On a special case of rigidity

Rocco A. Servedio* Emanuele Viola ${ }^{\dagger}$

November 6, 2012

Abstract

We highlight the special case of Valiant's rigidity problem in which the low-rank matrices are truth-tables of sparse polynomials. We show that progress on this special case entails that Inner Product is not computable by small AC^{0} circuits with one layer of parity gates close to the inputs. We then prove that the sign of any $-1 / 1$ polynomial with $\leq s$ monomials in $2 n$ variables disagrees with Inner Product in $\geq \Omega(1 / s)$ fraction of inputs, a type of result that seems unknown in the rigidity setting.

Valiant's rigidity problem [Val77] asks to build explicit matrixes that are far in Hamming distance from low-rank matrixes. Valiant proved that if an $N \times N$ matrix M has hamming distance $\geq N^{1+\Omega(1)}$ from any matrix of rank $R=(1-\Omega(1)) N$, then the corresponding linear transformation $x \mapsto M x$ requires circuits of superlogarithmic depth or superlinear size. Exhibiting an explicit such matrix remains a long-standing challenge. Despite significant efforts, the best lower bounds are of the form $\left(N^{2} / R\right) \lg (N / R)$ against matrixes of rank R. The matrix corresponding to the inner product function IP has been conjectured to satisfy better better bounds. We refer the reader to Lokam's survey [Lok09] for more on rigidity.

In this note we highlight a special case of the rigidity problem, and we suggest that attacks should be directed towards it. Recall that an $N \times N$ matrix has rank R if and only if it is the sum of R rank- 1 matrixes, i.e., matrixes $u_{i} v_{i}^{T}$, where u_{i}, v_{i} are N-entry column vectors. We consider the special case of this problem where the rank-1 matrixes are the truthtables of monomials over the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, where $N=2^{n}$ and the variables range over $\{-1,1\}$. For example, the truth-table of a monomial $c \prod_{i \in S} x_{i} \prod_{i \in T} y_{i}$, where $S, T \subseteq\{1, \ldots, n\}$, is the $N \times N$ matrix whose entry indexed by $(a, b) \in\{-1,1\}^{n} \times\{-1,1\}^{n}$ is $c \prod_{i \in S} a_{i} \prod_{i \in T} b_{i}$. This matrix can be written as $u v^{T}$ where the a-th entry of u is $c \prod_{i \in S} a_{i}$ and the b-th entry of v is $\prod_{i \in T} b_{i}$. This special case of the rigidity problem is stated without direct reference to rank as follows.
Challenge 0.1 (Sparsity). Exhibit an explicit function $f:\{-1,1\}^{n} \times\{-1,1\}^{n} \rightarrow\{-1,1\}$ such that for any real polynomial p with $\leq R$ monomials we have

$$
\operatorname{Pr}_{x, y \in\{-1,1\}^{n}}[f(x, y) \neq p(x, y)] \geq \epsilon,
$$

[^0]for as large ϵ as possible.
Again, $\epsilon=\Omega\left(\lg \left(2^{n} / R\right) / R\right)$ follows from the rigidity bounds.
The concurrent work [RV12] raises a similar challenge for low-degree (as opposed to sparse) polynomials.

Motivation: AC^{0} with parity gates. Besides hopefully paving the way for the original rigidity question, a motivation for making progress on Challenge 0.1 is that stronger bounds would yield new circuit lower bounds. Let $\mathrm{AC}^{0}-\oplus$ denote the class of AC^{0} circuits augmented with a bottom level (right before the input bits) of parity gates. To our knowledge, it is not known whether the Inner Product function IP is computable by poly-size $\mathrm{AC}^{0}-\oplus$ circuits:
Challenge 0.2. Show that IP cannot be computed by poly-size $\mathrm{AC}^{0}-\oplus$ circuits.
Challenge 0.2 seems open even for $\mathrm{AC}^{0} \oplus$ circuits of depth 4 , but it is known to be true for $\mathrm{AC}^{0}-\oplus$ circuits of depth 3, i.e. poly-size DNF- \oplus circuits. Indeed, it follows from Fact 8 in [Jac97] that any function computable by such circuits has $1 /$ poly correlation with parity on some subset of the variables, but it is well-known that IP has exponentially small correlation with parity on any subset of the variables.

Solving Challenge 0.2 is a step towards a more thorough understanding of AC^{0} with parity gates. For example, no strong correlation bound is known for this class, see e.g. [SV10]. In fact, this is not even known for $\mathrm{AC}^{0}-\oplus$, and IP is a natural candidate.

Next we formally connect the two challenges.
Claim 0.3. Suppose that IP on $2 n$ variables has $\mathrm{AC}^{0}-\oplus$ circuits of polynomial size. Then for any b there exists c and a polynomial $p(x, y)$ with $\leq 2^{\lg ^{c} n}$ monomials such that

$$
\operatorname{Pr}_{x, y}[p(x, y) \neq \mathrm{IP}(x, y)] \leq 2^{\lg ^{b} n}
$$

Proof. Let C be a depth- $(d+1) \mathrm{AC}^{0}-\oplus$ circuit that computes IP over $2 n$ input bits x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}. Let $N=\operatorname{poly}(n)$ denote the number of parity gates at the leaves. Let C^{\prime} be the depth- $d \mathrm{AC}^{0}$ circuit obtained by replacing the i-th parity gate by a fresh input variable z_{i} (so C^{\prime} is a circuit over N input bits z_{1}, \ldots, z_{N}).

Let D be the distribution over $\{-1,1\}^{N}$ induced by drawing a uniform random input x from $\{-1,1\}^{n}$ and setting $z_{i}=$ the value of the i-th parity gate on x (the draw from D is the string $\left.z \in\{0,1\}^{N}\right)$. Let $\epsilon:=1 / 2^{\lg ^{c} n}$. Lemma 5.1 and Corollary 5.2 of [ABFR94] tell us that there is a polynomial $p\left(z_{1}, \ldots, z_{N}\right)$ of degree $\left(O(\lg (n))^{2 d}\right.$ that computes $C^{\prime}(z)$ for a $(1-\epsilon)$ fraction of all inputs drawn from D. Since p has degree $(O(\lg n))^{2 d}$ it must have $\leq n^{(O(\lg n))^{2 d}}$ monomials. Now let $q\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ be the polynomial obtained by substituting in the i-th parity (monomial) for z_{i} in $p . q$ has no more monomials than p, and q computes IP on $(1-\epsilon)$ fraction of all inputs drawn from $\{-1,1\}^{n}$.

We note that for Valiant's connection to lower bounds, we need rank $R=\Omega(N)$, whereas for sparsity much smaller rank $R=$ poly $\lg N$ suffices. In both cases we need to go beyond error $1 / R$.

Sign-rank. The sign-rank of a $-1,1$ matrix M is the minimum rank of a matrix that agrees in sign with M in every entry. Forster proved [For02] that the $N \times N$ matrix corresponding to IP has sign-rank $\geq \sqrt{N}$.

For sparsity, we can prove a stronger type of bound where we also allow errors. As far as we know such a result is not known for sign-rank. Perhaps this gives hope that progress on Challenge 0.1 may be within reach.

Theorem 0.4. Let p be a polynomial in n variables with $\leq s$ monomials. Consider the inner-product function $\operatorname{IP}(x, y)$ where $|x|=|y|=n / 2$. Then

$$
\underset{x, y}{\operatorname{Pr}[\operatorname{sign}(p(x, y)) \neq \operatorname{IP}(x, y)] \geq\left(1-s / 2^{n / 2}\right) \cdot(1 / s)=\Omega(1 / s) ~}
$$

The proof of Theorem 0.4 relies on the following lemma.
Lemma 0.5. Let p be a $-1 / 1$ polynomial on n variables with $\leq s$ not monomials and not containing the monomial (parity) $t(x)$. Then $\operatorname{sign}(p(x))$ disagrees with $t(x)$ on at least $2^{n} / s$ points.

Proof of Theorem 0.4 assuming Lemma 0.5. Let p be a polynomial with $\leq s$ monomials over variables x, y where $|x|=|y|=n / 2$. A uniform random choice of y reduces IP to parity over a uniform random subset of variables $x_{1}, \ldots, x_{n / 2}$. But fixing y does not change the set of monomials of p in x (it merely changes the sign of the coefficients). So with probability $\geq 1-s / 2^{n / 2}$ a uniform random choice of y reduces to the setting of Lemma 0.5 , in which p is reduced to a polynomial with $\leq s$ monomials over $n / 2 x$-variables and IP is reduced to a parity over x-variables not contained in p. Hence the overall error probability over a random choice of both x and y is $\geq\left(1-s / 2^{n / 2}\right) \cdot(1 / s)$.

Before proving Lemma 0.5 in the next section we remark that it is essentially tight: for $s=2^{k}-1$, there is a polynomial p of sparsity s that does not contain the monomial t but computes t exactly on all but $2^{n} /(s+1)$ inputs. We show next a construction for $t=1$, i.e. the parity on 0 variables, so p is not allowed to have a constant term. (Given such a construction p then $p \cdot t$ is a construction for any monomial t.)

For sparsity $s=1$ we take $p=x_{1}$ and the error is $1 / 2$ (p is wrong exactly when $x_{1}=-1$); for sparsity $s=3$ we take $p=x_{1}+x_{2} \cdot\left(1-x_{1}\right)$ and the error is $1 / 4$ (p is wrong exactly when $\left.x_{1}=-1, x_{2}=-1\right)$; for sparsity $s=7$ we take $p=x_{1}+x_{2}\left(1-x_{1}\right)+x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)$ and the error is $1 / 8$ (p is wrong exactly when $x_{1}=-1, x_{2}=-1, x_{3}=-1$); and so on.

0.1 Proof of Lemma 0.5

First, our polynomials are multi-linear without loss of generality. Recall that such a polynomial p in n variables is syntactically zero if and only if $p(x)=0$ for every $x \in\{-1,1\}^{n}$. [Sch80, Zip79] The proof is by contradiction, so we suppose that the conclusion does not hold, i.e. $\operatorname{sign}(p(x))$ disagrees with $t(x)$ on fewer than $2^{n} / s$ points. $(p(x)=0$ counts as a disagreement; alternatively, we can assume that $p(x) \neq 0$ for every x without loss of generality.) We show
below how to construct a non-zero polynomial g such that $g(x)=0$ on the few $\left(<2^{n} / s\right)$ disagreement points, and moreover the monomials of $p \cdot g^{2}$ still do not contain $t(x)$. Given such a g we observe that the polynomial $p \cdot g^{2}$ is non-zero and always agrees in sign with t, but on the other hand $E\left[p \cdot g^{2} \cdot t\right]=0$. This is a contradiction.

The construction of g. We identify monomials with elements of $\{0,1\}^{n}$ in the obvious way. Note that product of monomials corresponds to bit-wise addition mod 2. Let B be the set of monomials of p, so $s=|B|$. Let t be a monomial not present in B. We construct a set M of size $|M| \geq 2^{n} /|B|$ such that $t \notin M+M+B$, where $S+T:=\{s+t: s \in S, t \in T\}$.

Then we define g to be a polynomial with the monomials in M. We set the coefficients of the monomials in M so that $g(x)=0$ for $|M|-1$ inputs x, and still have g be a non-zero polynomial. This is possible because we have a homogeneous system of $|M|-1$ equations in $|M|$ variables.

The condition $t \notin M+M+B$ translates to the condition that $p \cdot g^{2}$ does not contain the monomial t.

The construction of M. Call a pair (M, G) good if for every $g \in G, 2(M \bigcup g)+B$ does not contain t. For simplicity here and below we write g for the set $\{g\}$.

The next two claims allow us to construct a pair (M, G) that is good and where $|M| \geq$ $2^{n} /|B|$, as desired.

Claim 0.6. $\left(\emptyset,\{0,1\}^{n}\right)$ is good.
Proof. In this case $2(M \bigcup g)+B=g+g+B=B$, which does not contain t by assumption.

Claim 0.7. If (M, G) is good then for any $g \in G,(M \bigcup g, G \backslash(B+t+g))$ is also good.
Proof. Suppose by contradiction that there is $g^{\prime} \in G \backslash(B+t+g)$ such that $t \in 2\left(M \bigcup g \bigcup g^{\prime}\right)+$ B.

Recall $t \notin 2(M \bigcup g)+B$, and $t \notin 2\left(M \bigcup g^{\prime}\right)+B$, because both g and g^{\prime} are in G, and (M, G) is good.

Hence $t \in 2\left(g \bigcup g^{\prime}\right)+B$.
Recall again that $t \notin B$ by assumption.
Hence $t \in g+g^{\prime}+B$, but this contradicts the choice of g^{\prime}.
We remark that the proof of Lemma 0.5 in this section may be viewed as a generalization of an argument from [ABFR94]. In the latter the polynomial p has degree d, so B 's elements are just strings in $\{0,1\}^{n}$ of weight $\leq d$, and one defines M to be the set of all strings of weight less than $(n-d) / 2$. Our proof employs a slightly more involved greedy construction.

References

[ABFR94] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of voting polynomials. Combinatorica, 14(2):135-148, 1994.
[For02] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication complexity. J. of Computer and System Sciences, 65(4):612-625, 2002.
[Jac97] Jeffrey C. Jackson. An efficient membership-query alogithm for learning DNF with respect to the uniform distribution. J. of Computer and System Sciences, 55(3):414440, 1997. 35th Symposium on Foundations of Computer Science (Santa Fe, NM, 1994).
[Lok09] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Foundations and Trends in Theoretical Computer Science, 4(1-2):1-155, 2009.
[RV12] Alexander Razborov and Emanuele Viola. Real advantage. 2012.
[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. of the ACM, 27(4):701-717, 1980.
[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J. on Computing, 39(7):3122-3154, 2010.
[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th Symposium on Mathematical Foundations of Computer Science, volume 53 of Lecture Notes in Computer Science, pages 162-176. Springer, 1977.
[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation (EUROSAM), volume 72 of Lecture Notes in Computer Science, pages 216-226. Springer, 1979.

[^0]: *Supported by NSF grant CCF-1115703. Email: rocco@cs.columbia.edu
 †Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu

