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Abstract

H̊astad established that any predicate P ⊆ {0, 1}m containing parity of width at least three is
approximation resistant for almost satisfiable instances. However, in comparison to for example
the approximation hardness of Max-3SAT, the result only holds for almost satisfiable instances.
This limitation was addressed by O’Donnell, Wu, and Huang who showed the threshold result
that if a predicate strictly contains parity of width at least three, then it is approximation resis-
tant also for satisfiable instances, assuming the d-to-1 Conjecture. We extend modern hardness-
of-approximation techniques by Mossel et al. to projection games, eliminating dependencies on
the degree of projections via Smooth Label Cover, and prove, subject only to P 6= NP, the
same approximation-resistance result for predicates of width four or greater.
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1 Introduction

We study the approximation limits of NP-hard Constraint Satisfaction Problems (CSPs). A canon-
ical example being Max-3SAT which in the CSP framework can be denoted Max-CSP±(3OR).1

In Max-3SAT, we are given Boolean variables x1, . . . , xn and clauses of the form “a∨ b∨ c”, where
each literal a, b, and c is either a variable xi or its negation; a solution to an instance is an assign-
ment to the variables, the (optimal) value of a solution is the number of clauses it satisfies, and the
value of an instance is the maximum value over all solutions. In the CSP framework, we substitute
the value ‘true’ for 1 and ‘false’ for 0. In greater generality, a Max-CSP±(P) problem is defined
by specifying the width-m predicate P applied to the set of m literals instead of 3OR.

It is known that 3SAT is NP-hard to solve exactly and we turn our attention to efficient
approximations. We say that a solution is a c-approximation if its value is at least c times the optimal
value of an instance. In particular, for Max-3SAT, choosing a random assignment yields a 7/8-
approximation in expectation and unfortunately this is essentially the best efficient approximation
of the problem as Max-3SAT is NP-hard to approximate better than 7/8 + ε for every ε > 0
[10]. In fact, even if the instance is perfectly satisfiable, i.e., positive instances can have all clauses
satisfied, it is NP-hard to satisfy more than a fraction 7/8 + ε.

When a random assignment to an almost-satisfiable instance essentially achieves the best polynomial-
time approximation factor assuming P 6= NP, we say that a predicate is approximation resistant.
For simplicity, our treatise hereafter works under the P 6= NP assumption. A benefit of showing
that a predicate is approximation resistant is that it establishes the optimal polynomial-time ap-
proximation factor of the predicate up to lower-order terms. In particular, this quantity is called
the random assignment threshold and equals 2−m|P| where m is the width of the predicate P . The
celebrated work by H̊astad [10] demonstrated that a number of well-studied predicates are approx-
imation resistant and the techniques thereof have been the starting point of a long line of strong
inapproximability results. In fact, as a result of recent development, most predicates of sufficiently
large width are known to be approximation resistant [12, 3].

Of particular interest to us is the predicate odd parity defined by (a1, . . . , am) ∈ P if the
number of ai = 1 is odd, and the predicate even parity is defined analogously. H̊astad showed that
(either) parity is hereditarily approximation resistant, meaning that not only is parity approximation
resistant, but so is any predicate Q ⊆ {0, 1}m containing parity, whereby containing, we mean in the
set sense. However, in comparison to e.g. Max-3SAT, the approximation resistance result holds
with respect to almost satisfiable instances. Formally, letting Q be an arbitrary predicate containing
parity, for any ε, ε′ > 0, given a Max-CSP±(Q) instance with value at least 1 − ε′, it is NP-hard
to find a solution with value at least 2−m|Q|+ ε.

For parity, the use of almost-satisfiable instances is necessary: perfectly-satisfiable instances can
via Gaussian elimination be solved in polynomial time, whereas almost-satisfiable instances are hard
to approximate within 1/2 + ε. It is not immediately clear whether other approximation-resistant
predicates containing parity should be easy or hard for satisfiable instances, and indeed 3SAT is as
hard to approximate for almost-satisfiable as perfectly-satisfiable instances.

Assuming Khot’s d-to-1 Conjecture [17], this question was settled by O’Donnell and Wu [22] for
m = 3 and later generalized to m ≥ 3 by Huang [11]. They showed the remarkable threshold result
that any predicate strictly containing parity is approximation resistant also for perfectly-satisfiable
instances. More specifically, O’Donnell and Wu showed the hereditary approximation resistance,
for satisfiable instances, of the predicate “Not-Two”, the predicate which accepts a triple of bits if
they are all zeroes or have odd parity.

1The definition of Max-CSP is sometimes ambiguous and we have added a plus-minus superscript to signify that
constraints may involve negations of variables.
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The result O’Donnell and Wu follows from the construction of a Probabilistically Checkable
Proof (PCP) reducing from an outer verifier to Max-CSP±(Not-Two). The outer verifier may be
taken as a black-box (parametrized) CSP called Label Cover. In Label Cover, one is given
a bipartite graph G = (U ∪ V,E), a “small” label set K, a “large” label set L, and for each edge
e ∈ E an associated projection πe : L → K. Solutions assign each vertex u ∈ U a label λ(u) from
K and each vertex v ∈ V a label λ(v) from L, and the value of a solution is the fraction of edges
{u, v} ∈ E for which λ(u) = π{u,v}(λ(v)). One can show that it is NP-hard for every ε > 0 to
distinguish whether a Label Cover instance has value 1 (the completeness) or value at most ε
(the soundness) for sufficiently large label sets K and L depending on ε.

Reductions from Label Cover are today standard in hardness of approximation. For Boolean
constraints, such proofs typically involve semantically replacing λ(u) and λ(v) with 22|K| and

22|L| Boolean variables, respectively. These variables are respectively viewed as functions fu :
{−1, 1}K → {−1, 1} and gv : {−1, 1}L → {−1, 1}. The intention, for positive instances, is to set
these functions to dictators. That is, setting fu(x) = xλ(u) and gv(y) = yλ(v). For negative in-
stances, there are however no guarantees that the functions are set according to this coding scheme.
Reducing to a Max-CSP±(P ) instance, and viewing P as the indicator of its set, points of such
functions are passed as arguments to P . The value of an edge {u, v} in the Label Cover instance
is thereby reduced to, for some integer T , to the value of the expectation

E(x(1),...,x(T ),y(T+1),...,y(m))∼T

[
P
(
fu(x(1)), . . . , fu(x(T )), gv(y(T+1)), . . . , gv(y(m))

)]
, (1)

where the arguments are chosen according to a test distribution T . Equation 1 is the starting
point for Fourier analysis of PCPs. For approximation resistance, this involves first taking the
Fourier expansion of P and proceeding to bounds terms of the forms E[

∏
fu], E[

∏
gv], and/or

E[
∏
fu
∏
gv]. For work most similar to this treatise, T is typically one, rendering the first kind

of term(s) trivial to bound while terms of the third kind become E[fu
∏
gv]. Finally, a central

parameter to this work is the (maximum) degree of projections, d = d(ε) = maxe∈E maxi∈K |π−1
e (i)|.

That is, the greatest number of labels from the large label set which share projections. For present
NP-hard constructions of Label Cover, d→∞ as ε→ 0.

The construction by O’Donnell and Wu is similar to that of H̊astad for Max-3-Lin-2, i.e. parity
on three bits. Working with almost-satisfiable instances, H̊astad could define his test distribution
such that each argument to a function was somewhat “noised”. O’Donnell and Wu, working with
perfectly-satisfiable instances, could not afford this. Instead they made use of the subtle “unpre-
dictability” of a predicate which strictly contains parity. Defining a test distribution close to that
for Max-3-Lin-2, but with somewhat bounded correlation between the arguments to the func-
tions, they used theorems by Mossel [18] to argue that the analysis behave roughly as though the
arguments were somewhat noised. Following this, the effect of only being “close” to the uniform dis-
tribution over parity had to be bounded. For this, they extended modern techniques for analyzing
PCP’s. They introduced a “matrix-notation technique” to bound terms of the form E[

∏
gv] while

for terms of the form E[fu
∏
gv], they used a coordinate-wise distribution-substitution method to

bound the terms by influences. Their method has subsequently found other applications [25, 24].
We note that all of the steps in the above proof involves degenerative dependencies on d, the

degrees of projections. This prompted the use of the d-to-1 Conjecture which states that Label
Cover remains NP-hard for arbitrarily low soundness ε, even for a fixed degree of projections d.
The d-to-1 Conjecture, and its more well-known sibling, the UGC, have been shown to have remark-
able conditional consequences in hardness of approximation. However, despite considerable efforts
to prove or refute these conjectures, we appear to be nowhere near settling the conjectures nor the-
orems serving equivalent purposes. There has however been recent progress towards circumventing
the conjectures for particular problems [24, 9] which is also the strategy of this treatise.
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1.1 Our Contributions and Techniques

Our main contribution is to circumvent the d-to-1 Conjecture to show that any predicate strictly
containing parity of width at least four is approximation resistant for satisfiable instances unless P =
NP. The overarching steps of our proof follow those of O’Donnell and Wu, and our main technical
contribution is to extend the methods of Mossel et al. [19, 18] to limit the effects of projection
degrees. Subject to smoothness, explained below, we show that our PCP behaves roughly the
same subject to what we call projected noise as it does subject to independent noise; more on this
below. Additionally, we employ a multivariate invariance principle extended to projection games
which avoids dependencies on the degree of projections d. We note that a similar elimination of the
dependency on d, using different methods, was recently shown by O’Donnell and Wright [20] for
a particular two-variable case employed to show that it is NP-hard to distinguish 1/2-satisfiable
Unique Games instances from 3/8 + ε satisfiable.

The Smooth Label Cover problem serves an integral role in our proofs and is a variant of
Label Cover which roughly states that if one looks at a vertex v ∈ V and two labels j 6= j′ ∈ L,
over the random choice e of edges incident v, the two labels are unlikely to share projection;
that is, the event ‘πe(j) = πe(j

′)’ has arbitrarily low positive measure over the choice of e ∈ E.
Smooth Label Cover was first defined by Khot to show approximation hardness of Coloring
[16]. Subsequently, Feldman et al. [8] used it for the hardness of learning monomials, and Guruswami
et al. [9] to establish exciting optimal inapproximability results for two geometric results where
previously only optimal UG-hardness results were known. More intimately related to our work,
Khot and Saket [15] used smoothness to show 20/27 + ε approximation hardness of Max-CSP on
satisfiable instances.

Subject to smoothness, we relate what we call projected noise to non-projected or independent
noise. By projected noise, we mean noise where coordinates which share projections are jointly
resampled with some small noise probability while the latter does the same independently for each
coordinate. Projected noise is introduced by conventional techniques from correlation bounds,
while independent noise is typically needed to decode from influences without a dependency on
projection degrees. The issue with the former is that projected noise does not significantly affect
functions which depend on a large number of coordinates with the same projection. However, under
Smooth Label Cover, any function which depends on many coordinates must essentially depend
in expectation on many coordinates with different projections. With the limited unpredictability of
the distribution we define, we can via correlation bounds introduce projected noise independent of
d and subsequently turn it into independent noise because of smoothness.

With a test distribution which behaves roughly as though arguments were independently noised,
we wish to bound expectations of the form E[

∏
gv] and E[fu

∏
gv]. For the former, we employ

smoothness, partial independence of the test distribution, and hypercontractivity to argue that the
expectation is roughly the same as for a distribution where all coordinates j ∈ L are drawn indepen-
dently, as in Unique Games. Since our test distribution is arbitrarily close to being independent
over the arguments {y(t)}t in this setting, the expectation E[

∏
gv] is close to 0. Finally, we extend

the coordinate-wise distribution-substitution method of O’Donnell and Wu, to show a multivariate
invariance theorem similar to Mossel’s [18] but where bounds do not depend on the degree of pro-
jections d [26]. This permits us to effortlessly bound terms of the form E[fu

∏
gv]. In fact, the

soundness analysis of a term E[fu
∏
g] involving functions on both the small and large label sets

– often considered the hardest part of soundness analysis – becomes the easiest step subject to this
theorem.

It may be pedagogical to discuss what we require to employ our steps. For noise introduction,
it suffices, with smoothness, that each string y(r) has in the marginal distribution over a label
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j ∈ L bounded correlation to arguments {y(t)}t6=r conditioned on {x(t)}t. For bounding products
of the form E[

∏
gv], we require noise, smoothness, and a roughly m/2-wise independent balanced

distribution for {y(t)}t. For bounding products of the form E[fu
∏
gv] in terms of influences, we

require the weak conditions of uniform marginals and that any single string y(r) is independent of
{x(t)}t.

1.2 Preliminaries

We assume that the reader is familiar with basic probability theory and computational complexity
theory.

1.2.1 Basic Notation

When clear from the context sub- and superscripts may be omitted. For any real p, we denote by
p̄ = 1− p, while for a set A from a possibly implicit universe U , Ā refers to the complementary set
U \A. We use Iverson notation [S] where S is a true/false statement to denote 1 whenever S is true
and 0 otherwise. For a natural number n, the integral interval {1, . . . , n} is denoted [n]. In this
treatise, we deal extensively with correlated spaces P = (

∏m
t=1 Ωt, µ) over finite domains. When

the sample space is clear from the context, we may also specify measures instead of probability
spaces, and vice versa. Given an index set A ⊆ [m], we call ΩA the product space

∏
t∈A Ωt. For

a single index r ∈ [m], Ω−r denotes the product of all sample spaces besides Ωr, i.e.
∏
t∈A\r Ωt,

where A \ r denotes the set A \ {r}. Similarly, Ω−r,−r′
def
= ΩA\{r,r′}. On a related note, for a set

S and element x, we may denote the difference S \ {x} simply by S \ x or S − x. Vectors may
for clarity be denoted either by bold font, as in x, or with an overset arrow, as in ~µ. Given a
tuple x = (xi)i∈A and a bijection σ : A ↔ A, x ◦ σ denotes the tuple (xσ(i))i∈A. For functions
π : A → B, where A and B are arbitrary domains, we may also see π as a relation, i.e. the set
of tuples {(a, b) ∈ A × B | π(a) = b}. The `p norm of f is denoted by ||f ||µ,p and is defined as

Ex∼µ[|f(x)|p]1/p for real p ≥ 1 and maxx f(x) for p = ∞. When clear from the context, we shall
omit the distribution µ.

1.2.2 Operators on Probability Spaces

Tensoring. Given a probability space P = (Ω, µ), the nth tensor power of P is P⊗n = (Ωn, µ′ =
µ⊗n) where µ′(ω1, . . . , ωn) = µ(ω1) · · ·µ(ωn).

Noise Operators. So called noised functions are standard when analyzing PCPs and we extend
the notion somewhat to encompass also probability spaces.

Definition 1.1. Let P = (Ω1, µ) be a probability space, n an natural number, and f : Ωn → R a
function on P⊗n. The noise operator, also called the Bonami-Beckner operator, TP,γ̄(f) : Ωn → Ωn

with parameter γ̄ ∈ [0, 1] applied to f takes an argument x = (xi)i∈[n], and yields the expectation
of f where for every i, xi is independently resampled from P with probability γ and otherwise
preserved.

We shall typically omit the distribution P when it is clear from the context. The noise operator
is more commonly defined by a parameter specifying the noise, whereas we specify the correla-
tion, a more natural quantity in our eyes. The relation between the two definitions is immediate,
substituting γ̄ for γ.
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It is convenient for our proofs to extend the definition of noise operators to probability spaces.
In particular, let P = (

∏m Ωt, µ) be a correlated probability space, A ⊆ [m] an index set, and γ̄
a parameter. Then, TAγ̄ P is defined as the probability space which first draws from P and with
probability γ resamples ΩA from its marginal of µ. When A is a singleton {x}, we merely denote

the noise operator by Txγ̄ rather than T
{x}
γ̄ . Abusing notation, we also use the shorthand Ti1,...,ikγ̄1,...,γ̄k for

Ti1γ̄1
· · ·Tikγ̄kP. We note that the order of application of noise operators acting on individual sample

spaces does not matter. Furthermore, noise operators do not affect the marginal distribution of any
sample space.

The Projection Operator. In order to conveniently analyze projection-game-based PCPs, we
introduce a projection operator on correlated spaces. Intuitively, the operator yields a correlated
space which first samples a subset of spaces ΩA and then a number of times independently samples
the remaining spaces ΩĀ conditioned on ΩA.

Definition 1.2. The degree-d projection from an index set A ⊆ [m] on a correlated space P =

(
∏m Ωt, µ) is defined as Pd-proj-A def

= (
∏m Ω′t, µ

′), where Ω′t = Ωt if t ∈ A and otherwise Ωd
t , and

µ′(ω′1, . . . , ω
′
n) = Pµ

(
ΩA = ~ω′A

) d∏
i=1

Pµ

(
∀t/∈AΩt = ω′t,i |ΩA = ~ω′A

)
.

1.2.3 Efron-Stein Decompositions

Following previous work, our proofs make ample use of Efron-Stein decompositions. For simplicity,
we first define restrictions of a function to a subset of arguments relative a measure.

Definition 1.3. Let f : Ω(1) × · · · × Ω(n) → R, µ a measure on
∏

Ω(t), and S ⊆ [n]. Then the
restriction mean of f to the argument-set S is defined as f̃S(x) = E[f(X) |XS = xS ] .

Definition 1.4. Let f : Ω(1) × · · · × Ω(n) → R and µ a measure on
∏

Ω(t). Then the Efron-Stein
decomposition of f with respect to µ is {fS}S⊆[n] where

fS(x) =
∑
T⊆S

(−1)|S\T |f̃T . (2)

Whenever the sample spaces {Ω(t)}t are independent, the decomposition satisfies the following
properties. We note that these properties were in previous work [7, 18] taken as the definition of
an Efron-Stein decomposition, for which (2) was the unique construction.

Lemma 1.5 (Efron and Stein, 1984 [7], and Mossel, 2010 [18]). Assuming {Ω(t)}t are independent,
the Efron-Stein decomposition {fS}S of f :

∏
Ω(t) → R satisfies:

• fS(x) depends only on xS,

• and for any S, T ⊆ [m], and xT ∈
∏
t∈T Ω(t) such that S \ T 6= ∅,

E[fS(X) |XT = xT ] = 0.

Definition 1.6. Let Ω and Ω′ be arbitrary sets and consider a projection π : Ω → Ω′ and a
function g : Ωn → R. We say that g is shattered when non-zero Efron-Stein terms gT , T ⊆ [n]
satisfies |π(T )| = |t|, i.e. the elements of t have unique projections.
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Definition 1.7. With respect to sets Ω and Ω′, a projection π : Ω→ Ω′, and a function g : Ωn → R,
we define the shattered part of g with respect to π, g�π, as

g�π(y) =
∑

T⊆[n] : |π(T )|=|T |

gT (y).

1.2.4 Influences

A useful concept of functions is the influence of a coordinate. Intuitively, for a function f :
{−1, 1}n → R, the influence of coordinate i is how much f(x) changes on average with xi. When
analyzing positive instances in long-code-based PCPs, the functions in question are dictators of the
encoded assignments; formally, fu(x) = xλ(u) where λ(u) is the assignment to the vertex u in the
reduced-from Label Cover instance. In the other direction, whenever a protocol accepts with
a non-negligible probability over a random assignment, one would like to argue that the functions
must essentially have significant influences and additionally so, for multiple functions, of coordinates
consistent with projections.

Definition 1.8. Let f : Ωn → R be a function and i ∈ [n] a coordinate. The influence of coordinate
i is Infi(f) = Ex−i [Varxi [f(x)]] , where the implicit distributions are uniform over Ωn.

The influence of a coordinate has a nice representation in terms of the Efron-Stein decomposition
with respect to the uniform distribution.

Lemma 1.9. Let f : Ωn → R be a function and {fS}S its Efron-Stein decomposition with respect
to the uniform distribution. Then,

Infi(f) =
∑
S3i

E
[
f2
S

]
.

In a similar way, noisy influences are defined as Inf
(γ̄)
i (f)

def
= Infi(Tγ̄f) where γ ∈ [0, 1] is a noise

parameter. We note that the total influence of a function with codomain [−1, 1] can be of the order
n while the total noisy influence for γ > 0 is always bounded from above by a constant depending
only on γ.

Lemma 1.10. Let f : Ωn → [−1, 1] be a function and γ a parameter in (0, 1]. Then,∑
i

Inf
(γ̄)
i (f) ≤ γ−1.

1.2.5 Correlations

Intimately connected with noise operators is the concept of correlation between sample spaces. We
note that correlations are always bounded by one and noise operators applied to individual sample
spaces can only decrease correlation.

Definition 1.11. The correlation ρ(Ω1,Ω2; µ) between Ω1 and Ω2 with respect to the probability
space P = (Ω1 × Ω2, µ) is

ρP(Ω1,Ω2)
def
= ρ(Ω1,Ω2; P)

def
= max

φ,ψ
Eµ[φψ] ,

where the maximum is over functions φ : Ω1 → R, ψ : Ω2 → R such that E[φ] = 0 and Var [φ] =
Var [ψ] = 1.
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1.2.6 Smooth Label Cover

Label Cover is a constraint-satisfaction characterization of probabilistically checkable proofs
which, for sufficiently large domains, has completeness 1 and soundness error arbitrarily close to
0. In particular, we in the following choose to reduce from the bipartite unweighted multigraph
projection-game variant.

Definition 1.12. Instances (U, V,K,L,E,Π) of the gap problem Label Coverk consists of a
bipartite multigraph G = (U, V,E), label sets K and L, |K| = k, for the vertices U and V , respec-
tively, and for every edge e ∈ E, a projection πe : L → K. A solution to Label Cover consists
of a labelling λ : U → K,V → L and the value of a solution is given by the fraction of edges
{u, v} ∈ E such that π{u,v}(λ(v)) = λ(u). Finally, the value of an instance is the maximum value
of any solution.

We refer to K as the small label set, or table, and to L as the large. We proceed to the property
of smoothness. Subject to a Label Cover instance with this property, we also say that a vertex
u ∈ U or the projection π = π{u,v} is chosen (J, κ)-smoothly.

Definition 1.13. A Label Cover instance is (J, κ)-smooth if for any vertex v ∈ V and any set of
labels S ⊆ L, |S| ≤ J , over a uniformly at random neighbor u ∈ U of v, Pu∼v

(
|π{u,v}(S)| < |S|

)
≤ κ.

We have adapted the original definition of Smooth Label Cover somewhat, choosing bipartite
projection games over hypergraphs and characterizing Definition 1.13 as the essential property of
smoothness. In particular, the Label Cover variant our hardness result reduces from is the
following.

Theorem 1.14. For any parameters ε > 0, κ > 0, J ∈ N, there exists k = k(ε) such that Gap-(1, ε)
Label Coverk with the following properties is NP-hard.

• The constraint graph G is left and right regular.

• Instances are (J, κ)-smooth.

• For some integer R1 = R1(ε) and R2 = R2(J, κ), the cardinalities of K and L are k
def
=

2R110R1(R2−1)R2 and 10R1R2, respectively.

• Projections are d(ε) = 5R1(ε)-regular.

Proof. We reduce from the H̊astad-Raz outer verifier [10, 23], also called Label Cover, which one
can produce with the desired regularity properties.

We define R2 = κ−1J2 and let the new label sets K ′ and L′ be [R2] × K × LR2−1 and LR2 ,
respectively. The new projections π′ : L′ → K ′ are defined as follows: choose t ∈ [R2] uniformly
at random and project ~j = (j1, . . . , jR2) ∈ L′ to (t, π(jt), j1, . . . , jt−1, jt+1, . . . , jR2) ∈ K ′. This ends
the definition of the reduction and we note that all properties aside from smoothness are immediate.

The argument for the smoothness property of Definition 1.13 is standard. Let~j,~j′ be two distinct
labels in L′. As they are distinct, they must differ in at least one of their R2 coordinates. Let t be
such a coordinate. If t is not chosen in the random projection, ~j and ~j′ project to different labels.

The probability that t is chosen is at most 1/v and this bounds the probability Pπ′

(
π′(~j) = π′(~j′)

)
.

Let T be an arbitrary subset of L′ of cardinality at most J . In order for |π′(T )| < |T |, two
labels in T ⊆ L′ must project to the same label ~i ∈ K ′. As there are at most

(
T
2

)
≤ J2 pairs

of labels in T and each share projection with probability at most 1/R2, the union bound yields
Pπ′(|π′(T )| < |T |) ≤ J2/R2 ≤ κ by the definition of R2.
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1.3 Main Theorem

The main theorem of the paper is the following.

Theorem 1.15. Any predicate P ⊆ {0, 1}m,m ≥ 4, strictly containing odd or even parity on m
bits is approximation resistant for satisfiable instances.

Our proof defiend a distribution on the predicate P and shows that every non-constant term
in the Fourier expansion of P must be small in the negative case. Indeed, our proof establishes
so-called uselesness of P introduced in Austrin and H̊astad, 2012 [14], and in extension hereditary
approximation resistance.

For clarity and being the simplest case of interest, we begin by proving the theorem for width-
four predicates. In particular, it suffices to prove the theorem for the arity-four predicate “0,1, or
3” as other predicates either follows from symmetry or the hereditary approximation resistance of
the symmetrical predicates.

1.4 Organization of the Paper

We define the reduction, its claimed soundness, and completeness in Section 2.2. The completeness
argument is straightforward and can be found in Section 2.2.1. As usual with PCP-based hardness
results, the soundness analysis is more involved and deferred to a number of separate sections.
In particular, Section 2.3 establishes bounds on the correlation between sample spaces of our test
distribution; Section 2.4 shows that, due to the correlation bounds, the analyzed expressions behave
roughly as though they were noised; Section 2.5 bounds unmixed terms, i.e. terms of the form
E[
∏
g]; while Section 2.6 bounds mixed expression, i.e. expressions of the form E[f

∏
g], in terms

of common influences consistent with projections. The established lemmas are stated in Section
2.2.2 were it is also shown how they prove the desired soundness.

In the last part of this paper, we generalize the arguments to predicates of greater width. Sections
3.2, 3.3, 3.4, 3.5, respectively, generalize the PCP protocol, correlation bounds, noise introduction
arguments, and bounds on unmixed terms. In Section 3.6, we establish an invariance-style theorem
building on preceding work which we later apply to bound mixed terms of greater width in Section
3.7. Finally, the results of these sections are tied together in Section 3.2.1 where it is shown how
they imply the soundness bound of the generalized PCP.

2 Predicates of Width Four

In the following, we prove a special case of the main theorem.

Theorem 2.1. The arity-4 predicate “0, 1, or 3” with negation is approximation resistant for
satisfiable instances. Put differently, for every ε > 0, it is NP-hard to distinguish whether a Max-
CSP±(“0, 1, or 3”) instance has value 1 or value at most |P |/2−4 + ε = 9/16 + ε.

2.1 Proof Outline

We define a standard Long Code-based protocol reducing from Smooth Label Cover with the
desired completeness and soundness. The protocol works by sampling a string x uniformly at
random from the small table and subsequently defining three strings on the large table by sampling

(y
(2)
j , y

(3)
j , y

(4)
j ) conditioned on xπ(j). This second step draws with high probability from the standard

three-wise independent distribution on parity, and otherwise from a distribution which has positive
weight on the additional all-zeroes assignment.

9



For the former distribution, if we had noise, we would by standard arguments have that the
acceptance probability is essentially limited to that of a random assignment unless the Smooth
Label Cover instance has a non-trivial labelling. The second distribution is used precisely to have
correlations bounded away from one, permitting us to introduce noise with the help of smoothness,
even when the projection degrees depend on ε.

Having introduced noise, we have to bound terms of the form E[
∏
g] and E[f

∏
g]. For the

former, we argue that smoothness and partial independence makes the product behave roughly as
though we had unique projections; for this case, the distribution is close to three-wise independent
and the products are insignificantly correlated. For terms involving functions on both tables, i.e.
E[f

∏
g], we show via a multivariate invariance argument that the product is close to E[f ] E[

∏
g] =

0 unless a non-trivial labelling exists.

2.2 The Protocol

The hardness of Max-CSP±(P ) follows by a reduction from Smooth Label Cover as it appears
in Theorem 1.14 with soundness ε = ε(ε), and label sets K = [k(ε, J, κ)] and L = K × [d(ε)].

To define the reduction R from an instance I, take as variables for the CSP±(P ) instance R(I)

for every vertex u ∈ U , 22|K| Boolean variables and for every vertex v ∈ V , 22|L| variables. As is
standard, we see these variables as functions fu : {0, 1}K → {0, 1} and gv : {0, 1}L → {0, 1}. Let
D be the uniform distribution on “1 or 3” and let E be the distribution which chooses uniformly at
random from {0000, 0111} with probability 0.5 and otherwise from {1000, 1110, 1101, 1011}. Define
a polynomial number of constraints corresponding to the following probabilistic verifier.

1. Pick a random vertex u ∈ U and a random neighbor v ∈ V . Sample π = π{u,v} as defined by
the Smooth Label Cover instance and let π̄ be an arbitrary bijection L↔ L such that for
every i, i′ ∈ K and r ∈ [d], π(i, r) = i′ iff ∃r′∈[d]π̄(i, r) = (i′, r′).

2. Sample random folding constants a, b ∼ {0, 1}. Define fa(x) = a ⊕ fu(a ⊕ x) and gb(y) =
b⊕ gv(b⊕ y ◦ π̄).

3. For each i ∈ K, independently choose xi uniformly at random from {0, 1}. For each j ∈ L,

independently sample (xπ(j), y
(2)
j , y

(3)
j , y

(4)
j ) conditioned on xπ(j) from D with probability δ̄

and otherwise E .

4. Accept iff
(
fa(x), gb(y

(2)), gb(y
(3)), gb(y

(4))
)
∈ P .

We note that queries a⊕f(a⊕·) are permitted in Max-CSP± where the operation a⊕· acts as a
possible negation of a variable. This construct is called folding and ensures that Ex[f ] = Ey [g] = 0.

The goal is to show the following two properties of the protocol from which Theorem 2.1 follows.
Completeness is argued in Section 2.2.1 and soundness in Section 2.2.2.

Proposition 2.2. The protocol has completeness 1. Said equivalently, if Val(I) = 1, then Val(RP (I)) =
1.

Proposition 2.3. For arbitrary fixed ε > 0, the protocol has soundness |P |/16+ε = 9/16+ε. More
specifically, if Val(I) ≤ ε = ε(ε), then Val(RP (I)) ≤ 9/16 + ε.
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Constants To be precise, m, the width of the predicate equals 4. Let δ ≤ 2−16ε2; define ρ0
def
=√

1/2 + 1/2(1− δ2/8)2 and choose γ > 0 sufficiently close to 0 such that supk ρ
k
0(1 − γ̄k) ≤ 2−8ε.2

Again, define ρ1
def
=
√

1− γ3 and choose η > 0 sufficiently close to 0 such that supk ρ
k
1(1−η̄k) ≤ 2−8ε.

Set the smoothness parameters J ≥ 1 + 2 log(2−8ε/10)/ log(γ̄), and κ ≤ 2−183−3J/2−2ε2. Finally,
ε(ε) = 2−12ηγ3ε2.

Proof of Theorem 2.1.

Proof. A random assignment satisfies the predicate P with probability |P |/16 = 9/16. To establish
the theorem, we wish to show for every ε > 0 that Gap-(1, 9/16 + ε) CSP±(P ) is NP-hard. This
follows by the following Lemmas 2.2 and 2.3, together with the fact that the defined reduction yields
at most a polynomial blow-up of instance size.

2.2.1 Completeness

Proving perfect completeness of the protocol is standard and essentially follows by inspection.

Proof of Lemma 2.2. By the value of the Label Cover instance, there is an assignment λ : U →
K,V → L satisfying for every constraint π{u,v}, {u, v} ∈ E, λ(u) = π{u,v}(λ(v)). Define a solution
to RP(I) by the corresponding dictators, i.e. {fu(x) = xλ(u)}u∈U and {gv(y) = yλ(v)}v∈V .

Following the protocol, let u, v, and π̄ be as chosen, implying {u, v} ∈ E. Let (i, r) = π̄(λ(v));
as the Label Cover instance satisfied all constraints, we have i = λ(u) and consequently, fa and gb

satisfies fa(x) = xi and gb(y) = y(i,r). The protocol hence accepts iff
(
xi, y

(2)
(i,r), y

(3)
(i,r), y

(4)
(i,r)

)
∈ P. As

the protocol draws this tuple either from D or E and their respective support is in P, we conclude
that the protocol always accepts.

2.2.2 Soundness

As is usual, we establish the soundness via the contradiction of its contrapositive: supposing that
the acceptance probability of RP (I) is greater than |P |/16 + ε, we show that there is a labeling of
the Smooth Label Cover instance I achieving value greater than ε = ε(ε). The dependency in
particular is ε(ε) = 2−12ηγ3ε2 where the noise constants η and γ appear below.

Notation. Define the following distributions which appear in our proofs,

T0 = δ̄D + δE , T ′0 = T d-proj-1
0

⊗K
,

T ′1 =
(

T2,3,4
γ̄ T d-proj-1

0

)⊗K
,

T ′2 =
(

T2,3,4
γ̄

(
T1
η̄T0

)d-proj-1
)⊗K

,

T3 = T1
η̄T

2,3,4
γ̄ T0, T ′3 = T d-proj-1

3

⊗K
, T ′′3 = T ⊗L3 .

The test distribution of the protocol corresponds to T ′0 . Intuitively, T ′1 is the distribution where
projected noise is applied to y(2),y(3), and y(4), i.e. all coordinates which share projection are
changed by noise simultaneously. T ′2 is the same distribution but with noise applied also to x. We
note that projected and non-projected (independent) noise are the same for x as it is defined on the

2For instance, one can take γ̄ = ρ2−8ε.
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smaller table. T ′3 is the distribution all strings – x,y(2),y(3), and y(4) – all have independent noise.

Finally, in T ′′3 , we have independent noise as in T ′3 but for each j ∈ L, the tuple (y
(2)
j , y

(3)
j , y

(4)
j ) is

drawn independently when, as in our analysis for this distribution, we are not concerned with x.
For notational simplicity, define f = Ea[fa] and g = Eb[gb]. Let the queried points of the

functions be q1
def
= f(x), q2

def
= g(y(2)), . . . , q4

def
= g(y(4)). As is usual for PCP analysis, we substitute 1

for −1 and 0 for 1, and freely switch between the two conventions whenever convenient. Considering
the Fourier transform {P̂Γ}Γ⊆[4] of the predicate, the acceptance probability of the protocol equals

EE,T ′0

[∑
Γ⊆[4] P̂ΓχΓ(q)

]
where the distribution is over a random edge e ∈ E from the Smooth

Label Cover instance and the arguments from T ′0 . For an arbitrary Γ 6= ∅ and distribution R, let
us denote by ψΓ(R) = EE,R[χΓ(q)]. Conceptually, we refer to these terms as E[

∏
g] or E[f

∏
g]

for zero or more functions g. We also note that the acceptance probability in the new notation
equals

∑
Γ P̂ΓψΓ(T ′0 ).

Properties of the Protocol. By inspection, we see that all distributions above has the basic
property that all four arguments, x,y(2), . . . ,y(4), have uniform marginals. Additionally, each y(t)

argument is on its own independent of x.

Lemma 2.4. Let t ∈ {2, 3, 4} and consider either distribution T ′r , r = 0, 1, 2, 3. The marginals on
x and y(t) are uniform and furthermore y(t) is independent of x.

Proof. For simplicity of this proof, we use the 0, 1-notation. By inspection, x has uniform marginals
for both D and E and consequently T ′0 . By symmetry, consider the probability of the outcomes 00,
01, 10, and 11 for (x1, y2) in D and E , respectively. Again by inspection, these outcomes each
have probability 1/4. As x has uniform marginals and sampling is done independently for every
coordinate j conditioned on xπ(j), the lemma follows.

For either of the other distributions, it suffices to notice that the noise operators do not change
marginals nor introduce dependencies.

The aim is to show the following four propositions from which the soundness follows. We note
that the first proposition establishes basic properties while the remaining three mimic the approach
of O’Donnell and Wu [22]. The proofs of these latter three lemmas are deferred to Section 2.4,
Section 2.5, and Section 2.6, respectively.

The first proposition states that, due to the preceding independence, terms involving at most
one y(t) argument are zero.

Proposition 2.5. ψΓ(T ′0 ) = 0 for ∅ 6= Γ ⊆ [4], |Γ ∩ {2, 3, 4}| ≤ 1.

Proof. As shown in Lemma 2.4, the test distribution has uniform marginals. Hence ψ{t}(T ′0 ) =
EE,T ′0 [qt] which equals EE [ E[f ]] or EE [ E[g]], both of which are 0 due to folding. Suppose Γ =

{1, t}. Then ψΓ(T ′0 ) = EE,T ′0 [fg] = E[f ] E[g] = 0 since y(t) is uniform and independent of x by
Lemma 2.4, subsequently folding yields expectation 0.

The second lemma, which involves smoothness and significant technical work, argues that terms
are in expectation roughly the same with the original test distribution as the test distribution with
noise, independent of d, on all arguments. We note that the constants ρ0 =

√
1/2 + 1/2(1− δ2/8)2

and ρ1 =
√

1− γ3 appearing in the proposition are correlation bounds appearing in the proofs and
are bounded away from 1 depending only on δ and γ.

Proposition 2.6. |ψΓ(T ′0 )− ψΓ(T ′3 )| ≤ supk≥0 ρ
k
0(1− γ̄k) + supk≥0 ρ

k
1(1− η̄k) + 6

√
κ+ 6γ̄J ≤ ε/256

for any Γ ⊆ [4].
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Third, over the noised distribution, terms of the form E[
∏
g] are shown to have an expectation

which approaches 0 as parameters are tweaked.

Proposition 2.7. |ψΓ(T ′3 )| ≤ 4γ̄J/2−1 + 6 · 33J/4√κ+
√
δ ≤ ε/256 for 1 /∈ Γ ⊆ [4], |Γ| ≥ 2.

Finally, we bound terms of the form E[f
∏
g]. This is often considered the hardest part of

PCP analysis. However, the argument is almost immediate after we extend Mossel’s multivariate
invariance principle [18] to projection games.

Proposition 2.8. |ψΓ(T ′3 )| ≤ 8

√
γ−1 EE

[∑
(i,j)∈π Inf

(η̄)
i (f)Inf

(γ̄)
j (g)

]
for 1 ∈ Γ ⊆ [4], |Γ| ≥ 3.

Proof of Lemma 2.3. Propositions in hand, we proceed to show how they imply the desired
soundness.

Proof of Lemma 2.3. As is usual, we establish the soundness through the contradiction of its con-
trapositive: supposing that the acceptance probability of RP (I) is greater than |P |/16 + ε, we show
that there is a labelling of the Smooth Label Cover instance I achieving value greater than
ε = ε(ε) = 2−12ηγ3ε2.

The labelling in question is the (η̄, γ)-Noisy Influence Assignment which independently sets

vertex u resp. v to label i resp. j with probability proportional to Inf
(η̄)
i (fu) resp. Inf

(γ̄)
j (gv). By

Lemma 1.10, this defines probability measures with normalization constants bounded by η and γ,
respectively. By this labelling, the Smooth Label Cover instance has value at least

PE(λ(u) = π(λ(v)) ≥ ηγEE

 ∑
(i,j)∈π

Inf
(η̄)
i (f)Inf

(γ̄)
j (g)

 . (3)

Suppose that the assignment {fu}u∈U , {gv}v∈V achieves value greater than |P |/16 + ε for
some ε > 0. Taking the Fourier expansion of the predicate P , the acceptance probability equals∑

Γ P̂ΓψΓ(T ′0 ). We note that the term with Γ = ∅ equals |P |/16. For the remaining terms,
let A,B, and C be the respective choices of Γ appearing in Lemma 2.5, 2.7, and 2.8, respec-

tively. By the first of these lemmas, for any Γ ∈ A, ψΓ(T ′0 ) = 0. We also note that
∣∣∣P̂Γ

∣∣∣ ≤ 1

for any Γ. Consequently,
∑

Γ∈B+C |ψΓ(T ′0 )| > ε. By Lemma 2.6 and the choice of parame-
ters,

∑
Γ∈B+C |ψΓ(T ′3 )− ψΓ(T ′0 )| ≤ ε/4. By Lemma 2.7 and the choice of parameters again,∑

Γ∈B |ψΓ(T ′3 )| ≤ ε/4. Consequently, using Lemma 2.8 and |C| ≤ 4, for some Γ ∈ C,

ε/8 ≤
∣∣ψΓ(T ′3 )

∣∣ ≤ 8

√√√√√γ−1 EE

 ∑
(i,j)∈π

Inf
(η̄)
i (f)Inf

(γ̄)
j (g)

.
That is,

EE

 ∑
(i,j)∈π

Inf
(η̄)
i (f)Inf

(γ̄)
j (g)

 > 2−12γ2ε2.

Relating to (3), we see that the (η̄, γ)-noisy influence assignment achieves a value greater than
ε(ε) = 2−12ηγ3ε2, as desired.
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2.3 Correlation Bounds for the Test Distribution

In this subsection, we establish bounds on the correlation between strings in our test distribution.
We view the distribution T ′0 as sampling |K| copies on the correlated space Ω1 × Ωd

2 × Ωd
3 × Ωd

4

where each Ωt equals {−1, 1} but is indexed for clarity. These samples form x,y(2),y(3), and y(4),
respectively.

The correlation bounds we aim to establish for the test distribution are the following. The first
lemma shows that for our test distribution T0, the correlation between arguments to g functions are
bounded away from 1 independent of d. This in turn will enable us to introduce projected noise for
g functions.

Lemma 2.9.

ρ
(

Ω1 × Ωd
2 × Ωd

3,Ω
d
4; T d-proj-1

0

)
≤

√
1

2
+

1

2

(
1− δ2

8

)2

.

Proof. Proven on Page 17.

The second lemma essentially says that after we have introduced projected noise for all g func-
tions, the argument to f has correlation bounded away from 1 independent of d, enabling us to in
turn introduce noise for f .

Lemma 2.10.
ρ
(

Ω1,Ω
d
2 × Ωd

3 × Ωd
4; T2,3,4

γ̄ T d-proj-1
0

)
≤
√

1− γ3.

Proof. Proven on Page 17.

The third and final lemma is used to show that a product of g-functions is always small if we
do not have projections. This will be the final step when we bound terms of the form E[

∏
g] after

we have argued that the product behaves roughly as though there were unique projections.

Lemma 2.11.
ρ (Ω2,Ω3 × Ω4; T0) ≤

√
δ.

Proof. Proven on Page 17.

2.3.1 Preliminaries

We begin by introducing the concept of expected conditional expectation and present lemmas which
simplify our proofs.

Definition 2.12. Let P = (Ω = ΩA × ΩB × ΩC , µ) be a correlated probability space and {Ei}i a
partition of Ω. The expected conditional correlation between ΩA and ΩB conditioned on {Ei}i with
respect to the measure µ is

ρµ(ΩA,ΩB | {Ei}i; P) = EEi∼µ
[
ρµ(ΩA,ΩB; P | Ei)

2
]1/2

,

where ‘P | Ei’ is the probability space conditioned on the event Ei.

In the special case when the partition {Ei} is the set of indicators of a correlated space ΩC , we
simplify notation as follows.
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Definition 2.13. The expected conditional correlation between ΩA and ΩB conditioned on ΩC with
respect to the measure µ is

ρµ(ΩA,ΩB | ΩC ; P) = EωC∼µ
[
ρµ(ΩA,ΩB; P | ωC)2

]1/2
,

where ‘P | ωC ’ is the probability space conditioned on the event ‘ΩC = ωC ’.

We recall and slightly reformulate useful lemmas from Mossel [18]. The first lemma gives an
explicit expression which is useful for analyzing the correlation between outcome spaces and in
particular when two settings offer the same correlation.

Lemma 2.14 (Lemma 2.8, Mossel, 2010 [18]).

ρµ(ΩA,ΩB) = sup
φ∈L2

µ(ΩA),Eµ[φ]=0,Varµ[φ]=1

EωB∼µΩB

[
Eµ[φ |ωB]2

]1/2
.

The second lemma says that if two functions depend on a number of independent correlated
spaces, then they can maximize their correlation by using only one set of correlated spaces.

Lemma 2.15 (Proposition 2.13, Mossel, 2010 [18]). Correlated probability spaces
{(

Ω
(i)
A × Ω

(i)
B , µi

)}
i

satisfy

ρ
(∏

Ω
(i)
A ,
∏

Ω
(i)
B ;

∏
µi

)
≤ max ρ

(
Ω

(i)
A ,Ω

(i)
B ; µi

)
.

Finally, the following lemma gives a simple convenient upper bound on the correlation of any
probability space, however it would be deteroriating with d if applied directly in our proofs.

Lemma 2.16 (Lemma 2.9, Mossel 2010 [18]). Let (ΩA×ΩB,P) be a correlated space where the min-
imum strictly positive probability of any outcome is α. Consider the bipartite graph G = (ΩA,ΩB, E)
where {x, y} ∈ E iff (x, y) ∈ ΩA × ΩB has strictly positive probability. If G is connected, then

ρ(ΩA,ΩB; P) ≤ 1− α2/2.

We continue to establish three lemmas useful for dealing with correlations. The first shows
formally the intuitive property that the expected correlation between two sample spaces is greater
than the correlation without knowledge of any events. This will prove useful in bounding correlations
which involve sample spaces growing with d.

Lemma 2.17. Let (
∏m Ωt, µ) be a correlated probability space, A,B non-empty subsets of [m], and

{Ei}i a partition of the outcome space such that either ΩA or ΩB is independent of {Ei}i, i.e. the
marginal distribution of the sample space ΩA or ΩB remains unchanged conditioned on any event
E ∈ {Ei}i. Then,

ρ (ΩA,ΩB; P) ≤ ρ (ΩA,ΩB | {Ei}i; P)

Proof. Without loss of generality, let ΩB be independent of {Ei}i. Note that EE [·] in this proof
denotes the expectation over events in {Ei}i; not the expectation over a random edge as in the
analysis of our protocol.

By Lemma 2.14 and subsequently Jensen’s, the LHS equals

sup
φ

EωA

[
EΩB [φ |ωA]2

]1/2
≤ sup

φ
EE,ωA

[
EΩB [φ |E,ωA]2

]1/2
, (4)
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where the supremum is over φ ∈ L2(ΩB) with expectation 0 and variance 1 with respect to µ. Using

that supx∈X E
[
x2
]1/2

= (supx∈X E
[
x2
]
)1/2 for x ≥ 0 and subsequently independence between ΩB

and the events,

(4) =

(
sup
φ

EE,ωA

[
EΩB [φ |E,ωA]2

])1/2

≤ EE

[
sup
φ

EωA | E

[
EΩB [φ |ωA]2

]]1/2

. (5)

Again from Lemma 2.14, we recognize this supremum as ρ (ΩA,ΩB; P ′ | E)2. Consequently,

(5) = EE∈{Ei}i

[
ρ (ΩA,ΩB | E; P)2

]1/2
,

which we recognize as the definition of ρ (ΩA,ΩB | {Ei}i; P).

As a corollary, there is a simple bound on the correlation between a mixture of distributions
from the correlations of the respective distributions.

Corollary 2.18. Let (ΩA,ΩB, δ̄µ+ δν) be a correlated space such that the marginal distribution of
at least one of ΩA and ΩB is identical on µ and ν. Then,

ρ
(
ΩA,ΩB; δ̄µ+ δν

)
≤
√
δ̄ρµ(ΩA,ΩB)2 + δρν(ΩA,ΩB)2.

Proof. Suppose that the marginal of ΩA is identical on µ and ν. In consequence, the marginal
coincides for these distributions with δ̄µ+ δν. We extend the outcome space by an indicator of the
drawn-from distribution and note that it does not change the correlation. Since ΩA is independent
of this outcome, we can apply Lemma 2.17 to the indicator for the desired corollary.

Finally, there is a simple bound, independent of d, between outcome spaces even when the spaces
may grow with d. Namely, if conditioning on the part, ΩA, which does not grow with d does not
change the distribution for one of the considered outcome spaces, then the spaces cannot achieve a
higher correlation than having ΩA revealed and using a single of the d samples.

Corollary 2.19. Let A,B,C be disjoint subsets of [m] and P = (
∏m Ωt, µ) a correlated probability

space such that ΩC is independent of ΩA. Then,

ρ
(

ΩA × Ωd
B,Ω

d
C ; Pd-proj-A

)
≤ ρ (ΩB,ΩC | ΩA; P) .

Proof. We use Lemma 2.17 with the events {Ei}i the outcomes of ΩA, which are independent of
ΩC by the corollary hypothesis. The LHS is thusly bounded

LHS ≤ ρ
(

Ωd
B,Ω

d
C | ΩA; Pd-proj-A

)
= EωA

[
ρ
(

Ωd
B,Ω

d
C ; (P | ωA)⊗d

)2
]1/2

.

From Lemma 2.15, we know that these correlations are bounded by any the greatest correla-

tion of any one sample, i.e. EωA

[
ρ (ΩB,ΩC ; P | ωA)2

]1/2
, which we identify as the definition of

ρ (ΩB,ΩC | ΩA; P).
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2.3.2 Proof of Lemmas 2.10, 2.11, and 2.9

Prelinaries in hand, we turn to the proofs of the main lemmas of this subsection. The proofs are
ordered by simplicity.

Proof of Lemma 2.11. With probability δ̄, Ω4 is drawn from D in which case it is independent of
Ωd

2 × Ωd
3, yielding a correlation of 0. In the other event, the correlation is bounded by 1. Hence,

using Corollary 2.18,

ρ
(

Ω2 × Ω3,Ω4; T d-proj-1
3

)
≤
√
δ̄ · 02 + δ · 12 ≤

√
δ.

Proof of Lemma 2.10. We recall that the considered distribution is T2,3,4
γ̄ T d-proj-1

0 . With probability

γ3, the outcome of Ωd
2 × Ωd

3 × Ωd
4 is independent of Ω1 and the correlation is 0. Denote this event

by A and let the correlations of the two possibilities be, respectively, ρA = 0 and ρĀ ≤ 1. Then,

ρ
(

Ω1,Ω
d
2 × Ωd

3 × Ωd
4; T2,3,4

γ̄ T d-proj-1
0

)
≤
√

P(A) ρ2
A + P

(
Ā
)
ρ2

Ā

≤
√
γ3 · 02 + (1− γ3) · 12 =

√
1− γ3.

Proof of Lemma 2.9. Lemma 2.4 implies that Ωd
4 is independent of Ω1. Applying Corollary 2.19

with A = {1}, B = {2, 3}, C = {4}, we get

ρ
(

Ω1 × Ωd
2 × Ωd

3,Ω
d
4; T d-proj-1

0

)
≤ ρ(Ω2 × Ω3,Ω4 | Ω1; T0)

which by definition equals Eω1

[
ρ(Ω2 × Ω3,Ω4; T0 | ω1)2

]1/2
.

Switching to {0, 1} notation again, to establish that the considered correlation is bounded away
from 1, it suffices that the conditioned correlation is bounded away from 1 for at least one of the
cases ω1 = 0 and ω1 = 1. This is precisely what we do, we bound the latter by 1 and find a smaller
bound for the case ω1 = 0.

To this end, we employ Lemma 2.16. The bipartite graph in question has left vertices Ω2 ×Ω3,
right vertices Ω4, and an edge {(ω2, ω3), ω4} whenever (ω2, ω3, ω4) has strictly positive probability
P({(ω1 = 0, ω2, ω3, ω4)}) > 0. Lemma 2.16 states that if this graph connected, the correlation is
bounded away from 1. To be specific, at most 1 − α2/2 where α is the smallest strictly positive
probability of any outcome.

The graph is indeed connected. From ω4 = 0, D connects to ω2 + ω3 = 1 while E connects to
ω2 + ω3 = 0. From ω2 = ω3 = 0, ω4 = 1 has positive probability due to D which in turn can occur
with ω2 + ω3 = 2. This covers all possibilities.

By inspection, the minimum strictly positive probability of any outcome α for the distribution
T0 = δ̄D + δE conditioned on ω1 = 0 is given by E as δ is close to 0. E only has two outcomes
conditioned on ω1 = 0, namely 0000 and 0111, each with conditioned probability 0.5. Consequently,
α = δ/2, implying ρ(Ω2 × Ω3,Ω4; T0 | ω1 = 0) ≤ 1− δ2/8 and, as desired,

ρ
(

Ω1 × Ωd
2 × Ωd

3,Ω
d
4; T d-proj-1

0

)
≤

√
1

2
· 12 +

1

2

(
1− δ2

8

)2

.
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2.4 Noise Introduction

We first show a theorem which allow us to go from projected noise to independent non-projected
noise.

2.4.1 Equivalence of Projected and Non-Projected Noise

In this subsection, we show that when analyzing an expectation E[
∏
g] or E[f

∏
g] and projections

are chosen as in Smooth Label Cover, the expected difference of this term with projected
and non-projected noise is bounded by a constant depending only on and strictly decreasing with
smoothness parameters κ−1 and J .

By non-projected noise, we mean the classical noise in hardness of approximation: every co-
ordinate yj ∈ Ω of a string y is independently resampled from the marginal of the distribution
with a fixed probability. By projected noise, we mean the noise as used by Mossel [18]: every
group of coordinates {yj}π(j)=i ∈ Ω|π

−1(i)| with the same projection are jointly resampled from the
distribution’s marginal with a fixed probability.

Lemma 2.20. Consider label sets K,L = K × [d] and a function g = gv : ΩL
C → R defined

on a probability space P = (ΩA × ΩB × ΩC , µ)d-proj-A⊗K where ΩC is independent of ΩA. Let
π = π{u,v} : L → K be chosen (J, κ)-smooth and define P π̄ by permuting the arguments of g in
accordance with an arbitrary permutation π̄ consistent with π. Let {gS}S⊆L be the Efron-Stein
decomposition of g and denote by Uπ

S the event ‘|π(S)| ≥ min{J, |S|}′. Then,∣∣∣∣∣∣
∣∣∣∣∣∣
∑
S : UπS

gS

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
√
κVar[g],

where the norm is over P π̄.

Proof. We let the implicit distribution of the proof draw P, π and set P π̄ accordingly. We also
note that by the hypothesis that ΩC is independent of ΩA, the Efron-Stein decomposition of g with
respect to P satisfies the usual properties of Lemma 1.5. In fact, as neither g nor its marginal
distribution depends on π, the Efron-Stein decomposition with regard to the distribution P π̄ is
the same regardless of π. For this reason, we shall not specify further which distribution the
decomposition is with respect to.

We begin by rewriting the left term,

LHS = E

(∑
S

[
Uπ
S

]
gS

)2
1/2

= Eπ

∑
S,T

[
Uπ
S ∧Uπ

T

]
EP π̄ [gSgT ]

1/2

, (6)

where [.] denotes Iverson notation.
By the properties of Efron-Stein decompositions, EP π̄ [gSgT ] is 0 unless S = T . Furthermore,

EP π̄
[
g2
S

]
only depends on the marginal distribution of ΩM

C and is independent of π. Hence,

(6) =

(∑
S

Pπ

([
Uπ

S

])
EP
[
g2
S

])1/2

. (7)

The permutation π was chosen to be (J, κ)-smooth and consequently the probability in the expres-
sion is bounded by κ, 0 in particular for S = ∅, and the remaining sum is the variance of g by
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Parseval’s:

(7) ≤

κ∑
S 6=∅

EP
[
g2
S

]1/2

= (κVar[g])1/2 .

Theorem 2.21. Let K and L = K × [d] be label sets, γ ∈ (0, 1] a parameter, D a distribution
on ΩA × ΩB × ΩC such that ΩC is independent of ΩA, and finally h : ΩK

A × ΩL
B → [−1, 1] and

g : ΩL
C → [−1, 1] functions.

Define P =
(

T
(C)
γ̄ D

)d-proj-A⊗K
, R =

(
T

(C)
γ̄ Dd-proj-A

)⊗K
. Additionally, let π : L→ K be chosen

(J, κ)-smooth and define P π̄ and Rπ̄ by permuting coordinates accordingly. Then,∣∣Eπ,P π̄ [hg]− Eπ,Rπ̄ [hg]
∣∣ ≤ 2

√
κ+ 2γ̄J . (8)

Proof. We note that ΩL
C is independent of ΩK

A in both P and R despite noise. Furthermore, neither

kind of noise affects the marginals of ΩL
C ; in fact the marginals of P,R, and Dd-proj-A⊗K coincide

and consequently they share Efron-Stein decompositions. Rewriting the LHS,

LHS =

∣∣∣∣∣∣Eπ,P π̄

h ∑
S : UπS

gS

− Eπ,Rπ̄

h ∑
S : UπS

gS

+ Eπ,P π̄

h ∑
S : UπS

gS

− Eπ,Rπ̄

h ∑
S : UπS

gS

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Eπ,P π̄

h ∑
S : UπS

gS

− Eπ,Rπ̄

h ∑
S : UπS

gS

∣∣∣∣∣∣+

∣∣∣∣∣∣Eπ,P π̄

h ∑
S : UπS

gS

∣∣∣∣∣∣+

∣∣∣∣∣∣Eπ,Rπ̄

h ∑
S : UπS

gS

∣∣∣∣∣∣.
(9)

Applying Cauchy-Schwarz to either of the two latter terms and subsequently Lemma 2.20,

(9) ≤

∣∣∣∣∣∣Eπ,P π̄

h ∑
S : UπS

gS

− Eπ,Rπ̄

h ∑
S : UπS

gS

∣∣∣∣∣∣+ 2
√
κVar [g]||h||2.

Since the domain of g and h is [−1, 1] we note that their variance and l22-norms are both bounded
by 1. This yields the first term on the RHS of (8).

We proceed to bound the difference. The event Uπ
S corresponds to |π(S)| = |S| and/or |π(S)| ≥

J . Whenever the former holds, the expectation over P π̄ and Rπ̄ coincide, i.e. projected and non-
projected noise are the same.

It remains to bound the case when |S| 6= |π(S)| ≥ J . However due to noise, the contribution of

such terms is small. Let us show this formally through standard analysis, denoting D′ = Dd-proj-A⊗K
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and noting that the larger of the two terms is over R′.∣∣∣∣∣∣Eπ,P π̄

h ∑
S : |S|6=|π(S)|≥J

gS

− Eπ,Rπ̄

h ∑
S : |S|6=|π(S)|≥J

gS

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣Eπ,Rπ̄

h ∑
S : |S|6=|π(S)|≥J

gS

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣Eπ,D′π̄

h ∑
S : |S|6=|π(S)|≥J

γ̄|π(S)|gS

∣∣∣∣∣∣
≤ 2 Eπ,D′π̄

[
h2
]1/2

Eπ,D′π̄

 ∑
S : |S|6=|π(S)|≥J

γ̄|π(S)|gS

21/2

≤ 2
∑

S : |S|6=|π(S)|≥J

Eπ,D′π̄
[
γ̄2|π(S)|g2

S

]1/2
≤ 2γ̄J Eπ,D′π̄

[∑
S

g2
S

]1/2

≤ 2γ̄J Eπ,D′π̄
[
g2
]1/2 ≤ 2γ̄J .

2.4.2 Proof of Lemma 2.6: Introducing Noise in Soundness Analysis

The introduction of noise, independent of d, follows three steps. The first step is to argue that the
correlation of the argument of a function is bounded away from one independent of d. As a second
step, this permits us to employ a theorem by Mossel [18] to introduce a certain kind of noise, which
we call projected noise, without changing the expectation too much. Finally we use our techniques
of the preceding subsection to show that the introduced noise behaves roughly as independent noise.

To clarify these points, the noise introduced by the mentioned theorem, which we shall call
projected noise, jointly resamples all d coordinates j ∈ L which project to the same coordinate
i ∈ K. What we would like is for every coordinate j ∈ L to be resampled independently. This is an
important distinction in soundness analysis where for instance the former may permit arbitrarily
large parities of coordinates in π−1(i) to achieve a significant value. Standard decoding procedures,
including H̊astad’s classical, and the more modern low-degree or noisy influences, fail in this setting
as the number of potential coordinates grows with the soundness of the Label Cover instance
and, in extension, the degree of projections.

We circumvent these problems with the machinery from the preceding subsection; smoothness
essentially guarantees that functions which depend on many coordinates, depend on many coordi-
nates with different projections. In effect, we show that projected noise behave roughly the same
as independent noise in this setting.

Formalizing slightly, the first step of Lemma 2.6 is to introduce projected noise for every y(t)

string, i.e. to go from the distribution T ′0 to T ′1 . Having done so, the correlation of x to (y(t))t
is bounded away from one independent of d, permitting noise introducing for x, defined as the
distribution T ′2 . We note that projected and independent noise are the same for x. Finally, we use
smoothness and the projected noise of y(t) to show that it behaves roughly as independent noise,
yielding the distribution T ′3 . The three steps may be expressed through the following lemmas.

Lemma 2.22. Let Γ ⊆ [4], |Γ| ≥ 2 and define ρ0 =
√

1/2 + 1/2(1− δ2/8)2. Then,∣∣E[ψΓ(T ′0 )− ψΓ(T ′1 )
]∣∣ ≤ 3 sup

k
ρk0(1− γ̄k).

20



Proof. Proven on Page 21.

Lemma 2.23. Let Γ ⊆ [4], |Γ| ≥ 2 and define ρ1 =
√

1− γ3. Then,∣∣E[ψΓ(T ′1 )− ψΓ(T ′2 )
]∣∣ ≤ sup

k
ρk1(1− η̄k).

Proof. Proven on Page 22.

Lemma 2.24. Let Γ ⊆ [4], |Γ| ≥ 2. Then,∣∣E[ψΓ(T ′2 )− ψΓ(T ′3 )
]∣∣ ≤ 6

√
κ+ 6γ̄J .

Proof. Proven on Page 22.

Proof of Lemma 2.6. Follows directly from Lemmas 2.22, 2.23, and 2.24 by summing the respective
differences.

We begin by recapping a corollary of a lemma by Mossel [18] and next define the concept of
“lifted” functions with notation borrowed from Dinur et al. [6].

Corollary 2.25 (Corollary of Lemma 6.1 in Mossel, 2010 [18]). Let P = (Ω1×Ω2, µ) be a correlated
probability space satisfying ρ(Ω1,Ω2) ≤ ρ < 1. Consider functions {ft : Ωn

t → [−1, 1]}t=1,2 and an
arbitrary constant γ ∈ (0, 1]. Then,

|EP⊗n [f1f2]− EP⊗n [(Tγ̄f1)f2]| ≤ sup
k
ρk(1− γ̄k).

In the setting of Corollary 2.25, the involved functions are defined on a product space (Ω′1 ×
Ω′2, µ)⊗n. For proper treatment, we define equivalent functions where the sample spaces are products
of all same sample spaces with the same projection.

Definition 2.26. The lifted function g : {{−1, 1}d}K of g : {−1, 1}K×[d] is defined as

g(y) = g(y),

where its lifted argument y satisfies y i,r = y(i,r), i ∈ K, r ∈ [d].

We define Ω′1 = Ω1,Ω
′
t = Ωd

t for t = 2, 3, 4, let y(t) be the lifted version of y(t), and T the lifted
analogue of a distribution T . Additionally, as we wish to claim simultaneously the lemmas for all
Γ ⊆ [4], |Γ| ≥ 2, let hA for a subset A ⊆ [4] denote f [1∈A]

∏
t∈A\1 g

(t) .

Proof of Lemma 2.22: Introducing Projected Noise for g Functions

Proof of Lemma 2.22. Let D1 = T d-proj-1
0 ,Dr = T

(r)
γ̄ Dr−1, r = 2, 3, 4. We note that DKr is indeed

the lifted analogue of T ′1 . Consequently, the lemma is proven by bounding the respective differences
of expectations

∣∣ψΓ(DKr )− ψΓ(DKr−1)
∣∣ for r = 2, 3, 4.

Working out the notation, for r = 2, 3, 4,∣∣ψΓ(DKr−1)− ψΓ(DKr )
∣∣ =

∣∣∣EDKr−1

[
g(r)hΓ\r

]
− EDKr

[
g(r)hΓ\r

]∣∣∣
=

∣∣∣∣EDKr−1

[
g(r)hΓ\r

]
− E

(T
(r)
γ̄ Dr−1)K

[
g(r)hΓ\r

]∣∣∣∣ (10)

=
∣∣∣EDKr−1

[
g(r)hΓ\r

]
− EDKr−1

[
(Tγ̄g(r))hΓ\r

]∣∣∣. (11)
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This is the setting of Corollary 2.25.
By Lemma 2.9 and symmetry, the correlation ρ(Ω1 ×

∏
t6=1,r Ωd

t ,Ω
d
r ; T

d-proj-1
0 ), which equals

ρ(Ω1 ×
∏
t6=1,r Ω′t,Ω

′
r;D1), is bounded by ρ0

def
=
√

1/2 + 1/2(1− δ2/8)2. As noise can only decrease
correlation, the same bound holds for Dr−1. Similarly, this is a bound on any subset of sample
spaces in the case Γ 6= [4].

For r = 2, 3, 4, if r /∈ Γ, the difference (10) is 0. Otherwise, we bound using Corollary 2.25 with
ρ ≤ ρ0. That is, (10) ≤ supk ρ

k
0(1− γ̄k). In conclusion,

∣∣ψΓ(T ′0 )− ψΓ(T ′1 )
∣∣ =

∣∣∣ψΓ(DK0 )− ψΓ(Dk4)
∣∣∣ ≤ 4∑

t=2

∣∣ψΓ(DKt−1)− ψΓ(DKt )
∣∣ ≤ 3 sup

k
ρk0(1− γ̄k).

Proof of Lemma 2.23: Introducing Noise for the f Function

Proof of Lemma 2.23. By Lemma 2.10, ρ(Ω1,Ω
d
2 ×Ωd

3 ×Ωd
4; T d-proj-1

1 ) ≤ ρ1
def
=
√

1− γ3. The same

bound holds for ρ(Ω1,
∏
t∈Γ\1 Ω′t; T

d-proj-1
1 ). Hence, using Corollary 2.25 again,

∣∣ψΓ(T ′1 )− ψΓ(T ′2 )
∣∣ =

∣∣∣∣∣E(T2,3,4
γ̄ T d-proj-1

0

)K [fhΓ\1
]
− E(

T2,3,4
γ̄ (T1

η̄T0)
d-proj-1

)K [fhΓ\r
]∣∣∣∣∣

=

∣∣∣∣∣E(T2,3,4
γ̄ T d-proj-1

0

)K [fhΓ\r
]
− E(

T2,3,4
γ̄ T d-proj-1

0

)K [(Tη̄f)hΓ\r
]∣∣∣∣∣ ≤ sup

k
ρk1(1− η̄k).

Proof of Lemma 2.24: From Projected Noise to Independent Noise

Proof of Lemma 2.24. The lemma follows immediately from Theorem 2.21. However, somewhat
confusingly at this point, we have defined the functions g so that the sample spaces are correlated
by the projection π(i, r) = i. To utilize the theorem, we unravel the definition from the protocol:

g(y)
def
= Eb∼{0,1}[b⊕ gv(b⊕ y ◦ π̄)] ,

where, for π
def
= π{u,v}, π̄ : K × [d]↔ K × [d] is an arbitrary bijection such that if (i′, r′) = π̄(i, r),

then π(i) = i′. Define g′v(y) = Eb∼{0,1}[b⊕ gv(b⊕ y)] and let T ′2
π and T ′3

π permute coordinates
of g′ in accordance with an arbitrary bijection π̄ consistent with π. Also, for F ⊆ [4], let hvF =
f [1∈F ]

∏
t∈F\1 g

′v(y(t)).

We recall that T ′2 =
(

T2,3,4
γ̄

(
T1
η̄T0

)d-proj-1
)K

and T ′3 =

((
T2,3,4
γ̄ T1

η̄T0

)d-proj-1
)K

. The target

difference equals∣∣ψΓ(T ′2 )− ψΓ(T ′3 )
∣∣ =

∣∣∣∣Eu,v,T ′2
π{u,v}

[
fhvΓ\1

]
− E

u,v,T ′3
π{u,v}

[
fhvΓ\1

]∣∣∣∣. (12)

We apply Theorem 2.21 up to three times, once for each of the coordinates appearing in Γ.

Define Rt =

(
Tt+1,...,m
γ̄t+1,...,γ̄m

(
T1,2,...,t
η̄,γ̄2,...,γ̄tT0

)d-proj-1
)K

and note that R1 corresponds to T ′2 and Rm to

T ′3 .
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Formally, when applying it to coordinate t ∈ Γ\{1}, we have A = {1}, B = {t}, C = Γ\{1, t}, γ =
γ, and the distributions equal P = Rt−1 and R = Rt. The respective differences in expectation
hence yield a bound on the difference in expectation between T ′2 = R2 and T ′3 = Rm. According to
the theorem, the difference in expectation for each application is bounded by 2

√
κ+ 2γ̄Jt . In effect,

(12) ≤ 6
√
κ+ 6γ̄J2 .

2.5 Proof of Lemma 2.7: Bounding ET ′3 [
∏

g]

We limit ourselves to the hardest case: Γ = {2, 3, 4} which corresponds to bounding

Eπ,T ′3

[
g(y(2))g(y(3))g(y(4))

]
.

The other cases are bounded by the same line of argument which we comment on following the
proof of the Γ = {2, 3, 4} case.

Intuitively, due to noise the expression can be arbitrarily well approximated by low-degree
expansions of g. Because of smoothness, low-degree terms in the Efron-Stein decomposition project
to unique coordinates with probability arbitrarily close to one. For terms of functions with such
projections, the expectation is the same for the distribution which draws arguments independently
for every coordinate, as the one which draws x and adheres to the projections. Finally analyzing
a distribution which is independent for every coordinate, we can simply bound by the expectation
by the unprojected correlation between the three spaces which was shown in Lemma 2.11 to be at
most

√
δ. We recall again that T ′3 is a noised version of T ′0 and noise can not increase correlation.

In this subsection, let k be the smallest integer less than J/2 where J is one of the smoothness

parameters of our protocol. Recall that T ′3
def
= T d-proj-1

3

⊗K
and T ′′3 = T ⊗L3 . In the following, g

denotes g′v as defined in the previous subsection.

Noised to Low-Degree Functions

Definition 2.27. The k-low-degree expansion f≤k of a function f : ΩK → R with Efron-Stein
decomposition {fS}S⊆K is defined as

f≤k(x) =
∑

S⊆K : |S|≤k

fS(x).

Similarly,

f>k(x) =
∑

S⊆K : |S|>k

fS(x).

Lemma 2.28. Let D = T ′3 or T ′′3 . Then,∣∣∣ED[g(y(2))g(y(3))g(y(4))
]
− ED

[
g≤k(y(2))g≤k(y(3))g≤2k(y(4))

]∣∣∣ ≤ 2γ̄k.

Proof. Let us denote by gt = g(y(t)). Clearly,

E[g2g3g4] = E
[
(g≤k2 + g>k2 )(g≤k3 + g>k3 )g4

]
and so, ∣∣∣E[g2g3g4]− E

[
g≤k2 g≤k3 g4

]∣∣∣ ≤ ∣∣∣E[g>k2 g3g4

]∣∣∣+
∣∣∣E[g≤k2 g>k3 g4

]∣∣∣.
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We bound both terms on the RHS through Hölder’s inequality. Let h2 ∈ {g≤k2 , g>k2 } and h3 ∈
{g3, g

>k
3 }. Then,

|E[h2h3g4]| ≤ ||h2||D,2||h3||D,2||g4||D,∞.

As
∣∣∣∣g≤k∣∣∣∣

2
,
∣∣∣∣g>k∣∣∣∣

2
≤ ||g||2 for any function g with an Efron-Stein decomposition, and ||g||D,p ≤

||g||T ′0 ,p = 1 for any integer p ≥ 1, all three norms are bounded by 1. Additionally, if h2 = g>k2 ,

then ||h2||D,2 =
∑

S : |S|>k ED
[
g2
S

]
=
∑

S : |S|>k γ̄
|S|ET ′0

[
g2
S

]
≤ max{γ̄|S| : |S| ≥ k}

∑
S E

[
g2
S

]
≤ γ̄k.

Similarly, if h3 = g>k3 , then ||h3||D,2 ≤ γ̄k. Hence,∣∣∣E[g2g3g4]− E
[
g≤k2 g≤k3 g4

]∣∣∣ ≤ γ̄k + γ̄k ≤ 2γ̄k.

To complete the lemma, we note that

E
[
g≤k2 g≤k3 g4

]
= E

[
g≤k2 g≤k3 g≤2k

4

]
+ E

[
g≤k2 g≤k3 g>2k

4

]
where the latter term equals∑

S,T,U⊆L
|S|,|T |≤k;|U |>2k

E
[
gS(y(2))gT (y(3))gU (y(4))

]

=
∑

S,T,U⊆L
|S|,|T |≤k;|U |>2k

E
[
gS(y(2))gT (y(3)) E

y
(4)
S∪T | y

(2)
S y

(3)
T

[
E
[
gU (y(4)) |y(4)

S∪T

]]]

which is 0 by properties of the Efron-Stein decomposition of g as U − S − T is non-empty.

Smooth Low-Degree to Shattered Functions via Hypercontractivity The term shattered
denotes an expansion

∑
S∈S fS where every non-zero fS satisfies |π(S)| = |S|. The goal is to show

that for smooth projections, low-degree functions are essentially shattered.
To this end, we employ the following well-known corollary of the Hypercontractivity Theorem

[2, 1].

Lemma 2.29. Let q ≥ 2 be a parameter and f : {−1, 1}n → R a function of degree at most k.
Then,

||f ||q ≤ (q − 1)k/2||f ||2.

Lemma 2.30. Let D = T ′3 or T ′′3 . Then,∣∣∣ED[g≤k2 g≤k3 g≤2k
4 − g2

�π≤kg3
�π≤kg4

�π≤2k
]∣∣∣ ≤ √κ31.5k+1.

Proof. It suffices to bound the terms∣∣∣E[g≤k2 g≤k3 g≤2k
4 − g2

�π≤kg≤k3 g≤2k
4

]∣∣∣,∣∣∣E[g2
�π≤kg≤k3 g≤2k

4 − g2
�π≤kg3

�π≤kg≤2k
4

]∣∣∣,
and

∣∣∣E[g2
�π≤kg3

�π≤kg≤2k
4 − g2

�π≤kg3
�π≤kg4

�π≤2k
]∣∣∣,

where g�π is the shattered part of g with respect to π, as defined in the preliminaries.
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Assuming 2k ≤ J , Theorem 2.20 bounds the first difference by

√
κVar

[
g≤k2

]∣∣∣∣∣∣g≤k3 g≤k4

∣∣∣∣∣∣
2
. Cauchy-

Schwarz and using Var
[
g≤k2

]
=
∣∣∣∣∣∣g≤k2

∣∣∣∣∣∣2
2

yields the further bound
√
κ
∣∣∣∣g≤k∣∣∣∣D,2∣∣∣∣g≤k∣∣∣∣D,4∣∣∣∣g≤2k

∣∣∣∣
D,4.

Employing Lemma 2.29 to the two l4-norms, we the first term is at most∣∣∣E[g≤k2 g≤k3 g≤2k
4 − g2

�π≤kg≤k3 g≤2k
4

]∣∣∣ ≤ √κ31.5k
∣∣∣∣∣∣g≤k∣∣∣∣∣∣2

D,2

∣∣∣∣∣∣g≤2k
∣∣∣∣∣∣
D,2
≤ 31.5k√κ.

The remaining two terms follow the same argument for a total error of 31.5k√κ + 31.5k√κ +
3k
√
κ ≤ 31.5k+1√κ.

Shattered Functions to Independent Coordinates

Lemma 2.31.
ET ′3

[
g2

�π≤kg3
�π≤kg4

�π≤2k
]

= ET ′′3

[
g2

�π≤kg3
�π≤kg4

�π≤2k
]
.

Proof. Consider the Efron-Stein decompositions of the functions in the two terms. Let Θ denote
the set {(S, T, U) ⊆ L3 : |S|, |T | ≤ k; |U | ≤ 2k; |π(S)| = |S|, |π(T )| = |T |, |π(U)| = |U |}, i.e. the
triplets of sets which are shattered and satisfy the degree restrictions; that is, g2

�π≤kg3
�π≤kg4

�π≤2k

equals
∑

(S,T,U)∈Θ gS(y(2))gT (y(3))gU (y(3)).
We argue that in fact each term, indexed by (S, T, U) ∈ Θ, coincides in expectation for the

two distributions. We note that since the terms are shattered, if |π(S + T + U)| < |S + T + U |,
then one of the sets S, T , and U must contain a unique element and the term evaluates to 0 in
expectation. Hence, we only need to consider the case when for each i ∈ K, there is at most one
j ∈ S + T + U projecting to i. As the two distributions have identical marginals, the Efron-Stein
decompositions are identical, and it suffices to prove that the distribution over relevant argument
is the same for the two distributions. This should be intuitively clear but we show it formally for
completeness.

By linearity of expectation and properties of the decomposition, it suffices to show that PT ′3

(
y

(2)
S ,y

(3)
T ,y

(4)
U

)
=

PT ′′3

(
y

(2)
S ,y

(3)
T ,y

(4)
U

)
for any (y

(2)
S ,y

(3)
T ,y

(4)
U ) ∈ ΩS

2 × ΩT
3 × ΩU

4 such that (S, T, U) ∈ Θ. With re-

spect to the distribution T3, let X,Y (2), Y (3), and Y (4) denote the random variables taking values in

Ω1, . . . ,Ω4, respectively. Furthermore, define Aj as the event “Y (2) = y
(2)
j if j ∈ S, . . . , Y (4) = y

(4)
j

if j ∈ U”. Then,

PT ′3

(
y

(2)
S ,y

(3)
T ,y

(4)
U

)
= Exπ(S∪T∪U)∼T ′3

[
PT ′3

(
y

(2)
S ,y

(3)
T ,y

(4)
U |xπ(S∪T∪U)

)]
=

∏
i∈π(S∪T∪U)

∑
xi

PT3(X = xi)
∏

j∈S∪T∪U :π(j)=i

PT3(Aj |X = xi) . (13)

We recall that the sets (S, T, U) ∈ Θ are shattered. Hence, for any i ∈ π(S∪T ∪U), there is exactly
one j ∈ S ∪ T ∪ U such that π(j) = i. It follows that (13) equals∏

i∈π(S∪T∪U)

∏
j∈S∪T∪U :π(j)=i

∑
xi

PT3(X = xi) PT3(Aj |X = xi)

=
∏

j∈S∪T∪U

∑
xπ(j)

PT3
(
X = xπ(j)

)
PT3

(
Aj |X = xπ(j)

)
=

∏
j∈S∪T∪U

P(Aj) = PT ′′3

(
y

(2)
S ,y

(3)
T ,y

(4)
U

)
.
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Putting it Together

Proof of Lemma 2.7. Using the three preceding lemmas and J/2− 1 ≤ k ≤ J/2,∣∣∣ET ′3 [g(y(2))g(y(3))g(y(4))
]
− ET ′′3

[
g�π
≤k

(y(2))g�π
≤k

(y(3))g�π
≤2k

(y(4))
]∣∣∣ ≤ 2γ̄J/2−1 + 33J/4+1√κ.

and∣∣∣ET ′′3 [g(y(2))g(y(3))g(y(4))
]
− ET ′′3

[
g�π
≤k

(y(2))g�π
≤k

(y(3))g�π
≤2k

(y(4))
]∣∣∣ ≤ 2γ̄J/2−1 + 33J/4+1√κ,

i.e. ∣∣∣ET ′3 [g(y(2))g(y(3))g(y(4))
]∣∣∣ ≤ ∣∣∣ET ′′3 [g(y(2))g(y(3))g(y(4))

]∣∣∣+ 4γ̄J/2−1 + 6 · 33J/4√κ

It remains to bound ∣∣∣ET ′′3 [g(y(2))g(y(3))g(y(4))
]∣∣∣ (14)

By the definition of correlation,

(14) ≤ ρ(ΩL
2 ,Ω

L
3 × ΩL

4 ; T ′′3 )
∣∣∣∣∣∣g(y(2))

∣∣∣∣∣∣
T ′′3 ,2

∣∣∣∣∣∣g(y(3))g(y(4))
∣∣∣∣∣∣
T ′′3 ,2
≤ ρ(ΩL

2 ,Ω
L
3 × ΩL

4 ; T ′′3 ).

For the distribution T ′′3 , the coordinates L are independent and so by Lemma 2.15,

ρ(ΩL
2 ,Ω

L
3 × ΩL

4 ; T ′′3 ) ≤ max
j∈L

ρ(Ω2,j ,Ω3,j × Ω4,j ; T ′′3 ) = ρ(Ω2,Ω3 × Ω4; T3).

In Lemma 2.11, we bounded this correlation by
√
δ.

Consequently, ∣∣∣ET ′3 [g(y(2))g(y(3))g(y(4))
]∣∣∣ ≤ 4γ̄J/2−1 + 2 · 33J/4+1√κ+

√
δ.

Regarding terms Γ ( {2, 3, 4}, |Γ| ≥ 2, we note that the same argument works. The corre-
sponding bounds on high-degree terms only produce fewer terms and similarly with the step from
low-degree terms to shattered low-degree terms; the argument that the expectation is the same as
for independent coordinates is identical and finally the correlation between two sample spaces is no
greater than between three.

2.6 Proof of Lemma 2.8: Bounding ET ′3 [f
∏

g]

In this subsection, we bound mixed, i.e. E[f
∏
g], terms. Our proof follows O’Donnell and Wu’s

[22] coordinate-wise distribution-substitution method although we analyze it immediately via Efron-
Stein decompositions and avoid dependencies on d. For starters, we show the following useful
property of Efron-Stein decompositions, namely that the sum of all terms fS in a powerset behaves

nicely. In particular, the following lemma shows that
∣∣∣∑S:A⊆S⊆B fS

∣∣∣ ≤ 2|A|||f ||∞. In our PCP

analysis, we use it with constant-sized A.

Lemma 2.32. Let A ⊆ B ⊆ [n] and {fS}S⊆[n] be the Efron-Stein decomposition of a function
f : Ωn → R. Then, ∑

S:A⊆S⊆B
fS =

∑
B\A⊆S⊆B

(−1)|B\S|f̃S .
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Proof. By the unique construction, the LHS equals∑
S:A⊆S⊆B

∑
T⊆S

(−1)|S−T |f̃T =
∑
T⊆B

(−1)|T |f̃T
∑

S:A∪T⊆S⊆B
(−1)|S|. (15)

Whenever (A ∪ T ) 6= B, the second sum evaluates to 0. Consequently, non-zero terms satisfy
T ⊇ B \A and, as desired, (15) =

∑
B\A⊆T⊆B(−1)|B\T |f̃T .

Proof of Lemma 2.8

Proof. Fix E = {u, v} and π which yields f and g. We show that

ψΓ(T ′3 ) ≤ 8γ−1/2
√ ∑

(i,j)∈π

Inf
(η̄)
i (f)Inf

(γ̄)
j (g)

for 1 ∈ Γ ⊆ [4], |Γ| ≥ 3. For simplicity, we limit ourselves to the hardest case: Γ = [4] which
corresponds to ET ′3

[
f(x)g(y(2))g(y(3))g(y(4))

]
. Other cases follow by the same arguments and we

address this briefly after the proof. Hereafter, let f and g, respectively, denote Tη̄f and Tγ̄g and we
instead analyze ET ′0

[
f(x)g(y(2))g(y(3))g(y(4))

]
.

Since any one string y(t) is independent of x for the test distribution T ′0 , the Efron-Stein de-
composition of g with respect to L has the standard properties from Lemma 1.5. Furthermore, as
the marginals coincide, the decomposition is the same for the three occurrences of g. Hence,

E
[
f
∏

g
]

=
∑
S,~T

E[fSgT2gT3gT4 ] ,

where the arguments have been dropped as they are implicit from the subscripts.
Let H′δ be the distribution which samples x and (y(2),y(3),y(4)) independently from T ′0 . Our

goal is to show∣∣∣∣∣∣
∑
S,~T

ET ′0 [fSgT2gT3gT4 ]− EH′δ [fSgT2gT3gT4 ]

∣∣∣∣∣∣ ≤ 8γ−1/2
√ ∑

(i,j)∈π

Infi(f)Infj(g).

This would complete the proof as EH′δ [fSgT2gT3gT4 ] = ET ′0 [f ] ET ′0 [
∏
g] = 0.

We note first that for any term (S, ~T ) with S = ∅, the expectations are identical and we have
a difference of 0. Similarly, any term (S, ~T ) with

⋃
Tt = ∅ corresponds to E[fSg∅g∅g∅] = 0. For

the remaining terms, the following are well defined: i∗(S, ~T ) = max{i ∈ S}, j∗(S, ~T ) = min{j ∈⋃
Tt | π(j) = i∗},W (S, ~T ) = {t | j∗ ∈ Tt}. We further note that any term with |W (S, ~T )| = 1

evaluates to 0 by the assumption that any single string y(t) is independent of x and so by the
properties of the Efron-Stein decomposition of g, E[fS

∏
gTt ] = 0. Furthermore, for any remaining

term, the expectation over H′δ is 0 as E[fS ] = 0 for any S.
Hence, it remains to bound∣∣∣∣∣∣∣∣

∑
(i∗,j∗)∈π

∑
W⊆{2,3,4}
|W |≥2

∑
S,~T

{ET ′0 [fSgT2gT3gT4 ] | i∗(S, ~T ) = i, j∗(S, ~T ) = j,W (S, ~T ) = W}

∣∣∣∣∣∣∣∣. (16)

We bound the inner sums separately. Fix arbitrary i∗, j∗, and W . Define J∗ as {j ∈ L | π(j) 6=
i ∨ j ≤ j∗}. Let J ∗1 and J ∗0 be all subsets of J∗ containing, respectively not containing, j∗. The
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reader can convince eirself that the indices (S, ~T ) which satisfy the conditions on i∗, j∗, and W
are precisely those where S is a subset of [i∗] containing i∗ and each Tt is a member of J ∗1 or J ∗0
depending on whether t ∈W . Consequently, we rewrite the inner sum as∑

S,~T

{ET ′0 [fSgT2gT3gT4 ] | i∗(S, ~T ) = i∗, j∗(S, ~T ) = j∗,W (S, ~T ) = W}

=
∑
{ET ′0 [fSgT2gT3gT4 ] | i∗ ∈ S ⊆ [i∗], Tt ∈ J ∗[t∈W ]} = ET ′0

 ∑
i∗∈S⊆[i∗]

fS
∏
t

∑
Tt∈J ∗[t∈W ]

gTt

 .
Before we continue, consider an arbitrary function h with Efron-Stein decomposition {hS}S⊆[n].

By Lemma 2.32,
∑

S⊆T hS(x) = E[h(X) |XT = xT ]. Consequently, if h→ [−1, 1], then
∣∣∣∑S⊆T hS

∣∣∣ ≤
1. Similarly,

∣∣∣∑i∈S⊆T hS

∣∣∣ ≤ ∣∣∣∑S⊆T hS

∣∣∣ +
∣∣∣∑S⊆T−{i} hS

∣∣∣ ≤ 2. We also note that
∣∣∣∣∑

S∈S hS
∣∣∣∣

2
=

E
[(∑

S∈S hS
)2]1/2

=
(∑

S∈S E
[
h2
S

])1/2
. Additionally, if S ⊆ S ′, then clearly

∑
S∈S E

[
h2
S

]
≤∑

S∈S′ E
[
h2
S

]
. Finally, by the definition of influences,

∑
S3i E

[
h2
S

]
= Infi(h).

From our preceding discussions, we consider an arbitrary W of cardinality at least 2. Conse-
quently, let w1, w2 be two arbitrary members of W and w3 be the unique remaining element in
{2, 3, 4}. Applying Hölder’s inequality to the last expression, we receive the bound∣∣∣∣∣∣∣ET ′0

 ∑
i∗∈S⊆[i∗]

fS
∏
t

∑
Tt∈J ∗[t∈W ]

gTt


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ET ′0

 ∑
i∗∈S⊆[i∗]

fS
∑

j∗∈Tw1⊆J∗
gTw1

 ∑
j∗∈Tw2⊆J∗

gTw2


 ∑
Tt∈J ∗[w3∈W ]

gTw3



∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∗∈S⊆[i∗]

fS
∑

j∗∈Tw1⊆J∗
gTw1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∗∈Tw2⊆J∗

gTw2

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∑
Tw3∈J

∗
[w3∈W ]

gTw3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

By independence between x and y(w1), the first factor is bounded by
∣∣∣∣∣∣∑i∗∈S⊆[i∗] fS

∣∣∣∣∣∣
2

∣∣∣∣∣∣∑j∗∈Tw1⊆J∗
gTw1

∣∣∣∣∣∣
2
.

The three two-norms are respectively bounded by Infi∗(f), Infj∗(g), and Infj∗(g). The third factor
in the last expression is bounded by

∏
t6=w1,w2

2||g||∞ ≤ 2 following the preceding discussion and
noting that J ∗0 are the subsets of J∗ − {j∗} and J ∗1 are the sets T such that j∗ ∈ T ⊆ J∗. Hence,∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∗∈S⊆[i∗]

fS
∑

j∗∈Tw1⊆J∗
gTw1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
j∗∈Tw2⊆J∗

gTw2

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∑
Tw3∈J

∗
[w3∈W ]

gTw3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ 2
√

Infi∗(f)Infj∗(g)Infj∗(g).

Summing over the choices of i∗, j∗,W , we get a bound on (16):∑
(i∗,j∗)∈π

∑
W,|W |≥2

Ew1 6=w2∈W

[
2
√

Infi∗(f)Infj∗(g)Infj∗(g)

]
≤ 8

∑
(i,j)∈π

√
Infi(f)Infj(g)Infj(g). (17)
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Using Cauchy-Schwarz over (i, j), noting that π is a projection, (17) is bounded by

8

 ∑
(i,j)∈π

Infi(f)Infj(g)

1/2∑
j

Infj(g)

1/2

. (18)

Recalling that we set f = Tη̄f and g = Tγ̄g, these are indeed noisy influences and consequently
the total influence of g is at most γ−1. That is, returning to our original definition,

(18) ≤ 8γ−1/2
√ ∑

(i,j)∈π

Inf
(η̄)
i (f)Inf

(γ̄)
j (g).

We have bounded the value of the Fourier term of P where all four arguments appear. For other
mixed terms E[f

∏
g], the same argument applies where one for arguments which do not appear

can use the constant-one function instead. The fact that f appears, has expectation 0, and that
the constant-one function has no influences offers the same upper bound.

3 Predicates of Greater Width

In the remainder of this treatise, we generalize the result of the preceding sections to predicates
of width greater than four. The majority of the argument generalizes straightforwardly and is
simply included for the sake of completeness. The first fundamental difference is that we use a test
distribution that has a certain stronger independence property which is used to bound shattered
unmixed terms. The second difference is that we prove and a stronger invariance-style theorem
which we employ to directly bound mixed, i.e. E[f

∏
g], terms.

Formally, we establish the following theorem.

Theorem 3.1. Any predicate P ⊆ {0, 1}m,m ≥ 4, strictly containing odd or even parity is approx-
imation resistant for satisfiable instances.

Without loss of generality, we merely show for m ≥ 4 the approximation resistance of the
predicate containing all length-m binary strings of odd parity as well as the all-zero string; this
handles all cases via negation of arguments.

3.1 Generalized Distribution

To bound unmixed terms – i.e. terms of the form E[
∏
g] – we use a test distribution which satisfies a

certain independence condition. More specificially, overm number of {−1, 1}-valued variables, which
we call bits, we would like to have uniform marginals, the all-ones outcome to have strictly positive
probability, and conditioned on the outcome of the first bit and any partition (A, {2, . . . ,m} \ A)
of the remaining m− 1 bits, independence among the variables indexed by A or by {2, . . . ,m} \A.

In the following, we show that such a distribution indeed exists. To begin with, we argue that
for odd m bits, there is a (m − 1)/2-wise independent distribution with uniform marginals and
weight on the all-ones outcome. In turn, this permits constructing a distribution where, for even
m, one can have (m/2 − 1)-wise independence conditioned on the first bit and in effect, for odd
m, independence among bits in at least one set of an arbitrary partition of the second to last
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bit, conditioned on the first. In particular, the distributions µ defined below satisfies for every
A ]A′ ⊆ {2, . . . ,m};A,A′ 6= ∅,

Ex1∼µ

[
Eµ

[∏
i∈A

xi

∣∣∣∣∣ x1

]
Eµ

[∏
i∈A′

xi

∣∣∣∣∣ x1

]]
= 0. (19)

Definition 3.2. Let Pm ⊆ {−1, 1}m consist of all vectors containing an odd number of −1’s as well
as the all-ones vector.

Lemma 3.3. For odd m ≥ 1, there exists an (m− 1)/2-wise independent distribution on Pm with
uniform marginals and strictly positive weight on the all-ones outcome.

Proof. Let f : {−1, 1}m → R be an arbitrary function with Fourier expansion f(x) =
∑

S⊆[m] f̂S
∏
i∈S xi.

The intention is to show that there is a non-zero function f with support Pm satisfying (m− 1)/2-
wise independence, having uniform marginals, and being non-zero for the all-ones outcome 1. From
this, one can construct a probability distribution with the desired properties by suitably adding to
f a multiple of the (m − 1)-wise independent distribution D on vectors of odd parity and scaling
appropriately. More formally, without loss of generality, suppose f(1) > 0 or else consider the
function −f ; we can form the claimed distribution by setting µ(x) = f ′(x) (

∑
x f
′(x))−1 where

f ′(x) = f(x) +D(x) ·minx f(x) which equals f(x) for x = 1, f(x) + minx f(x) for strings x of odd
parity, and 0 otherwise.

We see the Fourier coefficients of f as variables and consider the homogenous system of linear
equations imposed by the balance, independence, and support conditions. First, for every x ∈
{−1, 1}m of even parity not equal to the all-ones vector, we require f(x) = 0. Second, for every
S ⊆ [m] such that |S| ≤ (m − 1)/2, we require f̂S = 0. Together, this yields a total of 2m − 1
equations. As the system is homogenous and has 2m variables, there is an infinite number of choices
of f satisfying the conditions and in particular there is a non-zero solution.

Next, we argue that a non-zero choice of f implies that f((1, . . . , 1)) 6= 0. Consider the polyno-
mial p of the average value of f(x) as a function of the number of −1’s in x times the {−1, 1}-parity

of x; formally, p(z) = Ex : |{i :xi=−1}|=z

[
f(x)

∏
i∈[m] xi

]
= (−1)z Ex[f(x)]. As f is zero outside Pm,

p(z) has (m − 1)/2 zeroes at z = 2, 4, . . . ,m − 1. Next, we argue that p(z) is of degree at most
(m− 1)/2 and in consequence p(0) 6= 0 for any non-zero p since a non-zero degree-d polynomial can
have at most d zeroes. To see that p has degree at most (m−1)/2 is straightforward as f(x)

∏
i∈[m] xi

does not depend on any terms involving m− (m− 1)/2 or more variables. For the doubtful reader,
we complete this argument formally.

By definition of the Fourier expansion, f(x) =
∑

S⊆[m] f̂S
∏
i∈S xi =

∑
S⊆[m] f̂S

∏
i∈S(1 − 2yi)

where yi = 1 if xi = −1 and yi = 0 if xi = 1. With the slight change of notation,

p(z) = Ey : ||y||1=z

 ∑
S⊆[m]

f̂[m]\S
∏
i∈S

(1− 2yi)

 =
∑
S⊆[m]

f̂[m]\S
∑
T⊆S

(−2)|T |Ey : ||y||1=z

[∏
i∈T

yi

]

=
∑
S⊆[m]

f̂[m]\S
∑
T⊆S

(−2)|T |
(
m

|T |

)−1( z

|T |

)
. (20)

We recognize that if f̂S = 0 for |S| ≤ (m− 1)/2, then f̂[m]\S = 0 for |S| ≥ (m− 1)/2 + 1 and factors

of zk which appear in (20) satisfy k ≤ (m− 1)/2. In effect, p has degree at most (m− 1)/2.

Corollary 3.4. For even m ≥ 2, there exists a distribution µ : Pm → [0, 1] with uniform marginals
such that the all-ones outcome has non-zero probability and, for x ∼ µ, conditioned on x1, the
outcome of (x2, . . . , xm) is (m/2− 1)-wise independent.
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Proof. The distribution is formed by choosing x1 uniformly at random from {−1, 1}. If −1,
(x2, . . . , xm) is drawn from the uniform distribution over vectors of even parity, which is a (m− 2)-
wise independent distribution with uniform marginals. If x1 is set to 1, (x2, . . . , xm) is drawn
according to the distribution which exists due to Lemma 3.3 and has the desired properties.

Corollary 3.5. For m ≥ 4 there exists a distribution µm on Pm satisfying (19).

Proof. For even m, the claim follows directly from Corollary 3.4. Consider an arbitrary odd m ≥
5. Again, we form a distribution by first sampling x1 uniformly at random from {−1, 1}. If
x1 = −1, draw (x2, . . . , xm) uniformly at random from vectors of even parity. If x1 = 1, set
(x2, . . . , xm) according to a distribution which exists by Corollary 3.4. Since the distribution has
uniform marginals, we claim that – conditioned on x1 – for any A ] A′ ⊆ {2, . . . ,m};A,A′ 6= ∅,
either the variables (xi)i∈A or the variables (xi)i∈A′ are independent and (19) is satisfied. To justify
this; by Lemma 3.4, the variables (x3, . . . , xm) are ((m − 1)/2 − 1)-wise independent conditioned
on x2 and x1 = 1. Hence, either 1 ≤ min{|A|, |A′|} ≤ ((m− 1)/2− 1) and one of the two sets have
independent variables and satisfy (19), or |A| = |A′| = (m − 1)/2 ≥ 2. Without loss of generality,
2 ∈ A and 1 ≤ |A \ {2}| < (m − 1)/2 and hence the bits indexed by A \ {2} are independent
conditioned on x2 and x1 = 1. In consequence the bits indexed by A are independent conditioned
on x1 = 1 and (19) is satisfied.

On the other hand, if x1 is set to −1, the bits (x2, . . . , xm) are drawn from an (m − 2)-wise
independent distribution conditioned on x1 = −1 and since |A|, |A′| ≤ m − 2, the bits are set
independently and (19) is satisfied.

3.2 Generalized Protocol

Let D be the (m − 1)-wise independent distribution which draws uniformly at random from odd
parity, and let E = µm be the distribution defined in the preceding subsection. The following PCP
test is the simple analogue of the arity-four case.

1. Pick a random vertex u ∈ U and a random neighbor v ∈ V . Sample π = π{u,v} as defined by
the Smooth Label Cover instance and let π̄ be an arbitrary bijection L↔ L such that for
every i, i′ ∈ K and r ∈ [d], π(i, r) = i′ iff ∃r′∈[d]π̄(i, r) = (i′, r′).

2. Sample random folding constants a, b ∼ {0, 1}. Define fa(x) = a ⊕ fu(a ⊕ x) and gb(y) =
b⊕ gv(b⊕ y ◦ π̄).

3. For each i ∈ K, independently choose xi uniformly at random from {0, 1}. For each j ∈ L,

independently sample (xπ(j), y
(2)
j , . . . , y

(m)
j ) conditioned on xπ(j) from D with probability δ̄

and otherwise E .

4. Accept iff
(
fa(x), gb(y

(2)), . . . , gb(y
(m))

)
∈ P .

The completeness and soundness claims are as follows.

Lemma 3.6. The protocol has completeness 1. Said equivalently, if Val(I) = 1, then Val(RP (I)) =
1.

Proof. The distributions D and µm both have support Pm ⊆ P and hence setting functions to their
dictators corresponding to a satisfying Label Cover solution is always accepted.

Proposition 3.7. The protocol has soundness 2−m|P |+ ε. More specifically, if Val(I) ≤ ε = ε(ε),
then Val(RP (I)) ≤ 2−m|P |+ ε where ε(ε)→ 0 as ε→ 0.
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Constants Let α = α(m) be the smallest strictly positive probability of any outcome of µm. Let

δ ≤ 2−2m−8ε2; define ρ0
def
=
√

1/2 + 1/2(1− α2δ2/2)2 and choose γ > 0 sufficiently close to 0 such

that supk ρ
k
0(1 − γ̄k) ≤ 2−m−4ε/m.3 Again, define ρ1

def
=
√

1− γm−1 and choose η > 0 sufficiently
close to 0 such that supk ρ

k
1(1 − η̄k) ≤ 2−m−4ε/m. Choose d2, . . . , dm such that 2γ̄d2 ≤ 2−m−4/m

and 2γ̄dr(2r −m)
∑r−1

2 dt/2 ≤ 2−m−4/m. Finally, choose the smoothness parameters J = dm, and
κ ≤ (2m)−mdm2−2m−10ε2.

3.2.1 Soundness of the Generalized Protocol

Notation. Redefine the generalized distributions as follows. The primary difference to the width-
four case is that we use different degree constants d2 ≤ · · · ≤ dm in our proofs when bounding
unmixed E[

∏
g] terms.

T0 = δ̄D + δE , T ′0 = T d-proj-1
0

⊗K
,

T ′1 =
(

T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)⊗K
,

T ′2 =
(

T2,...,m
γ̄,...,γ̄

(
T1
η̄T0

)d-proj-1
)⊗K

,

T3 = T1
η̄T

2,...,m
γ̄,...,γ̄ T0, T ′3 = T d-proj-1

3

⊗K
, T ′′3 = T3

⊗L

The test distribution of the protocol corresponds to T ′0 . Intuitively, T ′1 is the distribution where
projected noise is applied to y(2), . . . ,y(m), i.e. all coordinates which share projection are changed
by noise simultaneously. T ′2 is the same distribution but with noise applied also to x. We note that
projected and non-projected (independent) noise are the same for x as it is defined on the smaller
table. T ′3 is the distribution all strings – x,y(2), . . . ,y(m) – all have independent noise. Finally, T ′′3

is the same as T ′3 , we have noise for all strings, but x is defined on {−1, 1}L and for each j ∈ L, the

tuple (xj , y
(2)
j , . . . , y

(m)
j ) is drawn independently; we note that this distribution will only be used for

analyzing terms where x does not appear and equivalently one can see the strings (y(t))t as being
drawn independent of x.

As for the width-four case, we define f = Ea[fa] and g = Eb[gb]. Let the queries be q1 =
f(x), q2 = g(y(2)), . . . , qm = g(y(m)). For an arbitrary Γ 6= ∅ and distribution R, let us denote by
ψΓ(R) = EE,R[χΓ(q)]. Conceptually, we refer again to these terms as unmixed terms – E[

∏
g] –

or mixed terms – E[f
∏
g] – for zero or more functions g.

As in preceding proofs, the aim is to show the following four generalized propositions from which
the soundness follows.

Proposition 3.8. ψΓ(T ′0 ) = 0 for ∅ 6= Γ ⊆ [m], |Γ ∩ {2, . . . ,m}| ≤ 1.

Proof. As the test distribution has uniform marginals, ψ{t}(T ′0 ) = EE,T ′0 [qt] which equals EE [ E[f ]]
or EE [ E[g]], both of which are 0 due to folding. Suppose Γ = {1, t}. Then ψΓ(T ′0 ) = EE,T ′0 [fg] =

E[f ] E[g] = 0 since y(t) is uniform and independent of x by Lemma 2.4, subsequently folding yields
expectation 0.

We note that the constants ρ0 and ρ1 appearing in the proposition are correlation bounds
appearing in the proofs and are bounded away from 1 depending only on δ, γ, and m.

3In particular, setting γ̄ = ρ
2−m−4ε/m
0 suffices.
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Proposition 3.9. |ψΓ(T ′0 )− ψΓ(T ′3 )| ≤ (m − 1) supk≥0 ρ
k
0(1 − γ̄k) + supk≥0 ρ

k
1(1 − η̄k) + 2m

√
κ +

2mγ̄J ≤ ε/2−m−2 for any Γ ⊆ [m].

Proof. Appears on Page 35 in Section 3.4.

Proposition 3.10. |ψΓ(T ′3 )| ≤ 2γ̄d2 + 2
∑m

r=3 γ̄
dr(2r−5)

∑r−1
t=2 dt/2 + 2(m−1)(2m−5)

∑m
t=2 dt/2

√
κ+√

δ ≤ ε/2−m−2 for 1 /∈ Γ ⊆ [m], |Γ| ≥ 2.

Proof. Appears on Page 38 in Section 3.5.

Proposition 3.11. |ψΓ(T ′3 )| ≤ 22m

√
γ−1 EE

[∑
(i,j)∈π Inf

(η̄)
i (f)Inf

(γ̄)
j (g)

]
for 1 ∈ Γ ⊆ [m], |Γ| ≥ 3.

Proof. Appears on Page 43 in Section 3.7.

3.3 Generalized Correlation Bounds

In this subsection, we establish generalized bounds on the correlation between strings in our test
distribution. For preliminaries, we refer to the reader to Section 2.3.

The correlation bounds we aim to establish for the test distribution are the following analogues
of the width-four case. The first lemma shows that for our test distribution T0, the correlation
between arguments to g functions are bounded away from 1 independent of d. This in turn will
enable us to introduce projected noise for g functions.

Lemma 3.12. For any 2 ≤ r ≤ m,

ρ
(

Ω1 × Ωd
−1,−r,Ω

d
r ; T

d-proj-1
0

)
≤

√
1

2
+

1

2

(
1− α2δ2

2

)2

,

where α = α(m) is the smallest strictly positive probability of any outcome for the distribution
E = µm as defined in Section 3.1.

Proof. Lemma 2.4 implies that Ωd
m is independent of Ω1. Applying Corollary 2.19 with A = {1}, B =

{2, . . . ,m} \ {r}, C = {r}, we get

ρ
(

Ω1 × Ωd
−1,−r,Ω

d
r ; T

d-proj-1
0

)
≤ ρ(Ω−1,−r,Ωr | Ω1; T0)

which by definition equals Eω1

[
ρ(Ω−1,−r,Ωr; T0 | ω1)2

]1/2
.

Switching to {0, 1} notation again, to establish that the considered correlation is bounded away
from 1, it suffices that the conditioned correlation is bounded away from 1 for at least one of the
cases ω1 = 0 and ω1 = 1. This is precisely what we do, we bound the latter by 1 and find a smaller
bound for the case ω1 = 0.

To this end, we employ Lemma 2.16. The bipartite graph in question has left vertices Ω−1,−r,
right vertices Ωr, and an edge {~ω−1,−r, ωr} whenever (0, ~ω−1,−r, ωr) has strictly positive probability.
Lemma 2.16 states that if this graph connected, the correlation is bounded away from 1. To be
specific, the correlation is at most 1 − α2/2 where α is the smallest strictly positive probability of
any outcome. This graph is indeed connected. From ωr = 1, D connects to any ~ω−1,−r of even
parity while from ωr = 0, D connects to any ~ω−1,−r of odd parity as well as the even-parity outcome
~ω−1,−r = ~0 due to the all-zero outcome of E .

Defined above, let α = α(m) be the minimum non-zero probability of any outcome of E . The
minimum strictly positive probability of any outcome for the distribution T0 = δ̄D+ δE conditioned
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on ω1 = 0 is then given by E as δ is close to 0, i.e. the minimum probability of any atom of δ̄D+ δE
is α(m)δ. This implies that ρ(Ω−1,−r,Ωr; T0 | ω1 = 0) ≤ 1− α(m)2δ2/2 and, as desired,

ρ
(

Ω1 × Ωd
−1,−r,Ω

d
r ; T

d-proj-1
0

)
≤

√
1

2
· 12 +

1

2

(
1− α2δ2

2

)2

.

The second lemma essentially says that after we have introduced projected noise for all g func-
tions, the argument to f has correlation bounded away from 1 independent of d, enabling us to in
turn introduce noise for f .

Lemma 3.13.
ρ
(

Ω1,Ω
d
2 × · · · × Ωd

m; T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)
≤
√

1− γm−1.

Proof. We recall that the considered distribution is T2,...,m
γ̄,...,γ̄ T

d-proj-1
0 . With probability

∏m
t=2 γ, the

outcome of Ωd
2 × · · · × Ωd

m is independent of Ω1 and the correlation is 0. Denote this event by A
and let the correlations of the two possibilities be, respectively, ρA = 0 and ρĀ ≤ 1. Then,

ρ
(

Ω1,Ω
d
2 × · · · × Ωd

m; T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)
≤
√

P(A) ρ2
A + P

(
Ā
)
ρ2

Ā

≤

√√√√ m∏
t=2

γ · 02 +

(
1−

m∏
t=2

γ

)
· 12 =

√
1− γm−1.

The third and final lemma is used to show that a product of g-functions is always small if we
do not have projections. This will be the final step when we bound terms of the form E[

∏
g] after

we have argued that the product behaves roughly as though there were unique projections.

Lemma 3.14.
ρ (Ωr,Ω−1,−r; T0) ≤

√
δ.

Proof. With probability δ̄, Ωr is drawn from D in which case it is independent of Ω−1,−r, yielding
a correlation of 0. In the other event, the correlation is bounded by 1. Hence, using Corollary 2.18,

ρ
(

Ωr,Ω−1,−r; T d-proj-1
3

)
≤
√
δ̄ · 02 + δ · 12 ≤

√
δ.

3.4 Generalized Noise Introduction

To introduce noise, we prove the following generalizations of Lemmas 2.22, 2.23, and 2.24.

Lemma 3.15. Let Γ ⊆ [m], |Γ| ≥ 2 and define ρ0 =
√

1/2 + 1/2(1− α2δ2/2)2. Then,

∣∣E[ψΓ(T ′0 )− ψΓ(T ′1 )
]∣∣ ≤ m∑

t=2

sup
k
ρk0(1− γ̄k) ≤ (m− 1) sup

k
ρk0(1− γ̄k).

Proof. Proven on Page 35.
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Lemma 3.16. Let Γ ⊆ [m], |Γ| ≥ 2 and define ρ1 =
√

1− γm−1. Then,∣∣E[ψΓ(T ′1 )− ψΓ(T ′2 )
]∣∣ ≤ sup

k
ρk1(1− η̄k).

Proof. Proven on Page 36.

Lemma 3.17. Let Γ ⊆ [m], |Γ| ≥ 2. Then,∣∣E[ψΓ(T ′2 )− ψΓ(T ′3 )
]∣∣ ≤ 2m

√
κ+ 2mγ̄J .

Proof. Proven on Page 36.

Proof of Lemma 3.9. Follows directly from Lemmas 3.15, 2.23, and 3.17 by summing the respective
differences.

Proof of Lemma 3.15: Introducing Projected Noise for g Functions We define Ω′1 =

Ω1,Ω
′
t = Ωd

t for t ∈ {2, . . . ,m}, let y(t) be the lifted version of y(t), and T the lifted analogue of a
distribution T . Additionally, as we wish to claim simultaneously the lemmas for all Γ ⊆ [m], |Γ| ≥ 2,

let hA for a subset A ⊆ [m] denote f [1∈A]
∏
t∈A\1 g

(t) .

Proof of Lemma 3.15. Let D1 = T d-proj-1
0 ,Dr = T

(r)
γ̄ Dr−1, r ∈ {2, . . . ,m}. We note that DKm is

indeed the lifted analogue of T ′1 . Consequently, the lemma is proven by bounding the respective
differences of expectations

∣∣ψΓ(DKr )− ψΓ(DKr−1)
∣∣ for r ∈ {2, . . . ,m}.

Working out the notation, for r ∈ {2, . . . ,m},∣∣ψΓ(DKr−1)− ψΓ(DKr )
∣∣ =

∣∣∣EDKr−1

[
g(r)hΓ\r

]
− EDKr

[
g(r)hΓ\r

]∣∣∣
=

∣∣∣∣EDKr−1

[
g(r)hΓ\r

]
− E

(T
(r)
γ̄ Dr−1)K

[
g(r)hΓ\r

]∣∣∣∣ (21)

=
∣∣∣EDKr−1

[
g(r)hΓ\r

]
− EDKr−1

[
(Tγ̄g(r))hΓ\r

]∣∣∣. (22)

This is the setting of Corollary 2.25.
By Lemma 3.12 and symmetry, the correlation ρ(Ω1 ×

∏
t6=1,r Ωd

t ,Ω
d
r ; T

d-proj-1
0 ), which equals

ρ(Ω1×
∏
t6=1,r Ω′t,Ω

′
r;D1), is bounded by ρ0

def
=
√

1/2 + 1/2(1− α2δ2/2)2. As noise can only decrease
correlation, the same bound holds for Dr−1. Similarly, this is a bound on any subset of sample spaces
in the case Γ 6= [m].

For r ∈ {2, . . . ,m}, if r /∈ Γ, the difference (21) is 0. Otherwise, we bound using Corollary 2.25
with ρ ≤ ρ0; that is, (21) ≤ supk ρ

k
0(1− γ̄k). In conclusion,

∣∣ψΓ(T ′0 )− ψΓ(T ′1 )
∣∣ =

∣∣∣ψΓ(DK0 )− ψΓ(Dkm)
∣∣∣ ≤ m∑

t=2

∣∣ψΓ(DKt−1)− ψΓ(DKt )
∣∣ ≤ (m− 1) sup

k
ρk0(1− γ̄k).
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Proof of Lemma 3.16: Introducing Noise for the f Function

Proof of Lemma 3.16. By Lemma 3.13, ρ(Ω1,Ω
d
2 × · · · × Ωd

m; T d-proj-1
1 ) ≤ ρ1

def
=
√

1− γm−1. The

same bound holds for ρ(Ω1,
∏
t∈Γ\1 Ω′t; T

d-proj-1
1 ). Hence, using Corollary 2.25 again,

∣∣ψΓ(T ′1 )− ψΓ(T ′2 )
∣∣ =

∣∣∣∣∣E(T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)K [fhΓ\1
]
− E(

T2,...,m
γ̄,...,γ̄ (T1

η̄T0)
d-proj-1

)K [fhΓ\r
]∣∣∣∣∣

=

∣∣∣∣∣E(T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)K [fhΓ\r
]
− E(

T2,...,m
γ̄,...,γ̄ T

d-proj-1
0

)K [(Tη̄f)hΓ\r
]∣∣∣∣∣ ≤ sup

k
ρk1(1− η̄k).

Proof of Lemma 3.17: From Projected Noise to Independent Noise

Proof of Lemma 3.17. Just as for the width-four case, the lemma follows from repeated application
of Theorem 2.21. To utilize the theorem, we again unravel the definition of g from the protocol:

g(y)
def
= Eb∼{0,1}[b⊕ gv(b⊕ y ◦ π̄)] ,

where, for π
def
= π{u,v}, π̄ : K × [d]↔ K × [d] is an arbitrary bijection such that if (i′, r′) = π̄(i, r),

then π(i) = i′. Define g′v(y) = Eb∼{0,1}[b⊕ gv(b⊕ y)] and let T ′2
π̄ and T ′3

π̄ permute coordinates
of g′ in accordance with an arbitrary bijection π̄ consistent with π. Also, for F ⊆ [m], let hvF =
f [1∈F ]

∏
t∈F\1 g

′v(y(t)).

We recall that T ′2 =
(

T2,...,m
γ̄,...,γ̄

(
T1
η̄T0

)d-proj-1
)K

and T ′3 =

((
T2,...,m
γ̄,...,γ̄ T1

η̄T0

)d-proj-1
)K

. The target

difference equals

∣∣ψΓ(T ′2 )− ψΓ(T ′3 )
∣∣ =

∣∣∣∣Eu,v,T ′2
π{u,v}

[
fhvΓ\1

]
− E

u,v,T ′3
π{u,v}

[
fhvΓ\1

]∣∣∣∣. (23)

We apply Theorem 2.21 up to m− 1 times, once for each of the coordinates 2, . . . ,m which appear

in Γ. Define Rt =

(
Tt+1,...,m
γ̄,...,γ̄

(
T1,2,...,t
η̄,γ̄,...,γ̄T0

)d-proj-1
)K

and note that R1 corresponds to T ′2 and Rm
to T ′3 .

Formally, when applying it to coordinate t ∈ Γ\{1}, we have A = {1}, B = {t}, C = Γ\{1, t}, γ =
γ, and the distributions equal P = Rt−1 and R = Rt. The respective differences in expectation
hence yield a bound on the difference in expectation between T ′2 = R2 and T ′3 = Rm. According
to the theorem, the difference in expectation for coordinate t is bounded by 2

√
κ + 2γ̄J . In effect,

(23) ≤
∑m

t=2(2
√
κ+ 2γ̄J) ≤ 2m

√
κ+ 2mγ̄J .

3.5 Proof of Lemma 2.7: Bounding ET ′3 [
∏

g], General Case

We first limit ourselves to the hardest case: Γ = {2, . . . ,m} which corresponds to bounding

Eπ,T ′3

[
g(y(2)) · · · g(y(m))

]
,

and comment briefly on the other cases following the proof of the hardest case.
In the following, g denotes g′v as defined in the previous subsection.
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Noised to Low-Degree Functions

Lemma 3.18. Let D = T ′3 or T ′′3 . Then,∣∣∣ED[g(y(2)) · · · g(y(m))
]
− ED

[
g≤d2(y(2)) · · · g≤dm(y(m))

]∣∣∣ ≤ γ̄d2 +

m∑
r=3

γ̄dr(2r − 5)
∑r−1
t=2 dt/2.

Proof. We considering the effect of removing the high-degree components one at a time and rewrite
the treated difference,∣∣∣∣∣

m∑
r=2

ED

[(
r−1∏
t=2

g≤dt(y(t))

)
g>dr(y(r))

(
m∏

t=r+1

g(y(t))

)]∣∣∣∣∣. (24)

We bound in absolute value these terms separately. For r = 2, Cauchy-Schwarz gives a bound
of
∣∣∣∣g>d2(y(2))

∣∣∣∣
2
·
∣∣∣∣∏m

t=3 g(y(t))
∣∣∣∣

2
≤ γ̄d2 . For any term with 3 ≤ r ≤ m, Hölder’s inequality yields

the bound
r−1∏
t=2

∣∣∣∣∣∣g≤dt(y(t))
∣∣∣∣∣∣

2r−4

∣∣∣∣∣∣g>dr(y(r))
∣∣∣∣∣∣

2

m∏
t=r+1

∣∣∣∣∣∣g(y(t))
∣∣∣∣∣∣
∞
. (25)

Regarding the first kind of factors, by Lemma 2.29,
∣∣∣∣g≤dt(y(t))

∣∣∣∣
2r−4

≤ (2r − 5)dt/2
∣∣∣∣g≤dt(y(t))

∣∣∣∣
2
≤

(2r − 5)dt/2. Again,
∣∣∣∣g>dr(y(r))

∣∣∣∣
2
≤ γ̄dr , while

∣∣∣∣g(y(t))
∣∣∣∣
∞ ≤ 1. Hence, (25) is bounded by

γ̄dr
r−1∏
t=2

(2r − 5)dt/2 = γ̄dr(2r − 5)
∑r−1

2 dt/2

and consequently (24) by

γ̄d2 +
m∑
r=3

γ̄dr(2r − 5)
∑r−1

2 dt/2.

Smooth Low-Degree to Shattered Functions via Hypercontractivity We recall the term
shattered denoting functions where every non-zero fS satisfies |π(S)| = |S|. The goal is to show
that for smooth projections, low-degree functions are essentially shattered.

Lemma 3.19. Let D = T ′3 or T ′′3 . Then,∣∣∣∣∣ED
[
m∏
t=2

g≤dtt (y(t))

]
− ED

[
m∏
t=2

gt
�π≤dt(y(t))

]∣∣∣∣∣ ≤ (2m− 5)
∑m
t=2 dt/2(m− 1)

√
κ.

Proof. It suffices to bound for 2 ≤ r ≤ m the term∣∣∣∣∣(g≤dr(y(r))− g�π≤dr(y(r))
)

E

[(
r−1∏
t=2

g�π
≤dt(y(t))

)(
m∏

t=r+1

g≤dt(y(t))

)]∣∣∣∣∣
which via Hölder’s is bounded by∣∣∣∣∣∣g≤dr(y(r))− g�π≤dr(y(r))

∣∣∣∣∣∣
2

r−1∏
t=2

∣∣∣∣∣∣g�π≤dt(y(t))
∣∣∣∣∣∣

2m−4

m∏
t=r+1

∣∣∣∣∣∣g≤dt(y(t))
∣∣∣∣∣∣

2m−4
.

By definition, dr ≤ J and hence Theorem 2.20 bounds the first factor by
√
κ
∣∣∣∣g≤dr(y(r))

∣∣∣∣
2

while

Lemma 2.29 bounds the respective factors by (2m − 5)dt/2||g||2. As 2m − 5 ≥ 1, this yields the
desired bound, summing over the m− 1 terms.
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Shattered Functions to Independent Coordinates

Lemma 3.20. For shattered functions, T ′3 and T ′′3 yield identical expectations. That is,

ET ′3

[
m∏
t=2

gt
�π≤dt

]
= ET ′′3

[
m∏
t=2

gt
�π≤dt

]
.

Proof. Consider the Efron-Stein decompositions of the functions in the two terms. Similar to the
width-four case, we argue that each term, indexed by (St)

m
t=2, coincides in expectation for the two

distributions. First we claim that terms for which |π (
⋃
St)| < |

⋃
St| evaluate to 0 due to our

choice of test distribution. To see this, consider an i ∈ K for which there are at least two different
j 6= j′ ∈

⋃
St projecting to i and let T and T ′ be the indices t for which j ∈ St or j′ ∈ St,

respectively. Since we are considering shattered functions, the sets (St)t are shattered for non-zero
terms and so T and T ′ are disjoint and non-empty. Since µm – and in extension δ̄D+δµm – satisfies
(19), a factor of such terms has expectation zero.

Given |π (
⋃
St)| = |

⋃
St|, the argument is identical to that of the width-four case, Lemma 2.31.

Namely, for each i, there is at most one j such that (y
(t)
j )t depends on xi and hence the distributions

T ′3 and T ′′3 coincide.

Putting it Together

Proof of Lemma 3.10. Using the three preceding lemmas and dt ≤ J for all t,∣∣∣ET ′3 [g(y(2)) · · · g(y(m))
]
− ET ′′3

[
g�π
≤d2(y(2)) · · · g�π≤dm(y(m))

]∣∣∣
≤ γ̄d2 +

m∑
r=3

γ̄dr(2r − 5)
∑r−1
t=2 dt/2 + (m− 1)(2m− 5)

∑m
t=2 dt/2

√
κ.

and similarly ∣∣∣ET ′′3 [g(y(2)) · · · g(y(m))
]
− ET ′′3

[
g�π
≤d2(y(2)) · · · g�π≤dm(y(m))

]∣∣∣
≤ γ̄d2 +

m∑
r=3

γ̄dr(2r − 5)
∑r−1
t=2 dt/2 + (m− 1)(2m− 5)

∑m
t=2 dt/2

√
κ,

i.e.∣∣∣ET ′3 [g(y(2)) · · · g(y(m))
]∣∣∣ ≤∣∣∣ET ′′3 [g(y(2)) · · · g(y(m))

]∣∣∣
+ 2γ̄d2 + 2

m∑
r=3

γ̄dr(2r − 5)
∑r−1
t=2 dt/2 + 2(m− 1)(2m− 5)

∑m
t=2 dt/2

√
κ.

It remains to bound ∣∣∣ET ′′3 [g(y(2)) · · · g(y(m))
]∣∣∣ (26)

By the definition of correlation, (26) is no greater than

ρ(ΩL
2 ,Ω

L
3 × · · · × ΩL

m; T ′′3 )
∣∣∣∣∣∣g(y(2))

∣∣∣∣∣∣
T ′′3 ,2

∣∣∣∣∣∣g(y(3)) · · · g(y(m))
∣∣∣∣∣∣
T ′′3 ,2
≤ ρ(ΩL

2 ,Ω
L
3 × · · · × ΩL

m; T ′′3 ).
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For the distribution T ′′3 , the coordinates L are independent and so by Lemma 2.15,

ρ(ΩL
2 ,Ω

L
3 × · · · × ΩL

m; T ′′3 ) ≤ max
j∈L

ρ(Ω2,j ,Ω3,j × · · · × Ωm,j ; T ′′3 ) = ρ(Ω2,Ω3 × · · · × Ωm; T3).

In Lemma 3.14, we bounded this correlation by
√
δ.

Consequently,∣∣∣ET ′3 [g(y(2)) · · · g(y(m))
]∣∣∣ ≤ 2γ̄d2 + 2

m∑
r=3

γ̄dr(2r− 5)
∑r−1
t=2 dt/2 + 2(m− 1)(2m− 5)

∑m
t=2 dt/2

√
κ+
√
δ.

Cases Γ ( {2, . . . ,m}. As mentioned for the width-four case, terms Γ ( {2, . . . ,m}, |Γ| ≥ 2, follow
via the same arguments; bounds on high-degree terms only produce fewer terms and similarly with
the step from low-degree terms to shattered low-degree terms; the argument that the expectation
is the same as for independent coordinates is identical and finally the correlation between the same
spaces indexed by Γ can not yield a better correlation than between the spaces ΩL

2 , . . . ,Ω
L
m.

3.6 An Invariance-Style Theorem

The following is essentially a variant of the second part of Theorem 1.14 in Mossel, 2010 [18],
slightly generalized and without any dependence on α, the least probability of any atom in

∏
Ωt.

This permits the theorem to be used for analyzing PCP reductions from label cover without a degree
restriction on projections. Our proofs are based on the coordinate-wise substitution method found
in O’Donnell and Wu, 2009 [22]. In the following section, we apply this theorem to directly bound
mixed, i.e. E[f

∏
g], terms.

Theorem 3.21. Consider functions {f (t) ∈ L∞(Ωn
t )}t∈[m] on a probability space P = (

∏m
t=1 Ωt,P)⊗n

and a set M ( [m]. Furthermore, let C be the collection of minimal sets C ⊆ [m], C *, such that
the spaces {Ωt}t∈C are dependent. Then,∣∣∣∣∣E[∏ f (t)

]
−
∏
t/∈M

E
[
f (t)
]

E

[∏
t∈M

f (t)

]∣∣∣∣∣
≤ 22m max

C∈C

√
min
r∈C

Totinf(f (r))
∑
i

∏
t∈C−r

Infi(f (t))
∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞

Proof. Let {f (t)
S }S⊆[n] be the respective Efron-Stein decompositions of the functions. The LHS

equals ∣∣∣∣∣∣
∑

~S⊆[n]m

(
E
[∏

f
(t)
St

]
−
∏
t/∈M

E
[
f

(t)
St

]
E

[∏
t∈M

f
(t)
St

])∣∣∣∣∣∣. (27)

For a vector ~S ⊆ [n]m, define i∗(~S) = max{
⋃
t/∈M St ∪{0}} and T ∗(~S) = {T ⊆ [m] | i∗(~S) ∈ St}.

Let {Ai,T }i∈{0,...,n},T⊆[m] be the partition of [n]m by these two quantities and note that the choices

of ~S ∈ Ai,T correspond to vectors where St is a subset of [i] if t /∈ M and else [n]; and i ∈ St iff

t ∈ T . Denote by S(i)
T,t the respective choices of St, i.e. Ai,T =

∏
S(i)
T,t.
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We note that for ~S such that i∗(~S) = 0, i.e., St = ∅ for every t /∈ M , the two expectations in
(27) coincide and the difference is 0. While whenever ~S ∈ Ai,T for T *M , the coordinate i appears
in a partition besides M and so by independence and properties of Efron-Stein decompositions, the
right term evaluates to 0. Consequently,

(27) =

∣∣∣∣∣∣∣
∑

~S∈
⊎
i,T Ai,T

(
E
[∏

f
(t)
St

]
−
∏
t/∈M

E
[
f

(t)
St

]
E

[∏
t∈M

f
(t)
St

])∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
i,T

∑
~S∈Ai,T

E
[∏

f
(t)
St

]
,

∣∣∣∣∣∣∣ (28)

where the sum is over i ∈ [n].
Similarly, whenever T ∗(~S) +M is a strict subset of some C ∈ C, the expectation evaluates to 0

by independence and properties of the decompositions, i.e.

(28) =

∣∣∣∣∣∣∣
∑

T : ∃C∈CT⊇C

∑
i

∑
~S∈Ai,T

E
[∏

f
(t)
St

]∣∣∣∣∣∣∣ (29)

By the choices of ~S ∈ Ai,t,

(29) =

∣∣∣∣∣∣∣
∑

T⊇C,C∈C

∑
i

E

∏
 ∑
S∈S(i)

T,t

f
(t)
S



∣∣∣∣∣∣∣ ≤

∑
T⊇C,C∈C

∑
i

∣∣∣∣∣∣∣E
∏

 ∑
S∈S(i)

T,t

f
(t)
S



∣∣∣∣∣∣∣. (30)

Let r ∈ C be arbitrary and consider writing the expectation

E

 ∏
t∈[m]

 ∑
S∈S(i)

T,t

f
(t)
S


 = E


 ∑
S∈S(i)

T,r

f
(r)
S

 · ∏
t∈C−{r}

 ∑
S∈S(i)

T,t

f
(t)
S

 ·∏
t/∈C

 ∑
S∈S(i)

T,t

f
(t)
S


 .

Applying Hölder’s inequality to these three factors with respective parameters 2, 2, and ∞, the
product is bounded by∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∑

S∈S(i)
T,r

f
(r)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∏

t∈C−{r}

∑
S∈S(i)

T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

·
∏
t/∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

S∈S(i)
T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

.

In consequence,

(30) ≤
∑

T⊇C,C∈C
min
r∈C

∑
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

S∈S(i)
T,r

f
(r)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∏

t∈C−{r}

 ∑
S∈S(i)

T,t

f
(t)
S


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∏
t/∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

S∈S(i)
T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(31)

As we assumed every C ∈ C was a minimal dependent set, the spaces {Ωt}t∈C−{r} are indepen-
dent and in effect

(31) =
∑

T⊇C,C∈C

∑
i

∏
t∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

S∈S(i)
T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∏
t/∈C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

S∈S(i)
T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (32)
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Consider first the factor

∣∣∣∣∣∣∣∣∑S∈S(i)
T,t

f
(t)
S

∣∣∣∣∣∣∣∣
2

for some t /∈ M . By construction, S(i)
T,t consists of the

subsets of [i] containing i, i.e. the norm equals E

[(∑
S⊆[i],i∈S f

(t)
S

)2
]1/2

which by properties of the

decomposition equals

(∑
S⊆[i],i∈S E

[
f

(t)
S

2
])1/2

. Recalling the expression of influences as squares of

Efron-Stein terms, this quantity is bounded from above by
√

Infi(f (t)). Similarly, whenever t ∈M
and T , the factors correspond exactly to this expression. Hence,

(32) ≤
∑

T⊇C,C∈C

∑
i

√∏
t∈C

Infi(f (t))

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∏
t/∈C

∑
S∈S(i)

T,t

f
(t)
S

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (33)

To bound the last factors, we note a few properties of the Efron-Stein decomposition {fS}S⊆[n]

of a function f . Let us denote by f̃S(x) = E[f(X) | XS = xS ]. By the unique construction of
the decomposition,

∑
A⊆S⊆B fS(x) =

∑
S⊆A(−1)|T |f̃S ≤ 2|A|||f ||∞. It follows that

∑
S∈SiT,t

fS , for

t ∈ M , equals f̃[n]−{i} if t /∈ T and otherwise f̃[n] − f̃[n]−{i}; both possibilities bounded by 2||f ||∞.

In light of this,
∏
t/∈C

∣∣∣∣∣∣∣∣∑S∈S(i)
T,t

f
(t)
St

∣∣∣∣∣∣∣∣
∞
≤
∏
t/∈C 2

∣∣∣∣f (t)
∣∣∣∣
∞ ≤ 2m

∏
t/∈C

∣∣∣∣f (t)
∣∣∣∣
∞. Returning to our

expression,

(33) ≤ 2m
∑

T⊇C,C∈C

∑
i

√∏
t∈C

Infi(f (t))
∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞
. (34)

The squareroot of the influence of a coordinate for a function is bounded by the infinity norm
of the function. Hence, the maximum of (34) is achieved for some T = C,C ∈ C and

(34) ≤ 22m max
C∈C

∑
i

√∏
t∈C

Infi(f (t))
∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞

= 22m max
C∈C

min
r∈C

∑
i

√
Infi(f (r))

√ ∏
t∈C\{r}

Infi(f (t))
∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞
. (35)

Applying Cauchy-Schwarz over i,

(35) ≤ 22m max
C∈C

min
r∈C

(∑
i

Infi(f
(r))

)1/2
∑

i

∏
t∈C\{r}

Infi(f
(t))

1/2 ∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞
.

= 22m max
C∈C

√
min
r∈C

Totinf(f (r))
∑
i

∏
t∈C\{r}

Infi(f (t))
∏
t/∈C

∣∣∣∣∣∣f (t)
∣∣∣∣∣∣
∞
,

as desired.

Remark. Given a function g : Ωnd → R and a projection π : M → L where gπ : (Ωd)n → R is
suitably defined, the influence of a coordinate i ∈ K translates naturally to the sum of influences
j ∈ L which project to i. Namely, we have

Infi(g
π) = Infπ−1(i)(g) ≤

∑
j :π(j)=i

Infj(g).
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This follow from the expression of influences in decompositions of g which equals
∑

T : i∈π(T ) E
[
g2
T

]
in the former two cases and

∑
T |T ∩ π−1(i)|E

[
g2
T

]
in the third.

Corollary 3.22. Let P = (
∏m
t=1 Ωt,P) be a probability space such that Ωt is independent of Ω1

for t = 2, . . . ,m. Consider label sets K,L = K × [d], and mean-zero functions f : ΩK
1 → [−1, 1],

g(t) : ΩL
t → [−1, 1], t = 2, . . . ,m. Finally, let γ1, . . . , γm ∈ (0, 1] be parameters and define P ′ =(

T
(1)
γ̄1

(
T

(2)
γ̄2
· · ·T(m)

γ̄m P
)d-proj-1

)⊗K
. Then,

∣∣∣EP ′[f∏ g(t)
]∣∣∣ ≤ 22m

√
γ−1 max

r

∑
i,j

Inf
(γ̄1)
i (f)Inf

(γ̄r)
(i,j)(g

(r)),

where γ = mint6=1 γt.

Proof. We aim to employ Theorem 3.21 with the partition [m] = M1 ×M2,M1 = {1},M2 = M =

{2, . . . ,m}. To this end, we define lifted functions g(t) : (Ωd
t )
L → [−1, 1] as g(t)(y)

def
= g(y) where

y i,r = y(i,r). Hence, as f has mean zero,∣∣∣EP ′[f∏ g(t)
]∣∣∣ =

∣∣∣EP ′[f∏ g(t)
]
− EP ′ [f ] EP ′

[∏
g(t)
]∣∣∣

=
∣∣∣EP ′[f∏ g(t)

]
− EP ′ [f ] EP ′

[∏
g(t)
]∣∣∣. (36)

As a consequence of the assumption that Ωt is independent of Ω1 for any t 6= 1, Ωd
t is independent

of Ω1. In turn, the minimal dependent sets C ) M of P ′ are supersets of {{1, r, r′}}r 6=r′∈[m].
Theorem 3.21 together with that influences is no greater than the squared infinity norm of a function
implies that (36) is bounded by

22m max
2≤r,r′≤m; r 6=r′

√
Totinf

(
g(r′)

)∑
i

Infi(f)Infi

(
g(r)
) ∏
t6=1,r,r′

∣∣∣∣∣∣g(t)
∣∣∣∣∣∣
∞
, (37)

with respect to the distribution P ′. With respect to the uniform distribution, the expression equals

22m max
2≤r,r′≤m; r 6=r′

√
Totinf

(
Tγ̄r′g

(r′)
)∑

i

Infi(Tγ̄1f)Infi

(
Tγ̄rg

(r)
) ∏
t6=1,r,r′

∣∣∣∣∣∣Tγ̄tg(t)
∣∣∣∣∣∣
∞
. (38)

As earlier remarked, for a function ḡ : (Ωd)K → R, Infi(ḡ) ≤
∑

j∈π−1(i) Infj(g) and so Totinf(ḡ) ≤

Totinf(g). For a γ-noised function, the total influence is bounded by γ−1 and hence Totinf
(

Tγ̄r′g
(r′)
)
≤

γ−1
r′ ≤ γ−1 where γ = mint6=1 γt. We also note that the infinity-norm of Tγ̄tg

(t) is bounded by the
maximum of

∣∣g(t)
∣∣ which is at most one. Hence, the difference is bounded as

(38) ≤ 22m max
2≤r,r′≤m; r 6=r′

√
γ−1

∑
i

Inf
(γ̄1)
i (f)Infi

(
Tγ̄rg

(r)
)

≤ 22m

√
γ−1 max

r

∑
i

Inf
(γ̄1)
i (f)

∑
j

Inf(i,j)

(
Tγ̄rg

(r)
)

= 22m

√
γ−1 max

r

∑
i,j

Inf
(γ̄1)
i (f)Inf

(γ̄r)
(i,j)

(
g(r)
)
.
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3.7 Proof of Lemma 3.11: Bounding ET ′3 [f
∏

g], General Case

Bounding mixed, i.e. E[f
∏
g], terms in the general case is straightfoward with the invariance-style

theorem of the preceding subsection

Proof of Lemma 3.11. We apply Corollary 3.22 with γ1 = η, γ2 = γ, . . . , γm = γ, g(t) = g and,
without loss of generality, permuting coordinates such that π(i, j) = i. Applying the corollary,
mixed terms are bounded as∣∣ψΓ(T ′3 )

∣∣ ≤ 22|Γ|
√
γ−1

∑
i,j:π(j)=i

Inf
(η̄)
i (f) max

t∈Γ\{1}
Inf

(γ̄t)
j (g),

where γ = mint∈Γ\{1} γt ≥ γm. Influence only decreases influence and the above is bounded by

22m
√
γ−1

∑
i,j:π(j)=i

Inf
(η̄)
i (f) max

t∈Γ\{1}
Inf

(γ̄)
j (g),

yielding the desired bound.

4 Discussion

We face technical difficulties addressing the width-three case, even for Boolean variables. The main
technical limitation of this extension is that we are unable to simultaneously make the coordinates
independent in the argument y(2) for a function on the larger label set, and y(2) independent of the
argument x for a function on the smaller label set. These two properties are used in all of the major
steps of our result. Curiously, H̊astad has shown in parallel a result [13] similar to ours for the
case m = 3. The methods of the two papers have similar foundations in that they rely on Smooth
Label Cover to reduce the effect of projection degrees. They differ in that ours seek general
techniques to eliminate this dependency while H̊astad uses more direct methods and counteracts
the dependency with massive smoothness constants.

It is interesting to consider whether the techniques could be used to circumvent the d-to-1
Conjecture for other results. Indeed, one of the two primary reasons why d-to-1 Games rather
than Unique Games is used as a starting point for reductions is because Unique Games is not
hard for satisfiable instances. As mentioned previously, the invariance argument of O’Donnell and
Wu has appeared in other works; initially, the authors posed a three-bit dictatorship test [21] before
adapting it to a PCP assuming the d-to-1 Conjecture. It has been suggested [5] that other query-
efficient dictatorship tests [4, 24] may yield PCPs by similar methods; perhaps unconditionally by
our methods.

It may also be of interest, as a first step towards proving the UGC or the d-to-1 Conjecture
to prove that in a standard multivariate hardness-of-approximation PCP, one may, for almost-
satisfiable instances, assume that projections are d-to-1 for some d independent of soundness. We
note that establishing either the UGC or the d-to-1 Conjecture implies this proposition.

Our proofs essentially use that a product of functions act – after we have introduced noise – as
though projections were unique; however in establishing this, we require a distribution such that
the r arguments defined on the right side, for every partition into two sets, one of the two sets
are independent conditioned on arguments to the small label sets. We finally note that our proofs
appear simplified by working with noisy influences, rather than low-degree influences, and sums of
consistent influences, rather than proving the existence of individual coordinates with significant
influences.
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