximal twosided ideals. An ideal is maximal if it is not contained in any other ideal and
is not equal to A.

We call an algebra A semisimple, if radA = {0}. By the above fact, A/ radA is semisimple.
An algebra A is called simple, if there are no twosided ideals in A except the zero ideal and
A itself. An algebra D is called a division algebra, if D× = D \ {0}. Here D× is the set of all
invertible elements in D. An algebra A is called local, if A/ radA is a division algebra.

The following fundamental theorem describes the structure of semisimple algebras.

Theorem 1 (Wedderburn) Every finite dimensional semisimple algebra is isomorphic to a
finite direct product of simple algebras. Every finite dimensional simple k-algebra A is isomor-
phic to an algebra Dn×n for an integer n ≥ 1 and a k-division algebra D. The integer n and
the algebra D are uniquely determined by A (the latter one up to isomorphism).

For an introduction to associative algebras, we recommend [8].

1.2 Our results

First we will consider the problem when the underlying algebra A is fixed: We are given a ma-
trix M ∈ An×n as an input and our task is to compute detM . We prove that the determinant
over A is hard if A/ radA is noncommutative. If A/ radA is commutative, then the problem is
polynomial time computable. That means, we get a complete dichotomy (Theorem 4). More
precisely, we show that

• computing the determinant over A is #P-hard if A/ radA is noncommutative and the
characteristic of k is 0.

• computing the determinant over A is ModpP-hard if A/ radA is noncommutative and the
characteristic p of k is positive.

Chien et al. show that ifA/ radA is commutative and the field k is perfect, then the determinant
can be computed in polynomial time. A field is perfect if every irreducible polynomial over k
has distinct roots. Any “reasonable” field ist perfect, for instance, fields of characteristic zero
are prefect, finite fields are perfect as well as algebraically closed fields.1

Our dichotomy extends the results of Chien et al. in two ways: First it works for arbitrary
algebras A such that A/ radA is noncommutative. Chien et al. proved this only for algebras
whose semisimple part A/ radA contained at least one matrix algebra. For instance, it did
not apply to local algebras and in particular, division algebras like Hamiltonian quaternions.
Second, we get Mod2P-hardness, that is, ⊕P-hardness, over fields of characteristic 2. The proof
by Chien et al. did not work in this case.

1What is actually needed by Chien et al. is that there is a subalgebra B of A such that A = B ⊕ radA (as
vector spaces). This is true if the algebra A is separable. Over perfect fields, every algebra is separable.
Any of these implications is often called the Wedderburn-Malcev Theorem. The existence of the algebra B
is only needed for upper bound not for the hardness result.
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Then we turn to the case when the algebra is given as a part of the input. Beside the matrix
M , we also get a basis and the multiplication table of the algebra A from which the entries of
M are taken. It seems to be natural that the dimension of A should be polynomial in the size
of M . The setting above subsumes the case where we have a familiy of algebras An and our
task is to compute the n × n-determinant over An, for instance, computing the determinant
of n × n-matrices with upper triangular n × n-matrices as entries. This setting is of interest
because there could be a sequence of algebras each of which is noncommutative but still the
determinant is easy to compute. This of course is only possible if An/ radAn is commutative,
by our first result.

We give evidence that the quantity that determines the hardness is the nilpotency index of
the commutator ideal of A. The commutator ideal com(A) of an algebra A is the ideal generated
by all elements of the form xy − yx with x, y ∈ A. If the commutator ideal com(A) = {0},
then A is commutative. If its nilpotency index is finite, then A/ radA is commutative. We
prove that if the nilpotency index of the commutator ideal of A is linear in n, then computing
the determinant of n× n-matrices is as hard as counting the number of solutions of a formula
in 3-CNF modulo the characteristic of k (Theorem 5).

We prove an upper bound that is a little weaker in two ways: First we need that the
nilpotency index of a somewhat larger ideal is bounded and second the upper bound does not
fully match the lower bound from the hardness result. Assume that there is an algebra B ⊆ A
with B ∼= A/ rad(A). (If the underlying field is perfect, then this is always true.) The center
Z(A) of A is the set of all elements that commute with all other elements. It is a commutative
subalgebra. B + Z(A) is a commutative subalgebra, too. We call an ideal J a complete ideal
of noncommuting elements if B +Z(A) + J = A. If there is such a J with nilpotency index r,
then we can compute the determinants of n× n-matrices over A in time nO(r) (Theorem 7).

Over fields of characteristic 0 this result is almost tight assuming the counting version of
the exponential time hypothesis #ETH as formulated by Dell et al. [7]. From Theorems 7,
it follows that if r = o(n/ log n), then computing the determinant over A cannot be #P-hard
under #ETH.

2 Determinants, permanents, and cycle covers

Given an n× n-matrix M = (mi,j) the entries of which belong to an algebra A, the (Cayley)
determinant of M is defined by

detM =
∑
σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n). (1)

(Since A might be noncommutative, the order of multiplication makes a difference. When
the order is by rows, then we get the Cayley determinant.) Similarly, the permanent of M is
defined by

perM =
∑
σ∈Sn

m1,σ(1) · · ·mn,σ(n). (2)

We can interpret the matrix M as an edge-weighted digraph on the vertex set V = {1, . . . , n}.
There is an edge from i to j if mi,j 6= 0 and the weight of this edge is mi,j . We denote this
graph by G(M). A cycle cover C of a digraph is a subset of the edges such that every node has
indegree and outdegree one in C. C encodes a unique permutation, which maps every node i
to the node j where (i, j) is the unique edge in C leaving i. We set C(i) := j. In this way,
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we can interpret C as a permutation. It is easy to see that sgn(C) = (−1)n+c where c is the
number of cycles in C. The weight of a cycle cover is the product of the weights of the edges
in C, that is, m1,C(1) · · ·mn,C(n). Again the order is important, since the weights might not
commute. For a digraph G, let CC(G) be the set of its cycle covers. Now we can rewrite (1)
and (2) as

detM =
∑

C∈CC(G(M))

sgn(C)m1,C(1) · · ·mn,C(n) (3)

and
perM =

∑
C∈CC(G(M))

m1,C(1) · · ·mn,C(n). (4)

If G is an edge-weighted digraph, we will often write detG and perG for the determinant and
permanent of its weighted adjacency matrix.

3 Hardness proofs for the permanent

#3-SAT is the following problem: Given a Boolean formula φ in 3-CNF with n variables and
m clauses, count the number of satisfying assignment. #3-SAT is #P-complete. It even stays
#P-complete if we assume that every variable appears as often unnegated as negated. We
can achieve this by adding trivial clauses of the form x̄ ∨ x ∨ x or x̄ ∨ x̄ ∨ x for every variable
x, if neccessary. This reduction increases the size of φ only by a constant factor. Note that
thereafter, every assignment sets as many literals to true as to false.

We first briefly review the reduction by Dell et al. [7] of #3-SAT to the permanent, which
is similar to the original construction by Valiant [15], but simpler and nicer. (It should go
into any modern textboox.) The reduction by Dell et al. is itself derived from the reduction
in [3]. Chien et al. [4] used the same approach; however, our gadgets can handle arbitrary
noncommutative algebras and not only matrix algebras.

A given formula φ is mapped to a graph Gφ. This graph will have O(m) edges. For every
variable x, there is a selector gadget, see Figure 1 (left-hand side). There are two ways to cover
this gadget by a cycle cover, taking the left-hand edge will correspond to setting x to zero and
taking the right-hand edge will correspond to setting x to one.

For every clause, there is a clause gadget as depicted in Figure 1 (right-hand side). Each of
the three outer edges corresponds to one literal of the clause. Taking one of the three outer
edges corresponds to setting the literal to zero. For every subset of the outer edges, except for
the one consisting of all three outer edges, there is exactly one cycle cover, see Figure 2. Call
the graph constructed so far G′φ. A cycle cover of G′φ is called consistent, if the chosen edges
in the selector gadgets and the clause gadgets are consistent, that is, whenever we chose the
left-hand edge in the selector gadget for x (i.e, x = 0), then we choose all corresponding edges
in the clause gadgets in which x appears positively and vice versa.

Fact 2 Satisfying assignments of φ and consistent cycle covers of G′φ stand in one-to-one
correspondence.

The last step is to get rid of inconsistent cycle covers. This is done by connecting the edge
of a literal ` in a clause gadget by the edge in the selector gadget corresponding to setting
` = 0 using an equality gadget, see Figure 3. The edge of the selector gate and the edge of the
clause gadget are subdivided, let x and z be the newly introduced vertices. These two vertices

5



“x = 1”“x = 0”

¯̀
1

¯̀
2

¯̀
3

Figure 1: Left-hand side: The selector gadget. In all Figures, edges with out explicitely stated
weights have weight 1. Right-hand side: The clause gadget. In the gadget as it
is, there is a double edge between the two nodes at the bottom. The lower edge is
however subdivided when we introduce the equality gadgets.

Figure 2: Every proper subset of the outer edges can be extended to a unique cycle cover of the
clause gadget. The dashed edge only appears in the covers with an even number of
cycle. It will get weight −1 later, when we consider the determinant, to compensate
the sign flip.
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Figure 3: The equality gadget. The pair of edges (u, v) and (u′, v′) of the left-hand side, one of
them is an edge of the selector gadget and the other is the corresponding outer edge
of a clause gadget, is connected as shown on the right-hand side.

are connected as depicted in Figure 3. Since a literal appears in several clauses, the edge of
the selector gadget is subdivived as many times.

Every consistent cycle cover of G′φ can be extended to several cycle covers of Gφ. If the
two edges connected by a equality gadget are both taken, then we take both path u − x − v
and u′ − y − v′ in Gφ. The interior vertex y is covered by the self-loop, yielding a weight of
−1. If both edges are not taken, then we take none of the corresponding paths. There are six
possibility to cover the interior nodes x, y, and z; four of them have weight 1, two of them
have weight −1. This sums up to 2. (The six different covers, albeit with different weights, are
shown in Figure 5.) Therefore, every consistent cycle cover is mapped to several cycle covers
with a total weight of (−1)p2q where p is the number of literals set to zero and q is the number
of literals set to one. Since we normalized φ, p = q = 3m/2.

There are also cycle covers that do not cover equality gadget consistently. This can either
mean that the path u−x− v is taken but not u′− y− v′ or that we enter the gadget via u but
leave it via v′. One can prove that all cycle covers in which at least one equality gadget is not
covered consistently sum up to zero. Altogether, we get that perGφ = (−2)3m/2 ·#3-SAT(φ),
where #3-SAT(φ) denotes the number of satisfying assignments of φ.

4 Hardness of the noncommutative determinant

We adapt the construction of the previous section to the determinant over noncommutative
algebras. Note that now every cycle cover C is weighted by sgn(C) and the order in which
the edge weights are multiplied is important. The selector gadgets stay the same. The clause
gadgets stay almost the same, the only difference is that one edge gets weight −1 as is done by
Chien et al., too, see Figure 2. As before, for every proper subset of the outer edges, there is
one cycle cover covering the clause gadget. The new −1-weight compensates the fact that some
covers contain an odd number of cycles and some an even number. Let again G′φ denote the
resulting graph. Consistent cycle covers of G′φ with sign stand in one-to-one correspondance
with satisfying assignments of φ.

Note that since we are now working over some noncommutative algebra, the order of the
vertices can be important: Up to now, we used only edge weights 1 or −1. Therefore, the order
of the vertices does not matter so far.

The structure of the equality gadgets also stays the same, but we use different weights. To
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construct the weights, we use the following lemma.

Lemma 3 Let A be an associative algebra. A/ radA is noncommutative if and only if there
are invertible i, j ∈ A such that 1− iji−1j−1 is not nilpotent.

Proof. Assume that A/ radA is noncommutative and let A/ radA = A1 × · · · × At be its
decomposition into simple algebras as given by Wedderburn’s Theorem. One of these factors,
say A1, is either a matrix algebra of the form Bs×s with B being a division algebra and s ≥ 2
or a noncommutative division algebra D. In the first case A1 = Bs×s, set

i′ =


1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

 and j′ =


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1


It is easy to check that

i′j′ − j′i′ =


1 0 0 . . . 0
0 −1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . 0

 .

(i′j′ − j′i′)2 is idempotent in A1 and therefore i′j′ − j′i′ cannot be nilpotent. In the second
case A1 = D, we choose i′ and j′ to be noncommuting elements in D. i′j′ − j′i′ is nonzero
and therefore invertible in A1, as D is a division algebra. The elements i = (i′, 1, . . . , 1)
and j = (j′, 1, . . . , 1) are invertible in A/ radA and can be lifted to invertible elements of A.
ij − ji = (i′j′ − j′i′, 0, . . . , 0) is not nilpotent. We have

1− iji−1j−1 = −(ij − ji) · i−1j−1,

which is not nilpotent, either.2

For the converse direction, note that 1−iji−1j−1 /∈ radA, since 1−iji−1j−1 is not nilpotent.
Therefore the image of 1− iji−1j−1 in A/ radA under the canonical projection is nonzero and
thus, A/ radA is not commutative.

Let A be an algebra such that A/ radA is noncommutative. Choose i and j as constructed
above. Let k = ij. The edges of the equality gadget get weights as depicted in Figure 4. The
three new vertices x, y, and z of each gadget appear consecutively in the order x, y, z in the
ordering of all the vertices. Let Gφ denote the resulting graph.

Now we analyse what happens with a consistent cycle cover C of G′φ when moving over
to Gφ, see Figure 5. If both paths in the equality gadget are taken, then we cover y by the
self-loop. This adds one cycle to the cycle cover, which toggles the sign. If both paths are
not taken, then there are six cycles covers. Two of them, have one cycle and signed weights3

2To not fall into the same trap as a STOC’12 referee, please note that this is not true in general. Here this holds
because of the choice of i′ and j′. Either A1 is a noncommutative division algebra or A1 is a matrix algebra.
In the first case, being nonzero already means invertible. In the second case, note that −(ij − ji) · i−1j−1 is
a matrix with an invertible 2 × 2-matrix in the upper left corner and zeros elsewhere.

3The term signed weight also includes the change of sign induced by the parity change of the cycles.
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Figure 4: The modified equality gadget. i and j are the elements constructed in the proof of
Lemma 3, k = ij, and k′ = i−1j−1. The edges between x and y have weight i and
i−1, between y and z weights j and j−1, and between z and x weights k′ and k.
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Figure 5: First row: The one possible configuration if both edges are taken. Second row: The
six possible configurations if none of the edges is taken.

−ijk′ = −iji−1j−1 and −ki−1j−1 = −iji−1j−1. Three of them have two cycles and signed
weights ii−1 = 1, jj−1 = 1, and kk′ = iji−1j−1. Finally, there is one cycle cover with three
cycles and signed weight −1. The total signed weight contribution is 1− iji−1j−1. Doing this
for all equality gadgets, we get that every consistent cycle cover of G′φ can be extended to
consistent cycle covers of Gφ with total signed weight

(−1)3m/2(1− iji−1j−1)3m/2.

Recall that we normalized φ such that every assignment sets 3m/2 literals to true and 3m/2
literals to false. Since 1− iji−1j−1 is not nilpotent, this weight is nonzero.

It remains to analyse what happens with cycle covers of Gφ which are not consistent, that is,
in which at least one equality gadget is not covered consistently. We will define an involution I
without fixed points on the set of all inconsistent cycle covers of Gφ such that the weight of C
and I(C) cancel each other. From this it follows that the total contribution of the inconsistent
cycle covers is zero. To define I, take an inconsistent cycle cover. We order the equality gadgets
arbitrarily. Let C be an inconsistent cycle cover and consider the first inconsistent equality
gadget. Then either C uses the path u−x−v in this gadget but not u′−y−v′ or it enters the
gadget via u and leaves it via v′. (The cases where u′ − y− v′ is used but not u− x− v or the
gadget is entered via u′ and left via v are symmetric.) Figure 6 shows how I pairs inconsistent
cycle covers.

In the first case, C and I(C) only differ in how y and z are covered. On the lefthand side,
we use two cycles of weight 1, on the righthand side we use one cycle of weight jj−1 = 1. So
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Figure 6: The involution I. I maps the configuration on the left-hand side to the corresponding
configuration on the right-hand side and vice versa.

the weights of the cycle covers are the same, but the signs differ, since the cycle cover on the
lefthand side has one cycle more. (In the symmetric case, we get two cycles of weight 1 versus
one cycle of weight ii−1 = 1.)

In the second case, we either use one edge of weight k and cover y by a cycle of weight 1
(lefthand side), or we use two edges of weight i and j. Since k = ij, the weight of both covers
is the same, but again the signs differ, since the second cover has one cycle more. (In the
symmetric case, we have one edge with weight i−1j−1 and one additional cycle. or two edges
with weight i−1j−1.)

This finishs the proof that the contribution of the inconsistent cycle covers is 0.
Algother, we get that

det(G) = (−1)3m/2(1− iji−1j−1)3m/2#3-SAT(φ). (5)

Note that (−1)3m/2(1− iji−1j−1)3m/2 is a fixed nonzero element of A multiplied by the scalar
#3-SAT(φ).

Theorem 4 Let k be a field of characteristic p. Let A be an associative algebra over k.

1. If A/ radA is noncommutative and k is perfect, then evaluating the determinant over A
is #P hard if p = 0 and ModpP-hard otherwise.

2. If A/ radA is commutative, then the determinant over A can be evaluated in polynomial
time.

Proof. The first part immediately follows from (5), since (−1)3m/2(1 − iji−1j−1)3m/2 is a
nonzero element of A by the choice of i and j. Note that if p > 0, then we get #3-SAT(φ),
which is a scalar from k, only modulo p.

The second part follows from the fact that there is an algorithm with running time nO(d) for
this problem, where d is the dimension of A [4]. Note that A is fixed, so d is a constant.

5 Algebras as part of the input

Theorem 4 resolves the complexity of the noncommutative determinant when the underlying
algebra is fixed. Next, we deal with the case when the algebra can grow with the size of
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the matrix. This can be modelled in two ways. Either we have an family of algebras An
and when given an n × n-matrix, we want to compute its determinant over An. Even more
general is the case when the algebra is part of the input. Here we get the algebra as a basis
and a multiplication table. Given such a multiplication table, there are efficient algorithms
to compute the nilpotence index of the radical, a Wedderburn-Malcev decomposition, and the
commutator of the algebra, see [4] and the references given therein.

If the algebra A is part of the input, the noncommutative determinant might be even hard,
if A/ radA is commutative. For instance, the determinant over the upper triangular matrices
of dimension linear in the size is hard as shown by Chien et al. [4]. The goal of this section is
to get a characterisation similar to the one in the previous section.

5.1 Hardness result

The set-up is the same as in the previous section. We try to reduce #3-SAT to the computation
of the noncommutative determinant. The selector and the clause gadget will stay the same.
Figure 7 shows an equality gadget with general weights.

As before, if we take both path u− x− v and u′ − y− v′, there is only one way to cover the
gadget: taking the loop at y. This gives signed weight −a. We need that

a 6= 0. (6)

If we take none of the paths, then there are six ways to cover the gadet, see Figure 5. The
total contribution should be nonzero, that means,

−cab+ ii′b+ cjj′ + kak′ − ijk′ − ki′j′ 6= 0. (7)

If the equality gadget is not covered consistently, then we define the involution I as before,
see Figure 6. Since the weight of C and I(C) shall cancel each other, we get the conditions

jj′ = ab and ii′ = ca (8)

and
ij = ka and i′j′ = ak′ (9)

We set a = 1. Then (6) is fullfilled and from (8) and (9) we get

b = jj′, c = ii′, k = ij, k′ = i′j′.

(7) simplifies to

−ii′jj′ + ii′jj′ + ii′jj′ + iji′j′ − iji′j′ − iji′j′ = i(i′j − ji′)j′ 6= 0.

This means that for one equality gadget, we need two noncommuting elements i′ and j. We
can multiply their commutator from the left and right with i and j′, respectively. This means
that i(i′j − ji′)j′ i an element of com(A). Altogether, we have 3m/2 equality gadgets. Each
of them gets weights iµ, i′µ, jµ, and j′µ. Every satisfying assignment of φ now corresponds to
a consistent cycle cover of Gφ of weight

(−1)3m/2i1(i
′
1j1 − j1i′1)j′1 · · · i3m/2(i′3m/2j3m/2 − j3m/2i

′
3m/2)j

′
3m/2.
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Figure 7: The general equality gadget.

This weight shall be nonzero, that means,

i1(i
′
1j1 − j1i′1)j′1 · · · i3m/2(i′3m/2j3m/2 − j3m/2i

′
3m/2)j

′
3m/2 6= 0. (10)

We can choose such weights if and only if the nilpotency index of the commutator ideal is
at least 3m/2. The elements of the commutator ideal are of the form a1(x1y1 − y1x1)b1 +
· · · as(xsys − ysxs)bs. However, if we can find 3m/2 elements of this form such that their
product is nonzero, we can also find 3m/2 elements as in (10) by using distributivity. This
show that if the nilpotency index of the commutator of A is large enough, i.e., at least 3m/2,
then computing the determinant over A is hard.4

Theorem 5 Let φ be a formula in 3-CNF with m clauses such that every variable appears as
many times positively as negatively. Let k be a field of characteristic p and A be an associative
k-algebra whose commutator has nilpotence index ≥ 3m/2. We can construct in polynomial
time a matrix M such that

detM = #3-SAT(φ) · x

for some nonzero element x ∈ A.

5.2 Upper bound 5

The center Z(A) is the set of all elements that commute with all other elements, i.e., Z(A) =
{x | xy − yx = 0 for all y ∈ A}. We assume that the underlying field is perfect. By the
Wedderburn-Malcev theorem, there is a subalgebra B ⊆ A such that A = B ⊕ radA.6 Note
that B is commutative; otherwise the nilpotency index of the commutator of A would be
infinite. B + Z(A) is a commutative subalgebra of A.

Definition 6 We call an ideal J a complete ideal of noncommuting elements, if B+Z(A)+J =
A. (Note that B + Z(A) and J might intersect.)

4For the reduction, we also need to be able to compute the weights in polynomial time. This can be done
as follows: From the given basis of A, we can compute a basis of com(A) by just computing all possible
elements a(xy−xy)b with a, b, x, y taken from the given basis and choosing a maximum linearly independent
subset. Then we successively compute bases of com(A)i in the same way. For each newly formed element,
we keep track how it is written as a product of i elements from com(A). Since the nilpotency index of
com(A) is > 3m/2, com(A)3m/2 contains a nonzero element and we know how to write it as a product of
3m/2 elements from com(A).

5I would like to thank the STOC’12 referee from the footnote on page 8 for pointing out a flaw in a previous
version of this section.

6What we simply need for our proof is the existence of B, which always exists over perfect fields.
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On the other hand, if the nilpotency index of any complete ideal of noncommuting elements
is small, then there is an efficient algorithm for computing the determinant. Let r be the
nilpotency index of any such J .

Let M = (mi,j) be the given matrix. We decompose mi,j = bi,j + ri,j with bi,j ∈ B + Z(A)
and ri,j ∈ J . Note that this decomposition might not be unique, but this does not matter.
Any such decomposition is fine. All we need is that B + Z(A) is commutative and is closed
under multiplication and J is an ideal, in particular, closed under multiplication with arbitrary
elements.

We write

detM =
∑
σ∈Sn

sgn(σ)(b1,σ(1) + r1,σ(1)) · · · (bn,σ(n) + r1,σ(n))

=
∑
σ∈Sn

sgn(σ)
∑

I⊆{1,...,n}

tI1,σ(1) · · · t
I
n,σ(n)

=
∑

I⊆{1,...,n}

∑
σ∈Sn

sgn(σ)tI1,σ(1) · · · t
I
n,σ(n)

=
∑

I⊆{1,...,n}

det(T I)

where

tIi,j =

{
ri,j if i ∈ I,
bi,j if i /∈ I

and
T I = (tIi,j).

Since the nilpotency index of J is r, we can use detT I = 0 if |I| ≥ r. Therefore,

detM =
∑
|I|<r

det(T I).

We can now use the algorithm of Chien et al. to compute each detT I . The algorithm of
Chien et al. uses essentially the same decomposition, but it first decomposes the entries of M
as a sum of an element from B and from radA. But what they only need is that the former
is a commutative subalgebra and the latter is a nilpotent ideal. This is also true in our case:
B + Z(A) is a commutative subalgebra and J is a nilpotent ideal. (If J is not nilpotent,
we can replace it by a strictly smaller ideal that is nilpotent by the definition of complete
ideal of noncommuting elements.) Therefore, we can simply use the algorithm by Chien et
al. to compute each detT I in time nO(r). Since there are nO(r) such determinants, we get the
following theorem.

Theorem 7 Over perfect fields, there is an algorithm that given a finite dimensional algebra
A that has a complete ideal of noncommuting elements with nilpotency index ≤ r and a matrix
M ∈ An×n, computes the determinant of M over A in time nO(r), provided that dimA =
poly(n).

If the dimension of A is larger, then we have to multiply the running time by the time needed
to multiply elements in A.
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6 Conclusions

It is an interesting question whether the smallest ideal J can be much larger than com(A) and
how much their nilpotency indices can differ. There seems to be no general answer, mainly
because there is no analogue of Wedderburn’s theorem for the radical. For the algebra of
upper triangular matrices, we have J = com(A) = rad(A). For the free noncommutative
algebra k〈x, y, z〉 modulo the ideal of all monomials of degree d and the relations that make
x commute with y and z, we have rad(A) ) J ) com(A) for any J . More precisely, radA
is generated by x, y, and z, J is generated by y and z, and com(A) is generated by yz − zy.
In our upper bound, we can take the minimum over all complete ideals J of noncommuting
elements. Is there an easy characterisation of the best J?
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