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Abstract

We give exponentially small upper bounds on the success probability for computing the direct
product of any function over any distribution using a communication protocol. Let suc(µ, f, C)
denote the maximum success probability of a 2-party communication protocol for computing
the boolean function f(x, y) with C bits of communication, when the inputs (x, y) are drawn
from the distribution µ. Let µn be the product distribution on n inputs and fn denote the
function that computes n copies of f on these inputs.

We prove that if T log3/2 T � (C − 1)
√
n and suc(µ, f, C) < 2

3 , then suc(µn, fn, T ) ≤
exp(−Ω(n)). When µ is a product distribution, we prove a nearly optimal result: as long as
T log2 T � Cn, we must have suc(µn, fn, T ) ≤ exp(−Ω(n)).

1 Introduction

The direct sum question is about quantifying the resources needed to compute n independent
copies of a function in terms of the resources needed to compute one copy of it. If one copy can
be computed with C resources, then n copies can be computed using nC resources, but is this
optimal?

When the inputs are drawn from a distribution (or the computational model is randomized),
one can also measure the probability of success of computing the function. The direct product
question is about understanding what the maximum probability of success of computing n copies
of the function is. If there is a way to compute one copy with C resources and success probability ρ,
then n copies can be computed using nC resources with success probability ρn, but is this optimal?

In this work, we study the direct product question in the model of distributional communica-
tion complexity [Yao79]. Direct sum theorems for this model were proved in [BBCR10], and we
strengthen their results to give direct product theorems. For a longer introduction to direct sums
and direct products in communication complexity and their significance, we refer the reader to the
introductions of [BBCR10, JPY12].
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We say that a communication protocol with inputs x, y computes a function f if the mes-
sages and public randomness of the protocol determine the value of f correctly. Let suc(µ, f, C)
denote the maximum success probability of a 2-party communication protocol of communica-
tion complexity C for computing function f(x, y) when the inputs are drawn from the distri-
bution µ. Let fn(x1, . . . , xn, y1, . . . , yn) denote the function that maps its inputs to the n bits
(f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and µn denote the product distribution on n pairs of inputs,
where each pair is sampled independently according to µ. Our goal in this work is to prove new
upper bounds on suc(µn, fn, T ) for T � C.

It is easy to prove that suc(µn, fn, nC) ≥ suc(µn, fn, C)n, and suc(µn, fn, C) ≤ suc(µ, f, C).
Shaltiel [Sha03] showed that there exist µ, f, C such that suc(µn, fn, 34nC) ≥ 3

4 , even though
suc(µ, f, C) ≤ 2

3 . Roughly, his ideas show that if T ≥ 2(1 − suc(µ, f, C))Cn, there are exam-
ples where suc(µn, fn, T ) > suc(µ, f, C). A counterexample due to Feige [Fei00], originally designed
to show the limitations of parallel repetition, can be easily extended to show that under a slightly
different (yet meaningful) definition of success of the protocol, there are problems whose commu-
nication complexity does not increase at all with n. We elaborate in Appendix A.

Much past work has found success in proving upper bounds on suc(µn, fn, T ) in special cases:
for example, when f is the disjointness function [Kla10], or f is known to have small discrepancy
[Sha03, LSS08, She11], or have a smooth rectangle bound [JY12], or the protocols computing
fn and f are restricted to using a bounded number of rounds of interaction [JPY12, MWY13], or
restricted to behaving somewhat independently on each coordinate of the input [PRW97]. The work
of [PRW97] does imply a bound that behaves roughly like suc(µn, f, C) < exp(−Ω(n − C)). The
bound is meaningful only when n > C and the protocol for n copies is not allowed to communicate
more bits than the protocol for 1 copy. We refer the reader to [BBCR10, JPY12] for more references.

Prior to our work, the only known general upper bounds on suc(µn, fn, T ), for T > C, are a con-
sequence of the direct sum theorem proved in [BBCR10]: If suc(µ, f, C) ≤ 2

3 , then suc(µn, fn, T ) ≤
2
3 , as long as1 T log T � (C− 1)

√
n. They also proved the same upper bound when Tpolylog(T )�

Cn and µ is a product distribution.
In this work, we give new upper bounds that are exponentially small in n. When suc(µ, f, C) ≤

2
3 , we prove that suc(µn, fn, T ) ≤ exp(−Ω(n)), as long as T log3/2 T � (C − 1)

√
n. By Yao’s

minimax principle [Yao79], we get an analogous statement for randomized worst case computation.
If suc(f, C) denotes the maximum success probability for the best C-bit public coin randomized
protocol computing f in the worst case, and if suc(f, C) ≤ 2

3 , then suc(fn, T ) ≤ exp(−Ω(n)) as

long as T log3/2 T � (C − 1)
√
n. Formally, we prove:

Theorem 1 (Main Theorem). There is a universal constant α > 0 such that if f is boolean,
γ = 1− suc(µ, f, C), T ≥ 2, and T log3/2 T < αγ5/2(C− 1)

√
n, then suc(µn, fn, T ) ≤ exp

(
−αγ2n

)
.

We remark that when f is a function that has a k-bit output, the above theorem is true with
(C−1) replaced by (C−k). For simplicity, we focus on the case k = 1 throughout this paper. When
µ is a product distribution, we prove an almost optimal result. We show that if suc(µ, f, C) ≤ 2

3
and T log2 T � Cn, then suc(µn, fn, T ) ≤ exp(−Ω(n)).

1The statement in [BBCR10] is seemingly stronger than is written here (the assumption there was T log T � C
√
n).

This difference arises from a different definition of success for protocols. Roughly speaking, here we require f to be
determined by the messages and the public randomness, whereas [BBCR10] allowed each player separately to also
use her input in determining f . If one uses the definition from [BBCR10] then direct product fails (for non-boolean
relations), as Feige’s counterexample (discussed in Appendix A) shows. However, the proof of [BBCR10] with the
definition we use here yields a quantitatively weaker direct sum theorem, as stated above.
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Theorem 2 (Main Theorem for Product Distributions). There is a universal constant α > 0 such
that for every product distribution µ, if γ = 1− suc(µ, f, C), T ≥ 2, and T log2 T ≤ αγ6Cn , then
suc(µn, fn, T ) ≤ exp

(
−αγ2n

)
.

Our proofs heavily rely on methods from information theory [Sha48] which have been applied
to a variety of problems in communication complexity [Raz92, NW93, Abl96, CSWY01, BYJKS04,
BBCR10], and ideas developed to prove the parallel repetition theorem [Raz98, Hol07]. We give
an overview of our proofs next.

1.1 Overview of the Proofs

The notation used below is formally defined in Section 2. Before we describe our proof in detail,
we give a high level overview of the proof of the direct sum theorem proved in [BBCR10]. The
theorem is proved by reduction. For T,C roughly as in the theorems above, they show that any
protocol π for computing n copies of f with communication complexity ‖π‖ = T can be used to
obtain a protocol for computing one copy, with communication complexity less than C. This proves
that computing n copies requires communication complexity more than T . The reduction itself has
two steps. In the first step, they show that π can be used to obtain a protocol for computing
f with small information cost (which we discuss below). In the second step, they show that any
protocol with small information cost can be compressed to obtain a protocol that actually has small
communication.

[CSWY01] were the first to define the (external) information cost of protocols. Let the inputs
to a protocol be X,Y , the messages be M and the public randomness be R. The external in-
formation cost [CSWY01] of the protocol is the mutual information between the inputs and the
messages, conditioned on the public randomness: I(XY ;M |R). It is the information that an ob-
server learns about the inputs by watching the execution of the protocol. The internal information
cost [BYJKS04, BBCR10] of the protocol is defined to be I(X;M |Y R) + I(Y ;M |XR). It is the
information learnt by the parties about each others inputs during the execution of the protocol.
The external information is always at least as large as the internal information.

The first step of the reduction in [BBCR10] gives a protocol with internal information cost
bounded by ∼ T/n and communication bounded by T . In the second step, they show that any
protocol with internal information I and communication N can be compressed to get a protocol
with communication ∼

√
I ·N . Thus one obtains a protocol with communication ∼ T/

√
n for

computing f . When µ is a product distribution, the first step of the reduction gives a protocol
with external information cost bounded by ∼ T/n. They show how to compress any protocol with
small external information almost optimally, and so obtain a protocol with communication ∼ T/n
for computing f . In both cases, the intuition for the first step of the reduction is that the T bits
of the messages can reveal at most ∼ T/n bits of information about an average input coordinate.

To prove our direct product theorems, we modify the approach above using ideas inspired by
the proof of the parallel repetition theorem [Raz98]. Let E be the event that π correctly computes
fn. For i ∈ [n], let Wi denote the event that the protocol π correctly computes f(xi, yi). Let π(E)
denote the probability of E, and let π(Wi|E) denote the conditional probability of the event Wi

given E. We shall prove that if π(E) is not very small, then (1/n)
∑

i π(Wi|E) < 1, which is a
contradiction. In fact, we shall prove that this holds for an arbitrary event W , not just E.
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Lemma 3 (Main Lemma). There is a universal constant α > 0 so that the following holds. For
every γ > 0, and event W such that π(W ) ≥ 2−γ

2n, if ‖π‖ ≥ 2, and ‖π‖ log3/2 ‖π‖ < αγ5/2(C −
1)
√
n, then (1/n)

∑
i∈[n] π(Wi|W ) ≤ suc(µ, f, C) + γ/α.

Lemma 4 (Main Lemma for Product Distributions). There is a universal constant α > 0 such that
if µ is a product distribution, the following holds. For every γ > 0, and event W such that π(W ) ≥
2−γ

2n, if ‖π‖ ≥ 2, and ‖π‖ log2 ‖π‖ ≤ αγ6Cn, then (1/n)
∑

i∈[n] π(Wi|W ) ≤ suc(µ, f, C) + γ/α.

The proofs of the lemmas proceed by reduction, and can be broken up into two steps as in
[BBCR10]. However there are substantial differences in our proof, which are discussed in detail
below. First let us see how Lemma 3 implies Theorem 1. Theorem 2 follows from Lemma 4 in the
same way.

Proof of Theorem 1. Let E denote the event that π computes f correctly in all n coordinates. So,
(1/n)

∑
i∈[n] π(Wi|E) = 1. Set γ = α(1 − suc(µ, f, C))/2 so that suc(µ, f, C) + γ/α < 1. Then by

Lemma 3, either ‖π‖ < 2, ‖π‖ log3/2 ‖π‖ ≥ α7/22−5/2(1−suc(µ, f, C))5/2C
√
n, or π(E) < 2−γ

2n.

We give the formal proofs of the main lemmas in Section 3. At a high level, the proofs of the
lemmas are quite similar to each other, though there are some technical differences. We discuss
Lemma 4 first, which avoids some complications that come from the fact that the inputs are
correlated under µ. We give a protocol with communication complexity C that computes f correctly
with probability at least (1/n)

∑
i π(Wi|W )−O(γ). Let m denote the messages of π, and π(xiyim)

denote the joint distribution of xi, yi,m. For fixed xi, yi, let π(m|xiyiW ) denote the conditional
distribution of m.

Using standard subadditivity based arguments, one can show that for average i, π(xiyi|W )
γ
≈

π(xiyi) = µ(xiyi), where here the approximation is in terms of the `1 distance of the distributions.
Intuitively, since W has probability 2−γ

2n, it cannot significantly alter all n of the inputs. We can
hope to obtain a protocol that computes f(x, y) by picking a random i, setting xi = x, yi = y and
simulating the execution of π conditioned on the event W . There are two challenges that need to
be overcome:

The protocol must simulate π(m|xiyiW ) In the probability space of π conditioned on W , the
messages sent by the first party can become correlated with the input of the second party,
even though they were initially independent. Thus (unlike in [BBCR10]), π(m|xiyiW ) is no
longer distributed like the messages of a communication protocol, and it is non-trivial for the
parties to sample a message from this distribution.

The protocol must communicate at most C � |m| bits To prove the lemma, the parties need
to sample m using communication that is much smaller than the length of m.

To solve the first challenge, we use a protocol θ. The parties publicly sample a uniformly
random coordinate i in [n] and set xi = x, yi = y. The also publicly sample a variable ri that
contains a subset of the variables x1, . . . , xn, y1, . . . , yn. Each message mj sent by the first party
in π is sampled according to the distribution π(mj |m<jxiriW ), and each message sent by the
second party is sampled according to the distribution π(mj |m<jyiriW ). We prove that for average

i, θ(xiyirim)
γ
≈ π(xiyirim|W ). [JPY12] analyzed a different protocol θ, which used a different

definition of ri, and showed that for average i, θ(xiyirim)
γt
≈ π(xiyirim|W ), where here t is the
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number of rounds of communication in π. Our bound is independent of t, a feature that is essential
to our results. A crucial technical feature of our protocol is the definition of ri, which allows us to
split the dependencies between inputs to π in a new way. This allows us to control the effect of the
dependencies introduced by W using a bound that is independent of the number of rounds in π.

To solve the second challenge, we need to come up with a way to compress the protocol θ. To
use the compression methods of [BBCR10], we need to bound the external information cost of θ.
We did not succeed in bounding this quantity, and so cannot apply the compression methods of
[BBCR10] directly. Instead, we are able to bound Iπ(XiYi;M |W ) for average i, the corresponding
quantity for the variables in the probability space of π.

This does not show that the information cost of θ is small, even though the distribution of
the variables in θ is close in `1 distance to the distribution of the corresponding variables of π
conditioned on W . For example, suppose θ is such that with small probability the first party sends
her own input, and otherwise she sends a random string. Then θ is close to a protocol that reveals
0 information, but its information cost may be arbitrarily large.

Nevertheless, we show that any protocol that is close to having small external information cost
can be simulated by a protocol that actually has small external information cost. In our example
from above, the first party can simulate the protocol θ bit by bit and decide to abort it if she
sees that her transmissions are significantly correlated with her input. This does not change the
protocol most of the time, but does significantly reduce the amount of information that is revealed.
Our general solution is very similar to this. The parties simulate θ and abort the simulation if
they find that they are revealing too much information. We prove that any protocol that is close
to having low information can be simulated with small communication (the term “δ-simulates” in
the theorem statement is formally defined in Subsection 2.2):

Theorem 5 (Simulation for External Information). Suppose θ is a protocol with inputs x, y, pub-
lic randomness r, and messages m, and q is another distribution on these variables such that

θ(xyrm)
ε
≈ q(xyrm). Then, there exists a protocol τ that strongly O(ε)-simulates θ with ‖τ‖ ≤ 2‖θ‖

and

Iτ (XY ;M |R) ≤ 2

(
Iq(XY ;M |R) + 1/(e ln 2) + 2 log(‖θ‖+ 1)

ε

)
+ log(‖θ‖+ 1) + 2 log(1/ε) + 4.

We give the formal proof of Theorem 5 in Section 4.2. The final protocol computing f is
obtained by compressing τ using the methods of [BBCR10].

The high level outline of the proof of Lemma 3 is similar to the proof of Lemma 4. When µ
is not a product distribution, we obtain a bound on the internal information cost associated with
π conditioned on W , namely we bound Iπ(Xi;M |YiRiW ) + Iπ(Yi;M |XiRiW ). We are unable to
prove an analogue of Theorem 5 for the internal information cost (and it remains an interesting
open question whether such a theorem is true or not). Instead, to prove Lemma 3, we reanalyze
the compression method of [BBCR10] for internal information cost, and show that it can be used
here. We prove:

Theorem 6 (Compression for Internal Information). Suppose θ is a protocol so that ‖θ‖ ≥ 2 with

inputs x, y and messages m, and q is another distribution on these variables such that θ(xym)
ε
≈

q(xym). Then, there exists a protocol τ that O(ε)-simulates θ such that

‖τ‖ ≤
log ‖θ‖

√
(Iq(X;M |Y ) + Iq(Y ;M |X) + 1 + log ‖θ‖) · ‖θ‖

ε3/2
.
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Remark 7. Theorem 6 can also be used to compress protocols θ that have public randomness.
Indeed if the inputs are x′, y′, the public randomness is r and the messages are m, one can set
x = x′r, y = y′r. Then Iq(X;M |Y ) + Iq(Y ;M |X) = Iq(X

′;M |Y ′R) + Iq(Y
′;M |X ′R), so one can

apply the theorem.

The intuition for the proof is quite similar to the intuition for the proof of Theorem 5. We show
that the compression goes well most of the time, and there is a small probability that the messages
of the protocol will lead to a failure in the simulation, but this does not affect the outcome of the
simulation by much. We formally prove Theorem 6 in Section 4.1.

2 Preliminaries

2.1 Notation

Unless otherwise stated, logarithms in this text are computed base two. Random variables are
denoted by capital letters and values they attain are denoted by lower-case letters. For example,
A may be a random variable and then a denotes a value A may attain and we may consider the
event A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i
similarly.

We use the notation p(a) to denote both the distribution on the variable a, and the number
Prp[A = a]. The meaning will usually be clear from context, but in cases where there may be
confusion we shall be more explicit about which meaning is being used. We write p(a|b) to denote
either the distribution of A conditioned on the event B = b, or the number Pr[A = a|B = b]. Again,
the meaning will usually be clear from context. Given a distribution p(a, b, c, d), we write p(a, b, c)
to denote the marginal distribution on the variables a, b, c (or the corresponding probability). We
often write p(ab) instead of p(a, b) for conciseness of notation. If W is an event, we write p(W )
to denote its probability according to p. We denote by Ep(a) [g(a)] the expected value of g(a) with
respect to a distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the `1 distance between the dis-

tributions p and q. We write p
ε
≈ q if |p − q| ≤ ε. Given distributions p1, . . . , pn and q1, . . . , qn,

we sometimes say “in expectation over i sampled according to η(i), pi
γ
≈ qi” when we mean that

Eη(i) [|pi − qi|] ≤ γ.
The divergence between p, q is defined to be

D

(
p(a)

q(a)

)
=
∑
a

p(a) log
p(a)

q(a)
.

For three random variables A,B,C with underlying probability distribution p(a, b, c), the mutual
information between A,B conditioned on C is defined as

Ip(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
= E

p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.

We shall often work with multiple distributions over the same space. To avoid confusion, we shall
always explicitly specify the distribution being used when computing the mutual information. We
shall sometimes work with an event W . In this case, we denote Ip(A;B|CW ) = Iq(A;B|C) where
q(abc) = p(abc|W ).
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2.2 Communication Complexity

Given a protocol π that operates on inputs x, y drawn from a distribution µ using public random-
ness2 r and messages m, we write π(xymr) to denote the joint distribution of these variables. We
write ‖π‖ to denote the communication complexity of π, namely the maximum number of bits that
may be exchanged by the protocol.

Our work relies heavily on ways to measure the information complexity of a protocol (see
[BBCR10, Bra12] and references within for a more detailed overview). The internal information cost
of π is defined to be Iπ(X;M |Y R)+Iπ(Y ;M |XR). The external information cost is Iπ(XY ;M |R).
The internal information cost is always at most the external information cost, and the two measures
are equal when π(xy) = π(x)π(y) is a product distribution. Both measures are at most the
communication complexity of the protocol.

Let q(x, y, a) be an arbitrary distribution. We say that π δ-simulates q, if there is a function g
and a function h such that

π(x, y, g(x, r,m), h(y, r,m))
δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed according
to q. Thus if π δ-simulates q, the protocol allows the parties to sample a according to q(a|xy). If in
addition g(x, r,m) does not depend on x, we say that π strongly δ-simulates q. Thus if π strongly
simulates q, then the outcome of the simulation is apparent even to an observer that does not know
x or y.

If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say that π δ-
simulates λ if π δ-simulates λ(x, y, (r′,m′)). Similarly, we say that π strongly δ-simulates λ if π
strongly δ-simulates λ(x, y, (r′,m′)). We say that π computes f with success probability 1− δ, if π
strongly δ-simulates π(x, y, f(x, y)).

The following lemma will be useful in our simulation protocols. It shows that messages sent by
each party remain independent of the other party’s input even after some part of the input is fixed.

Lemma 8. Let x, y be inputs to a protocol π with public randomness r and let r′ be a variable such
that π(xy|rr′) = π(x|rr′)π(y|rr′). Let m1, . . . ,mj be messages in π such that mj is transmitted by
Alice. Then π(mj |m<jrr

′) = π(mj |m<jrr
′y).

Proof sketch. Conditioned on rr′, the variables x, y are independent. Since m<j defines a rectangle
over x, y, even conditioned on m<jrr

′, the variables x, y are independent. Since Alice sends the
j’th message, π(mj |m<jrr

′xy) = π(mj |m<jrr
′x). Thus:

π(mj |m<jrr
′) =

∑
x

π(x|m<jrr
′) · π(mj |m<jrr

′x)

=
∑
x

π(x|m<jrr
′y) · π(mj |m<jrr

′xy)

=
∑
x

π(xmj |m<jrr
′y) = π(mj |m<jrr

′y).

2In our paper we define protocols where the public randomness is sampled from a continuous (i.e. non-discrete)
set. Nevertheless, we often treat the randomness as if it were supported on a discrete set, for example by taking
the sum over the set rather than the integral. This simplifies notation throughout our proofs, and does not affect
correctness in any way, since all of our public randomness can be approximated to arbitrary accuracy by sufficiently
dense finite sets..
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2.3 Useful Protocols

The following lemma was proved by Holenstein [Hol07].

Lemma 9 (Correlated Sampling). Suppose Alice is given a distribution p and Bob a distribution
q over a common universe. Then there is a randomized sampling procedure that allows Alice and
Bob to use shared randomness to jointly sample elements A,B such that A is distributed according
to p, B is distributed according to q, and Pr[A 6= B] = |p− q|.

We use the following lemma of Feige et al. [FPRU94]:

Lemma 10 (Location of First Difference). There is a randomized public coin protocol with com-
munication complexity O(log(k/ε)) such given two k-bit strings x, y as input, it outputs the first
index i ∈ [k] such that xi 6= yi with probability at least 1− ε, if such an i exists.

The following compression theorem from [BBCR10] will be useful:

Theorem 11. For every protocol π, and every ε > 0, there exists a protocol λ that strongly ε-
simulates π with

‖λ‖ ≤ O
(
Iπ(XY ;M |R) · log(‖π‖/ε)

ε2

)
.

2.4 Basic Lemmas

The proofs of the following two lemmas can be found in [CT91]:

Lemma 12 (Divergence is Non-negative). D

(
p(a)

q(a)

)
≥ 0.

Lemma 13 (Chain Rule). If a = a1, . . . , as, then

D

(
p(a)

q(a)

)
=

s∑
i=1

E
p(a<i)

[
D

(
p(ai|a<i)
q(ai|a<i)

)]
.

Pinsker’s inequality bounds statistical distance in terms of the divergence:

Lemma 14 (Pinsker). If p(b) = q(b), then |p(a, b)− q(a, b)|2 ≤ Ep(b)

[
D

(
p(a|b)
q(a|b)

)]
.

Proof. By Pinsker’s inequality [CT91] and concavity of square root,

|p− q| = Ep(b)|p(a|b)− q(a|b)| ≤ Ep(b)
√
D(p(a|b)||q(a|b)|) ≤

√
Ep(b)D(p(a|b)||q(a|b)|).

The following lemma bounds the probability of getting a large term in the divergence:

Lemma 15 (Reverse Pinsker). Let S =
{

(a, b) : log p(a|b)
q(a|b) > 1

}
. Then, p(S) < 2|p(a, b)− q(a, b)|.
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Proof. Let ε = |p(a, b)− q(a, b)| = 2 max{p(S′)− q(S′) : S′}. Thus,

p(S) ≤ ε/2 + q(S)

< ε/2 + (1/2)
∑

(a,b)∈S

q(b) · p(a|b)

≤ ε/2 + p(S)/2 + (1/2)
∑

(a,b)∈S

|q(b)− p(b)| · p(a|b)

≤ ε/2 + p(S)/2 + (1/2)
∑
b

|q(b)− p(b)|

≤ ε+ p(S)/2.

The following bounds the contribution of the negative terms to the divergence:

Lemma 16. Let S = {a : p(a) < q(a)}. Then,
∑

a∈S p(a) log p(a)
q(a) ≥ −1/(e ln 2).

Proof. ∑
a∈S

p(a) log
p(a)

q(a)
= −p(S)

∑
a∈S

p(a)

p(S)
log

q(a)

p(a)

≥ −p(S) log

(∑
a∈S

p(a)

p(S)

q(a)

p(a)

)
by concavity of log

≥ p(S) log p(S).

The minimum value of the function x lnx is −1/e.

2.5 Inequalities that Involve Conditioning

The following lemmas bound the change in divergence when extra conditioning is involved.

Lemma 17. Let W be an event and A,B,M be random variables in the probability space p. Then,

E
p(bm|W )

[
D

(
p(a|bmW )

p(a|b)

)]
≤ log

1

p(W )
+ Ip(A;M |BW ).

Proof.

E
p(bm|W )

[
D

(
p(a|bmW )

p(a|b)

)]
=
∑
a,b,m

p(abm|W ) log
p(a|bmW )

p(a|b)

=
∑
a,b

p(ab|W ) log
p(a|bW )

p(a|b)
+
∑
a,b,m

p(abm|W ) log
p(a|bmW )

p(a|bW )

=
∑
a,b

p(ab|W ) log
p(W |ab)
p(W |b)

+ Ip(A;M |BW ).
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The first term can be bounded by:∑
a,b

p(ab|W ) log
p(W |ab)
p(W |b)

≤
∑
a,b

p(ab|W ) log
1

p(W |b)

=
∑
b

p(b|W ) log
1

p(W |b)

≤ log
∑
b

p(b|W )

p(W |b)
by concavity of log

= log
∑
b

p(b)

p(W )
= log

1

p(W )
.

Lemma 18 (Conditioning does not decrease divergence).

E
p(b)

[
D

(
p(a|b)
q(a)

)]
≥ D

(
p(a)

q(a)

)
.

Proof.

E
p(b)

[
D

(
p(a|b)
q(a)

)]
=
∑
b

p(b)
∑
a

p(a|b) log
p(a|b)
q(a)

= −
∑
a

p(a)
∑
b

p(b|a) log
q(a)

p(a|b)

≥ −
∑
a

p(a) log

(∑
b

p(b|a)
q(a)

p(a|b)

)
by concavity of log

= −
∑
a

p(a) log

(∑
b

p(b)q(a)

p(a)

)

= D

(
p(a)

q(a)

)
.

The following lemma gives a key estimate that is used crucially in our proof. It allows us to
remove the effect of conditioning on an event W on the second argument of a divergence expres-

sion. The lemma states that, on average, D

(
p(a|brW
p(a|rW )

)
cannot be larger than D

(
p(a|brW )

p(a|r)

)
.

Intuitively this is true because in both cases the first distribution is conditioned on W , but in the
second case the second distribution is not conditioned on W . The second part of the lemma shows
that conditioning on an event W of probability 2−s can create a mutual information of up to s
between two formerly independent random variables.

10



Lemma 19. Let W be an event and A,B,R be random variables. Then,

Ip(A;B|RW ) ≤ E
p(br|W )

[
D

(
p(a|brW )

p(a|r)

)]
.

If in addition p(abr) = p(r)p(a|r)p(b|r), then

Ip(A;B|RW ) ≤ E
p(br|W )

[
D

(
p(a|brW )

p(a|br)

)]
≤ log

1

p(W )
.

Proof.

Ip(A;B|RW ) =
∑
a,b,r

p(abr|W ) log
p(a|brW )

p(a|rW )

=
∑
a,b,r

p(abr|W ) log
p(a|brW )

p(a|r)
+
∑
a,r

p(ar|W ) log
p(a|r)
p(a|rW )

.

The second term is −Ep(r|W )

[
D

(
p(a|rW )

p(a|r)

)]
≤ 0. This proves the first part.

To prove the second part, observe that p(a|r) = p(a|br). Lemma 17 (with M being the empty
variable) implies that

E
p(br|W )

[
D

(
p(a|brW )

p(a|br)

)]
≤ log

1

p(W )
.

2.6 Variable Truncation

We shall need to analyze protocols that are statistically close to having low information. The
following lemmas show that if a variable A is statistically close to having low information, then
some prefix A≤K of A usually has low information. By truncating the variable to A≤K , we obtain
a new variable that is statistically close to the old one, yet has low information.

Lemma 20. Let p(a, b, c)
ε
≈ q(a, b, c). Then, q

(
log q(a|bc)

q(a|c) > β − 2
)
> p

(
log p(a|bc)

p(a|c) > β
)
− 9ε/2,

for every real β.

Proof.

log
q(a|bc)
q(a|c)

= log
p(a|bc)
p(a|c)

− log
p(a|bc)
q(a|bc)

− log
q(a|c)
p(a|c)

.

11



By Lemma 15, p(log p(a|bc)
q(a|bc) > 1) < 2ε, and q(log q(a|c)

p(a|c) > 1) < 2ε. Thus,

q

(
log

q(a|bc)
q(a|c)

> β − 2

)
≥ q

(
log

p(a|bc)
p(a|c)

> β and log
p(a|bc)
q(a|bc)

≤ 1

)
− q

(
log

q(a|c)
p(a|c)

> 1

)
> p

(
log

p(a|bc)
p(a|c)

> β and log
p(a|bc)
q(a|bc)

≤ 1

)
− 5ε/2 using q

ε
≈ p

≥ p
(

log
p(a|bc)
p(a|c)

> β

)
− 9ε/2.

Lemma 21 (Truncation Lemma). Let p(a, b, c)
ε
≈ q(a, b, c) where a = a1, . . . , as. For every a, b, c,

define k to be the minimum number j in [s] such that

log
p(a≤j |bc)
p(a≤j |c)

> β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

Remark 22. One can also prove that Ip(A<K , B|C) ≤ β + log(s + 1), in Lemma 21. We do not
need this conclusion, so we omit its proof.

Proof of Lemma 21. Define

H =

{
K,A≤K if K ≤ s,
⊥ else.

Then

Iq(A;B|C) + log(s+ 1) ≥ Iq(AK;B|C)

≥ Iq(H;B|C) since AK determines H

=
∑
h,b,c

q(hbc) log
q(h|bc)
q(h|c)

. (1)

By Lemma 16, we know that the negative terms contribute at least −1/(e ln 2) to (1). We shall
lower bound the contribution of the positive terms using p(k < s+ 1). By Lemma 20,

q

(
log

q(h|bc)
q(h|c)

> β − 2

)
> p

(
log

p(h|bc)
p(h|c)

> β

)
− 9ε/2. (2)

12



Observe that if h = j, a≤j and p(hbc) > 0, then p(K = j|A≤j = a≤j , bc) = 1, and so:

p(h|bc)
p(h|c)

=
p(A≤j = a≤j |bc)
p(A≤j = a≤j |c)

· p(K = j|A≤j = a≤j , bc)

p(K = j|A≤j = a≤j , c)

=
p(A≤j = a≤j |bc)
p(A≤j = a≤j |c)

· 1

p(K = j|A≤j = a≤j , c)

≥ p(A≤j = a≤j |bc)
p(A≤j = a≤j |c)

> 2β.

So,

p

(
log

p(h|bc)
p(h|c)

> β

)
≥ p(k < s+ 1). (3)

The sentence after (1), and equations (2), (3) imply

Iq(A;B|C) + log(s+ 1) + 1/(e ln 2) > (β − 2)(p(k < s+ 1)− 9ε/2)

⇒ p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

3 Proofs of the Main Lemmas

In this section we prove Lemma 3 and Lemma 4. We write M = M1,M2, . . . ,M2t to denote
the messages in π. Let (X1, Y1), . . . , (Xn, Yn) be the inputs. We write X = X1, . . . , Xn and
Y = Y1, . . . , Yn. Without loss of generality, we assume that n is even.

Consider the protocol η in Figure 1. We show that η computes f with good probability, although
with a lot of communication. The protocol η has public randomness i,g,h and runs protocol θi,g,h
given in Figure 2 as a subroutine with inputs (xi, r

′
i,g,h), (yi, r

′′
i,g,h). Eventually, we shall argue that

in expectation over i,g,h sampled according to η(igh),

η
(
(xi, r

′
i,g,h), (yi, r

′′
i,g,h)

) O(γ)
≈ θi,g,h((xi, r

′
i,g,h), (yi, r

′′
i,g,h)),

and that, on average, θi,g,h is statistically close to having small internal information, and statistically
close to having small external information in the case that µ is product. We shall apply Theorem 6
to compress the communication to obtain our final protocol for computing f and so prove Lemma
3. We shall apply Theorem 5 and Theorem 11 to obtain the protocol that proves Lemma 4.

Our first goal is to show that W does not change the distribution in a typical coordinate.

Lemma 23. In expectation over i sampled according to η(i), π(xiyi)
γ
≈ π(xiyi|W ).

The proof of Lemma 23 is somewhat standard, so we defer it to Section 6. Next we eliminate
a corner case:

Lemma 24. If ‖π‖ ≤ γ2n, then in expectation over i sampled according to η(i), π(mxiyi|W )

√
2γ
≈

π(m|W ) · π(xiyi).
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The proof of Lemma 24 is also a straightforward application of subadditivity, and we defer
it to Section 6. Lemma 24 implies that if ‖π‖ ≤ γ2n, then a protocol with 0 communication
can approximate the messages of π conditioned on W , and so compute f with 1 additional bit of
communication. So

(1/n)
n∑
i=1

π(Wi|W )− γ/
√

2 ≤ suc(µ, f, 1) ≤ suc(µ, f, C),

which completes the proof. The more interesting case is when ‖π‖ ≥ γ2n, and so we assume that
this holds in the rest of this section.

Given subsets g,h ⊂ [n], let Xh and Y g denote X and Y projected on to the relevant coordi-
nates. Define

Ri,g,h = Xh\{i}, Y g\{i}.

The random variable Ri,g,h helps to break the dependencies between Alice and Bob.

Protocol η for computing f(x, y) when inputs are sampled according to µ.

1. Let sh, sg be uniformly random numbers from the set {n/2+1, . . . , n}. Let κ : [n]→ [n] be
a uniformly random permutation. Set h = κ([sh]) and g = κ({n−sg + 1, . . . , n}). Let i be
a uniformly random element of g ∩ h (which must be non-empty by the choice of sg, sh).

2. Alice sets xi = x and Bob sets yi = y.

3. Alice and Bob use Lemma 9 to sample ri,g,h: Alice uses the distribution π(ri,g,h|xiW ) and
Bob uses the distribution π(ri,g,h|yiW ). Write r′i,g,h to denote Alice’s sample and r′′i,g,h to
denote Bob’s sample.

4. Alice and Bob run protocol θi,g,h from Figure 2 with inputs (xi, r
′
i,g,h) and (yi, r

′′
i,g,h).

Figure 1: Protocol for computing f .

Protocol θi,g,h for computing f(xi, yi) when inputs (xi, r
′
i,g,h), (yi, r

′′
i,g,h) are sampled

according to π((xi, ri,g,h), (yi, ri,g,h)|W ).

Alice sends each message Mj , j odd, according to the distribution π(mj |xir′i,g,hm<jW ). Bob
sends each message Mj , j even, according to the distribution π(mj |yir′′i,g,hm<jW ).

Figure 2: Simulation in the i’th coordinate.

It turns out that choosing the right distribution for i,g,h in η is crucial to our proofs. We need
the distribution to be symmetric in g,h. It is important that g ∪ h = [n] so that xi, yi, ri,g,h split
the dependences between x, y. In the analysis we shall repeatedly use the fact that for every fixing
of h, η(ig|h) has the property that i is distributed uniformly over a large set, and i ∈ g ∩ h. This
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allows us to apply the chain rule. In Section 3.3, we provide some intuition for the choice of the
variable ri,g,h.

Now we argue that η(igh) has the properties we need. Observe that we can sample η(igh) by the
following different yet equivalent process. Let h be distributed as in η. For fixed h, let κh : [n]→ [n]
be a permutation sampled uniformly from the set of permutations that map [|h|] to h. Let ` be
a uniformly random element of [n/2]. Given h, κh, `, set i = κh(`) and g = κh({`, ` + 1, . . . , n}).
Then note that g,h, i are distributed as defined in the protocol η. Further, note that (i, xi, ri,g,h)
and (κh(`), xh, yκh({`+1,...,n})) determine each other.

Lemma 25. In expectation over i,g,h sampled according to η(igh),

π(xiyi)π(ri,g,h|xiW )
3γ
≈ π(xiyiri,g,h|W )

3γ
≈ π(xiyi)π(ri,g,h|yiW ).

Proof. To prove the lemma, we bound

E
η(igh)

[
E

π(ri,g,hxi|W )

[
D

(
π(yi|ri,g,hxiW )

π(yi|xi)

)]]

= E
η(igh)

[
E

π(ri,g,hxi|W )

[
D

(
π(yi|ri,g,hxiW )

π(yi|ri,g,hxi)

)]]
,

since given xi, the variable yi is independent of ri,g,h in π. This quantity can be expressed as:

E
η(h,κh,`)

[
E

π(xh,yκh({`+1,...,n})|W )

[
D

(
π(yκh(`)|xh, yκh({`+1,...,n})W )

π(yκh(`)|xh, yκh({`+1,...,n}))

)]]

=
2

n
E

η(hκh)

n/2∑
`=1

E
π(xh,yκh({`+1,...,n})|W )

[
D

(
π(yκh(`)|xh, yκh({`+1,...,n})W )

π(yκh(`)|xh, yκh({`+1,...,n}))

)] .
We apply the chain rule to show that this is equal to

2

n
E

η(hκh)

[
E

π(xh,yκh({n/2+1,...,n})|W )

[
D

(
π(yκh([n/2])|xh, yκh({n/2+1,...,n})W )

π(yκh([n/2])|xh, yκh({n/2+1,...,n})

)]]
.

This last expression is at most (2/n)(γ2n) = 2γ2 by Lemma 18. Lemma 23 and Lemma 14 imply
that in expectation over η(igh),

π(xiyiri,g,h|W ) = π(xi|W ) · π(ri,g,h|xiW ) · π(yi|ri,g,hxiW )
√
2γ
≈ π(xi|W ) · π(yi|xi) · π(ri,g,h|xiW )
γ
≈ π(xiyi) · π(ri,g,h|xiW ).

The second approximation is symmetric and is proved similarly.

Claim 26. In expectation over i,g,h sampled according to η(igh),

θi,g,h(xiyiri,g,hm)
2γ
≈ π(xiyiri,g,hm|W ).

.
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Proof. Consider

E
η(igh)

[
E

π(xiyiri,g,h|W )

[
D

(
π(m|xiyiri,g,hW )

θi,g,h(m|xiyiri,g,h)

)]]

=
2t∑
j=1

E
η(igh)

[
E

π(m<jxiyiri,g,h|W )

[
D

(
π(mj |xiyiri,g,hm<jW )

θi,g,h(mj |xiyiri,g,hm<j)

)]]
by the chain rule (4)

The odd j’s correspond to the cases when Alice speaks. These terms contribute:∑
odd j

E
η(igh)

[
E

π(m<jxiyiri,g,h|W )

[
D

(
π(mj |xiyiri,g,hm<jW )

π(mj |xiri,g,hm<jW )

)]]
=
∑
odd j

E
η(igh)

[Iπ(Mj ;Yi|XiRi,g,hM<jW )] .

As in the proof of Lemma 25, we can express this as

2

n

∑
odd j

E
η(hκh)

n/2∑
`=1

Iπ(Mj ;Yκh(`)|XhY κh({`+1,...,n})M<jW )


=

2

n

∑
odd j

E
η(hκh)

[
Iπ(Mj ;Y κh([n/2])|XhY κh({n/2+1,...,n})M<jW )

]
. by the chain rule

By Lemma 19, we can upper bound this by

≤ 2

n

∑
odd j

E
η(hκh)

[
E

π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhyκh({n/2+1,...,n}))

)]]
.

Conditioned on xhyκh({n/2+1,...,n}), the inputs x, y are independent. Thus Lemma 8 gives

π(mj |m<jxhyκh({n/2+1,...,n})) = π(mj |m<jxhy),

and we can continue to bound

=
2

n

∑
odd j

E
η(hκh)

[
E

π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhy)

)]]
.

Since the divergence is always non-negative, we can add in the even terms in the sum over j to
bound

≤ 2

n

2t∑
j=1

E
η(hκh)

[
E

π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhy)

)]]

=
2

n
E

η(hκh)

[
E

π(xhy|W )

[
D

(
π(m|xhyW )

π(m|xhy)

)]]
by the chain rule

≤ 2

n
E

η(hκh)

[
γ2n

]
= 2γ2. by Lemma 17

Repeating the same argument for even j gives (4) ≤ 4γ2. We apply Lemma 14 to conclude the
proof.
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3.1 Completing the Proof of Lemma 3

Claim 27. The expected value of the expression for the internal information cost according to π
conditioned on W can be bounded:

E
η(igh)

[(Iπ(Xi;M |YiRi,g,hW ) + Iπ(Yi;M |XiRi,g,hW ))] ≤ 4‖π‖/n.

Proof. As in the previous claims, we can write

E
η(igh)

[Iπ(Yi;M |XiRi,g,hW )]

=
2

n
E

η(hκh)

n/2∑
`=1

Iπ(Yκh(`);M |XhY κh({`+1,...,n})W )


=

2

n
E

η(hκh)

[
Iπ(Y κh([n/2]);M |XhY κh({n/2+1,...,n})W )

]
by the chain rule

≤ 2‖π‖/n.

Repeating the argument for the second term gives the final bound.

In the probability space of π, let i,g,h be independent of all other variables, and distributed as
in η. Let x′ = (i,g,h, xi, ri,g,h) and y′ = (i,g,h, yi, ri,g,h). Define the protocol θ that gets inputs
(i,g,h, xi, r

′
i,g,h) and (i,g,h, yi, r

′′
i,g,h), where the inputs are distributed according to

π((i,g,h, xi, ri,g,h), (i,g,h, yi, ri,g,h)|W ),

and executes θi,g,h((xi, r
′
i,g,h), (yi, r

′′
i,g,h)).

By Lemma 9 and Lemma 25, Prη[R
′
i,g,h 6= R′′i,g,h] ≤ O(γ). Thus in expectation over i,g,h

sampled according to η(igh),

η((xi, r
′
i,g,h), (yi, r

′′
i,g,h))

O(γ)
≈ η((xi, r

′
i,g,h), (yi, r

′
i,g,h)),

where here η((xi, r
′
i,g,h), (yi, r

′
i,g,h)) denotes the distribution where Bob’s sample for r′′i,g,h is set to

be the same as Alice’s sample. By Lemma 25 and Lemma 23,

η(ighxyr′i,g,h)
O(γ)
≈ π(ighxiyiri,g,h|W ).

Therefore the protocol η can be viewed as executing θ as a subroutine with inputs that are O(γ)-

close to θ(x′, y′). Claim 26 implies that θ(x′y′m)
O(γ)
≈ π(x′y′m|W ). Claim 27 implies that

Iπ(X ′;M |Y ′W ) + Iπ(Y ′;M |X ′W )

= E
η(igh)

[Iπ(Xi;M |YiRi,g,hW ) + Iπ(Yi;M |XiRi,g,hW )]

≤ 4‖π‖/n. since ‖π‖ ≥ γ2n

To prove Lemma 3, we apply Theorem 6 to conclude that there exists a protocol that O(γ)-
simulates θ with communication at most

log ‖π‖
√

(4‖π‖/n+ 1 + log ‖π‖)‖π‖
γ3/2

< O

(
‖π‖ · log3/2 ‖π‖
√
nγ5/2

)
< C − 1,
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where the first inequality appealed to the fact that ‖π‖/n > γ2 and the second is by our choice of
α in the statement of Lemma 3. The proof of Lemma 3 is complete, since with one additional bit
of communication to send the value of f , the protocol η computes f with probability of success at
least (1/n)

∑n
i=1 π(Wi|W )−O(γ).

3.2 Completing the proof of Lemma 4

Claim 28. The expected value of the expression for the external information cost according to π
conditioned on W can be bounded:

E
η(igh)

[Iπ(XiYi;M |Ri,g,hW )] ≤ 2γ2 + 4‖π‖/n.

Proof. By the chain rule,

E
η(igh)

[Iπ(XiYi;M |Ri,g,hW )] = E
η(igh)

[Iπ(Yi;M |Ri,g,hW ) + Iπ(Xi;M |YiRi,g,hW )] .

The second term was upper bounded in Claim 27 by 2‖π‖/n. It remains to bound the first term:

E
η(igh)

[Iπ(Yi;M |Ri,g,hW )]

≤ E
η(igh)

[
E

π(mri,g,h|W )

[
D

(
π(yi|mri,g,hW )

π(yi|ri,g,h)

)]]
by Lemma 19

≤ E
η(igh)

[
E

π(mxyg\{i}|W )

[
D

(
π(yi|mxyg\{i}W )

π(yi|ri,g,h)

)]]
by Lemma 18

≤ E
η(igh)

[
E

π(mxyg\{i}|W )

[
D

(
π(yi|mxyg\{i}W )

π(yi|xyg\{i})

)]]
. since µ is product

Given h, let κh, ` be distributed as explained before Lemma 25. Then the expression of interest is

=
2

n
E

η(hκh)

n/2∑
`=1

E
π(xyκh({`+1,...,n})|W )

[
D

(
π(yκh(`)|mxyκh({`+1,...,n})W )

π(yκh(`)|xyκh({`+1,...,n}))

)]
=

2

n
E

η(hκh)

[
E

π(xyκh({n/2+1,...,n})|W )

[
D

(
π(yκh([n/2])|mxyκh({n/2+1,...,n})W )

π(yκh([n/2])|xyκh({n/2+1,...,n}))

)]]
,

where the last equality follows from the chain rule. By Lemma 17, this expression is at most
(2/n)(γ2n+ ‖π‖) = 2γ2 + 2‖π‖/n. This proves the claim.

In the probability space of π, let i,g,h be distributed as in η, independent of all other variables.
Let x′ = xi and y′ = yi and r′ = i,g,h, ri,g,h. Define the protocol θ that gets inputs x′ and y′

and uses public randomness r′, where all variables are distributed according to π(ighxiyiri,g,h|W ).
Given these inputs, θ executes θi,g,h with inputs ((xi, ri,g,h), (yi, ri,g,h)).
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By Lemma 9 and Lemma 25, Prη[R
′
i,g,h 6= R′′i,g,h] ≤ O(γ). Thus in expectation over i,g,h

sampled according to η(igh),

η((xi, r
′
i,g,h), (yi, r

′′
i,g,h))

O(γ)
≈ η((xi, r

′
i,g,h), (yi, r

′
i,g,h))

where here η((xi, r
′
i,g,h), (yi, r

′
i,g,h)) denotes the distribution where Bob’s sample for r′′i,g,h is set to

be the same as Alice’s sample. By Lemma 25 and Lemma 23,

η(ighxyr′i,g,h)
O(γ)
≈ π(ighxiyiri,g,h|W ).

Therefore the protocol η can be viewed as executing θ as a subroutine with inputs and public

randomness that are O(γ)-close to θ(x′y′r′). Claim 26 implies that θ(x′y′r′m)
O(γ)
≈ π(x′y′r′m|W ).

Claim 28 implies that

Iπ(X ′Y ′;M |R′W ) = E
η(igh)

[Iπ(XiYi;M |Ri,g,hW )]

≤ 2γ2 + 4‖π‖/n ≤ 6‖π‖/n. since ‖π‖ ≥ γ2n

We apply Theorem 5 to obtain a protocol τ simulating θ with errorO(γ), whose external information

cost is O
(
‖π‖/n+log ‖π‖

γ

)
= O

(
‖π‖ log ‖π‖

γ3n

)
, where here we used ‖π‖ ≥ 2 and ‖π‖ ≥ γ2n. Finally, we

apply Theorem 11 with error parameter γ, to obtain a protocol that computes f with probability
(1/n)

∑
i π(Wi|W )−O(γ), with communication

O

(
‖π‖ · log ‖π‖ · log(‖π‖/γ)

γ5n

)
≤ O

(
‖π‖ · log2 ‖π‖

γ6n

)
≤ C,

by our choice of α in Lemma 4.

3.3 Intuition for the Choice of the Conditioning Variables

In this section we provide additional intuition for the selection of the publicly sampled variables
ri,g,h, since this selection is different than the selection of the corresponding variables in previous
works [BYJKS04, BBCR10, BR11]. This section is particularly useful to readers familiar with one
of these previous works.

Without the conditioning on W , the goal of the publicly sampled variables is to break the
dependence between the inputs that are not publicly sampled on Alice’s side and on Bob’s side.
Suppose that i is the coordinate into which inputs (x, y) are embedded, so (xi, yi) = (x, y). To
break the dependence, it suffices to publicly sample one of the two variables xj , yj in each coordinate
j 6= i. For example, if n = 6 and i = 3, a typical choice of publicly sampled variables is of the form
r = (x1, x2, y4, y5, y6). In this case, Alice and Bob can then privately sample x4, x5, x6 and y1, y2,
respectively, and run the 6-copy protocol. If the first message of the protocol is m sent by Alice,
then the amount of information Bob learns about x = x3 from m is given by I(X3;M |X1X2Y ).
We would like to say that this quantity is typically bounded by |M |/n, where |M | is the length of
the message. Unfortunately, as stated, we can only bound it by |M |. Luckily, one can show that
typically this type of expression is bounded by |M |/n. The key is to collect several of them and
apply the chain rule:

I(X1;M |Y ) + I(X2;M |X1Y ) + . . .+ I(X6;M |X1X2X3X4X5Y ) = I(X;M |Y ) ≤ H(M) ≤ |M |,
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giving us the desired bound.
We continue to explain the main challenge we face, glossing over some details. Above, since M

is generated by Alice who knows X1X2X3Y4Y5Y6, we have I(Y3;M |X1X2X3Y4Y5Y6) = 0. This in
turn implies that Alice can perfectly simulate her messages in the protocol. However, the event W
may introduce dependencies that could cause I(Y3;M |X1X2X3Y4Y5Y6W ) to be fairly high. This
quantity is the amount of information about Y3 (which Alice does not know) needed to produce
M . A priori, the best general bound we can get on the amount of dependence introduced by W
is at most log 1

π(W ) ≤ γ2n. Such a poor bound will not provide any guarantee on the ability of

Alice to faithfully simulate her part in the protocol3. To carry out our proof we need to bound this
quantity by O(γ2). As before, the solution is to combine many (order n) expressions into one that
is still bounded by γ2n. We are left with trying to combine terms of the form

I(Y1;M |X1Y2Y3Y4Y5Y6W ), I(Y2;M |X1X2Y3Y4Y5Y6W ), I(Y3;M |X1X2X3Y4Y5Y6W ), . . .

Unfortunately, these terms do not add up using the chain rule. On the other hand, for example,
the sum

I(Y1;M |X1X2X3Y4Y5Y6W ) + I(Y2;M |X1X2X3Y1Y4Y5Y6W ) + I(Y3;M |X1X2X3Y1Y2Y4Y5Y6W )

adds up using the chain rule to I(Y1Y2Y3;M |X1X2X3Y4Y5Y6W ), which is also bounded by γ2n.
Thus, on average, these terms are bounded by γ2n/3. To apply the chain rule in this fashion,
we had to use terms with overlaps between the X part and the Y part of the conditioned vari-
ables: one with an overlap of 0 coordinates (X1X2X3Y4Y5Y6), one with an overlap of 1 coordinate
(X1X2X3Y1Y4Y5Y6), and one with and overlap of 2 coordinates (X1X2X3Y1Y2Y4Y5Y6). So instead
of selecting only R’s with 0 overlap (as before), we make the size of the overlap vary uniformly
between 0 and n/2− 1. This allows us to bound the mutual information in a typical term by 2γ2.
It is an interesting question whether selecting R’s with overlaps is necessary for our proof to go
through.

As a final remark, we note that even with the new choice of R, the conditioning on W creates
more complications. Due to the conditioning on W , Alice can no longer just sample X4X5X6

privately, even when X1X2Y1Y2Y4Y5Y6 is publicly known. For example, if xi, yi are bits, consider
the event W that

∑
i xi + yi = 0 mod 2. In this case, the distribution of X4X5X6 depends on

Y3 which Alice does not know. What does she do then? She just samples M conditioned on her
knowledge X1X2X3Y1Y2Y4Y5Y6 and on W , and hopes for the best. This turns out to be a good
enough approximation of the true distribution of M conditioned on W .

4 Proofs of the Compression/Simulation Theorems

4.1 Compressing Protocols that are Close to Low Internal Information

Here we prove Theorem 6, showing how to compress protocols that are close to having low internal
information. For the rest of this proof, denote

I = Iq(X;M |Y ) + Iq(Y ;M |X).

The simulating protocol τ is given in Figure 3.

3However, a round-by-round argument can provide a non-trivial bound. This was the approach taken in [JPY12].

20



Protocol τ for simulating θ

Phase 1: For every binary string m′ of length at most ‖θ‖, the parties use shared randomness
to sample a uniformly random number ρm′ ∈ [0, 1]. Alice uses this number to compute a
bit

am′ =

{
0 if θ(Mj = 0|xm′) > ρm′ ,

1 else.

Similarly, Bob computes

bm′ =

{
0 if θ(Mj = 0|ym′) > ρm′ ,

1 else.

Phase 2: The parties repeat the following steps as long as at most C =
log ‖θ‖

√
(I+1+log ‖θ‖)‖θ‖
ε3/2

bits are communicated:

1. Alice computes the messages a ∈ {0, 1}‖θ‖ defined inductively by aj = aa<j for each j.

Similarly, Bob computes the messages b ∈ {0, 1}‖θ‖ defined inductively by bj = bb<j
for each j.

2. Alice and Bob use the protocol of Lemma 10 with error parameter 1/10 to find the
smallest location j such that aj 6= bj . If j is odd Bob resets bb<j = aj . If j is even,
Alice resets aa<j = bj . If no such j is found, the parties do nothing.

Alice (resp. Bob) considers the final a (resp. b) the simulated outcome of the protocol.

Figure 3: Compression according to internal information cost.

4.1.1 Analysis

The communication complexity of τ is bounded by C by definition. Define m ∈ {0, 1}‖θ‖ inductively
by:

mj =

{
am<j if j is odd,

bm<j if j is even.

The string m is the intended simulation that Alice and Bob should converge to at the end of τ .
The first observation is that m is correctly distributed, i.e., as the messages of θ.

Claim 29. τ(xym) = θ(xym).

Proof. By the definition of m, for odd j, θ(mj |xym<j) = θ(mj |xm<j) = τ(mj |xym<j), and simi-
larly for even j, θ(mj |xym<j) = τ(mj |xym<j).

We shall argue that the probability τ(a = m = b) is very close to 1. Say that there is a mistake
at coordinate j if am<j 6= bm<j . The location of the first (uncorrected) mistake is exactly the same
as the location of the first disagreement between a, b in Phase 2 of τ . As long as the number of
successful executions of the algorithm from Lemma 10 in Phase 2 exceeds the number of mistakes in
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Phase 1, we will eventually have a = m = b. Let ` ≥ Ω(C/ log ‖θ‖) denote the number of times that
the application of Lemma 9 is run in Phase 2. By the Chernoff bound, at least `/2 executions of
the algorithm from Lemma 10 find the correct coordinate, except with probability exp(−Ω(`)).To
complete the proof of the theorem, we shall argue that the number of mistakes is at most `/2 with
high probability.

Let

β =
I + 1/(e ln 2) + log(‖θ‖+ 1)

ε
+ 2.

For any x, y, r,m, let k denote the smallest index j such that either

log
θ(m≤j |xy)

θ(m≤j |x)
> β or log

θ(m≤j |xy)

θ(m≤j |y)
> β. (5)

If no such index exists, define k = ‖θ‖+ 1. The random variable4 K is a function of X,Y,M .

Claim 30. The expected number of mistakes up to the k’th coordinate is small:

E
θ

[∣∣{j < k : am<j 6= bm<j}
∣∣] ≤√β · ‖θ‖

2
.

Proof. Suppose j is odd. There is a mistake in the j’th step only when ρm<j lies in between
θ(mj |xym<j) = θ(mj |xm<j) and θ(mj |ym<j). The probability of a mistake in the j’th message
contributing to the expectation is at most

(1/2)
∑

x,y,m<j ,k

θ(xym<jk) · 1j<k · |θ(mj |xym<j)− θ(mj |ym<j)|,

where 1j<k is the indicator variable for whether or not j < k. We bound this by

(1/2)
∑

x,y,m<j ,k

θ(xym<jk) · 1j<k ·

√√√√D

(
θ(mj |xym<j)

θ(mj |ym<j)

)
by Lemma 14

≤ (1/2)

√√√√ ∑
x,y,m<j ,k

θ(xym<jk) · 1j<k · D

(
θ(mj |xym<j)

θ(mj |ym<j)

)
by concavity

= (1/2)

√√√√ ∑
x,y,m,k

1j<k · θ(xymk) log
θ(mj |xym<j)

θ(mj |ym<j)
.

A similar bound applies for even j, and the expected number of mistakes in the j’th step for all j
is at most

(1/2)

√√√√ ∑
x,y,m,k

1j<k · θ(xymk) log
θ(mj |xym<j)2

θ(mj |xm<j)θ(mj |ym<j)
.

4Since it can be ambiguous whether the expression p(mk) refers to p(MK = mk) or p(Mk = mk), we shall be more
explicit with the notation in the rest of this section. However, observe that p(mk, k) has only one interpretation, so
in such cases we use the more concise notation.
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The expected number of mistakes before the k’th message is therefore at most

(1/2)
∑
j

√√√√ ∑
x,y,m,k

1j<k · θ(xymk) log
θ(mj |xym<j)2

θ(mj |xm<j)θ(mj |ym<j)

≤ (1/2)

√√√√‖θ‖ · ∑
x,y,m,j,k

1j<k · θ(xymk) log
θ(mj |xym<j)2

θ(mj |xm<j)θ(mj |ym<j)
by Cauchy-Schwartz

= (1/2)

√√√√‖θ‖ · ∑
x,y,m,k

θ(xymk) log
θ(m<k|xy)2

θ(m<k|x)θ(m<k|y)
≤
√
β · ‖θ‖

2
. by the definition of k

Next we show that, with high probability, k = ‖θ‖+ 1.

Claim 31. θ(k ≤ ‖θ‖) < 11ε.

Proof. Define k1 and k2 to be the minimum indices so that

log
θ(m≤k1 |xy)

θ(m≤k1 |x)
> β and log

θ(m≤k2 |xy)

θ(m≤k2 |y)
> β,

respectively (if no such index exists, set the value to be ‖θ‖+1). Then k = min{k1, k2}. By Lemma
21 we have

θ(k1 ≤ ‖θ‖) <
Iq(M ;Y |X) + log(‖θ‖+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2 ≤ 11ε/2.

Similarly, θ(k2 ≤ ‖θ‖) < 11ε/2, and the claim is proved by the union bound.

By Claim 29, Claim 30, Claim 31 and Markov’s inequality, the probability that the number of

mistakes in τ exceeds `/2 is at most

√
2β·‖θ‖
` + 11ε. The simulation, therefore, computes m except

with probability√
2β · ‖θ‖
`

+ 11ε+ exp(−Ω(`)) = O

(
log ‖θ‖

√
(I + 1 + log ‖θ‖) · ‖θ‖√

εC
+ ε

)
= O(ε),

where here we used the fact that C 6= 0.

4.2 Simulating Protocols that are Close to Low External Information

In this section we prove Theorem 5, showing that protocols that are statistically close to having
low external information cost can be modified so that they actually have low external information
cost.
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4.2.1 The Simulating Protocol τ

The protocol τ is defined as follows. Let

β =
Iq(XY ;M |R) + 1/(e ln 2) + log(‖θ‖+ 1)

ε
+ log(1/ε) + 2.

The parties simulate θ, but before each message mj sent by Alice, she checks whether the sequence
of messages m<j sent by her so far, including the message mj that will result from her transmission,
satisfies ∑

d≤j,d odd

log
θ(md|xrm<d)

θ(md|rm<d)
≤ β.

If this is not the case, she sends a bit ej to Bob indicating that the protocol must be aborted. If the
condition is met, she sends a bit ej indicating that the protocol will continue, and then transmits
the sampled bit mj .

Similarly, before each message mj sent by Bob, he checks whether the sequence of messages
m<j sent by him so far, including the message mj that will result from his transmission, satisfies∑

d≤j,d even

log
θ(md|yrm<d)

θ(md|rm<d)
≤ β.

If this is not the case, he sends a bit ej to Alice indicating that the protocol must be aborted. If
the condition is met, he sends a bit ej indicating that the protocol will continue, and transmits the
sampled bit mj .

For clarity of notation, we accomplish the aborts by having Alice and Bob transmit 0’s for the
rest of the protocol, so that all full transcripts are of the same length. This gives ‖τ‖ ≤ 2‖θ‖.
The full transcript of the parties in τ is denoted by the random variables E,M , where E is the
concatenation of all the abort bits Ej , and M is the protocol transcript of θ.

4.2.2 Analysis

For any x, y, r,m, let k denote the smallest index j such that either∑
d≤j,d odd

log
θ(md|xrm<d)

θ(md|rm<d)
> β or

∑
d≤j,d even

log
θ(md|yrm<d)

θ(md|rm<d)
> β. (6)

If no such index, define k = ‖θ‖+ 1. The random variable5 K is a function of X,Y,R,M .

Claim 32. For each x, y, r,m<k, k, θ(xyrkm<k) = τ(xyrkm<k).

Proof. Fix any x, y, r,m<k, k. If there exists a j < k such that the messages m≤j cause an abort
in the j’th step, then we must have that θ(xyrm<kk) = 0 = τ(xyrm<kk). So, we can assume that
there is no such j.

5Since it can be ambiguous whether the expression p(mk) refers to p(MK = mk) or p(Mk = mk), we shall be more
explicit with the notation in the rest of this section. However, observe that p(mk, k) has only one interpretation, so
in such cases we use the more concise notation.
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By definition, τ(xyr) = θ(xyr). We prove by induction on j that for all j < k, τ(Mj =
mj |xyrm<j) = θ(mj |xyrm<j). In τ the sender of the j’th message samples Mj = mj with proba-
bility θ(mj |xyrm<j). Since we have assumed that the sender does not abort, this mj is transmitted,
and we have proved the inductive step. This shows that for every fixed k,

τ(M<k = m<k, xyr) =
∏
j<k

τ(mj |xyrm<j) =
∏
j<k

θ(mj |xyrm<j) = θ(M<k = m<k, xyr).

We have τ(K = k|M<k = m<k, xyr) = θ(K = k|M<k = m<k, xyr), since both numbers are the
probability that the k’th message leads to an abort.

Claim 33. Iτ (XY ;ME|R) ≤ 2β + log(‖θ‖+ 1).

Proof. The random variables K,M<K determine M,E in τ . Thus,

Iτ (XY ;ME|R)

≤ Iτ (XY ;KM<K |R)

= Iθ(XY ;KM<K |R) Claim 32

=
∑

x,y,r,k,m<k

θ(xyrkm<k) log
θ(km<k|xyr)
θ(km<k|r)

=
∑

x,y,r,k,m<k

θ(xyrkm<k)

(
log

θ(M<k = m<k|xyr)
θ(M<k = m<k|r)

+ log
θ(K = k|M<k = m<k, xyr)

θ(K = k|M<k = m<k, r)

)
. (7)

The second term can be bounded as follows:∑
x,y,r,k,m<k

θ(xyrkm<k) log
θ(K = k|M<k = m<k, xyr)

θ(K = k|M<k = m<k, r)

≤
∑

r,k,m<k

θ(rkm<k) log
1

θ(K = k|M<k = m<k, r)

≤ log
∑

r,k,m<k

θ(rkm<k)

θ(K = k|M<k = m<k, r)
by concavity of log

= log
∑

r,k,m<k

θ(M<k = m<k, r) = log(‖θ‖+ 1). (8)

Next we bound the first term in (7):

log

(
θ(M<k = m<k|xyr)
θ(M<k = m<k|r)

)
=

∑
j<k,j odd

log
θ(mj |xrm<j)

θ(mj |rm<j)
+

∑
j<k,j even

log
θ(mj |yrm<j)

θ(mj |rm<j)
,

where here we used the fact that since θ is a protocol, each (odd) message mj sent by Alice satisfies
θ(mj |xyrm<j) = θ(mj |xrm<j), and that a similar statement holds for Bob’s messages. Thus by
the definition of K, ∑

x,y,r,k,m<k

θ(xyrkm<k) log
θ(M<k = m<k|xyr)
θ(M<k = m<k|r)

≤ 2β. (9)

Combining (7), (8) and (9), we conclude that Iτ (X;ME|R) ≤ 2β + log(‖θ‖+ 1).
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Next, we argue that the probability that the protocol aborts is small.

Claim 34. τ(k ≤ ‖θ‖) = θ(k ≤ ‖θ‖) < 15ε/2.

Proof. For any x, y, r,m, let k′ denote the smallest index such that

log
θ(m≤k′ |xyr)
θ(m≤k′ |r)

=
∑

j≤k′,j odd

log
θ(mj |xrm<j)

θ(mj |rm<j)
+

∑
j≤k′,j even

log
θ(mj |yrm<j)

θ(mj |rm<j)
> β − log(1/ε).

If no such index, define k′ = ‖θ‖+ 1. By Lemma 21, we have

θ(k′ ≤ ‖θ‖) < Iq(XY ;M |R) + 1/(e ln 2) + log(‖θ‖+ 1)

β − 2− log(1/ε)
+ 9ε/2 ≤ 11ε/2. (10)

We shall show that θ(k < k′) < 2ε, which will complete the proof. Define

S1 =

(x, y, r,m) : k(x, y, r,m) ≤ ‖θ‖ and
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|rm<d)
≤ − log(1/ε)

 ,

S2 =

(x, y, r,m) : k(x, y, r,m) ≤ ‖θ‖ and
∑

d≤k,d even

log
θ(md|yrm<d)

θ(md|rm<d)
≤ − log(1/ε)

 .

Observe that k < k′ implies that (x, y, r,m) ∈ S1∪S2. We shall prove that θ(S1) ≤ ε and θ(S2) ≤ ε.
Consider the distribution

θ′(xyrm) = θ(xyr) ·
∏
d odd

θ(md|rm<d) ·
∏
d even

θ(md|yrm<d).

Fix any (x, y, r,m) ∈ S1, and let k = k(x, y, r,m) be defined as above. We have:

log
θ(km≤k|xyr)
θ′(km≤k|xyr)

=
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|rm<d)
+

∑
d≤k,d even

log
θ(md|yrm<d)

θ(md|yrm<d)
+ log

θ(K = k|M≤k = m≤k, xyr)

θ′(K = k|M≤k = m≤k, xyr)

=
∑

d≤k,d odd

log
θ(md|xrm<d)

θ(md|rm<d)
≤ − log(1/ε).

Thus θ(xyrkm≤k) ≤ ε · θ′(xyrkm≤k). So (here we set k = k(x, y, r,m) in the sum):

θ(S1) =
∑

(x,y,r,m)∈S1

θ(xyrm)

=
∑

(x,y,r,m)∈S1

θ(xyrkm≤k) · θ(m|xyrkm≤k)

≤ ε
∑

(x,y,r,m)∈S1

θ′(xyrkm≤k) · θ(m|xyrkm≤k) ≤ ε.

A similar argument proves θ(S2) ≤ ε. Thus, by (10), we have that θ(k ≤ ‖θ‖) ≤ θ(k′ ≤ ‖θ‖)+θ(k <
k′) < 11ε/2 + 2ε = 15ε/2 as required.
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5 Open Problem: Direct Products for Information Complexity

Both the direct sum result of [BBCR10] and our direct product result rely on methods to compress
protocols. So it is natural to ask whether our ability to prove direct product results is limited
only by our ability to compress protocols with low information cost. In fact, information cost can
be made into a meaningful complexity measure. The information complexity of a function f with
respect to a distribution µ is the lowest internal information cost attainable by a protocol computing
f with respect to µ and error 1/3 [BR11, Bra12]. It turns out that the amortized communication
complexity of f is exactly equal to its information complexity [BR11]. [BW11, KLL+12] showed
that many communication lower bound techniques actually give lower bounds on the information
complexity.

Given this new complexity measure, we might have hoped that direct sum and direct product
theorems holds with respect to it. Indeed [BBCR10] show that an optimal direct sum theorem
holds for information complexity. However, a direct product theorem (with small success probabil-
ity) cannot hold, because of the following counterexample. Let f be a function with information
complexity I. Consider the protocol that computes fn as follows. Let ε > 0 be an arbitrary pa-
rameter. With probability ε, the protocol executes n copies of the optimal protocol for computing
f . With probability 1 − ε the protocol transmits nothing and fails. This protocol computes fn

with probability ε, yet its information complexity is at most εIn. For example, setting ε = 1/n
shows that even without increasing the information complexity, one can compute fn with success
probability 1/n.

The following question is still interesting, and may be easier than proving new direct product
results for communication complexity:

Open Problem 35. Is there a universal constant α such that if the information complexity of f
with respect to the distribution µ is I, T ≥ 2, and T < αIn, then suc(µn, fn, T ) ≤ exp

(
−αγ2n

)
?

A potential avenue of attack on Problem 35 would be to prove an analogue of Theorem 5 for
general distributions µ, showing that any protocol that is close to having low internal information
cost can be simulated by a protocol with low internal information cost. Thus, one can hope to solve
Problem 35 without giving an improved compression scheme for internal information cost.

6 Proofs of the Standard Lemmas

Proof of Lemma 23.

γ2n ≥ log(1/π(W ))

≥ D

(
π(xy|W )

π(xy)

)
by Lemma 17

=
n∑
i=1

E
π(x<iy<i|W )

[
D

(
π(xiyi|x<iy<iW )

π(xiyi|x<iy<i)

)]
by the chain rule
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Since π(xiyi|x<iy<i) = π(xiyi), we can write this

=
n∑
i=1

E
π(x<iy<i|W )

[
D

(
π(xiyi|x<iy<iW )

π(xiyi)

)]

≥
n∑
i=1

D

(
π(xiyi|W )

π(xiyi)

)
. by Lemma 18

The proof is completed by applying Lemma 14.

Proof of Lemma 24.

2γ2n ≥ log(1/π(W )) + I(XY ;M |W )

≥ E
π(m|W )

[
D

(
π(xy|mW )

π(xy)

)]
by Lemma 17

=

n∑
i=1

E
π(mx<iy<i|W )

[
D

(
π(xiyi|x<iy<imW )

π(xiyi|x<iy<i)

)]
by the chain rule

Since π(xiyi|x<iy<i) = π(xiyi), we can write this

=

n∑
i=1

E
π(mx<iy<i|W )

[
D

(
π(xiyi|x<iy<imW )

π(xiyi)

)]

≥
n∑
i=1

E
π(m|W )

[
D

(
π(xiyi|mW )

π(xiyi)

)]
. by Lemma 18

Thus, by Lemma 14, in expectation over i sampled according to η(i), we have π(xiyim|W )

√
2γ
≈

π(xiyi)π(m|W ).
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A Feige’s Counterexample

In this section, we sketch a counterexample due to Feige [Fei00] that shows the difficulty of proving
direct product theorems under a different definition of communication complexity. The coun-
terexample consists of a communication problem together with a different definition of success for
protocols.

The communication problem is defined using the following graph (parameters are chosen for
concreteness). Let ε be a constant and let n be a large integer. Let G be a bipartite graph with
bipartition L,R such that every vertex on each side of the graph is identified with an element of(
[n10]
n

)
. Namely, each vertex in L corresponds to a subset of [n10] of size n, and the same for each

vertex in R. We require that G has the following pseudorandom property6: the edge density of the
graph is at least 1/2 − ε, yet for every S ⊂ L, T ⊂ R, |S| = |T | = n7, the edge density between
S,R is at most 1/2 + ε. A uniformly random graph (i.e. each edge included independently with
probability 1/2) will have this property with high probability (so it is safe to assume that G exists).

The communication problem is defined by the following relation (which is more general than a
function): Alice is given a uniformly random element x ∈ [n10] and Bob is given an independent
uniformly random element y ∈ [n10]. Their goal is to output A,B such that x ∈ A, y ∈ B and
(A,B) is an edge of G.

The different definition of success for which direct product does not hold is: We do not require
that A,B be determined solely by the messages of the protocol. It suffices that at the end of the
protocol, Alice knows A and Bob knows B with the desired properties. That is, the output of the
protocol may not be deduced from the transcript, but each player with the knowledge of her input
can correctly interpret the transcript.

6In the language of derandomization, we require that the graph is a 2-source extractor.
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We claim that any protocol with communication complexity less than log n cannot succeed
in finding such A,B with probability better than 1/2 + 2ε. We now sketch the reason for this.
Assume without loss of generality that Alice always outputs A such that x ∈ A and Bob always
outputs B such that y ∈ B. A typical fixing of the messages in the protocol thus induces a product
distribution on the vertices of graph, where each vertex has probability at most n−7. This is because
the probability of a particular element x is typically increased by the communication by a factor of
n to n−9, and so the probability that a particular A is an output is typically at most n−8. Every
distribution on vertices A such that the probability of any fixed A is at most n−7 can be expressed
as a convex combination of distributions where A is sampled uniformly from a set of size at least
n7. The properties of G imply that the probability of success of Alice and Bob for a typical fixing
of the messages is at most 1/2 + ε.

Finally, we claim that n copies of the problem can be solved with zero communication, with
success probability nearly identical to the one-copy success probability. Indeed, if Alice and Bob
are given n inputs x1, . . . , xn and y1, . . . , yn, without communicating at all, Alice can output the
set A = {x1, . . . , xn} and Bob can output B = {y1, . . . , yn}. They succeeds in computing n copies
of the required operation with probability roughly 1/2− ε.
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