
New Independent Source Extractors with Exponential Improvement

Xin Li∗

Department of Computer Science

University of Washington

Seattle, WA 98905, U.S.A.

lixints@cs.washington.edu

November 6, 2012

Abstract

We study the problem of constructing explicit extractors for independent general weak ran-
dom sources. For weak sources on n bits with min-entropy k, perviously the best known extractor
needs to use at least log n

log k
independent sources [Rao06, BRSW06]. In this paper we give a new

extractor that only uses O(log(log n

log k
)) + O(1) independent sources. Thus, our result improves

the previous best result exponentially. We then use our new extractor to give improved network
extractor protocols, as defined in [KLRZ08]. The network extractor protocols also give new
results in distributed computing with general weak random sources which dramatically improve
previous results. For example, we can tolerate a nearly optimal fraction of faulty players in
synchronous Byzantine agreement and leader election, even if the players only have access to
independent n-bit weak random sources with min-entropy as small as k = polylog(n).

Our extractor for independent sources is based on a new condenser for somewhere random
sources with a special structure. We believe our techniques are interesting in their own right
and are promising for further improvement.

∗Supported by a Simons postdoctoral fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 147 (2012)

1 Introduction

Motivated by the enormous applications in computation that rely on the use of truly uniform
random bits (e.g, algorithm design, distributed computing and cryptography), and the fact that
random sources in practice are rarely uniform, the broad area of randomness extraction studies the
problem of converting a weakly random source into a distribution that is close to uniform. Here
we measure the randomness in a random source X by the standard min-entropy.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/ Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n, H∞(X))-source, and we say X has entropy rate H∞(X)/n.

Given an n-bit weak source X, a randomness extractor takes X as the input and outputs a
distribution that is close to uniform in statistical distance. Ideally, one would like to construct a
deterministic extractor that works for any source with enough min-entropy. However, it is not hard
to show that no deterministic extractor can work for all sources with min-entropy as large as n−1.
Instead, what we can construct is an extractor that uses an additional short uniform random seed.
This is called a (strong) seeded extractor.

Definition 1.2. A function Ext : {0, 1}n ×{0, 1}d → {0, 1}m is a strong (k, ε)-(seeded) extractor if
for every source X with min-entropy k and independent R which is uniform on {0, 1}d,

(Ext(X, R), R) ≈ε (Um, R),

where Um is the uniform distribution on m bits independent of R, and ≈ε denotes the two distri-
butions are within ǫ to each other in statistical distance.

The seed R is generally much shorter than the source, say only O(log n) bits. Although the
extractor needs an additional random seed, it already suffices for some applications (e.g., simulating
randomized algorithms with weak sources) just by trying all possible seeds, which only blows up the
running time by a poly(n) factor. Besides this direct application, seeded extractors have found many
other applications in computer science and nowadays we have explicit constructions with almost
optimal parameters (e.g. [GUV09]). However, for applications such as distributed computing and
cryptography, it is not clear how to use this trick. Instead, we need extractors that only use weak
sources as inputs.

One kind of extractors that fits into this category is independent source extractors. These are
extractors that take as input several independent weak sources, and output a distribution that
is close to uniform. Indeed, these extractors are used in [KLRZ08, KLR09] to construct network
extractor protocols that can be used to run distributed computing and cryptographic applications
with weak random sources.

The study of independent source extractors dates back to the well known Lindsey’s lemma,
which gives an extractor for two independent (n, k) sources with k > n/2. Besides the applica-
tions in distributed computing and cryptography, independent source extractors are themselves
interesting objects since they strongly resemble some properties of random functions. For exam-
ple, using the probabilistic method, one can show that with high probability a random function
is a deterministic extractor for just two independent sources with logarithmic min-entropy. Thus,

1

constructing explicit independent source extractors is also closely related to the general problem
of derandomization. However, although researchers have spent considerable efforts on this prob-
lem [CG88, BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06, Li11], the known constructions are
far from achieving optimal parameters. Currently the best explicit extractor for two independent
(n, k) sources only achieves min-entropy k = 0.49n [Bou05], the best explicit extractor for three
independent (n, k) sources only achieves min-entropy k = n1/2+α for an arbitrary constant α > 0
[Li11], and the best explicit extractor for independent (n, k) sources requires O(log n/ log k) sources
[Rao06, BRSW06].

1.1 Network extractor protocols

One application of independent source extractors is in distributed computing with imperfect ran-
domness. Historically, Goldwasser, Sudan, and Vaikuntanathan [GSV05] were the first to consider
this problem. They showed that it is possible to run distributed computing applications (e.g.,
Byzantine agreement) with imperfect randomness. However, they only considered fairly restricted
weak sources. Kalai, Li, Rao and Zuckerman [KLRZ08] later improved this result to general weak
random sources, where they also defined network extractor protocols.

The basic setting is, in a network with point to point or broadcast channels (synchronous or
asynchronous), a set of players each has a private independent weak random source. They wish
to communicate with each other so that at the end of the communication protocol, they end up
with random strings that are close to being independent, uniform and private. However, some
of the players are corrupted by an adversary, who is passive but otherwise can see every message
transmitted in the network and has unlimited computational power. The protocol has to ensure
that in the end, a large fraction of the honest players end up with private and uniform random
strings. Below we give the formal definition of a network extractor protocol. For simplicity, in this
paper we only consider the synchronous model.

We assume that p total players communicate with each other via point-to-point channels in
order to perform a task, of which an unknown t are faulty. We allow Byzantine faults: faulty
players may behave arbitrarily and even collude adversarially. In other words, we assume that
the faulty players are controlled by an adversary. We assume that the the adversary can see all
communication in the channels. This is called the full information model.

In a synchronous network, all communication takes place in rounds and every message trans-
mitted at the beginning of a round is guaranteed to reach its destination at the end of the round.
We allow rushing in this case: the faulty players may wait for all honest players to transmit their
messages for a particular round, and then decide what to transmit for their own messages.

We now introduce some notation. Player i begins with a sample from a weak source xi ∈ {0, 1}n

and ends up with a hopefully uniform string zi ∈ {0, 1}m. Let b be the concatenation of all the
messages that were sent during the protocol. We use capital letters such as Zi and B to denote
these strings viewed as random variables.

Definition 1.3. [KLRZ08] [Network Extractor] A protocol for p players is a (t, g, ǫ) network ex-
tractor for min-entropy k if for any min-entropy k independent sources X1, . . . , Xp over {0, 1}n and
any choice of t faulty players, after running the protocol, the number of players i for which

|(B, Zi) − (B, Um)| < ǫ

is at least g. Here Um is the uniform distribution on m bits, independent of B, and the absolute
value of the difference refers to statistical distance.

2

The main goal of the network extractor protocol is to tolerate as many faulty players as possible
(ideally a linear fraction), and to achieve g as close to p−t as possible. In [KLRZ08], for any constant

0 < β < 1, the authors constructed a 1/β + 1 round (t, p− (1.1 + 1/β)t, 2−kΩ(1)
) network extractor

protocol for min-entropy k ≥ 2logβ n. Using this network extractor, they obtained synchronous
Byzantine agreement protocols that tolerate roughly 1/4 fraction of faulty players for weak sources
with k ≥ nβ and that tolerate roughly 1/(3 + 1/β) fraction of faulty players for weak sources with

k ≥ 2logβ n. For leader election they obtained similar results. Note that for k ≥ 2logβ n, if β is small,
although the protocol can still tolerate a linear fraction of faulty players, the fraction is quite small.

1.2 Our results

In this paper, we obtain new independent source extractors for general (n, k) sources that signif-
icantly improve the previous best results [Rao06, BRSW06]. Specifically, we have the following
theorem.

Theorem 1.4. For every n, k ∈ N with k > log4 n there exists a polynomial time computable
function IExt : ({0, 1}n)t → {0, 1}m with m = Ω(k) and t = O(log(log n

log k)) + O(1) such that if
(X1, · · · , Xt) are t independent (n, k) sources, then

IExt(X1, · · · , Xt) ≈ǫ Um,

where ǫ = 1/poly(k).

Thus, for (n, k) sources, our extractor only needs roughly O(log(log n
log k)) sources to output a

distribution that is close to uniform. Compared to the previous best result which uses Ω(log n/ log k)
sources, this is an exponential improvement.

We also show that our extractor works in a weaker setting, namely, when we only have a constant
number of independent (n, k) sources and two independent k-block sources1 with O(log(log n

log k))+O(1)
blocks of size n.

Theorem 1.5. There exists an absolute constant c > 0 such that for any n, k ∈ N with k > log10 n
there exists a polynomial time computable function BExt : {0, 1}cn × {0, 1}tn × {0, 1}tn → {0, 1}m

with m = Ω(k) and t = O(log(log n
log k))

+O(1) such that if X = (X1, · · · , Xc) are c independent (n, k) sources and Y = (Y1 ◦ · · · ◦Yt), W =
(W1 ◦ · · · ◦ Wt) are 2 independent (k, · · · , k) block sources, then

BExt(X, Y, W) ≈ǫ Um,

where ǫ = 1/poly(k).

Next, we apply our extractor to the network extractor protocols in [KLRZ08]. By using our
improved independent source extractor, we also obtain improved network extractor protocols and
protocols for Byzantine agreement/leader election with weak random sources. Specifically, we have

Theorem 1.6. There exists a constant c > 1 such that for every n, k, p, t ∈ N with k > logc n,
there is an explicit 2-round (t, p − 3.1t, 1/poly(k)) network extractor protocol for (n, k) sources.

1A k-block source is a source with several blocks such that conditioned on any fixing of previous blocks, every

block has min-entropy k.

3

Theorem 1.7 (Synchronous Byzantine Agreement). There exists a constant c1 > 1 such that
for any constants α > 0 and c2 > 1 the following holds. Assume p players each has access to
an independent (n, k)-source with k > logc1 n and k > p1/c2, then there exists an explicit (in n)
synchronous O(log p) expected round protocol for Byzantine Agreement in the full information model
that tolerates (1/5 − α)p faulty players.

Theorem 1.8 (Leader Election). There exists a constant c1 > 1 such that for any constants α > 0
and c2 > 1 the following holds. Assume p players each has access to an independent (n, k)-source
with k > logc1 n and k > p1/c2, then there exists an explicit (in n) synchronous log∗ p + O(1) round
protocol for leader election that tolerates (1/4 − α)p faulty players.

Note that here we can tolerate a nearly optimal fraction of faulty players (for Byzantine agree-
ment, the optimum is 1/3 fraction and for leader election, the optimum is 1/2 fraction), even for
weak sources with min-entropy as small as k = polylog(n). These results dramatically improve
previous results.

2 Overview of The Constructions and Techniques

Here we give a brief overview of our constructions and the techniques. To give a clear description
of the ideas, we shall be informal and imprecise sometimes.

2.1 Independent source extractor

Similar as in [Rao06, BRSW06], our extractor is obtained by repeatedly condensing somewhere
random sources (SR-source for short). Take an (n, k) source X and a strong seeded extractor Ext

with seed length O(log n), by applying Ext to X with all possible choices of the seed, we obtain an
SR-source with N = poly(n) rows such that at least one row (in fact, most of the rows) is (close to)
uniform. The condenser in [Rao06, BRSW06] reduces the number of rows in the SR-source from
N to N/k0.9 each time, while consuming a constant number of independent (n, k) sources. Once
the number of rows decreases to k0.9, extraction becomes easy with an additional two independent
(n, k) sources. This results in a total number of O(log n

log k) sources.

The decreasing of the number of rows from N to N/k0.9 is inherently limited by the techniques
in [Rao06, BRSW06]. In this paper, however, by using a new condenser, we can reduce the number
of rows in the SR-source much faster. Specifically, each time by consuming just one independent
(n, k) source, our condenser reduces the number of rows in the SR-source from N to N3/4. If
N >> k then N1/4 >> k0.9. Note that initially N = poly(n), thus especially for small k such as
k = polylog(n), our condenser performs much better than the condenser in [Rao06, BRSW06].

Once we have this condenser, we can use it repeatedly to reduce the number of rows in the SR-
source to say k5. At this time we can use the extractor in [Rao06, BRSW06] to extract random bits
with a constant number more of independent sources. Since initially N = poly(n), the condensing
process uses O(log(log n

log k)) + O(1) sources. Thus our extractor uses O(log(log n
log k)) + O(1) sources.

We now describe our condenser. Unfortunately, to get this super efficiency we have to sacrifice
some generality. Unlike the condenser in [Rao06, BRSW06], our condenser does not work for a
general SR-source, but it works for SR-sources with some special structure. We now explain in
more details. As mentioned before when we take a strong seeded extractor Ext with seed length
O(log n) and applies it to a source X with all possible choices of the seed, we obtain a SR-source

4

with poly(n) rows such that most of the rows are (close to) uniform. Ignoring the error, now
suppose these rows are indeed uniform, and moreover, these rows are independent. We note that
it is not clear at all that we can achieve this (in fact, it’s impossible to achieve with just one weak
source), but for now let us assume that we can indeed get such an SR-source. Now we want to
reduce the number of rows in the SR-source while still keeping it to be an SR-source with the same
structure, what can we do?

We will now borrow some ideas from a distributed computing problem. Imagine that in the
SR-source, each row is associated with a player, and each player has a string that is supposed to be
uniform and independent, which is the corresponding row in the SR-source. Those rows that are
uniform and independent are associated with honest players, since their strings are indeed uniform
and independent. The other rows are associated with faulty players, since their strings may not
be uniform and may depend arbitrarily on the honest players’ strings. Now we want to select a
committee from the players, which has size much smaller than the number of players and which
has roughly the same fraction of honest players. This problem is very similar to our condenser
problem. On the other hand, this is a well-studied problem in leader election [RZ01, Fei99]. In
particular, Feige [Fei99] gave a beautiful lightest bin protocol to solve this problem.

The lightest bin protocol is as follows. Take r bins and each player uses his random string to
randomly select a bin. The players who select the lightest bin (the bin selected by the fewest number
of players) form the selected committee. The idea is that, since the strings of the honest players
are uniform and independent, by a Chernoff bound with high probability the honest players are
roughly evenly distributed into each bin. Thus, no matter how the faulty players’ strings depend on
the honest players’ strings, in the lightest bin the fraction of faulty players cannot be much larger
than the original fraction of faulty players.

Back to our condenser problem, we can use the same lightest bin protocol to select a subset of
the rows, such that with high probability the “good” rows (rows that are originally uniform and
independent) in this subset has roughly the same fraction. Now we take another independent (n, k)
source X ′ and apply the strong seeded extractor Ext to X ′ using each row in the selected subset
as the seed. Ignoring the error, and assume that k is larger than the size of the subset times the
output size of the extractor, one can show that with high probability conditioned on the fixing of
the original SR-source, the outputs of the extractor which correspond to the good rows are also
uniform and independent. Moreover, these outputs are now a deterministic function of the new
source X ′ (since the original SR-source is fixed). This corresponds to one round in the original
lightest bin protocol in leader election. Note that after we select the subset of rows, we need to use
a new source X ′ to get another SR-source for the next “round”. This is because in the lightest bin
protocol the faulty players’ strings can depend arbitrarily on the honest players’ strings in the same
round, but cannot depend on the honest players’ strings in future rounds. Thus, by consuming one
independent source we have obtained a new SR-source with fewer rows and the same structure as
the original SR-source. We can now iterate the above process. This gives our condenser.

Note that if the good rows in the SR-source are indeed uniform and independent, then by a
Chernoff bound we can take the number of bins to be r = N/ log N and each time we can reduce
the number of rows from N to log N . This is how [Fei99] achieves a leader election protocol with
log∗ p + O(1) rounds, where p is the number of players. Back to our extractor problem, in one step
we can reduce the number of rows in the SR-source from N = poly(n) to O(log n). Thus, as long
as k ≥ polylog(n) we can use the extractor in [Rao06, BRSW06] to extract random bits from the
SR-source and ONE additional (n, k) source. This will give us an extractor for (n, k) sources with

5

k as small as polylog(n) that uses just a constant number of sources!
This sounds really great, except that we cannot achieve an SR-source such that the good rows

are indeed uniform and independent. What we can achieve now is that every pair of the good rows
is close to being uniform and independent. In other words, ignoring the error, we can achieve pair-
wise independence in the good rows. Thus, we cannot apply the Chernoff bound in the analysis.
Luckily, by pair-wise independence we can still apply Chebysev’s inequality, which guarantees that
in one step we can take the number of bins to be r = N1/4 and reduce the number of rows in the
SR-source from N to N3/4. This is our actual condenser.

So now the question is how to obtain an SR-source such that the good rows are close to being
pair-wise independent. For this, we need the definition of a non-malleable extractor.

Definition 2.1. [DLWZ11] A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-non-malleable
extractor if, for any source X with H∞(X) ≥ k and any function A : {0, 1}d → {0, 1}d such that
A(r) 6= r for all r, the following holds. When R is chosen uniformly from {0, 1}d and independent
of X,

(nmExt(X, R), nmExt(X,A(R)), R) ≈ε (Um, nmExt(X,A(R)), R).

Note that a non-malleable extractor is a stronger version of a strong extractor, in the sense
that the output is required to be close to uniform conditioned on both the seed and the output on
another different but otherwise arbitrarily correlated seed. Non-malleable extractors were originally
introduced in [DW09] to study the problem of privacy amplification with an active adversary. We
now claim that if we take a source X and apply a non-malleable extractor nmExt to X with all
possible choices of the seed, then ignoring the error, we obtain an SR-source such that a large
fraction of the rows are pair-wise independent. Indeed, for any seed r if there exists a seed r′ 6= r
such that nmExt(X, r) is not close to uniform conditioned on nmExt(X, r′), then we can let A(r) =
r′. The definition of a non-malleable extractor asserts that the fraction of these r’s is small. Thus,
for the rest of the seeds, the outputs of the non-malleable extractor are pair-wise independent.

Now this is very nice, except another problem. Currently the best explicit non-malleable extrac-
tor only works for k = 0.49n [Li12c], while we need constructions for essentially any min-entropy.
Thus, we switch to a relaxation of a non-malleable extractor, a non-malleable condenser.

Definition 2.2. [Li12a] A (k, k′, ǫ) non-malleable condenser is a function nmCond : {0, 1}n ×
{0, 1}d → {0, 1}m such that given any (n, k)-source X, an independent uniform seed R ∈ {0, 1}d,
and any (deterministic) function A : {0, 1}d → {0, 1}d such that ∀r,A(r) 6= r, we have that with
probability 1 − ǫ over the fixing of R = r,

Pr
z′←nmCond(X,A(r))

[nmCond(X, r)|nmCond(X,A(r))=z′ is ǫ − close to an (m, k′) source] ≥ 1 − ǫ.

Non-malleable condensers were introduced in [Li12a]. Note that it is indeed a relaxation of a
non-malleable extractor in the sense that it only requires the output to have a certain amount of
min-entropy. Once we have a non-malleable condenser nmCond, we can apply it to a source X with
all possible choices of the seed, and (ignoring the error) we obtain a source such that for a large
fraction of the rows, each pair of the rows is a k′-block source with 2 blocks of size m. Recently,
Li [Li12b] constructed explicit non-malleable condensers for essentially any min-entropy, with error
ǫ = 1/poly(n) and seed length d = O(log2 n) such that k′ >

√
m. However, this does not give

us an SR-source. To fix this, we take several independent sources and from each one we obtain a

6

source with N rows by applying the non-malleable condenser. For each source, let Si ⊂ [N] be the
set of “good” rows. Now let S = ∩Si and S still takes up a large fraction of [N]. Moreover, the
good rows in S are now aligned across these sources. Now for every j ∈ S, we apply the extractor
in [Rao06, BRSW06] to all the row j’s in these sources. Since each row is a (m, k′)-source with
k′ >

√
m, we only need a constant number of sources to extract uniform random bits. Moreover,

conditioned on the fixing of all row j’s, for any l ∈ S, l 6= j, all the row l’s are still independent
(m, k′)-sources. Thus the output of row l is uniform and independent of the output of row j. Thus
now we obtain an SR-source such that a large fraction of the good rows are pair-wise independent.

However, there is still another problem. The problem is that the non-malleable condenser in
[Li12b] has seed length d = O(log2 n) which will make the initial N = nO(log n). Thus this only
gives us a quasi-polynomial time algorithm. To fix this, we note that the non-malleable condenser
nmCond(X, R) in [Li12b] uses a seed R = (R1, R2) and outputs Z = (Y1, Y2). For a different seed
R′ = (R′

1, R
′
2), Y1 takes care of the case where R1 = R′

1 and Y2 takes care of the case where R1 6= R′
1.

The reason the seed has length d = O(log2 n) is that Y2 is an encoding of R1 using some random
variable produced by X and R2 with an alternating extraction protocol, which requires R2 to be a
uniform string with size at least log2 n. In our case, however, we have the advantage of a supply of
independent sources, whereas in the non-malleable condenser case we only have one weak source.
Thus, we will use another weak source to provide the entropy used in the alternating extraction
protocol. Specifically, we take 4 independent sources (X1, X2, X3, X4) and a seed R = (R1, R2)
such that |R1| = d = O(log n) and |R2| = 10d. We use (X1, R1, R2) to produce Y1. To produce Y2,
we first compute W2 = Raz(R2, X2), where Raz is a two-source extractor in [Raz05] which works as
long as R2 has entropy rate > 1/2. This is because in the analysis fixing R′

1 may cause R2 to lose
entropy, but since |R2| = 10|R1| conditioned on this fixing R2 still has entropy rate roughly 9/10.
We then compute W3 = Ext(X3, W2) so that W3 is uniform and has size close to k. Now we can
use X4 and W3 to perform the alternating extraction protocol to produce Y2. As long as k > log2 n
this will satisfy our requirement, while ensuring that the seed length |R| = O(log n).

Now we are almost done, except for one remaining small problem. The problem is that in the
above analysis we ignored all the error. However, it turns out that the error we achieved in the
above process ǫ = 1/poly(n) is not small enough for the condenser to work. Note that if the good
rows are indeed pair-wise independent then we wouldn’t have any cross terms when computing the
variance in Chebysev’s inequality. However since they are only close to being pair-wise independent
we will have roughly N2 = poly(n) cross terms, and each is bounded by roughly O(ǫ). It turns out
the N here is too big for ǫ. Thus we need a smaller error. To fix this, we take several independent
sources and from them obtain c′ independent copies of the SR-sources we described above, each
with N rows. We now compute the xor of these sources. Note that the aligned good rows in
all these sources still take up a large fraction of [N]. On the other hand, since these sources are
independent, after the xor a pair of aligned good rows will be ǫc′-close to uniform. We show that we
only need a constant c′ to achieve a small enough error ǫc′ for our condenser, and the error suffices
for all subsequent condensing steps.

This gives our whole extractor construction. Thus, we use a constant number of independent
sources to prepare the initial SR-source for the condenser. Then we use O(log(log n

log k))+O(1) sources

to reduce the number of rows to k5, and finally we use another constant number of independent
sources to extract random bits. The dominating error comes from the last step where we apply the
condenser (the lightest bin protocol), which is 1/poly(k). By choosing the number of rows where
we stop condensing to be kC , we can make the error k−C for any constant C > 1.

7

By observing that the condenser works for two independent block sources, we can extend our
extractor to work for a constant number of independent (n, k) sources (which are used to prepare
the initial SR-source) and another 2 independent k-block sources with O(log(log n

log k)) + O(1) blocks.

2.2 Network extractor protocol

In [KLRZ08], the authors showed that if we have a C-source extractor for (n, k) sources with output

length Ω(k) and error ǫ, then there is an explicit r-round (t, p − 1.1(r + 1)t, ǫ + 2−kΩ(1)
) network

extractor protocol for (n, k) sources, where r =
⌈

log C
log log k

⌉
+ 1. By plugging in our independent

source extractor, we obtain the improved network extractor protocol and thus the improved results
for distributed computing with weak random sources.

Organization. After some preliminaries, we define alternating extraction in Section 4. We give
our independent source extractor in Section 5, and the applications in network extractor protocols
in Section 6. Finally we conclude with some open problems in Section 7.

3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instan-
tiations. Let |S| denote the cardinality of the set S. All logarithms are to the base 2.

3.1 Probability distributions

Definition 3.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W, Z)
def
= max

T⊆S
(|W (T) − Z(T)|) =

1

2

∑

s∈S

|W (s) − Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W, Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

3.2 Somewhere Random Sources, Extractors and Condensers

Definition 3.2 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 3.3. (Block Sources) A distribution X = X1 ◦ X2 ◦ · · · , ◦Xt is called a (k1, k2, · · · , kt)
block source if for all i = 1, · · · , t, we have that for all x1 ∈ Supp(X1), · · · , xi−1 ∈ Supp(Xi−1),
H∞(Xi|X1 = x1, · · · , Xi−1 = xi−1) ≥ ki, i.e., each block has high min-entropy even conditioned on
any fixing of the previous blocks. If k1 = k2 = · · · = kt = k, we say that X is a k block source.

Definition 3.4. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor
for min-entropy k1, k2 and error ǫ if for every independent (n1, k1) source X and (n2, k2) source Y ,

8

|(TExt(X, Y), X) − (Um, X)| < ǫ

and

|(TExt(X, Y), Y) − (Um, Y)| < ǫ,

where Um is the uniform distribution on m bits independent of (X, Y).

3.3 Average conditional min-entropy

Definition 3.5. The average conditional min-entropy is defined as

H̃∞(X|W) = − log
(
Ew←W

[
max

x
Pr[X = x|W = w]

])
= − log

(
Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 3.6 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W) − s] ≥ 1 − 2−s.

Lemma 3.7 ([DORS08]). If a random variable B has at most 2ℓ possible values, then H̃∞(A|B) ≥
H∞(A) − ℓ.

3.4 Prerequisites from previous work

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [DORS08].

Lemma 3.8. [DORS08] For any δ > 0, if Ext is a (k, ǫ) extractor then it is also a (k+log(1/δ), ǫ+δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [GUV09].

Theorem 3.9 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ǫ > 0,
there is an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n + log(1/ǫ)) and m ≥ (1 − α)k. It is also a strong (k, ǫ) average case extractor with
m ≥ (1 − α)k − O(log n + log(1/ǫ)).

We need the following construction of strong two-source extractors in [Raz05].

Theorem 3.10 ([Raz05]). For any n1, n2, k1, k2, m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δ min[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 × {0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

9

Theorem 3.11 ([Rao06, BRSW06]). There exist constants c > 0 and c′ such that for every n, k
with k = k(n) = Ω(log4 n) there exists a polynomial time computable function MExt : ({0, 1}n)u →
{0, 1}m with m = Ω(k) and u ≤ c′ log n

log k s.t. if X1, X2, . . . , Xu are independent (n, k) sources then

|MExt(X1, . . . , Xu) − Um| < 2−kc

.

Moreover, MExt is a strong extractor.

Theorem 3.12 ([BRSW06]). There exist constants c > 0 and c′ such that for every n, k, ℓ with
k = k(n) > log10 n and ℓ ≤ poly(n) there exists a polynomial time computable function SRExt :
{0, 1}ℓk × {0, 1}un → {0, 1}m with m = Ω(k) and u ≤ c′ log ℓ

log k s.t. if X = X1 ◦ X2 ◦ · · · ◦ Xu is a
(k, · · · , k) block sources and Y is an independent ℓ × k SR-source then

|SRExt(Y, X) − Um| < 2−kc

.

Moreover, SRExt is a strong extractor.

Theorem 3.13. [DLWZ11, CRS12, Li12a] For every constant δ > 0, there exists a constant β > 0
such that for every n, k ∈ N with k ≥ (1/2 + δ)n and ǫ > 2−βn there exists an explicit (k, ǫ)
non-malleable extractor with seed length d = O(log n + log ǫ−1) and output length m = Ω(n).

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 3.14 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ǫ > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X) − log |Y| − log

(
1

ǫ

)]
≥ 1 − ǫ.

We also need the following lemma.

Lemma 3.15. [Li12b] Let X and Y be random variables and let Y denote the range of Y . Assume
that X is ǫ-close to having min-entropy k. Then for any ǫ′ > 0

Pr
Y

[
(X|Y = y) is ǫ′-close to a source with min-entropy k − log |Y| − log

(
1

ǫ′

)]
≥ 1 − ǫ′ − ǫ

ǫ′
.

Lemma 3.16. [BIW04] Assume that Y1, Y2, · · · , Yt are independent random variables over {0, 1}n

such that for any i, 1 ≤ i ≤ t, we have |Yi − Un| ≤ ǫ. Let Z = ⊕t
i=1Yi. Then |Z − Un| ≤ ǫt.

4 Alternating Extraction

An important ingredient in our construction is the following alternating extraction protocol.
Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin

has a source Q, Wendy has a source X. Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Suppose that (Q, S1) is kept secret from Wendy and X is kept
secret from Quentin. Let Extq, Extw be strong seeded extractors with optimal parameters, such as

10

Quentin: Q,S1 Wendy: X

S1

S1−−−−−−−−−−−−−→
R1←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2−−−−−−−−−−−−−→
R2←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·
St = Extq(Q,Rt−1)

St−−−−−−−−−−−−−→
Rt = Extw(X,St)

Figure 1: Alternating Extraction.

that in Theorem 3.9. Let ℓ be an integer parameter for the protocol. For some integer parameter
t > 0, the alternating extraction protocol is an interactive process between Quentin and Wendy
that runs in t steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X, S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q, R1). In this step R1, S2 each outputs ℓ bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X, Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q, Ri). In step i, Ri, Si+1 each outputs
ℓ bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(X, S1), · · · , St = Extq(Q, Rt−1), Rt = Extw(X, St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q, S1) be a
seed, the look-ahead extractor is defined as

laExt(X, Y) = laExt(X, (Q, S1))
def
= R1, · · · , Rt.

We first prove the following lemma.

Lemma 4.1. Let Y = (Q, S1) where Q is an (nq, kq) source and S1 is the uniform distribution
over ℓ bits. Let Y ′ = (Q′, S′

1) be another random variable on the same support of Y that is
arbitrarily correlated to Y . Assume X is an (n, k) source independent of (Y, Y ′). Assume that
Extq and Extw are strong seeded extractors that use ℓ bits to extract from (nq, kq − 2tℓ) sources
and (n, k − 2tℓ) sources respectively, with error ǫ and ℓ = O(log(max{nq, n}) + log(1/ǫ)). Let
(R1, · · · , Rt) = laExt(X, Y) and (R′

1, · · · , R′
t) = laExt(X, Y ′). Then for any 0 ≤ i ≤ t − 1, we have

(Y, Y ′, [R′
1, · · · , R′

i], [Ri+1, · · · , Rt]) ≈ǫ1 (Y, Y ′, [R′
1, · · · , R′

i], Uℓ(t−i)),

where ǫ1 = O(t2ǫ).

Proof. Let {S′
i} denote the random variables corresponding to {Si} that are produced in laExt(X, Y ′).

For any i, 0 ≤ i ≤ t − 1, let S̄i = (S0, · · · , Si), S̄′
i = (S′

0, · · · , S′
i), R̄i = (R0, · · · , Ri) and

R̄′
i = (R′

0, · · · , R′
i). We first prove the following claim.

11

Claim 4.2. For any i, we have that

(Ri, ¯Si−1, ¯S′
i−1,

¯Ri−1, ¯R′
i−1, Si, S

′
i, Y, Y ′) ≈(2i−1)ǫ (Uℓ, ¯Si−1, ¯S′

i−1,
¯Ri−1, ¯R′

i−1, Si, S
′
i, Y, Y ′)

and

(Si+1, S̄i, S̄′
i, R̄i, R̄′

i) ≈(2i)ǫ (Uℓ, S̄i, S̄′
i, R̄i, R̄′

i).

Moreover, conditioned on (¯Si−1, ¯S′
i−1,

¯Ri−1, ¯R′
i−1, Si, S

′
i), (Ri, R

′
i) are both deterministic functions of

X and the average conditional min-entropy of Q is at least kq − 2iℓ; conditioned on (S̄i, S̄′
i, R̄i, R̄′

i),
(Q, Q′, Si+1, S

′
i+1) is independent of X and the average conditional min-entropy of X is at least

k − 2iℓ.

We prove the claim by induction on i. When i = 0, the statement is trivially true. Now we
assume that the statements hold for i = j and we prove them for i = j + 1.

We first fix (S̄j , S̄′
j , R̄j , R̄′

j). Note that now (Q, Q′, Sj+1, S
′
j+1) is independent of X. Moreover

Sj+1 is (2j)ǫ-close to uniform. Since the average conditional min-entropy of X is at least k− 2jℓ ≥
k − 2tℓ, By Theorem 3.9 we have that

(Rj+1, S̄j , S̄′
j , R̄j , R̄′

j , Sj+1, S
′
j+1) ≈(2j+1)ǫ (Uℓ, S̄j , S̄′

j , R̄j , R̄′
j , Sj+1, S

′
j+1).

Since (Q, Q′, Sj+1, S
′
j+1) is independent of X, we also have

(Rj+1, S̄j , S̄′
j , R̄j , R̄′

j , Sj+1, S
′
j+1, Y, Y ′) ≈(2j+1)ǫ (Uℓ, S̄j , S̄′

j , R̄j , R̄′
j , Sj+1, S

′
j+1, Y, Y ′).

Moreover, conditioned on (S̄j , S̄′
j , R̄j , R̄′

j , Sj+1, S
′
j+1), (Rj+1, R

′
j+1) are both deterministic func-

tions of X, and the average conditional min-entropy of Q is at least kq − 2jℓ− 2ℓ = kq − 2(j + 1)ℓ.
Next, since conditioned on (S̄j , S̄′

j , R̄j , R̄′
j , Sj+1, S

′
j+1), (Rj+1, R

′
j+1) are both deterministic func-

tions of X, they are independent of (Q, Q′). Moreover Rj+1 is (2j +1)ǫ-close to uniform. Since the
average conditional min-entropy of Q is at least kq − 2(j + 1)ℓ ≥ kq − 2tℓ, By Theorem 3.9 we have
that

(Sj+2, S̄j , S̄′
j , R̄j , R̄′

j , Sj+1, S
′
j+1, Rj+1, R

′
j+1)

≈(2j+2)ǫ(Uℓ, S̄j , S̄′
j , R̄j , R̄′

j , Sj+1, S
′
j+1, Rj+1, R

′
j+1).

Namely,

(Sj+2, Sj+1, S′
j+1, Rj+1, R′

j+1) ≈(2(j+1))ǫ (Uℓ, Sj+1, S′
j+1, Rj+1, R′

j+1).

Moreover, conditioned on (Sj+1, S′
j+1, Rj+1, R′

j+1), (Q, Q′, Sj+2, S
′
j+2) is independent of X since

Sj+2 and S′
j+2 are deterministic functions of Q and Q′ respectively. Also note that now the average

conditional min-entropy of X is at least k − 2jℓ − 2ℓ = k − 2(j + 1)ℓ.
Therefore, we have that for any i,

(Ri, ¯Ri−1, ¯R′
i−1, Y, Y ′) ≈(2i−1)ǫ (Uℓ, ¯Ri−1, ¯R′

i−1, Y, Y ′).

Thus for any i,

12

(Y, Y ′, [R′
1, · · · , R′

i], [Ri+1, · · · , Rt]) ≈ǫ1 (Y, Y ′, [R′
1, · · · , R′

i], Uℓ(t−i)),

where ǫ1 =
∑t

j=i+1((2j − 1)ǫ) = O(t2ǫ).

Next, we need the following definitions and constructions from [DW09].

Definition 4.3. [DW09] Given S1, S2 ⊆ {1, · · · , t}, we say that the ordered pair (S1, S2) is top-

heavy if there is some integer j such that |S≥j
1 | > |S≥j

2 |, where S≥j def
= {s ∈ S|s ≥ j}. Note that it

is possible that (S1, S2) and (S2, S1) are both top-heavy. For a collection Ψ of sets Si ⊆ {1, · · · , t},
we say that Ψ is pairwise top-heavy if every ordered pair (Si, Sj) of sets Si, Sj ∈ Ψ with i 6= j, is
top-heavy.

Now, for any m-bit message µ = (b1, · · · , bm), consider the following mapping of µ to a subset
S ⊆ {1, · · · , 4m}:

f(µ) = f(b1, · · · , bm) = {4i − 3 + bi, 4i − bi|i = 1, · · · , m}
i.e., each bit bi decides if to include {4i − 3, 4i} (if bi = 0) or {4i − 2, 4i − 1} (if bi = 1) in S.
We now have the following lemma.

Lemma 4.4. [DW09] The above construction gives a pairwise top-heavy collection Ψ of 2m sets
S ⊆ {1, · · · , t} where t = 4m. Furthermore, the function f is an efficient mapping of µ ∈ {0, 1}m

to Sµ.

Now we have the following construction.
Let r ∈ ({0, 1}ℓ)t be the output of the look-ahead extractor defined above, i.e., r = (r1, · · · , rt) =

laExt(X, (Q, S1)). Let Ψ = {S1, · · · , S2m} be the pairwise top-heavy collection of sets constructed

above. For any string µ ∈ {0, 1}m, define the function laMACr(µ)
def
= [ri|i ∈ Sµ], indexed by r.

5 Independent Source Extractor

In this section we present our construction of independent source extractor. Let Ext, nmExt, Raz, MExt

be the extractors in theorem 3.9, theorem 3.13, theorem 3.10 and theorem 3.11 respectively. Let
laExt and laMAC be the look-ahead extractor and the function defined above. We first show how to
use a constant number of independent (n, k) sources with k ≥ log4 n to obtain a somewhere random
source such that there exists a large fraction of rows where each pair is close to being independent
and uniform.

Let X1, X2, X3, X4 be 4 independent (n, k) sources. Let r = (r1, r2) be a string such that r1

has length d and r2 has length 20d where d = O(log n) is the seed length that guarantees error
ǫ = 1/poly(n) in theorem 3.9. For every r ∈ {0, 1}21d, do the following and obtain a source Y r.

1. Let W1 = Ext(X1, r1) and Y1 = nmExt(W1, r2) such that Y1 has 2d
√

k bits.

2. Let W2 = Raz(r2, X2), W3 = Ext(X3, W2) and W4 = laExt(X4, W3) with t = 4d and ℓ = 2
√

k,
where W3 is viewed as Q and S1 is the prefix of W3 with d bits.

3. Let Y2 = laMACW4(r1) and Y r = Y1 ◦ Y2.

13

Now assume that R ∈ {0, 1}21d is a uniform random seed independent of X1, X2, X3, X4. Let
A : {0, 1}21d → {0, 1}21d be any deterministic function such that ∀r ∈ {0, 1}21d,A(r) 6= r. Let Y r

be the source obtained with r and Y A(r) be the source obtained with A(r). We have the following
lemma.

Lemma 5.1. For some ǫ = 1/poly(n), with probability 1 − ǫ over the fixing of R = r, we have

Pr
y′←Y A(r)

[Y r|Y A(r)=y′ is ǫ − close to a (10d
√

k,
√

k) source] ≥ 1 − ǫ.

Proof. Let r′ = A(r) = (r′1, r
′
2). Since r′ 6= r, we have two cases: r′1 = r1 or r′1 6= r1. We call a

string r ∈ {0, 1}21d bad if conditioned on R = r,

Pr
y′←Y A(r)

[Y r|Y A(r)=y′ is ǫ − close to a (10d
√

k,
√

k) source] < 1 − ǫ.

Now we consider two other deterministic functions A1 : {0, 1}21d → {0, 1}21d and A2 : {0, 1}21d →
{0, 1}21d. For all the r’s such that r′1 = r1, we let A1(r) = r′. For all the other r’s we let A1(r)1 = r1

and choose A1(r)2 arbitrarily but such that A1(r)2 6= r2. For all the r’s such that r′1 6= r1, we let
A2(r) = r′. For all the other r’s we choose A2(r) arbitrarily but such that A2(r)1 6= r1. Thus for
any r, we have A1(r)1 = r1 and A2(r)1 6= r1. Note that any bad r in A is either a bad r in A1 or
A2. Thus the number of bad r’s in A is at most the sum of the numbers of bad r’s in A1 and A2.

First consider A1. We slightly abuse notation and let R′ = A1(R) = (R′
1, R

′
2). Note that R′

1 =
R1. We now fix R1 = r1. By theorem 3.9, with probability 1− ǫ1 over this fixing, W1 = Ext(X1, r1)
is ǫ1-close to uniform, where ǫ1 = 1/poly(n). Note that after we fix R1 = r1, R2 is still uniform
and R′

2 is now a deterministic function of R2 with R′
2 6= R2. Thus when W1 is ǫ1-close to uniform,

by theorem 3.13,

(Y1, Y
′
1 , R2) ≈ǫ1+1/poly(n) (U2d

√
k, Y

′
1 , R2),

where Y ′
1 = nmExt(W1, R

′
2).

Thus with probability 1 − ǫ2 over the further fixing of R2 = r2, we have

Pr
y′←Y ′

1

[Y1|Y ′
1=y′ ≈ǫ2 U2d

√
k] ≥ 1 − ǫ2,

where ǫ2 = 1/poly(n). Note that once r is fixed, (Y2, Y
′
2) is a deterministic function of (X2, X3, X4)

and thus is independent of Y1. Therefore we can further condition on Y ′
2 and Y1 is still close to

uniform, and thus Y r is close to a source with min-entropy 2d
√

k >
√

k conditioned on Y r′ . Thus
the fraction of bad r’s in A1 is at most ǫ1 + ǫ2 = 1/poly(n).

Next, consider A2. We slightly abuse notation and let R′ = A2(R) = (R′
1, R

′
2). We will use

letters with prime to denote the random variables produced with R′. Now we have R′
1 6= R1. We

first fix R1 = r1 and R′
1 = r′1. After R1 is fixed, R2 is still uniform. However, fixing R′

1 may cause
R2 to lose entropy. By lemma 3.14, with probability 1 − ǫ3 over this fixing, R2 has min-entropy
20d − d − d = 18d, where ǫ3 = 1/2d = 1/poly(n). Note that after this fixing, R′

2 is a deterministic
function of R2. Thus by theorem 3.10 we can output d bits in W2 and we have that

(W2, R2, R
′
2) ≈1/poly(n) (Ud, R2, R

′
2).

14

Thus we can further fix R2 = r2 (and also R′
2 = r′2) and with probability 1− ǫ4 = 1−1/poly(n)

over this fixing, W2 is 1/poly(n)-close to uniform. Note that now we have fixed R and R′, and W2 is a
deterministic function of X2. Note also that W ′

2 is correlated with W2. When W2 is 1/poly(n)-close
to uniform, by theorem 3.9 we can output 0.9k bits in W3 and we have that W3 is 1/poly(n)-close
to uniform. Note that W ′

3 is correlated with W3. However, (W3, W
′
3) is independent of X4. Let

W4 = laExt(X4, W3) = (V1, · · · , Vt) and W ′
4 = laExt(X4, W

′
3) = (V ′

1 , · · · , V ′
t). By lemma 4.1 (and

notice that 2t
√

k << k, d << k), we have that for any 0 ≤ i ≤ t − 1,

([V ′
1 , · · · , V ′

i], [Vi+1, · · · , Vt]) ≈ǫ5 ([V ′
1 , · · · , V ′

i], U2(t−i)
√

k),

where ǫ5 = 1/poly(n) + O(t22−Ω(
√

k)poly(n)) = 1/poly(n).
Now note that Y2 = lrMACW4(r1) and Y ′

2 = lrMACW ′
4
(r′1). Let the two sets in Lemma 4.4 that

correspond to r1 and r′1 be H and H ′ respectively. Since r1 6= r′1, by Lemma 4.4 there exists
j ∈ [4d] such that |H≥j | > |H ′≥j |. Let l = |H≥j |. Thus l ≤ t = 4d and |H ′≥j | ≤ l − 1. Let VH be
the concatenation of {Vi, i ∈ H≥j} and V ′

H′ be the concatenation of {V ′
i , i ∈ H ′≥j}. By the above

equation we have that

([V ′
1 , · · · , V ′

j−1], VH) ≈ǫ5 ([V ′
1 , · · · , V ′

j−1], U2l
√

k).

Thus with probability 1 − 3
√

ǫ5 over the fixings of (V ′
1 , · · · , V ′

j−1), VH is 3
√

ǫ25-close to U2l
√

k.

Since the size of V ′
H′ is at most 2(l − 1)

√
k, we can further fix V ′

H′ and by lemma 3.15 we
have that with probability 1− 2 3

√
ǫ5 over this fixing, VH is 3

√
ǫ5-close to a source with min-entropy

2
√

k −O(log n) >
√

k. Note that Y ′
2 is fixed when both (V ′

1 , · · · , V ′
j−1) and V ′

H′ are fixed. Thus we
have shown that

Pr
y′←Y ′

2

[Y2|Y ′
2=y′ is 3

√
ǫ5 − close to a

√
k-source] ≥ 1 − 3 3

√
ǫ5.

Finally, note that we have already fixed (R, R′) before. After this fixing, (Y2, Y
′
2) is a determin-

istic function of (X2, X3, X4), while (Y1, Y
′
1) is a deterministic function of X1. Thus (Y2, Y

′
2) is inde-

pendent of (Y1, Y
′
1). Therefore we can further fix Y ′

1 and Y2 is still close to a source with min-entropy√
k. Thus Y r is close to a source with min-entropy

√
k conditioned on Y r′ . Note the fraction of bad

r’s in A2 is at most ǫ3 + ǫ4 = 1/poly(n). Now choose ǫ = max{ǫ1 + ǫ2 + ǫ3 + ǫ4, 3 3
√

ǫ5} = 1/poly(n)
and the lemma is proved.

We now have the following lemma.

Lemma 5.2. For some ǫ = 1/poly(n) there exists a subset S ⊂ {0, 1}21d with |S| ≥ (1 − ǫ)221d

such that for any i, j ∈ S, i 6= j, we have

Pr
y←Y j

[Y i|Y j=y is ǫ − close to a (10d
√

k,
√

k) source] ≥ 1 − ǫ.

Proof. Let ǫ be the same as in lemma 5.1. For any i, j ∈ {0, 1}21d, i 6= j, we say that j is bad for i
if

Pr
y←Y j

[Y i|Y j=y is ǫ − close to a (10d
√

k,
√

k) source] < 1 − ǫ.

15

Let B = {i ∈ {0, 1}21d : ∃j ∈ {0, 1}21d, j 6= i and j is bad for i}. We claim that |B| ≤ ǫ221d.
Otherwise, we can construct a deterministic function A : {0, 1}21d → {0, 1}21d as follows. For all
i ∈ B, let A(i) be a bad j for i; for all the other i ∈ {0, 1}21d, define A(i) to be any j ∈ {0, 1}21d

such that j 6= i. Thus when R is uniformly sampled from {0, 1}21d, we have that with probability
at least ǫ over the fixing of R = r,

Pr
y′←Y A(r)

[Y r|Y A(r)=y′ is ǫ − close to a (10d
√

k,
√

k) source] < 1 − ǫ,

which contradicts lemma 5.1.
Now let S = {0, 1}21d \ B. We have that |S| ≥ (1 − ǫ)221d and for any i, j ∈ S, i 6= j,

Pr
y←Y j

[Y i|Y j=y is ǫ − close to a (10d
√

k,
√

k) source] ≥ 1 − ǫ.

Now let c be the number of independent (10d
√

k,
√

k) sources that are needed to extract

m = Ω(
√

k) bits with error ǫ′ = 2−kΩ(1) ≤ 1/poly(n), as in theorem 3.11. Note that since
k ≥ log4 n we have

√
k = Ω(d2). Thus c = O(log(10d

√
k)/ log(

√
k)) is an absolute constant.

We now take 4c independent (n, k) sources X1, X2, · · · , X4c and divide them equally into c sets
{X1, X2, X3, X4}, · · · , {X4c−3, X4c−2, X4c−1, X4c}. For each set we use the procedure described
above to get 221d = poly(n) number of sources {Y r

i }, for r ∈ {0, 1}21d and i ∈ [c]. Now for any
r ∈ {0, 1}21d, let Zr = MExt(Y r

1 , · · · , Y r
c). Thus we obtain 221d = poly(n) number of sources {Zr},

for r ∈ {0, 1}21d. We now have the following lemma.

Lemma 5.3. For some ǫ = 1/poly(n) there exists a subset S ⊂ {0, 1}21d with |S| ≥ (1 − ǫ)221d

such that for any i, j ∈ S, i 6= j, we have

(Zi, Zj) ≈ǫ U2m,

where m = Ω(
√

k).

Proof. Let ǫ1 be the error in lemma 5.2. By lemma 5.2, for each t ∈ [c], there exists a subset
St ⊂ {0, 1}21d with |St| ≥ (1 − ǫ1)2

21d such that for any i, j ∈ St, i 6= j, we have

Pr
y←Y j

t

[Y i
t |Y j

t =y
is ǫ1 − close to a (10d

√
k,
√

k) source] ≥ 1 − ǫ1.

Let S = ∩tSt. Then we have |S| ≥ (1 − cǫ1)2
21d and for any i, j ∈ S, i 6= j, we have that for

any t ∈ [c],
Pr

y←Y j
t

[Y i
t |Y j

t =y
is ǫ1 − close to a (10d

√
k,
√

k) source] ≥ 1 − ǫ1.

By the above we know that ∀t ∈ [c], Y j
t is 2ǫ1-close to a (10d

√
k,
√

k) source. Thus by theo-
rem 3.11 we have

Zj ≈2cǫ1+ǫ′ Um.

Next, we fix all Y j
t , t ∈ [c], and we have that with probability 1− cǫ1 over this fixing, for any t,

Y i
t is ǫ1-close to a (10d

√
k,
√

k) source. Note that after this fixing Y i
t are still independent, thus by

theorem 3.11 we have

16

Zi ≈cǫ1+ǫ′ Um.

Since we already fixed all Y j
t , t ∈ [c], this implies that

(Zi, Zj) ≈2cǫ1+ǫ′ (Um, Zj).

Thus we have

(Zi, Zj) ≈4cǫ1+2ǫ′ U2m.

Let ǫ = 4cǫ1 + 2ǫ′ = 1/poly(n), and the lemma is proved.

We now describe the lightest bin protocol.
Lightest bin protocol: Assume there are N strings {zi, i ∈ [N]} where each zi ∈ {0, 1}m

with m > log N . The output of a lightest bin protocol with r < N bins is a subset T ⊂ [N] that
is obtained as follows. Image that each string zi is associated with a player Pi. Now, for each i, Pi

uses the first log r bits of zi to select a bin j, i.e., if the first log r bits of zi is the binary expression
of j − 1, then Pi selects bin j. Now let bin l be the bin that is selected by the fewest number of
players. Then

T = {i ∈ [N] : Pi selects bin l.}
We now have the following lemma.

Lemma 5.4. Assume that we have N sources Zi
1, i ∈ [N] over m > 10 log(1/ǫ) bits and a subset

S ⊂ [N] with |S| ≥ αN for some constant α > 0 such that for any i, j ∈ S, i 6= j,

(Zi
1, Z

j
1) ≈ǫ U2m

with ǫ < 1/N12.
Let Z1 = Z1

1 ◦ · · · ◦ ZN
1 . Run the lightest bin protocol with N1/4 bins and let the output contain

N2 elements {i1, i2, · · · , iN2 ∈ [N]}. Assume that X is an (n, k) source independent of Z1 with

k > 40 log(1/ǫ). For any j ∈ [N2], let Zj
2 = Ext(X, Z

ij
1) where Ext is the strong seeded extractor

in theorem 3.9 and output m2 = k/4 bits. Then for any δ > N−1/2, with probability at least
1−3N1/2/(δ2s)−4N−1/2 over the fixing of Z1, there exists a subset S2 ⊂ [N2] with |S2| ≥ α(1−δ)N2

such that for any i, j ∈ S2, i 6= j,

(Zi
2, Z

j
2) ≈ǫ2 U2m2

with ǫ2 < 1/N12
2 and m2 > 10 log(1/ǫ2).

Proof. Note that the lightest bin contains at most N3/4 elements. We first show that in the lightest
bin protocol, with high probability every bin contains at least (α − δ)N3/4 elements in S.

Consider a particular bin and consider the choices of the Zi
1’s with i ∈ S. Let s = |S|. Let Vi

be the indicator variable of whether Zi
1 chooses this bin and let V =

∑
i∈S Vi. Let pi = Pr[Vi = 1]

and qi = Pr[Vi = 0]. Then we have

E[V] =
∑

i∈S

E[Vi] =
∑

i∈S

pi.

17

We know for any i ∈ S, Zi
1 is ǫ-close to uniform. Thus Pr[Vi = 1] ≥ N−1/4 − ǫ. Therefore

E[V] ≥ (N−1/4 − ǫ)s.

Note that

Pr[V < N−1/4(1 − δ)s] ≤ Pr[|V − E[V]| > δN−1/4s − ǫs]

≤ Pr[|V − E[V]| > 0.9δN−1/4s],

since ǫs < 1 and δ > N−1/2.
Thus by Chebysev’s inequality we have

Pr[V < N−1/4(1 − δ)s] ≤ Var[V]/(0.81δ2N−1/2s2) < 2N1/2Var[V]/(δ2s2).

We now compute Var[V]. By definition

Var[V] = E(V − E[V])2 = E

(
∑

i∈S

(Vi − E[Vi])

)2

=
∑

i∈S

Var[Vi] +
∑

i,j∈[S],i6=j

E[(Vi − E[Vi])(Vj − E[Vj)].

For each i ∈ S, we have

Var[Vi] = piqi < pi ≤ N−1/4 + ǫ.

Next, note that

E[(Vi − E[Vi])(Vj − E[Vj)] = E[ViVj] − E[Vi]E[Vj].

Since (Zi
1, Z

j
1) ≈ǫ U2m, we have E[ViVj] = Pr[Vi = 1, Vj = 1] ≤ N−1/2 + ǫ, E[Vi] ≥ N−1/4 − ǫ

and E[Vj] ≥ N−1/4 − ǫ. Thus

E[ViVj] − E[Vi]E[Vj] ≤ N−1/2 + ǫ − (N−1/4 − ǫ)2 < (2N−1/4 + 1)ǫ < 2ǫ.

Thus

Var[V] < (N−1/4 + ǫ)s + 2s2ǫ < N−1/4s + 3,

since ǫ < 1/N12. Therefore we have

Pr[V < N−1/4(1 − δ)s] < 2N1/2(N−1/4s + 3)/(δ2s2) < 3N1/4/(δ2s).

Thus by the union bound, we have that the probability that every bin contains at least N−1/4(1−
δ)s elements in S is at least 1 − 3N1/2/(δ2s). When this happens, let S2 be the set of elements in
S in the lightest bin. Then we have |S2| ≥ N−1/4(1 − δ)s ≥ α(1 − δ)N3/4 ≥ α(1 − δ)N2.

18

Next, we show that with high probability the new sources with index in S2 are pair-wise close
to uniform. For this, consider any i, j ∈ [S], i 6= j. Let W i = Ext(X, Zi

1) and W j = Ext(X, Zj
1).

Note that (Zi
1, Z

j
1) ≈ǫ U2m. First assume that (Zi

1, Z
j
1) is indeed uniform, then by theorem 3.9 we

have

(W i, Zi
1) ≈ǫ (Um2 , Z

i
1).

Now we fix Zi
1 and W i. Note that after fixing Zi

1, W i is a deterministic function of X. Thus by
lemma 3.14, with probability 1 − 2−k/4 > 1 − ǫ over this fixing, X is an (n, k − k/4 − k/4 = k/2)
source. After this fixing, Zj

1 is still uniform and independent of X, thus again by theorem 3.9 we
have

(W j , Zj
1) ≈ǫ (Um2 , Z

j
1).

Therefore

(W i, W j , Zi
1, Z

j
1) ≈3ǫ (U2m2 , Z

i
1, Z

j
1).

Adding back the error where (Zi
1, Z

j
1) ≈ǫ U2m, we have

(W i, W j , Zi
1, Z

j
1) ≈4ǫ (U2m2 , Z

i
1, Z

j
1).

Therefore, with probability 1 − 4N−2.5 over the fixing of (Zi
1, Z

j
1), (W i, W j) is N2.5ǫ-close to

uniform. Thus by the union bound (and noticing that s ≤ N), we have that with probability at
least 1−4N−1/2 over the fixing of Z1, for any i, j ∈ [S], i 6= j, (W i, W j) is N2.5ǫ-close to uniform. In
particular, this implies that the new sources with index in S2 are pair-wise close to uniform. Note
that N2 ≤ N3/4 and ǫ < 1/N12, thus N2.5ǫ < 1/N12

2 . Also note that m2 = k/4 > 10 log(1/ǫ) >
10 log(1/ǫ2). By the union bound, the lemma is proved.

Now we have the following construction.

Construction 5.5. Independent Source Extractor.

Let ǫ be the error in lemma 5.3 and let N1 = 221d. Let c1 be an integer constant such that
ǫc1 < 1/N12

1 . We first take C = 4cc1 independent (n, k) sources and from them obtain c1 SR-
sources Z ′

1, · · · , Z ′
c1 where each Z ′

i = Z ′1
i ◦ Z ′2

i ◦ · · · ◦ Z ′N1
i contains N1 rows, as in lemma 5.3. Let

Z1 =
⊕c1

i=1 Z ′
i. Set t = 1. While the number of rows in Zt is bigger than ℓ = k5 we do the following:

1. Run the lightest bin protocol with Zt and rt = N
1/4
t bins and let the output contain Nt+1

elements {i1, i2, · · · , iNt+1 ∈ [Nt]}.

2. Take a fresh independent (n, k) source XC+t and for any j ∈ [Nt+1], let Zj
t+1 = Ext(XC+t, Z

ij
t)

where Ext is the strong seeded extractor in theorem 3.9 and output m2 = k/4 bits.

3. Let Zt+1 = Z1
t+1 ◦ · · · ◦ Z

Nt+1

t+1 . Set t = t + 1.

At the end of the iteration we get a source Zt with at most ℓ = k5 rows. Let SRExt be the
extractor in theorem 3.12, set up to extract from an ℓ× k

4 source and c2 independent (n, k) sources
XC+t+1, · · · , XC+t+c2 (note that independent sources are a special case of block sources). The final
output is W = SRExt(Zt, XC+t+1, · · · , XC+t+c2).

19

Theorem 5.6. The above construction is an extractor for O(log(log n
log k))+O(1) independent sources

with error 1/poly(k).

Proof. We first show that the number of independent sources we use is O(log(log n
log k))+O(1). To see

this, note that to obtain one Z ′
i we use a constant 4c number of independent sources, and the error

is ǫ = 1/poly(n) as in lemma 5.3. Note that N1 = 221d = poly(n), thus it suffices to take c1 to be a
constant. Next note that in the lightest bin protocol each time the number of rows decreases from
N to at most N3/4, thus it takes t = O(log(log n

log k)) + O(1) number of independent sources to get

the number of rows down to k5. Finally note that c2 = O(log(k5)/ log k) = O(1). Thus the total
number of independent sources used is O(log(log n

log k)) + O(1).

Next, by lemma 5.3 we know that for each Z ′
i there exists a subset Si ⊂ [N1] with |Si| ≥ (1−ǫ)N1

such that any pair of rows in Si is ǫ-close to uniform. Now let S = ∩c1
i=1Si. Then we have that

|S| ≥ (1 − c1ǫ)N1 and by lemma 3.16, for any i, j ∈ S, i 6= j,

(Zi
1, Z

j
1) ≈ǫc1 U2m,

where m = Ω(
√

k).
Note that ǫc1 < 1/N12

1 and k > log4 n. Thus Z1 satisfies the conditions in lemma 5.4 with
α = 1 − c1ǫ = 1 − 1/poly(n). Now let δ = 1/(3t) in lemma 5.4 and consider the lightest bin
protocol where we get Z1, · · · , Zt with each Zi having Ni rows. By lemma 5.4 if the “good”
event in the lemma always happens, then the “good” set Si in each Zi has size at least si ≥
α(1 − δ)tNi > α(1 − δt)Ni > Ni/2. Thus the probability of the “bad” event in lemma 5.4 is at

most 3N
1/2
i /(δ2si) + 4N

−1/2
i = O(t2N

−1/2
i). Note that for any i ≤ t − 1, Ni > k5. Thus the total

error is at most

tO(t2k−5/2) = O(t3k−5/2) < 1/(10k2).

Thus we have that with probability 1 − 1/(10k2) over the fixings of all previous independent
sources, Zt is k−40-close to (note that Nt ≥ st ≥ (k5)3/4/2) an SR-source with at most k5 rows.

Now by theorem 3.12, W is 2−kΩ(1)
-close to uniform. Therefore, the total error of the output is at

most 1/(10k2) + 2−kΩ(1)
< 1/k2.

Remark 5.7. The error in the extractor can be made 1/kC for any constant C > 1, just by
setting the number of rows in the final source Zt to be an appropriate poly(k). The time of the
algorithm can be larger (but still polynomial in n), and the number of sources needed is still
O(log(log n

log k)) + O(1).

Remark 5.8. When the entropy k is smaller, we can get better error dependence on k. Specifically,

we can set the number of rows in the final source Zt to be k
Ω(log(log n

log k
)+1)

. In this way the number of

sources needed is still O(log(log n
log k)) + O(1), but the error is k

−Ω(log(log n

log k
)+1)

. As an example, when

k is at most 2logα n for some constant 0 < α < 1, the error is k−Ω(log log n).

Now we show that we can actually give an extractor for a constant number of independent
(n, k) sources, plus two independent (n, k)-block sources, each with O(log(log n

log k)) + O(1) blocks.
The extractor is very similar to the extractor for independent sources.

20

Theorem 5.9. There exists an absolute constant c > 0 and a polynomial time computable function
BExt : {0, 1}cn × {0, 1}tn × {0, 1}tn → {0, 1}m such that for any n, k ∈ N with k > log10 n and
t = O(log(log n

log k)) + O(1), if X = (X1, · · · , Xc) are c independent (n, k) sources and Y = (Y1 ◦ · · · ◦
Yt), W = (W1 ◦ · · · ◦ Wt) are 2 independent (k, · · · , k) block sources such that X is independent of
(Y, W), then

BExt(X, Y, W) ≈ǫ Um,

where m = Ω(k) and ǫ = 1/poly(k).

Proof sketch. As before, we first use a constant number of independent sources X = (X1, · · · , Xc)
to obtain a somewhere random source Z with N = poly(n) rows such that there exists S ⊂ [N]
with |S| ≥ (1 − ǫ)N such that any pair of rows in S is ǫ-close to uniform, for some ǫ = 1/poly(n).
Next, we want to use the lightest bin protocol to reduce the number of rows in the somewhere
random source. In the extractor for independent sources, each time we use an independent (n, k)
source to reduce the number of rows from N to roughly N3/4. Here, however, each time we will use
one block from either Y or W . If at one time we use a block from Y , then the next time we will use
a block from W . More specifically, first we run the lightest bin protocol on Z, and use the strings
in the lightest bin as seeds to apply a strong extractor Ext to Y1. Thus we obtain a somewhere
random source Z1. Next we run the lightest bin protocol on Z1, and use the strings in the lightest
bin as seeds to apply a strong extractor Ext to W1. Thus we obtain a somewhere random source
Z2. We then run the lightest bin protocol on Z2, and use the strings in the lightest bin as seeds
to apply a strong extractor Ext to Y2. Thus we obtain a somewhere random source Z3. We keep
on doing this until the rows in the somewhere random source Zt reduces to say k5. Assume Zt is
obtained from Y , finally we can use the extractor BExt from theorem 3.12 to extract from Zt and
another O(1) blocks of W .

For the analysis, notice that by lemma 5.4, when we are computing Zi+1 we can fix all previous
Z, Z1, · · · , Zi−1 and with high probability over this fixing, Zi is a somewhere random source such
that there exists a large fraction of rows where any pair of the rows is close to uniform. By induction
one can show that after all these fixings, Zi is a deterministic function of either Yj or Wj , for some
block j. Without loss of generality assume that Zi is a deterministic function of Yj . Thus Zi is
independent of Wj . The property of a block source guarantees that after the fixings, Wj is still a
k-source. Thus we can use Zi and Wj to compute Zi+1. Note that if we now further fix Zi, then
indeed Zi+1 is a deterministic function of Wj . Moreover, Yj+1 is still a k-source. Finally, we can
use the extractor BExt from theorem 3.12 to obtain the final output.

6 Applications in Network Extractor Protocol

We now apply our independent source extractors to network extractor protocols. The following
theorem is proved in [KLRZ08].

Theorem 6.1. For every n, k, p, t ∈ N assume that there is an explicit C-source extractor for (n, k)
sources with output length Ω(k) and error ǫ, then there is an explicit r-round (t, p− 1.1(r + 1)t, ǫ +

2−kΩ(1)
) network extractor protocol for (n, k) sources, where r = ⌈ log C

log log k⌉ + 1.

Remark 6.2. The constant 1.1 can be replaced by 1 + α for any constant α > 0.

21

Plugging our extractor for independent sources which takes O(log(log n
log k)) + O(1) sources with

error 1/poly(k), we obtain the following theorem.

Theorem 6.3. There exists a constant c > 1 such that for every n, k, p, t ∈ N with k > logc n,
there is an explicit 2-round (t, p − 3.1t, 1/poly(k)) network extractor protocol for (n, k) sources.

Remark 6.4. The constant 3.1 can be replaced by 3 + α for any constant α > 0.

In the definition of a network extractor, let G = {i1, . . . , ig} denote the set of players with
private, random outputs: |(B, Zi)− (B, Um)| < ǫ. Because each Zi depends only on Xi and B, the
above condition implies that

|(B, (Xi)i6∈G , (Zi)i∈G) − (B, (Xi)i6∈G , Ugm)| < gǫ.

In other words, after running the network extractor protocol, the joint distribution of the outputs of
all the players in G is close to being independent and uniform, even after seeing all communication
and all the sources of the rest of the players. Since g < p and our independent source extractor can
be made to have error 1/kC for any constant C > 1, as long as p/kC is small enough, we can run
any existing distributed computing protocols using the output of our network extractor protocol.
For example, we can obtain the following theorems.

Theorem 6.5 (Synchronous Byzantine Agreement). There exists a constant c1 > 1 such that
for any constants α > 0 and c2 > 1 the following holds. Assume p players each has access to
an independent (n, k)-source with k > logc1 n and k > p1/c2, then there exist explicit (in n) syn-
chronous O(log p) expected round protocols for Byzantine Agreement in the full information model
that tolerates (1/5 − α)p faulty players.

Theorem 6.6 (Leader Election). There exists a constant c1 > 1 such that for any constants α > 0
and c2 > 1 the following holds. Assume p players each has access to an independent (n, k)-source
with k > logc1 n and k > p1/c2, then there exist explicit (in n) synchronous log∗ p + O(1) round
protocols for leader election that tolerates (1/4 − α)p faulty players.

7 Conclusions and Open Problems

In this paper we give new explicit extractors for independent weak random sources that improve
previous best results exponentially. We then apply our extractor to network extractor protocols
and obtain distributed computing protocols that can tolerate a nearly optimal fraction of faulty
players even for weak sources with entropy as small as polylog(n). This dramatically improves
previous results.

Several natural interesting open problems remain. The first is to reduce the error of our extrac-
tor. Currently we only achieve error 1/poly(k) (or slightly better). It would be nice to improve the

error to 2−kΩ(1)
, as in [BRSW06]. Second and more importantly, our techniques seem promising for

further improvement. For example, instead of just using pair-wise independence in the SR-source,
we can try to use r-wise independence for larger r. This may reduce the number of rows in the
SR-source faster, and thus resulting in extractors that need fewer sources. However, if r gets larger
then correspondingly we need the error ǫ to be smaller, which may need more independent sources
to achieve. Thus, there is some trade-off and it would be nice to see what is the limit of our
techniques. Finally, it is an open problem to see if our techniques can be applied to constructing
extractors or dispersers for other classes of sources.

22

References

[BIW04] Boaz Barak, R. Impagliazzo, and Avi Wigderson. Extracting randomness using few in-
dependent sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 384–393, 2004.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, pages 1–10, 2005.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applica-
tions. International Journal of Number Theory, 1:1–32, 2005.

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 source dispersers for no(1)

entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, 2006.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[CRS12] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and ap-
plications to privacy amplification. In Proceedings of the 27th Annual IEEE Conference
on Computational Complexity, 2012.

[DLWZ11] Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification
and non-malleable extractors via character sums. In Proceedings of the 52nd Annual
IEEE Symposium on Foundations of Computer Science, 2011.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–
139, 2008.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, pages 601–610, 2009.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In IEEE, editor, Proceedings of the
40th Annual IEEE Symposium on Foundations of Computer Science, pages 142–152.
IEEE Computer Society Press, 1999.

[GSV05] Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Distributed computing
with imperfect randomness. In DISC 2005, 2005.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4),
2009.

23

[KLR09] Yael Kalai, Xin Li, and Anup Rao. 2-source extractors under computational assumptions
and cryptography with defective randomness. In Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, 2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor proto-
cols. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, 2008.

[Li11] Xin Li. Improved constructions of three source extractors. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, 2011.

[Li12a] Xin Li. Design extractors, non-malleable condensers and privacy amplification. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing, 2012.

[Li12b] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal pro-
tocols for privacy amplification. Technical report, Arxiv, 2012. arXiv:1211.0651.

[Li12c] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In
Proceedings of the 53nd Annual IEEE Symposium on Foundations of Computer Science,
2012.

[MW97] Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In CRYPTO ’97, 1997.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Rao06] Anup Rao. Extractors for a constant number of polynomially small min-entropy in-
dependent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 2006.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[RZ01] Alexander Russell and David Zuckerman. Perfect information leader election in log∗ n+
O(1) rounds. Journal of Computer and System Sciences, 63(4):612–626, 2001.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

