
A new family of locally correctable codes based on degree-lifted

algebraic geometry codes

Eli Ben-Sasson ∗ Ariel Gabizon † Yohay Kaplan ‡ Swastik Kopparty §

Shubhangi Saraf ¶

May 21, 2014

Abstract

We describe new constructions of error correcting codes, obtained by “degree-lifting” a short
algebraic geometry base-code of block-length q to a lifted-code of block-length qm, for arbitrary
integer m. The construction generalizes the way degree-d, univariate polynomials evaluated
over the q-element field (also known as Reed-Solomon codes) are “lifted” to degree-d, m-variate
polynomials (Reed-Muller codes). A number of properties are established:

Rate The rate of the degree-lifted code is approximately a 1

m!
-fraction of the rate of the base-

code.

Distance The relative distance of the degree-lifted code is at least as large as that of the base-
code. This is proved using a generalization of the Schwartz-Zippel Lemma to degree-lifted
Algebraic-Geometry codes (Lemma 5.6) .

Local correction If the base code is invariant under a group that is “close” to being doubly-
transitive (in a precise manner defined later , cf. Definition 6.1) then the degree-lifted
code is locally correctable with query complexity at most q2. The automorphisms of the
base-code are crucially used to generate query-sets, abstracting the use of affine-lines in
the local correction procedure of Reed-Muller codes.

Taking a concrete illustrating example, we show that degree-lifted Hermitian codes form a family
of locally correctable codes over an alphabet that is significantly smaller than that obtained by
Reed-Muller codes of similar constant rate, message length, and distance.

∗Department of Computer Science, Technion, Haifa, Israel and Microsoft Research New-England, Cambridge, MA.
eli@cs.technion.ac.il. The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 240258.

†Department of Computer Science, Technion, Haifa. ariel.gabizon@gmail.com The research leading to these
results has received funding from the European Union’s Seventh Framework Programme under grant agreement no.
259426 ERC Cryptography and Complexity.

‡Department of Computer Science, Technion, Haifa. yohayk@cs.technion.ac.il. Research supported by a grant
of the US-Israel Binational Science Foundation

§Department of Mathematics and Computer Science, Rutgers University. swastik.kopparty@rutgers.edu
¶Department of Mathematics and Computer Science, Rutgers University. shubhangi.saraf@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 148 (2012)

Contents

1 Introduction 3

1.1 Locally correctable codes (LCCs) . 3

1.2 On local correction, code symmetries, and local views . 3

1.3 The tensor-product lifting of codes . 4

1.4 Degree-lifting of codes . 5

1.5 Lifting of affine-invariant codes . 7

1.6 AG codes and degree-lifted AG codes . 7

1.7 Explicit constructions and parameters . 9

1.8 Future work and open problems . 10

2 Context and history 10

2.1 Previous work on locally correctable codes . 10

2.2 Previous work studying code invariance with respect to “local” properties 11

2.3 Previous work on codes over algebraic surfaces . 11

3 Elementary Construction 11

3.1 Reed-Solomon vs. Hermitian codes . 12

3.2 Automorphisms of Reed-Solomon and Hermitian codes . 13

3.3 Reed-Muller vs. degree lifting of Hermitian codes of bounded curve-degree 13

3.4 Automorphism-based correction of Reed-Muller and degree lifted Hermitian codes 14

3.5 Fractal correction of degree lifted Hermitian codes . 15

3.6 High degree correction of degree lifted Hermitian codes . 16

3.7 “Affine” lifting vs degree lifting of Hermitian codes . 16

4 Algebraic Function Fields And Codes 16

4.1 AG function fields and codes . 17

4.2 Hermitian function field . 19

5 Definition and fundamental coding parameters of degree lifted AG codes 20

5.1 Definition of degree-lifted AG codes . 20

5.2 Dimension of degree-lifted codes . 21

5.3 A Schwartz-Zippel Lemma for degree-lifted AG codes . 21

6 Single-step correction of degree lifted AG codes 22

6.1 Single-step correction of Hermitian codes . 24

6.2 Degree lifting of 2-transitive AG codes are LDCs . 25

6.3 Increasing transitivity via redundancy . 26

7 Fractal correction of degree lifted AG codes 27

8 Correction via high-degree samplers 31

2

1 Introduction

1.1 Locally correctable codes (LCCs)

Error correcting codes as envisioned in the early days of information theory [Sha48, Sha53, Ham50]
were mostly intended to be produced and consumed in blocks. A message m consisting of k symbols
coming from a finite alphabet Σ is encoded by a codeword w of n ≫ k symbols — n is the block-
length of the code, k/n is its rate — and sent across a noisy channel, resulting in a corrupted word
w′. To access any one message symbol mi, a decoding procedure is applied to all n symbols of
the received word w′. Maintaining data-integrity is done block-wise in a similar way, say, by first
decoding the message m from w′ and then re-encoding m to recover w.

The development of new randomized and interactive proof systems in the 80’s called for error-
correcting codes of a different nature (see Section 2.1 and the survey [Yek11]). The message and its
encoding are now assumed to be either secret, or prohibitively long, and hence decoding/correcting
a full block is either forbidden (due to secrecy) or intractable (because of its large block-length). In
such settings the notions of locally decodable and locally correctable codes were distilled, because
often it suffices to find out the value of a single message-symbol mi, or a single codeword symbol
wi. To better discuss LCCs we assume oracle access to entries of the (possibly corrupted) codeword
w′ and accordingly henceforth view a code C as a set of functions C = {w : D → Σ} mapping a
domain D of size n to the alphabet Σ, and use w(i) to denote the ith entry of w.

A locally-correctable code C is associated with a local corrector. This is a randomized procedure
that is given as input a pointer i ∈ D and has oracle access to a corrupted codeword w′ : D → Σ
that is within “small” relative Hamming distance δ of a codeword w (think of δ = 0.01). The
local corrector queries w′ in a small number q of locations (q is called the query complexity of
the corrector) and outputs a conjectured value ŵ(i) for the “true” value w(i) of the ith entry of
the uncorrupted word w. We say the corrector has soundness error ǫ for distance parameter δ if
Pr[ŵ(i) = w(i)] ≥ 1−ǫ holds for all i ∈ D and all functions w′ that are within normalized Hamming
distance δ of w. (Probability in the previous equation is over the randomness of the local corrector.)
A code C that has such a local corrector is called a (q, ǫ, δ)-LCC, and when we want to highlight
the query complexity we call C a q-LCC, assuming ǫ and δ are known. (See Section 2.1 for a brief
survey of LCC constructions).

1.2 On local correction, code symmetries, and local views

For a code C to be a q-LCC, every index i ∈ D should be associated with a smooth set of q-local
reconstructors (cf. [KT00])1. A q-local reconstructor for i is a reconstruction function that can be
computed by making q queries to a received word w′. More formally, fix D′ ⊂ D with |D′| = q and
a function r : Σq → Σ. We say that (D′, r) is a q-local reconstructor for i ∈ D if for all2 codewords
w ∈ C, we have r(w|D′) = w(i) (where w|D′ is the restriction of the function w to the domain D′).
Roughly speaking, a set of q-local reconstructors {(D′

1, r1), . . . , (D
′
t, rt)} for i ∈ D is said to be

smooth if sampling a random j ∈ [t] and then sampling a random ℓ ∈ D′
j gives a distribution that

is close (in statistical distance) to uniform over D \ {i}.
Requiring a smooth set of q-local reconstructors for every i ∈ D calls for codes with quite a lot of

1The results of [KT00] formally apply to the case of locally decodable codes, but the proofs can be examined and
seen to hold for the more general case of locally correctable codes.

2One can relax this requirement to hold only for almost all codewords, but in the context of linear error correcting
codes (most LCCs are such) the two notions coincide.

3

structure. The sheer number of constraints — n/q per index, summing up to n2/q overall — implies
that picking these constraints arbitrarily, or at random, results (whp) in a code with rate 0. Indeed,
all known families of LCCs — Reed-Muller (RM), multiplicity codes [KSY11], and affine-invariant
codes [KS08, GKS13] — can be explained by two structural properties they possess:

(i) a doubly-transitive automorphism group, and (ii) a large-distance local view. We explain these
two concepts next.

A code C induces a group of automorphisms Aut(C). This is the group of permutations π of D that
keep the code invariant, i.e., (w ◦ π) ∈ C for all w ∈ C where (w ◦ π) is the function (or codeword)
defined by w(i) , w(π(i)) for all i ∈ D. A group G acting on D is doubly-transitive if for any two
pairs of distinct elements (i, j), (i′, j′) ∈ D2 there exists π ∈ G mapping i to i′ and j to j′.

Fix w ∈ C. A q-local view of w is the restriction w|D′ of w to a domain D′ ⊂ D with |D′| = q.
Similarly, a q-local view of C is a set of the form C|D′ , {w|D′ | w ∈ C} for some D′ ⊂ D with
|D′| = q. That is, C|D′ is the projection of all codewords of C to a domain D′ ⊂ D of size q. We
informally say the local-view has large distance if the relative distance of C|D′ is large. ’fi

To take a concrete example, consider RM[m,d]q =
{

f : Fm
q → Fq | deg(f) ≤ d

}

and suppose d =
q/2. (i) This code is doubly-transitive because it is affine-invariant, i.e., it is invariant under any
invertible affine transformation A of Fm

q , as deg(f) ≤ d implies deg(f ◦ A) ≤ d. (ii) The code
also has a large-distance q-local view, namely, the view D′ = {(α, 0, . . . , 0) | α ∈ Fq} obtained by
fixing all but the first variable to 0. Clearly RM[m,d]q|D′ has relative distance d/q = 1/2 because
this view is nothing but the well-known Reed-Solomon (RS) code RS[d]q consisting of univariate
degree-d polynomials over Fq.

3 The reason we mention these two properties is because any code
that is (i) doubly-transitive, and (ii) has a q-local view D′ with relative distance δ, is, in
fact, a (q, 0.1, δ/20)-LCC [KV10]. In order to gain a better understanding of the fundamental
notion of local correctability it is helpful to explore other constructions of LCCs, that do not
possess these properties. As additional motivation we point out that doubly transitive codes, and
in particular affine-invariant ones, have inherent coding-related limitations, e.g., their rate is very
small when alphabet size and query complexity are fixed [BS05]. We now proceed to describe our
code constructions.

1.3 The tensor-product lifting of codes

One way to go about constructing LCCs is to start with a “small” code and “lift” it. A “small”
code C is one with small block-length q but large rate ρ and large relative distance δ. Lifting C
means we apply a simple algebraic or combinatorial operation to C and obtain as a result a code
C′ with larger block-length n ≫ q. We want to find such lifting operations with the property that
certain q-local views of C′ will be equal to C. This will be useful for showing C′ ‘has some local
structure’ and is a good LCC.

Perhaps the simplest conceivable lifting process is tensoring [MS78].

Definition 1.1 (Axis Parallel Views and Code Tensors).

An axis-parallel subset D′ ⊂ Dm is a set of the form

D′ = {(c1, . . . , ci−1)} ×D × {(ci+1, . . . , cm)} , (1)

3The other known families of LCCs, namely, affine-invariant codes [KS08, GKS13] and multiplicity codes [KSY11],
are also (i) affine-invariant and (ii) have a large-distance local view.

4

for some i ∈ m and c1, . . . , ci−1, ci+1, . . . , cm ∈ D. Fix a function w : Dm → Σ. An axis-parallel
view of w is a restriction w|D′ where D′ ⊂ Dm is an axis-parallel subset. Let C = {w : D → Σ} be
a code. The m-wise tensor of C, denoted C⊗m, is the set of functions w : Dm → Σ whose every
axis-parallel view is in C.

For example, it can be seen that (RS[d]q)
⊗m is the set of m-variate polynomials of individual degree

at most d. Therefore, (RS[d]q)
⊗m is a strict subcode of RM[m,md]q. It can be verified that if C

is a linear code of rate ρ and relative distance δ, then C⊗m is a linear code of rate ρm and relative
distance δm. The large-distance axis-parallel views of C⊗m can be used to show that C⊗m is a
locally testable code (LTC), i.e., there exists a randomized “tester” that makes |D|O(1) queries to
f : Dm → Σ and distinguishes with high probability between the case that f ∈ C⊗m and the case
that f is very far from C⊗m [BS05, Val05, CR05, DSW06, BV09a, BV09b].

Unfortunately, code-tensoring fails as a general “lifting” method for constructing LCCs. The prob-
lem is that the only large-distance local-views we can put our hands on in C⊗m are the axis-parallel
views and these do not correspond to a smooth set of reconstructors. There are only two axis-
parallel lines that pass through (i, j) in C ⊗ C and similarly, only m axis-parallel lines pass through
(i1, . . . , im) in C⊗m. This is regrettable because if C has a rich automorphism group, then it seems
reasonable to expect that C⊗m has many non-axis-parallel views that are large-distance local views,
as explained next. We end by pointing out that in spite of the limitations of tensoring for local
correctability, we shall return to it later on to show that in some cases, the m-wise tensor of a
nonlinear base-code is locally correctable (see 6.3).

1.4 Degree-lifting of codes

Let D be some finite domain, and F be a finite field. Suppose we have a degree function deg
assigning a non-negative integer deg(f) to functions f : D → F. For ease of notation, for the rest
of the introduction we fix a positive integer d which will be implicit in some definitions. We denote
by Cd the the set of functions of degree at most d. That is, Cd = {f : D → F|deg(f) ≤ d}.
The point we make in this section is that if deg(f) ‘behaves like the degree of univariate polyno-
mials’, we can lift Cd to a code C′ of larger block-length, that will be convenient to analyze as an
LCC. For this purpose the following definition will be useful

Definition 1.2. We say deg is a curve-degree on D if the following properties hold.

1. deg(f · g) = deg(f) + deg(g).

2. If deg(f) = d, f either vanishes on at most d points in D, or else it vanishes on all of D.

3. For any a, b ∈ F and any f, g : D 7→ F, deg(a · f + b · g) ≤ max{deg(f),deg(g)}. Thus, the set
of functions f : D 7→ F with deg(f) ≤ d is an F-linear subspace.

4. If π ∈ Aut(Cd), then deg(f ◦ π) ≤ deg(f).

It can be seen that when D = F and deg is the degree function of univariate polynomials, deg is
a curve-degree on F. The only property that is not immediate is property 4: In this case Aut(Cd)
consists of the affine transformations π(X) = a ·X + b for some a, b ∈ F with a 6= 0. And indeed,
if f(X) is a univariate polynomial of degree d, so is f ′(X) , f(a · X + b). The fact that deg
behaves like the degree function of univariate polynomials, suggests the idea of lifting Cd to a code

5

C′ consisting of multivariate functions of a certain ‘total degree’. Denote by B the set of m-variate
‘monomials’ of total degree at most d. Namely,

B , {g1(X1) · · · gm(Xm)|gi ∈ Cd;
m
∑

j=1

deg gj ≤ d}.

Definition 1.3 (Degree-lifted Code). Using the notation above, the m-variate degree-lifted code
Cm
d of Cd is

Cm
d , span{B}.

The properties of curve-degree suggest a way to use automorphisms of Cd to locally correct Cm
d . It

relies on the following fundamental definition.

Definition 1.4 (C-permissible subsets and views). Fix a code C = {w : D → Σ} and integer m. A
C-permissible subset of Dm is a subset D′ ⊂ Dm that is of one of the following forms.

• D′ is an axis-parallel subset as per Definition 1.1.

• D′ = {(π1(i), . . . , πm(i)) | i ∈ D}, for some π1, . . . , πm ∈ Aut(C).

For a code C′ = {w : Dm → Σ} a C-permissible view of C′ is a view of the form C′|D′ for a C-
permissible subset D′ ⊂ Dm.

The usefulness of this definition for local correction stems from the following claim.

Claim 1.5. Let deg be a curve-degree on D. Then the Cd-permissible views of Cm
d are subsets of

Cd.

Proof. LetD′ ⊂ Dm be a Cd-permissible subset. Recall that Cm
d is the span of functions w : Dm → F

of the form w = g1(X1) · · · gm(Xm), with
∑m

j=1 deg(gj) ≤ d. Thus, it suffices to show that for w
of this form, w|D′ ∈ Cd. Fix such w, and denote w′ = w|D′ . Suppose D′ is an axis-parallel subset.
Then,

w′(X) = c1 · · · cj−1 · gj(X) · cj+1 · · · cm = c · gj(X),

for some c ∈ F. Thus, as a function from D to F , deg(w′) ≤ d and w′ ∈ Cd. If D′ is not an
axis-parallel subset then w′ is of the form

w′(X) = g1(π1(X1)) · · · gm(πm(X1))

for some π1, . . . , πm ∈ Aut(Cd). From Property 4 of curve-degree, deg(gj ◦πj) ≤ deg(gj) for every
j ∈ [m]. It follows that deg(w′) ≤ d and w′ ∈ Cd.

The above claim suggests the following reconstruction procedure for Cm
d : Suppose we need to locally

correct i ∈ Dm and have oracle access to a corrupted function w′ : Dm → Σ. We pick a random
Cd-permissible subset D′ in Dm that contains i, correct w′|D′ to the closest word v ∈ Cd and output
the value assigned to i by v.

Loosely speaking, when the Cd-permissible subsets are ‘well distributed’ in Dm it can be shown that
this correction procedure succeeds with high probability . It can be seen that this will be the case,
for instance, when Cd is doubly-transitive. I.e., when Aut(Cd) is a 2-transitive group (see Section
6.2) .

6

1.5 Lifting of affine-invariant codes

A form of code lifting that is very similar to ours (but is subtly different) was introduced for
affine-invariant codes in [BMSS10], and used there to prove that affine-invariant low-density-parity-
check (LDPC) codes are not necessarily locally testable (cf. Definition 4.1 there). Recently, and
independently of this work, this form of “affine lifting” was shown in [GKS13] to lead to new
constructions of codes that are simultaneously locally testable and locally correctable, and have
parameters that essentially match those of multiplicity codes [KSY11].

In both kinds of lifting — “degree” and “affine” — one starts with a code C = {f : D → F} and
ends with a code C′ = {f : Dm → F} that has the property that every C-permissible view of C′

is a subset of C but there are important differences between the two. Some of the differences
are syntactic: “affine lifting” assumes an affine-invariant code, and is defined using the “degree-
set characterization” of affine invariant properties (cf. [GKS13, Definition 2.1]) whereas “degree
lifting” assumes an algebraic degree function. Certainly some codes that posses a curve-degree
are not affine invariant (e.g., the Hermitian code described later), and in the other direction it
is not clear that all affine invariant codes can be defined as a space of low curve-degree for some
curve-degree function (cf. Definition 1.2).

The difference between the two notions of lifting runs deeper. For the case of affine invariant code
C, a function f : Dm → F belongs to the affine lifting of C if and only if every C-permissible view
of it — i.e., every restriction of it to a 1-dimensional affine space — is a codeword of C ([GKS13,
Proposition 2.5]). In contrast, we know of algebraic geometry codes C for which there exist functions
f : Dm → F that do not belong to C′ because their curve-degree is too large, yet every C-permissible
view of them belongs to C (see Section 3.7) , and in some cases even the lifting of RS codes will
exhibit this behavior[FS95].

One final and crucial difference that we point out is that in the case of degree lifted codes, we
do not assume that C is doubly transitive, and this complicates the process of locally correcting
C-lifted codes, as explained next.

1.6 AG codes and degree-lifted AG codes

The previous three subsections motivate the following questions: Besides D = F and deg being
the standard degree of univariate polynomials, are there domains D for which we can define a
curve-degree? Are there such cases where the resulting code Cd will be doubly transitive? We have
seen that a positive answer to these questions will give us new families of locally correctable codes.

We now address the first question. It turns out that algebraic geometry gives us a way to define
a curve-degree on D, when D is ‘the set of rational points of an irreducible curve’4 . Indeed, for
these degree functions the resulting codes Cd are known as algebraic-geometry (AG) codes 5, and
have been extensively studied (see Section 4 for details) . In particular, there are arbitrarily long
codes with the best known rates (above the Gilbert-Varshamov bound) over some constant sized
field and with constant relative distance [GS96], for which we can define a curve degree and apply
degree lifting.

We use the properties of curve-degree to analyze the basic parameters of Cm
d : We show that if the

rate of Cd is ρ then the rate of Cm
d is roughly ρ/m!. Turning to relative distance, the properties

of curve-degree lead to a generalization of the ubiquitous Schwartz-Zippel Lemma for degree-lifted

4See the next two sections for more precise definitions.
5Specifically, one-point AG codes

7

AG codes. This generalization implies that the relative distance of Cm
d is at least the relative

distance of Cd (Lemma 5.6) . Given the pivotal role of the Schwartz-Zippel Lemma in the study of
RM-codes, we hope this generalization will be used to find other applications of degree-lifted AG
codes. We stress that both the rate and relative distance of degree-lifted codes depend only on
the rate and distance of the base-code, hence can be applied to any AG code with an appropriate
degree function.

We now address the second question. We are not aware of any doubly-transitive AG-code, except
RS. However, certain AG-codes — for example, Hermitian, Suzuki, and Ree codes — have a rather
rich automorphism group that is not quite doubly-transitive. In what follows we describe a number
of methods for locally correcting degree-lifted AG codes that have a rich automorphism group, albeit
one that is not doubly-transitive. The parameters obtained by them for degree-lifted Hermitian
codes are listed in the table in the following section. Below, we denote by C a code Cd for some
curve-degree function deg.

Fractal correctors To compensate for the code automorphism group not being exactly 2 tran-
sitive, we perform correction in several steps. On input i, w′ as above, the fractal corrector first
picks a random C-permissible subset D′ that contains i. Next, for each j ∈ D′, pick a random
C-permissible subset D′

j that passes through j and locally-correct j as explained above. Finally,
use the corrected values of all j ∈ D′ to locally correct i as above. While we only performed 2 steps
in this example, and we only require 2 steps to locally correct degree lifted Hermitian codes, this
procedure can be generalized to any number of steps. The name we chose — “fractal corrector” —
is explained by the set of queries this corrector makes, which has the size of a c-dimensional surface
in Dm but resembles more a collection of 1-dimensional curves. (Details appear in Section 7 .)

High-degree correctors for degree-lifted codes For certain AG-base codes with a nearly-
doubly transitive automorphism group, the query complexity of local-correction can be reduced
from |D|2 to |D|. The main challenge here is that the C-permissible subsets containing a given
i ∈ Dm do not form a smooth set. The key to our solution is that Cm contains views that, although
not C-permissible, have large distance. For instance, in the case of RM-codes, consider the set of
parameterized quadratic curves in Fm

q of the form

D′ = {(P1(x), . . . , Pm(x)) | x ∈ Fq} deg(Pi) = 2.

These views are clearly not RS[d]q-permissible, but nevertheless the relative distance of the cor-
responding view of RS[m,d]q is still pretty good (it is 1 − 2δ where 1 − δ is the distance of the
base-RS-code). It turns out that for certain AG-base codes, like the Hermitian code, a similar
notion of high-degree local views makes sense. The restriction of Cm to such a high-degree view has
relative distance that is smaller than that of C, but is nevertheless sufficiently large to be of use in
correction. And the main benefit of using high-degree views is that they can form, in certain cases,
a smooth set and hence can be used to locally correct Cm (details appear in Section 8).

Locally correctable Tensors of AG-base codes We now return to the most basic “lifting”
operation — code-tensoring. In Section 6.3 we give a concrete example of a code based on a slight
generalization of the standard definition of AG codes. This code is doubly-transitive and its m-wise
tensor C⊗m is locally correctable. To correct i ∈ Dm in a corrupted word w′ we pick a view D′ as
defined in (1.4) that passes through i. Given that C is doubly-transitive we show that the set of
views is smooth, and the only thing left to argue is that the view has good distance.

8

1.7 Explicit constructions and parameters

We end with a number of concrete constructions. These are obtained by taking C to be the
Hermitian code defined in the next section. The first column in the table below refers to the
local-correcting procedure, the second column gives the rate of the lifted code, the third is the
query complexity of the local-corrector and the last is the block-length. Notice that the rate and
query complexity in all constructions are very close to that of the RM-code, and the block-length
is significantly larger. (A different way to phrase this comparison is to say that for a given block-
length and rate, the new AG-based LCCs have a much smaller alphabet). In the last row we give
the best parameters feasible for constant rate LCCs based on degree lifted AG codes. We explain
how it might be possible to get these codes immediately below the table. All constructions are over
a field of size q2.

construction rate queries length

Reed-Muller 1
m! (1− δ) m

√
n q2m

Single step correction (Section 6.1) 1
m!

(

1− qm−1δ − 1
q

)

m
√
n q3m

Fractal correction (Section 7) 1
m!

(

1− δ − m
q

)

m
√
n2 q3m

High degree correctors (∀t > 0) (Section 8) 1
tm!

(

1− δ − 1
q − m

t

)

m
√
n q3m

Locally correctable tensored AG codes (Section 6.3) 1
mm

(

1− δ − 1
q

)

m
√
n q3m

Tower of curves (hypothetical construction, see below) 1− δ − 1
q

m
√
n any

Codes over constant sized alphabets via a tower of curves Tensored Hermitian codes,
whose local correctability parameters are listed in rows 2–5 in the table above, allow for LDCs of
rate half and block length which is q3/2 over an alphabet of size q. Using Ree and Suzuki curves
[HS90, Ped92] instead, we can extend the block length up to q3 (see future work). To be able to
get LCCs of any length over a constant sized alphabet, we need curves with an arbitrarily large
number of points and a good automorphism group over a constant sized alphabet. To achieve this
it is necessary to look at families of curves in a large-dimensional space. The standard method for
constructing such curves in a way that still allows us to analyse them is via towers of curves [Sti93,
Section 7.2].

In a tower of curves, we start with a single plane curve and then apply it iteratively to get an m
dimensional curve, the properties of the m-dimensional curve will then depend on the properties of
the original planar curve.

In order to get LCCs of arbitrarily large length over constant sized alphabet using degree lifted
towered AG codes, as listed in the last row of the table above, it is necessary to find a tower of
curves which has a large number of automorphisms. The currently well-known towers ([GS96],
Hermitian towers and others) do not seem to have this property but we are not aware of any result
which rules them out.

Remark 1.6 (Concatenation). A standard method of reducing the alphabet size of LCCs is code
concatenation, which allows us to take a regularly constructed LCC and concatenate it with a code
over a small alphabet to get an LCC with an alphabet size of our choosing. Comparing degree
lifted AG codes to RM codes after concatenation, the gains are that degree lifted AG codes reduce
the query complexity by a multiplicative factor, and induce a distribution over bits read during
correction that, depending on the method of correction used, is either pairwise independent, or
significantly closer to it then codes gotten by concatenation, which may be important in future

9

applications.

1.8 Future work and open problems

Multiplicity AG codes It is possible to get LCCs of rate approaching 1 by generalizing [KSY11]
to this setting, i.e. introducing a multiplicity version of AG and degree lifted AG codes. We
will explore this in future work.

Tensored AG codes as locally testable codes It seems reasonable to expect degree lifted AG
codes to be locally testable, in the same way that RM codes are. In future work we will
present a “plane vs. plane”-like test for these codes, generalizing the works of [RS97, MR08].
It would also be interesting to generalize the “line V. line” tests of [PS94, AS03] to this
setting.

Organization of this paper

In the next section we discuss previous research in areas related to our work. Inspired by the
exposition in [BATS09], in Section 3 we begin by showing a simple analysis of degree-lifted AG codes
based on the family of Hermitian codes, this analysis gives an example of the type of techniques
and results featured in this paper, free of sophisticated algebraic-geometry. Of possible independent
interest in this section is an elementary proof of a weaker variant of our Schwartz-Zippel type lemma.
In Section 4 we provide a brief reminder of the relevant terms regarding AG codes in general,
and Hermitian codes in particular. This section is by no means a comprehensive introduction to
AG-codes, the uninitiated reader is referred to [Sti93] for such an introduction. In Section 5 we
introduce a RM-like lifting of AG-codes and prove the full version of our Schwartz-Zippel type
lemma to establish the distance of lifted AG-codes. In Section 6 we study the so-called single-step
correction of AG codes. Section 7 discusses constructions based on fractal correctors, and Section 8
studies high-degree correction procedures.

2 Context and history

2.1 Previous work on locally correctable codes

The LCCs introduced here are, in particular, also locally decodable codes (LDCs). (In fact, any
linear LCC is an LDC.) While mentioned as early as [Ree54], LDCs became widely studied (though
only implicitly) during the 90s, as part of the drive towards constructions of PCPs [BF90, Lip90,
LFKN92, Sha92, BFLS91, BFL92, AS98]. Their explicit definition was given in [KT00], and they
have remained an object of intense, explicit study in their own right, while also being used in other
results in computational complexity [BFNW93, IW97, AS03, STV99, SU05] and cryptography
([CGKS98], for instance). See [Yek11] for a recent survey on locally decodable codes.

The most intense study has been in the area of constant query LDCs. For many years, it was widely
believed that constant query LDCs required exponential length (n = Θ(exp (kα)) for some constant
α). A recent series of results [Yek08, Rag07, Efr09, DGY10, BAETS10, IS10, CFL+10] showed this
belief to be false by constructing constant query LDCs which have n = O (exp (exp (logα k))) for a
constant α (i.e. sub-exponential length).

Of equal interest is a lower bound on the length of such codes. This area has also seen considerable
work [KdW04, GKST02, WdW05, Woo07, DJK+02, Oba02], and already in [KT00] it was shown

10

that no constant query, constant rate LDCs exist. The best known lower bound on the length of
constant query LDCs is Ω̃

(

k1+δ(r)
)

(where r is the number of queries and δ (r) < 1). It is a major
open problem to decrease the gap between these lower and upper bounds.

Flipping the question on its head, and looking only at constant rate LDCs, the only known lower
bound on the query complexity is Ω (log k) [KT00], while all the actual constructions known use a
polynomial (Θ (kǫ)) number of queries.

For many years the only known LDCs with constant rate were Reed-Muller (RM) codes, which were
limited to rate 1

2 . This limit was inherent in the fact that RM codes must only use polynomials
whose degree was smaller than the field size, or the basic property of unique decoding of a codeword
would be lost (over Fq, x ≡ xq) . Recently, [KSY11] showed that by evaluating both a polynomial
and some of its derivatives, one can start with polynomials of degree greater than field size, thereby
increasing the rate while at the same time, keeping the property of local correctability using an
algorithm similar to the RM correction algorithm. This enables codes of rate approaching 1, that
are locally decodable with O (kǫ) queries in the presence of a constant δ (which is determined by
the rate and by ǫ) fraction of errors.

2.2 Previous work studying code invariance with respect to “local” properties

The study of the automorphism group of various error correcting codes is an important and well-
established branch of classical coding theory, and this is particularly true for the study of AG-codes
[Gop88, Sti]. See also the recent works [KW10, KL12] which study LDPC codes with relatively
high rate and a rich invariance group.

In the context of “local” codes, most of the work focused on understanding locally testable codes
in terms of their automorphism group. Random low-density-parity-check (LDPC) codes are not
locally testable [BHR05] and furthermore a rather large set of local views is required for local
testability [BGK+09]. [BSS03] showed that cyclic-LTCs cannot have constant rate. [AKK+05]
asked whether all doubly-transitive codes with a local constraint are LTCs. [KS08] initiated a
study of this question in the context of affine-invariant linear codes and a large body of work has
accumulated around this question [GKS09, BS10, BMSS10, BGM+11, BRS12, GKS13] (see [Sud10]
and references therein).

Turning to locally decodable and correctable codes, we have already pointed out that doubly-
transitive codes with a local-view are locally correctable, hence also locally decodable. Works study-
ing the connection between group representation theory and LDC constructions includes [RY07]
and [Efr12].

2.3 Previous work on codes over algebraic surfaces

AG codes were introduced by Goppa [Gop82] and famously used to break the Gilbert-Varshamov
bound [MTZ82]. Intuitively, AG codes involve the evaluation of appropriately chosen function
spaces over the points of a 1-dimensional object in m-dimensional space. In the wake of Goppa’s
work, there have been several works on codes over various high dimensional algebraic surfaces
([TS91, Lac93, Han01, rod03, LGS05] for example. See [Lit08] for a survey). To the best of our
knowledge, this is the first application of such high-dimensional AG-codes to theoretical computer
science.

11

3 Elementary Construction

In this section we survey the constructions and results featured in the rest of the paper, using only
elementary terms and techniques. In particular, we give an elementary statement and proof of a
special case of our Schwartz-Zippel type lemma, which we use here to show that a specific instance of
degree-lifted AG codes has good distance, and an elementary description of our correcting methods
and their relation to the traditional local correction of RM codes.

We wish to emulate the local correction of RM codes and assume the reader has familiarity with how
it is done. Thus we describe our construction hand-in-hand with an informal description of RM-
correction. We use a somewhat non-standard definition of RS- and RM-codes in order to expose
their similarities with AG-codes. Since we are going to keep the description on an elementary
level (without assuming any background in algebraic geometry) certain statements and definitions
regarding AG-codes may seem a bit arbitrary. The reader interested in getting to the bottom of
these peculiarities is encouraged to study the algebraic geometry necessary for it (cf. [Sti93]).

3.1 Reed-Solomon vs. Hermitian codes

The Reed-Solomon code RS[r]q is a [q, r+1, q− (r+1)]q-linear code, i.e., it is a (r+1)-dimensional
subspace of Fq

q. To define a basis for this code/subspace let fi : Fq → Fq be the “raising-to-power-i”
function, i.e., fi(a) = ai. The standard basis for RS[r]q is then {fi | i = 0, 1, . . . , r}.
The Hermitian code herm[r]q2 can be similarly described as a linear code over Fq2 whose codewords
are evaluations of certain functions over a certain set of points. The set of points is different, it is
the following subset of Fq2 × Fq2 which is known as — borrowing Algebraic-Geometry terminology
— the set of Fq2-rational points of the Hermitian curve:

NH :=
{

(a, b) ∈ Fq2 × Fq2 | aq+1 = bq + b
}

. (2)

To define a basis for the code/subspace herm[r]q2 let gij be the “raising-X-to-power-i-and-Y -to-
power-j” function, i.e., gij(a, b) = aibj . We define the curve degree of gij to be i · q+ j · (q+1) and
define the following basis for herm[r]q2 :

{gij | qi+ (q + 1)j ≤ r and j < q} .

The reason for the peculiar definition of curve-degree comes from algebraic geometry and is ex-
plained later on in Section 4.2 . It suffices to say here that the curve-degree of a function shares a
similarity with the standard degree for univariate polynomials — it bounds the number of zeros a
function has when evaluated on the domain of interest, which in our case is NH . To see why this
particular choice of the degree-curve makes some sense consider g1,0(X,Y) = X, its curve-degree is
q and it indeed vanishes on the set {(0, b) | bq + b = 0} ⊂ NH of size q. So a polynomial of degree 1
in X should have curve-degree at least q. Similarly, the function (g0,1 − 1)(X,Y) = Y − 1 vanishes
on

{

(a, 1) | aq+1 = 1
}

⊂ NH which has size q + 1, the same size as the curve-degree of (g0,1 − 1),
implying that a polynomial of degree 1 in Y should have curve-degree at least q + 1. The coding
properties of Hermitian codes are recorded next without proof (for a partial elementary proof see
[BATS09]).

Theorem 3.1 (Hermitian Codes). The Hermitian code herm[r]q2 , where r ≥ q2, is an [q3, r −
q(q−1)

2 , q3 − r]q2-linear code.

12

Comparing the Reed-Solomon and Hermitian codes of block-length q3 and rate 1
2 — these are

RS[q
3

2]q3 and herm[q
3+q(q−1)

2]q2 — we see that the Hermitian code has a smaller alphabet of size
q2 (compared to size q3 for the RS-code) and its relative distance is also slightly smaller at 1

2 − 1
q

(compared with 1
2 for the RS-code).

3.2 Automorphisms of Reed-Solomon and Hermitian codes

A code C induces a group of code-automorphisms which is instrumental for obtaining LCCs. The
automorphism group of C, denoted Aut(C), is the group of permutations under which the code is
invariant. Viewing a codeword w as a function w : D → Fq where |D| = n is the block-length of C,
and letting Sn be the symmetric group over the domain D, define

Aut(C) = {π ∈ Sn | π(C) ⊆ C}

where π(C) , {π(w) | w ∈ C} and (π(w))(x) , w(π(x)) for all x ∈ D.

It can be verified that Aut(RS[r]q) contains the set of affine transformations over Fq because if
deg(f(X)) ≤ d then also deg(f(aX+b)) ≤ d for any affine map X 7→ aX+b where a, b ∈ Fq, a 6= 0.
The automorphism group of the Hermitian code is a bit harder to analyse [Xin95]. But it will
suffice for our purposes to notice that it contains the following set of permutations:

Φ ,

{

φa,b,c(X,Y) ,
(

aX + b, aq+1Y + bqaX + c
)

| a ∈ F∗
q2 , (b, c) ∈ NH

}

. (3)

We stress a difference between the two automorphism-groups that will pose a challenge when
constructing local correctors for AG-codes later on: The affine-group is doubly-transitive but Φ is
not. (A group of permutations is doubly transitive if for any i 6= j and i′ 6= j′ in the group there
exists a permutation sending i to i′ and j to j′.) To see that Φ is not doubly transitive notice its size
is ≈ q5 whereas the number of pairs of NH is ≈ q6, so Φ is simply too small to be doubly-transitive.

3.3 Reed-Muller vs. degree lifting of Hermitian codes of bounded curve-degree

The m-variate, total-degree r, Reed-Muller code over the field Fq of size q:

RM [m, r]q ,
{

f : Fm
q → Fq | deg(f) ≤ r

}

is the set of evaluations of polynomials of total-degree ≤ r over Fm
q . The relative distance of the

code is established by the Schwartz-Zippel lemma to be δ0 =
(

1− r
q

)

. The standard basis for this

linear code is the set of monomials of degree at most r, letting fi1,...,im(a1, . . . , am) = ai11 · · · aimm this
basis is

{

fi1,...,im |
m
∑

ℓ=1

iℓ ≤ r

}

.

The following new family of codes is a natural generalization of Reed-Muller codes.

Definition 3.2. [m-wise degree-lifted Hermitian code of curve-degree r]

13

The code herm [m, r]q2 is the space of functions that are evaluated on Nm
H and that have total

curve-degree at most r. To get a basis for this code let

gi1,j1,...,im,jm(x1, y1, . . . , xm, ym) = xi11 y
j1
1 · · · ximm yjmm .

The basis for herm [m, r]q2 is

{

gi1,j1,...,im,jm |
m
∑

ℓ=1

qiℓ + (q + 1)jℓ ≤ r and ∀l : jl < q

}

To establish the distance of these codes we use the following generalization of the Schwartz-Zippel
lemma for our case.

Lemma 3.3 (Schwartz-Zippel for degree lifted Hermitian codes). For non-zero g ∈ herm [m, r]q2 ,
the probability of g being zero on a random point in Nm

H is at most r
|NH | .

Proof. By induction on m. The base case is given by Lemma 3.1. For the inductive step pick a
random point {x1, y1, x2, y2 . . . xm, ym} ∈ Nm

H . To show the step, let g =
∑r

i=0 ci · gi where gi
is the monomial of curve-degree i in the variables xm, ym (i.e. we don’t count the other variables
for this purpose), and ci is its coefficient in this representation, this coefficient is a polynomial in
x1, y1, . . . , xm−1, ym−1. Let j be the highest index for which cj is non-zero. cj is a member of
herm[m− 1, r− j]q2 so by the inductive hypothesis the probability of it being zero is at most r−j

|NH | .
If cj is non-zero then we are left with a polynomial in xm, ym of curve-degree j so the probability
of it being zero on a random point in NH is at most j

|NH | . Summing up, the probability of g being

zero is bounded by r−j
|NH | +

j
|NH | =

r
|NH | as claimed.

This gives the distance of our codes. Calculating the dimension can be accomplished using elemen-

tary combinatorics; it can be shown to be at least
(r−q2)

2

2 as long as r ≥ q2.

A more powerful statement of this lemma is inSection 5 . Part of what it shows is that we can
replace H by any absolutely irreducible polynomial F , NH by the solutions to F = 0 in the base
field and use an appropriately defined degree function and still get that the number of zeroes of a
member of the lifted code is bounded by its degree.

To compare the basic error-correcting-code parameters of RM[m, r]q3 and herm [m, r]q2 of block-

length q3m and rate ≈ 1
m! we see that the former has larger alphabet q3 and both have distance

q3m − q3m−3 · r . (The distance of the Hermitian code will be slightly worse by an additive factor
of about q3m−1).

3.4 Automorphism-based correction of Reed-Muller and degree lifted Hermi-
tian codes

The local-correction procedure for RM[m, r]q goes as follows. We are given a point x ∈ Fm
q and

have oracle access to a function f : Fm
q → Fq which is δ-close to a multivariate polynomial of

degree r. Pick a uniformly random line passing through x, read the entries on this line, decode to
the closest codeword in RS[r]q and output the value assigned to x by this univariate polynomial.
Picking a random line through x can also be described by a process that will better illustrate what

14

happens in the Hermitian case: Pick m− 1 affine permutations σ2, . . . , σm from the affine group of
Fq. Project f onto the set of points

ℓσ = {σ(α) = (α, σ2(α), . . . , σm(α)) | α ∈ Fq}

noticing ℓσ is a line in Fm
q .

Moving to the case of herm [m, r]q2 we employ a similar strategy. Given f : Nm
H → Fq2 and a

point (x1, y1, . . . , xm, ym) ∈ Nm
H that we wish to correct, pick for each i = 2, . . . ,m a random

automorphism of herm [r]q2 among all automorphisms that send (x1, y1) to (xi, yi). Now look at
the restriction of the domain Nm

H to the set of points

Cσ = {σ(α, β) = (α, β, σ2(α, β), . . . , σm(α, β)) | (α, β) ∈ NH} .

The automorphisms of herm [r]q2 are degree preserving, so the restriction to Cσ is a codeword of
herm [r]q2 .What is left is to analyse how well using the automorphisms samples the space Nm

H . We
perform this analysis in Section 6.1, and get that we can construct tensored Hermitian codes of rate
1
m!

(

1− δqm−1 − 1
q

)

that are locally correctable from an δ fraction of errors, while RM codes are

locally correctable from an δ fraction of errors at rate 1
m! (1− δ). Again the degree lifted Hermitian

codes achieve this with a smaller alphabet but the need for a sub-constant error is undesirable, we
have several correction techniques of slightly greater complexity that avoid this.

All of our correction methods are general, in the sense that it is possible to plug in any base AG
code, provided its automorphism group satisfies certain properties. We will show that its degree
lifting will be locally correctable using our methods. For instance, the general statement of the
type of correcting shown in this subsection is (stated slightly informally):

Definition. [(ǫ, α)-doubly transitive groups] The group H acting on the set S is (ǫ, α)-doubly
transitive if for every P1, P2 ∈ S and at least a 1− ǫ fraction6 of P3 ∈ S the variable X = σ (P3)
is distributed uniformly on an 1− α fraction of S when σ is chosen uniformly at random from the
set {σ|σ (P1) = P2} .

Theorem. [Single step correction of degree lifted AG codes (informal statement)] Let C be an
[n, k, d]q AG code such that Aut (C) is (ǫ, α)-doubly transitive. Then the procedure described above,

when applied to C2 with a δ-fraction of errors succeeds with probability at least 1− 2n
d

(

δ
1−α + ǫ

)

.

So the closer a code’s automorphism group is to being two transitive, the better it’s degree lifted
version does as an LDC. In particular, when an AG code has a 2 transitive automorphism group (as
RS codes do) then the simple procedure of passing a random curve through the point of correction
works well as a local corrector for any m. For some AG codes, the Hermitian codes among them,
we can add some redundancy to the code and get one that is doubly transitive. The particulars of
this are beyond our ability to elementarily describe (see sec 6.3) but it gives us the first of three
methods we employ to get good LDC’s for large m. The other 2 are described below.

3.5 Fractal correction of degree lifted Hermitian codes

In this procedure we perform two-step correction, or fractal correction, in which we pick a random
sampler through the point we wish to correct, and first correct each point in that sampler using

6It is actually important that this set of ‘good’ P3’s depends only on P1. See Definition 6.1 for the formal definition.

15

“standard” correction (as in the previous section), before using the corrected values to calculate
the correct value at the original point. This allows us to better sample the space, at the cost of
increasing the query complexity.

Procedure 2:

In order to correct the point (x1, y1, x2, y2 . . . xm, ym) do the following:

1. Choose m− 1 automorphisms such that ϕi (x1, y1) = (xi, yi).

(a) Let C = {(x, y, ϕ2 (x, y) . . . ϕm (x, y)) | (x, y) ∈ D} be the embedding of the Hermitian
curve generated by these automorphisms.

(b) For every point in C, apply standard correction.

(c) Use the values returned from step 3, apply standard Hermitian decoding to get the
restriction of f to C, and calculate it at the point (x1, y1, x2, y2 . . . xm, ym).

Theorem. [Hermitian codes are fractaly correctable]The code defined by evaluating

herm
[

m, q3 − c
(

δ + m
q

)

q3
]

q2
on Nm

H (for m > 2) is a locally correctable from a δ-fraction of

errors. It has rate k
n ≈ 1

m!

(

1− cδ − m
q

)

, query complexity
m
√
n2 and alphabet size of

3m
2

√
n.

We note that the Reed-Muller code with the similar rate of 1
m! (1− δ) has an alphabet size

and query complexity of m
√
n.

The main difficulty in proving this result is in showing that these tests cover the space in a
near-uniform manner. We will show this in Section 7 .

3.6 High degree correction of degree lifted Hermitian codes

A different means to overcome the lack of a doubly transitive group is to use “high degree” curves to
locally correct a degree lifted Hermitian codeword. The RM-analogue of the process described next
would be to locally correct a RM-codeword at point x ∈ Fm

q by passing a parametrized low-degree
curve through x, of the form

{P1(α), . . . , Pm(α) | α ∈ Fq}
where P1, . . . , Pm are low degree polynomials.

In the context of Hermitian codes, we can replace the set Φ (equation 3) with a more general set of
functions. This more general set will have the benefit of being 2-transitive (or sufficiently close for
our purposes), the downside will be that the restrictions of codewords to such functions will have
incur some blow-up in degree. In compensating for this, we lose something in the rate of the codes
we get. The details of this construction are presented in Section 8.

3.7 “Affine” lifting vs degree lifting of Hermitian codes

As detailed in Section 1.5 it is possible to consider the notion of “affine” lifting of codes [BMSS10,
GKS13]. We will show that while both types of lifting produce the same result for RS codes, they
are different for Hermitian codes. We note that the C-permissible views for Hermitian codes aren’t
actually affine but are those generated by the automorphism group of the Hermitian code, so the
name “affine” lifting is misleading in this case.

16

Consider the function f = x1y
q−1
1 x2 − x1y

q−1
2 x2. Its curve degree is q2 + 2q − 1, and we can

see that every axis parallel view of it has lower curve degree. Now consider view of the form
f(x1, y1, ϕ(x1, y1)) we want to show that any such view has smaller curve degree than f , so the
only terms we care about in f(x1, y1, ϕ(x1, y1)) are the terms of curve degree degC f . They are
x1y

q−1
1 ax1 − x1a

(q+1)(q−1)yq−1
1 ax1 = ax21y

q−1
1 − aq

2

x21y
q−1
1 = 0. so any restriction of f is of degree

at most q2 + q (gotten by the second highest degree terms in ϕ), which means that while f isn’t in
the degree lifting of herm[q2 + q]q2 it is in its “affine” lifting.

4 Algebraic Function Fields And Codes

In this section we’ll review the relevant terms and notation from the theory of AG codes (Section
3.1) and present the important facts about the Hermitian curve (Section 3.2), in particular we’ll
study with some thoroughness the structure of the automorphism group of Hermitian codes. We
must stress that this section is only a reminder and will not serve as an introduction to AG codes
for readers who aren’t already familiar with them.

We will (mostly) follow the terminology of [Sti93]. The only non-standard terminology are defini-
tions 4.10 and 4.13.

4.1 AG function fields and codes

We begin with a brief reminder of the important terms relating to AG-codes.

Let Fq be the field of size q, and K (x) be the rational function field in x over K. F/K is an
algebraic function field F over the base field K if F is a finite extension of K (x).

A valuation ring OP of F is a ring such that K (OP (F and ∀z ∈ F : z ∈ OP or z−1 ∈ OP .
A Place P of a function field is the maximal ideal of a valuation ring. Since P is maximal,
FP := OP /P is a field. The degree of a place is defined degP := [FP : K], a place of degree 1 is
called a rational place.

For a rational place we define the following map F → K ∪ {∞}:

∀z ∈ F, z (P) :=

{

z mod P z ∈ OP

∞ z /∈ OP

We denote by vP the discrete valuation associated with the valuation ring OP .

We note that vP (z) > 0 means that z is 0 at P and we say that z has a zero of multiplicity vP (z)
at P . If vP (z) < 0 then z is infinity at P and we say that z has a pole of multiplicity −vP (z) at
P .

DF is the free abelian group generated by the places of F/K. A divisor is a member of this group.

We denote the coefficient of P in D by vP (D) and define the relation:

D1 ≥ D2 ⇐⇒ ∀P ∈ P F , vP (D1) ≥ vP (D2)

A divisor of the form G = r · P for some rational place P is called a one point divisor.

The next definition makes sense because every member of F has a finite number of zeroes and
poles.

Definition 4.1 (Divisors associated with a function field member). For each z ∈ F we define:

17

1. a principal divisor:

(z) =
∑

P∈PF

vP (z)P

2. a pole divisor:

(z)∞ =
∑

P∈PF ,vP (z)<0

− vP (z)P

3. a zero divisor:
(z)0 =

∑

P∈PF ,vP (z)>0

vP (z)P

The degree of a divisor D is: degD =
∑

P∈PF

nP · degPi

Definition 4.2 (Riemann-Roch spaces). The Riemann-Roch Space of a divisor D is defined:

L (D) = {z ∈ F | (z) ≥ −D} ∪ {0}

This is a finite dimensional K-vector space, the dimension of a divisor D is the dimension of its
associated Riemann-Roch space and is denoted l (D).

Theorem 4.3 (Riemann-Roch). For every function field, there is a positive constant g called the
genus of the function field, for which:

∀A ∈ DF ,degA− l (A) ≤ g − 1

if degA ≥ 2g − 1,degA− l (A) = g − 1

Definition 4.4 (Function field automorphism). A field isomorphism φ : F → F is an automor-
phism of the function field F/K if ∀z ∈ K : φ (z) = z.

Theorem 4.5 (Automorphisms permute places). [Sti93, Sec 8.1] Let P be a place of the function
field F and φ an automorphism of it. Then P ∗ := {φ (z) |z ∈ P} is a place of F and degP = degP ∗.

This allows us to extend the action of automorphisms to places in the natural way. Which, in turn,
allows us to define the action of automorphisms on divisors:

Let D =
∑

P∈PF

nPP , then φ (D) =
∑

P∈PF

nPφ (P).

Reminder : An [n, k, d]q linear code is a k-dimensional subspace of Fn
q such that the hamming

distance between any two words in the code is at least d.

Theorem 4.6 (AG codes). [Sti93, Theorem 2.2.2] Let F be a function field with a base field K = Fq.
Let N = P1, P2 . . . Pn be a set of rational places, and D be a divisor such that ∀Pi ∈ N, vPi

(D) = 0
and degD < n. Then

CL (N,D) := {(z (Pi))
n
i=1 |z ∈ L (D)}

is an [n, k, d]q code with k = l (D) , d ≥ n− degD.

Definition 4.7 (One point codes). CL(G,D) is called a one point AG code if G is a one point
divisor.

18

Definition 4.8. A code automorphism is a permutation of the coordinates of a code, σ such
that σ (C) = C.

Theorem 4.9 (Function field automorphisms are code automorphisms). [Sti93, Sec 8.2] Let
CL (D,G) be an AG code, and σ an automorphism of the function field. If σ (G) = G and σ (D) = D
then σ is an automorphism of CL (D,G).

We end this subsection with the only non-standard definition in it:

Definition 4.10. The curve degree of z ∈ F is: degC z := deg (z)∞ = deg (z)0 (this equality is
always true).

We note that this means that the curve degree of z ∈ F is the number of zeros (accounting for
multiplicities, and points in the algebraic closure) it has on the curve. This matches with the degree
of a polynomial, which is also equal to the number of zeroes it has (again, when accounting for
multiplicities and points in the algebraic closure). Unfortunately, the degree of a polynomial can be
calculated by looking at its highest power, while the curve degree of z ∈ F can have a much more
mysterious behaviour. However, in the Hermitian function field, which is the concrete example of
a function field that we will be working with there is a simple way of calculating the curve degree
of a polynomial.

4.2 Hermitian function field

This function field will be of particular importance in our work.

Definition 4.11 (Hermitian function field). Let q be some prime power, K = Fq2 , then H, the
Hermitian function field is the field created by taking k (x) [y] mod yq + y = xq+1

The next two theorems will state the important properties of this function field.

Theorem 4.12 (Structure of the Hermitian function field). [Sti93, theroem 2.3.2] The following
properties hold for H:

1. The genus of H is q2−q
2 .

2. There are q3 pairs (α, β) ∈ F2
q2 such that βq + β = αq+1.

3. For any (α, β) ∈ F2
q2 such that βq + β = αq+1 there is a unique rational place Pα,β such that

(x− α) (Pα,β) = (y − β) (Pα,β) = 0.

4. There is a rational place Q∞ , which is the only pole of both x and y.

5. The places described in 2,3 are the only rational places of H (for a total of q3 + 1)

6. (x)∞ = q ·Q∞, (y)∞ = (q + 1) ·Q∞

7. For any r, the set
{

xiyj|i · q + j · (q + 1) ≤ r, j < q
}

is a basis for L (r ·Q∞)

Definition 4.13. Let NH be the set of all rational places of the Hermitian function field of the
form Pα,β. (i.e. all the rational places of H except Q∞)

The automorphisms of H will also be of importance:

19

Theorem 4.14 (Structure of the Hermitian automorphisms). [Sti93, Ex 6.10]

1. For any place Pα,β ∈ NH there is an automorphism σα,β such that σα,β(x) = x+α, σα,β (y) =
y + αqx+ β. These automorphisms form a group V of size q3. Note that:

(a) σα,β (P0,0) = Pα,β .

(b) σ−1
α,β = σ−α,αq+1−β (it can be verified that

(

−α,αq+1 − β
)

is, indeed, a rational point)

2. For any c ∈ F∗
q2 there is an automorphism τc such that τc (x) = cx, τc (y) = cq+1y. These

automorphisms form a cyclic group W of size q2−1 which stabilizes P0,0 (i.e. τc (P0,0) = P0,0)

3. The group U generated by V and W is of size q3
(

q2 − 1
)

and stabilizes Q∞.

Corollary 4.15 (Representations of Hermitian automorphisms). We can conclude the following
from Theorem 4.14:

1. For any Pα,β ∈ NH and c ∈ F∗
q2 there is an automorphism ϕα,β,c such that ϕα,β,c (x) = cx+α

and ϕα,β,c (y) = cq+1y + αqcx+ β. This set of automorphisms is exactly the group U .

2. For any Pα1,β1
, Pα2,β2

∈ NH there are exactly q2 − 1 automorphisms taking Pα1,β1
to Pα2,β2

,
these are σα2,β2

τcσ
−1
α1,β1

for any c ∈ F∗
q2. We can also write these explicitly as:

φc (x) = (x− α1) · c+ α2

φc (y) =
(

y − αq
1x+ αq+1

1 − β1

)

· cq+1 + αq
2 (x− α1) · c+ β2

and note that these automorphisms depend only on c.

Since for any σ ∈ U , σ (Q∞) = Q∞ and σ permutes the other rational places of N , it is a subgroup
of the group of automorphisms of the AG code CL (r ·Q∞, NH) (Theorem 4.9). In fact, for all
interesting values of r, it is exactly the group of code automorphisms [Xin95].

5 Definition and fundamental coding parameters of degree lifted
AG codes

In this section, we define the notion of degree-lifted AG codes and establish their fundamental coding
parameters — dimension (related to code-rate) and relative distance. To prove a lower bound on
distance we present a generalization of the Schwartz-Zippel Lemma (lemma 5.6), bounding the
number of zeroes of polynomials on the rational points of a curve.

5.1 Definition of degree-lifted AG codes

Definition 5.1 (Degree-lifted AG codes). Let CL (G,D) be a one point AG code (see def 4.7).
Define:

Lm (G)=sp
{

f1 (X1) · f2 (X2) . . . fm (Xm) |∀i : fi ∈ L (G) ,
∑

(fi) ≥ −G
}

Then we define the code Cm
L (G,D) to be:

{f (P) |P ∈ Dm, f ∈ Lm (G)}

20

Where, if P = (P1, . . . , Pm) and f =
∑

∀i:fi∈L(G),
∑

(fi)≥−G

aifi1 (X1) ·fi2 (X2) · · · ·fim (Xm) (where the

coefficients a are in the base field), Then f (P) :=
∑

aifi1 (P1) · fi2 (P2) · · · · fim (Pm) .

Remark 5.2. We note the difference between these codes and those obtained by taking the tensor
product of CL (G,D) (by definition 1.1). Here we have as a condition on the monomials spanning
Lm (G):

∑
(

fij
)

≥ −G. This is similar to looking at the total degree of monomials in RM codes.
Taking the tensor product of CL (G,D) we would get that the condition would be: ∀i :

(

fij
)

≥ −G,
which is similar to looking at the individual degrees. So Cm

L (G,D) is a sub-code of the m-th tensor
of CL (G,D). Lemma 5.6 will show that this sub-code has good distance.

Definition 5.3 (Canonical basis). Let G be a one point divisor, i.e. G = r·P for some rational place
P. A canonical basis for L(G) is constructed by considering the series of divisors 0, P, 2P . . . r · P .
Whenever l(i · P) > l((i− 1) · P), pick a function ϕ ∈ L(i · P) ϕ /∈ L((i− 1) · P) and add it to the
basis.

To study degree lifted codes we introduce the following definition which extends the definition of
curve degree (Definition 4.10) to functions in Lm (G):

Definition 5.4 (Curve degree of tensored functions). The curve degree of ϕi1 (X1) · . . . ϕim (Xm)

is the sum
m
∑

j=1
degC ϕij . The curve degree of f ∈ Lm (G) is the maximal curve degree amongst its

monomials.

5.2 Dimension of degree-lifted codes

The dimension of Cm
L (G,D) is equal to the number of m-tuples of basis functions for L (G) such

that
m
∑

i=1
(ϕi) ≤ −G. So the exact dimension of such a code would depend upon the gap sequence

of G. We can, however establish some bounds:

Theorem 5.5 (Dimension of degree-lifted AG codes). Let 2g − 1 ≤ degG ≤ n. Let k be the

dimension of Cm
L (G,D), then:

(

degG−m·(g−2)
m

)

≤ k ≤ min
{

(degG+ 1− g)m ,
(

degG+m
m

)

}

Proof. The first upper bound is the dimension of the tensored AG code (i.e. the mth power of the
dimesnion of the base code). The second upper bound is what would happen if l(G) = degG. The
lower bound is the number of m-tuples if the minimal curve degree of a basis function is g (the
worst case scenario).

5.3 A Schwartz-Zippel Lemma for degree-lifted AG codes

To be able to claim that the codes defined above have good distance we prove one of the main
results of this paper, a Schwartz-Zippel type lemma for polynomials over algebraic curves:

Lemma 5.6 (Schwartz-Zippel for degree-lifted AG codes). Let G ≥ 0 be a one point divisor, D a
set of rational places disjoint from the support of G. Let f ∈ Lm (G) \ {0}. Let P = {P}mi=1 be an
m-tuple of randomly selected places out of D. Then the probability of f (P) being zero is at most
degC f
|D| .

21

Proof. Fix a canonical basis {ϕi}l(G)
i=1 for L (G). We prove by induction on m. Let m = 1, then f

is a member of L (G) and therefore a member of the function field. It can only be zero at degC f
places (cf. definition 4.10).

Now assume the proposition for m− 1, and consider the case of m. Take f =
k
∑

i=1

m
∏

j=1
fi,j(Xj) and

represent each fi,j in the canonical basis. Note that any basis function with a non-zero coefficient
in this representation cannot have a curve degree higher than fi,j’s. So we get a representation of
f as a linear combination of products of basis functions. Where each product has a curve degree
smaller than degG. Randomly select a tuple P ∈ Dm, let P∗ be the first m − 1 places in P.
Denote f (P∗) = ∑

ij∈[l(G)] and
∑

(

ϕij

)

≥−G

ai1,i2...imϕi1 (P1) ·ϕi2 (P2) · · · ·ϕim−1
(Pm−1) ·ϕim (Xm) and

let j be the largest index of a basis function which appears in f with Xm. Then (by induction

assumption) with probability at least 1 − degC f−degC ϕj

|D| , ϕj has a non-zero coefficient in f (P∗).

This means that f (P∗) is a linear combination of {ϕi|1 ≤ i ≤ j}, with a non-zero coefficient at ϕj ,
so it can’t be identically zero (because the basis functions are independent) and, by definition 5.3,
degC f (P∗) ≤ degC ϕj so the probability of f (P∗) being zero at a random place of D is at most
degC ϕj

D . In summary:

Pr [f (P) = 0] = Pr [f (P∗) = 0] + Pr
P∈D

[f (P∗) (P) = 0|f (P∗) 6= 0] ≤
degC f − degC ϕj

|D| +
degC ϕj

|D| =
degC f

|D|

We conclude that the distance of Cm
L (G,D) when G ≥ 0 and D is rational is at least |D|m−|D|m−1 ·

degG.

It is natural to ask whether the requirement that G be a 1-point divisor is necessary; unfortunately,
it is. As a counter example, consider the rational function field and the Riemann-Roch space
L(Qinf + P0). This is the space spanned by 1

x , 1, x. Now consider L2(Qinf + P0) which is the space
spanned by 1

x ,
1
y , 1, x, y,

y
x ,

x
y . We can evaluate functions in this space on points in (F∗

q)
2 and were

the SZ lemma to apply here, we would expect at most 2q − 2 zero. Now consider the function
f = (x−1)(y−2)

x − (x−1)(y−2)
y which is in L2(Qinf + P0). It is zero whenever y = 2,x = 1 or y = x for

a total of 3q − 6 zeros, disproving a more general application of the SZ lemma.

6 Single-step correction of degree lifted AG codes

In this section we examine the most basic correction algorithm for degree lifted AG codes, in which
we correct a point by looking at the restriction of the code to a random automorphism passing
through it. We show that the closer a code’s automorphism group is to being two transitive (in the
sense of definition 6.1) the better an LCC it makes (Theorem 6.2) . We will then examine how this
test works for degree lifted Hermitian codes (proving corollary 6.4 in Section 6.1). In Section 6.2
we show that this test works well when the underlying automorphism group is 2-transitive, and in
Section 6.3 we study a variant of Hermitian codes which is 2-transitive and has a locally decodable
tensor.

Let C2
L (G,D) be a code, and Aut (G,D) the group of function field automorphisms stabilizing G

and D. We study the following procedure:

22

Procedure 1

In order to correct the point (P1, P2, . . . , Pm) in the received message f ′, do the following:

1. Pick a set of random automorphisms σ2, . . . , σm ∈ Aut (G,D) such that σi (P1) = (Pi).

2. Read the values of the message at the points
C = {(P, σ2 (P) , . . . , σm (P)) |P ∈ D}.

3. Use a decoding algorithm for AG codes on these values (treating the value at
(P, σ2 (P) , . . . , σm (P)) as the value at P) and get a function g ∈ L (G).

4. Return g (P1).

Remark. This is exactly the test used to correct RM codes, where the base code is a RS code and
its automorphism group is the affine group.

What do we need for this test to work? At the least, we need Aut (G,D) to be transitive or there
wouldn’t be any σ to choose in step 1. In order to prove that this test works, we need that for
every point (P1, P2), the possible samplers for this point cover a significant part of the space nearly
uniformly. Formally:

Definition 6.1 ((ǫ, α)-doubly transitive groups). The group H acting on the set S is (ǫ, α)-doubly
transitive if for every P1 ∈ S, there is a subset SP1

⊂ S with |SP1
| ≥ (1 − ǫ) · |S|. Such that for

any P2 ∈ S and P3 ∈ SP1
the following holds. Suppose σ is chosen uniformly from elements of H

mapping P1 to P2. Then σ(P3) is distributed uniformly on a subset of S of size at least (1−α) · |S|.
Theorem 6.2 (Single step correction of degree lifted AG codes). Let CL (G,D) be an [n, k, d]q
code such that Aut (G,D) is (ǫ, α)-doubly transitive. For any f ∈ Cm

L (G,D), point of correction
(P1, P2, . . . , Pm) ∈ Dm and any δ-fraction of errors, procedure 1 succeeds with probability at least

1− 2·|D|
d

(

δ
(1−α)m−1 + ǫ

)

Proof. Fix the point (P1, . . . , Pm) ∈ Dm we want to correct. Fix the received word f ′ : Dm → F.
Fix the set T ⊂ Dm with |T | ≤ δ · |D|m of ‘errors’ where f ′ differs from the original code-
word f . As above we assume for 2 ≤ i ≤ m, that σi is chosen uniformly from the elements
of Aut(G,D) mapping P1 to Pi. For P ∈ D we define the random variable XP which is one if
(P, σ2(P), . . . , σm(P)) ∈ T , and 0 otherwise. Let X ,

∑

P∈DXP be the fraction of errors on the

‘curve’ C , {(P, σ2(P), . . . , σm(P))|P ∈ D}. It is easy to see that when P is chosen uniformly in
SP1

, (P, σ2(P), . . . , σm(P)) is uniformly distributed on a subset of size at least (1−ǫ)·(1−α)m−1 |D|m.
(Since, after choosing P each co-ordinate is independent and uniform on a subset of size at least
(1− α) · |D|). So the probability that such a point would be in T is at most

δ · |D|m
(1− ǫ) · (1− α)m−1|D|m ≤ δ

((1− ǫ) · (1− α)m−1)
.

In other words

PrP∈SP1
(XP = 1) ≤ δ

(1− ǫ) · (1− α)m−1
.

Note that

PrP∈SP1
(XP = 1) =

1

|SP1
|

∑

P∈SP1

Pr(XP = 1)

23

and

E(X) =
∑

P∈D

Pr(XP = 1) =
∑

P∈SP1

Pr(XP = 1) +
∑

P /∈SP1

Pr(XP = 1) ≤ |SP1
| · δ

(1− ǫ) · (1− α)m−1
+ |D| · ǫ

≤ |D| · (δ/(1 − α)m−1 + ǫ).

Thus, by Markov the probability of having more than d
2 errors on the C is at most 2

d · |D|(δ/(1 −
α)m−1 + ǫ).

For any z in the function field and function field automorphism ϕ, (ϕ (z)) = ϕ ((z)) so for any fixed
σ2, . . . , σm the restriction of a codeword f to (P, σ2 (P) . . . σm (P)) is a codeword g of CL (G,D).
This codeword will be retrieved correctly in Step 3 of the procedure if there are at most d

2 errors
on C, and we have bounded the probability of this not happening above.

In Section 6.1 we’ll show that this test works on Hermitian codes, by proving the following theorem:

Theorem 6.3 (Closeness of Hermitian automorphisms to doubly transitive). The automorphism

group of Hermitian codes is
(

1
q2 ,

(

1− 1
q

))

-doubly transitive.

From Theorems 6.2,6.3 we derive the following corollary:

Corollary 6.4 (Single step correction of degree lifted Hermitian codes). Procedure 1 works on

Cm
L (r ·Q∞, NH) with probability at least 2·q3

q3−r

(

qm−1δ + 1
q2

)

.

We can see that if (α > 0) δ must decrease as m increases. This isn’t satisfactory and we’ll solve
this problem in several ways in the next sections.

What happens if α = 0 (i.e. the base code is 2-transitive)? In that case we get local correction for
any m, which we’ll prove in Section 6.2.

By adding some redundancy to the base code we can increase α, we examine a method for this in
Section 6.3 and get a version of Hermitian codes which is locally correctable for larger m’s.

6.1 Single-step correction of Hermitian codes

We want to prove Theorem 6.3:

Theorem (Closeness of Hermitian automorphisms to doubly transitive). The automorphism group

of Hermitian codes is
(

1
q2
,
(

1− 1
q

))

-doubly transitive.

This will imply (corollary 6.4) that the degree lifting of Hermitian codes is locally correctable from
some small fraction of errors.

We need to examine the automorphisms taking (x1, y1) to (x2, y2) and how they act on some place
(x3, y3). The next two lemmas establish the needed properties.

Lemma 6.5 (Automorphisms from (x1, y1) to (x2, y2)). There are q2 − 1 automorphisms taking
x1, y1 to x2, y2.

24

Proof. Let σx,y be the automorphism taking (0, 0) to (x, y) and τ a generator for the automorphism
group that stabilizes (0, 0) then the set
{

σx2,y2τ
iσ−1

x1,y1 |1 ≤ j ≤ q2 − 1
}

is a set of q2 − 1 automorphism taking (x1, y1) to (x2, y2) and since
|Aut (rQ∞, NH)| = q3

(

q2 − 1
)

and |D| = q3 these are the only such automorphisms.

Lemma 6.6 (Automorphisms rarely intersect more than once). Let ϕ1, ϕ2 be two different auto-
morphisms taking (x1, y1) to (x2, y2), if ϕ1 (x, y) = ϕ2 (x, y) then x = x1.

Proof. Let τ be a generator of the automorphism group W (see theorem 4.14), ϕ1 = σx2,y2τ
iσ−1

x1,y1
and ϕ2 = σx2,y2τ

jσ−1
x1,y1 . Then σx2,y2τ

iσ−1
x1,y1 (x, y) = σx2,y2τ

iσ−1
x1,y1 (x, y). If x 6= x1 this means

that there is a point (x′, y′) , x′ 6= 0 such that τ i (x′, y′) = τ j (x′, y′) w.l.g let j > i then (x′, y′) =
τ j−i (x′, y′) so τ j−i stabilizes a non-zero point. But then, if we denote τ j−1 (x) = τc (x), x

′ = cx′ so
c = 1 (since x′ 6= 0) and τ j−1 is the identity mapping in contradiction to τ being of order q2−1.

So we have that for all but q places (those having x3 = x1), the image of (x3, y3) under au-
tomorphisms taking (x1, y1) to (x2, y2) is of size q2 − 1 (so uniformity is immediate). Taking
SP1

= {(x, y) ∈ NH |x 6= x1} this proves Theorem 6.3. Explicitly, this gives us that for r = q3−cǫq4,
procedure 1 fails on the code C2

L (r ·Q∞, NH) with probability at most 2
cǫ

(

δ + 1
q3

)

.

So,

Corollary 6.7 (Degree lifted Hermitian codes are single step correctable).

C2
L

((

q3 − cǫq4
)

·Q∞,D
)

is a locally correctable code with rate

k

n
≈ (q3 − cǫq4)2 − 2(q3 − cǫq4)q2

2q6
≈ 1

2
− cǫq − 1

q
,

query complexity
√
n and alphabet size of 3

√
n .

We note that the Reed-Muller code with the similar rate of 1
2 − ǫ has an alphabet size of

√
n (the

query complexity is the same).

6.2 Degree lifting of 2-transitive AG codes are LDCs

If our base code is 2-transitive then procedure 1 samples the whole space. What is left is to establish
the uniformity of this sampling. In this section we show that if a group is (ǫ, 0)-doubly transitive
(i.e. 2-transitive) then ǫ = 0 which will imply that the degree lifting of doubly transitive AG codes
is locally correctable (Theorem 6.10).

Remark. Technically, a 2-transitive group won’t sample the whole space since, for instance, when
correcting (P1, P2) we will never sample (P1, P3). We can overcome this by also considering the
parallel lines (i.e. {(P1, P) |P ∈ D} etc) as views.

In the next two lemmas, we show that uniformity is a property of any 2-transitive group.

Lemma 6.8 (Uniformity of transitive groups). Let A be a set with a group Φ acting on it tran-
sitively. Let Φa,b ⊆ Φ be the set of automorphisms taking a to b, then |Φa,b| is independent of the
choice of a, b.

25

Proof. Assume by contradiction that |Φa,b| > |Φa,c|. Let σ ∈ Φ be such that σ (b) = c then
σ (Φa,b) ⊆ Φa,c so there are two different ϕ1, ϕ2 ∈ Φa,b such that σ ◦ ϕ1 = σ ◦ ϕ2 ⇒ ϕ1 = ϕ2, a
contradiction.

Lemma 6.9 (Uniformity of doubly transitive groups). Let A be a set with a group Φ acting on it
2-transitively. Let Φa,b,c,d ⊆ Φ, a 6= c, b 6= d be the set of automorphisms taking a to b and c to d,
then |Φa,b,c,d| is independent of the choice of a, b, c, d.

Proof. From lemma 6.8 we know that |Φa,b| is independent of a, b , so assume by contradiction that
|Φa,b,c,d| >

∣

∣Φa,b,c,d′
∣

∣. Let σ ∈ Φ be such that σ (b) = b, σ (d) = d′ then σ (Φa,b,c,d) ⊆ Φa,b,c,d′ so
there are two different ϕ1, ϕ2 ∈ Φa,b,c,d such that σ ◦ ϕ1 = σ ◦ ϕ2 ⇒ ϕ1 = ϕ2, a contradiction.

We can now prove the main result of this section.

Theorem 6.10 (Doubly Transitive AG codes are locally correctable). Let CL (G,D) be an [n, k, d]q
code with a 2 transitive group of function field automorphisms, then Cm

L (G,D) is locally correctable
from a δ < d

2n fraction of errors.

Proof. set α = 0 and ǫ = 0 in Theorem 6.2.

We are unaware of any 2-transitive AG codes (other than Reed-Solomon codes). Some immediate
places to look for them are the Hermitian, Suzuki and Ree curves, as all of them have 2-transitive
groups acting on their rational points ([Sti93], [HS90] and [Ped92] respectively). However, for these
to give rise to 2-transitive codes there must also be a non-rational divisor of sufficiently low degree
(smaller than the number of rational points) which is stabilized by all these automorphisms.

Would this kind of test work for the tensor of any 2-transitive code? The uniformity of the sampling
has nothing to do with the base code being an AG code, the only property of AG codes we use is
that the restriction of the tensor to the sampler is a codeword of the base code. We do not know
whether this is true for the tensor (or some appropriate generalization of the degree lifted subcode
of it) of some general 2-transitive code.

6.3 Increasing transitivity via redundancy

To get a 2-transitive AG code, we need an automorphism group that acts 2-transitively on some
set of places, while stabilizing another (that can’t be of too high a degree). While we have several
examples with a 2-transitive action, we don’t know of any (except for RM codes) where it also
stabilizes another divisor. In particular, the Hermitian function field has a 2-transitive action on
its set of rational places (including infinity), but we don’t know of any low degree (degree lower
than q3) divisor that is stabilized by it.

In this section we show that a 2 transitive action is sufficient to show local correctability of the
tensored code (though with a smaller rate than we would get from degree lifting), this gives us a
construction of an LCC based on tensored Hermitian codes.

We first need to slightly extend our notion of AG codes.

Let S = {P}ni be a set of places and Aut {S} be a group of function field automorphisms acting
on S (implied here is that S is closed under the action of function from Aut{S}). We define the
evaluation of a function at a place it has a pole in as 0.

26

Definition 6.11. The extended evaluation of a function z ∈ F/K is denoted z̄ and defined

z̄ (P) =

{

z (P) vP (Z) ≥ 0

0 otherwise

This allows us to consider AG codes CL (G,D) when SUPP (G) ∩ SUPP (D) 6= ∅.

Definition 6.12. The code C̄L (N,D) := {(z̄ (Pi))
n
i=1 |z ∈ L (D)}

We can now prove the main result of this section:

Theorem 6.13 (Local correction of increased transitiveness AG codes). Let S be a set of place
such that Aut {S} acts 2-transitively on S, pick Q ∈ S. Then C̄m

L (r ·Q,S) is locally correctable
from a δ ≤ n−r·m

2n fraction of errors.

Proof. Mark |S| = n. Let δnm be the number of errors allowed. Say we wish to correct the codeword
w at the point (P1, P2 . . . Pm). We randomly pick automorphisms ϕ2 . . . ϕm such that ϕi (P1) = Pi,
and consider the values received at the points C = {(P,ϕ2 (P) . . . ϕm (P)) |P ∈ S}. For all z in the
function field: (ϕ (z)) = ϕ ((z)) so degC z = degC ϕ (z). Which means that the restriction of w to C

is a codeword of CL
(

r ·Q+ r ·
m
∑

i=2
ϕi (Q) , S

)

, this code has distance of at least d = n−m− r ·m
and we can use standard algorithms to decode it. For any point (P ′

1 . . . P
′
m) , P ′

i 6= Pi the number
of automorphisms selections which would lead to it being in C is independent of the identity of the
P ′’s (lemma 6.9) so the expected fraction of errors in C is δ.

Let XC be a random variable denoting the fraction of errors on C. Using markov Pr
[

XC > d
2

]

<

2δn
d , so if δ is smaller than half the relative distance of CL

(

r ·Q+ r ·
m
∑

i=2
ϕi (Q) , S

)

the correction

succeeds with high probability.

The disadvantage of this method is the presence of r in the distance of the restrictions. This means
that r < n

m . We also gain no benefit from bounding the total curve degree of monomials in this
construction. So we bound the individual curve degrees of of members in monomials instead. i.e.
we look at the full tensored code and not at a sub-code of it. This gives us a dimension of (r − g)m.

Corollary 6.14 (Locally correctable tensors of Hermitian codes). The m-th tensor of

C̄L (r ·Q∞, NH ∪Q∞) is locally correctable from a δ ≤ q3−r·m
2q3

fraction of errors. The rate of these

codes will be 1
mm

(

1− cδ − 1
q

)

.

Proof. The set of rational points of the Hermitian curve has a 2-transitive group of automorphisms
acting on it [Sti93]. Now apply Theorem 6.13.

Remark. Theorem 6.13 can be extended for (ǫ, α)-doubly transitive groups.

7 Fractal correction of degree lifted AG codes

In this section we will examine a fractal correction algorithm, define the required properties for a
degree lifted code to be locally correctable using this algorithm (Theorem 7.3), show that Hermi-
tian codes posses these properties and conclude that fractal correction succeeds on degree lifted

27

Hermitian codes (corollary 7.6). Let Cm
L (G,D) be a lifted AG code, and let U be a subgroup of

Aut(G,D). The fractal correction procedure for Cm
L (G,D) and U is as follows.

Procedure 2:

In order to correct the point (P1, . . . , Pm) do the following:

1. Choosem−1 random automorphisms σ2, . . . , σm ∈ U , under the constraint that σi(P1) = (Pi)
for every 2 ≤ i ≤ m.

2. Let C = {(P, σ2 (P) . . . σm (P)) | (P) ∈ D} be the embedding of the curve generated by these
automorphisms.

3. For every point in C, apply procedure 1.

4. Use the values returned from step 3, apply standard AG decoding to get the restriction of f
to C, and calculate it at the point P1.

So in this procedure, we first correct each point on C and then use the corrected values to correct
the value at the original point we wanted to correct.

Definition 7.1 ((α, ǫ)-closeness to 2-steps uniformity). The group H acting on the set S is α, ǫ-
close to 2-steps uniform if for every P ∈ S, there exists a subset SP ⊂ S with |SP | ≥ (1−ǫ) · |S|,
such that

• for any Z ∈ SP , there exists a subset SP,Z ⊂ S (depending only on P and Z) with |SP,Z | ≥
(1− ǫ) · |S| such that the following holds.

– Fix any P ′ ∈ SP .

– Choose random σ, ψ ∈ H under the constraints that σ(P) = P ′, and ψ(Z) = σ(Z).

Then for any Z ′ ∈ SP,Z , φ(Z ′) is α-close to the uniform distribution on S.

Remark 7.2. It is easy to see that the above procedure and definition can be generalized to ones in
which we do a ‘depth-c recursion’. This could be useful in lifted codes where it would require such
a depth of choosing automorphisms to generate a near-uniform point

Theorem 7.3 (Fractal correction of degree lifted AG codes). Let CL (G,D) be an [n, k, d]q code
such that Aut (G,D) is α, ǫ-close to 2-steps uniform. For any f ∈ Cm

L (G,D), point of correction
(P1, P2 . . . Pm) ∈ Dm and any δ-fraction of errors. Procedure 2 succeeds with probability at least

1−
(

2n
d

)2
(δ +m · α+ ǫ)

Proof. Fix the point (P1, . . . , Pm) that is to be corrected. Let T ⊂ Dm be the set of errors of size
|T | ≤ δ ·nm where the received word differs from the original codeword f . As described in Procedure
2, choose random σ2, . . . , σm such that σi(P1) = Pi. Procedure 2 now runs Procedure 1 on each
point (Z, σ2(Z), . . . , σm(Z)) for Z ∈ D. This corresponds to choosing random ψ2, . . . , ψm ∈ U
under the constraint that ψi(Z) = σi(Z) for 2 ≤ i ≤ m, and then using the hermitian code
decoding algorithm on the points of the ‘curve’

CZ ,
{

(Z ′, ψ2(Z
′), . . . , ψm(Z ′))|Z ′ ∈ D

}

.

For Z ∈ D, define a random variable XZ that is 1 when CZ contains more than d/2 errors, i.e.,
|CZ ∩T | > d/2, and 0 otherwise. In a similar argument to the proof of Theorem 6.2, it follows that

28

when XZ = 0 then Step 3 of the procedure will correctly retrieve f(Z, σ2(Z), . . . , σm(Z)). Let us fix
Z ∈ SP1

. In this case, for Z ′ ∈ SP1,Z , the coordinates of the point (Z ′, ψ2(Z
′), . . . , ψm(Z ′)) are α-

close to uniform (here is where we use Definition 7.1), and therefore by 7.8 (Z ′, ψ2(Z
′), . . . , ψm(Z ′))

ism·α-close to uniform inDm. Hence, for Z ′ ∈ SP1,Z the probability that (Z ′, ψ2(Z
′), . . . , ψm(Z ′)) ∈

T is at most δ +m · α. Since |SP1,Z | ≥ (1 − ǫ) · n, we have that the expected number of errors on
CZ is at most (δ +m · α+ ǫ)n. So

Pr(XZ = 1) ≤ 2

d
(δ +m · α+ ǫ)n.

Similarly, as |SP1
| ≥ (1− ǫ) · n, we now have that the expected number of errors on C is at most

((1− ǫ)(δ +m · α+ ǫ)n+ ǫ)n ≤ (δ +m · α+ ǫ)n2.

Using Markov, we get the required bound on the error probability.

This does give us a way to locally correct codes with m > 2. We now return to the automorphisms
of the Hermitian code, the remainder of this section will be concerned with proving the following:

Theorem 7.4 (2-steps uniformity of Hermitian automorphisms).

Aut (r ·Q∞, NH)

is 1
q ,

1
q +

2
q2
-close to 2-steps uniform.

Corollary 7.5 (Fractal correction of degree lifted Hermitian codes). Consider

Cm
L

((

q3 − c

(

δ +
m

q

)

q3
)

·Q∞,D

)

, for some constant c, if the fraction of errors in the received codeword is smaller than δ then
procedure 2 succeeds with probability at least 1− 8

(

δ+m
q

)

c2
.

Corollary 7.6 (Fractal correction degree lifted Hermitian codes).

Cm
L

((

q3 − c

(

δ +
m

q

)

q3
)

·Q∞,D

)

is a locally correctable code with rate

k

n
≈

(q3 − c
(

δ + m
q

)

q3)m −m(q3 − c
(

δ + m
q

)

q3)m−1q2

m! · q3m ≈ 1

m!

(

1− cδ − m

q

)

query complexity
m
√
n2 and alphabet size of 1.5m

√
n.

We note that the Reed-Muller code with the similar rate of 1
m! (1− δ) has a query complexity of

m
√
n and an alphabet size of m

√
n. This is an immediate consequence of Theorem 7.4. To prove this

theorem we’ll first need some preparatory lemmas.

Lemma 7.7 (Image of bounded polynomial is uniform). A degree q + 1 polynomial f : Fq2 → D,
|D| = q has a statistical difference of at most 1

q − 1
q2

from the uniform distribution on D.

29

Proof. Let Q be the distribution induced by f , assume that δ (Q,U) > 1
q − 1

q2
. Then there is a

set A ⊆ D such that
∣

∣

∣
Prx∈F

q2
[f (x) ∈ A]− |A|

q

∣

∣

∣
> 1

q − 1
q2
. This means that one of the following 2

things must happen:

1. f takes more values to A then the uniform distribution does, in that case
∣

∣f−1 (A)
∣

∣ ≥ |A| q+q
but

∣

∣f−1 (x)
∣

∣ ≤ q + 1 (because of its degree) so |A| = q which is ludicrous.

2. f takes less values to A then the uniform distribution does. Apply 1. to Ā to get a contra-
diction.

Lemma 7.8 (Statistical distance is additive). Let Q be a distribution on D and P a distribution
on D′ which is independent of Q. P and Q are µ close to uniform. Then Q×P is at least 2µ-close
to uniform.

Proof. Statistical distance obeys the triangle inequality so

d (Q× P,UD × UD′) ≤ d (Q× P,Q× UD′) + d (Q× UD′ , UD × UD′) = 2µ

Proof. (of Theorem 7.4)

We thinks points P1, P2 ∈ NH . We denote P1 = (x1, y1) and P2 = (x2, y2). We define SP1
⊂ NH to

be the set of points in NH whose first coordinate is different from P1. That is,

SP1
, {Z = (z1, z2) ∈ Nh|z1 6= x1} .

Note that |S1| = q3 − q2 = (1 − 1/q) · |NH | as required in Definition 7.1. We now fix a point
Z = (z1, z2) ∈ SP1

. We now wish to choose random elements σ, ψ ∈ U under the constraint that

1. σ(P1) = P2.

2. ψ(Z) = σ(Z).

Using the representation of automorphisms described in Corollary 4.15, we denote σ = ϕα,β,c and
ψ = ϕα′,β′,c′ . Recall this means that, for example for σ, for any (x, y) ∈ NH .

σ(x) = cx+ α, σ(y) = cq+1y + aqcx+ β.

Using this notation, and the second item of Corollary 4.15, the above constraints are equivalent to
the following. For any fixed Z ′ = (x, y) ∈ NH :

σ(x) = (x− x1) · c+ x2

σ (y) =
(

y − xq1x+ xq+1
1 − y1

)

· cq+1 + xq2 (x− x1) · c+ y2.

30

ψ (x) = (x− z1) · c′ + σ (z1)

ψ (y) =
(

y − zq1x+ zq+1
1 − z2

)

· c′q+1 + σ (z1)
q (x− z1) · c′ + σ (z2)

combining them we get:

ψ (x) = (x− z1) · c′ + (z1 − x1) · c+ x2

ψ (y) =
(

y − zq1x+ zq+1
1 − z2

)

· c′q+1 + ((x− x1) · c+ x2)
q (x− z1) · c′

+
(

z2 − xq1z1 + xq+1
1 − y1

)

· cq+1 + xq2 (z1 − x1) · c+ y2

We emphasize that we are thinking now of x, y, x1, y1, x2, y2, z1, z2 as fixed, while c and c
′ are chosen

uniformly7 in Fq2 . As z1 6= x1 this implies that ψ(x) is uniformly distributed. Now let us fix ψ(x)
to a value u. So, we have u = (x− z1) · c′ + (z1 − x1) · c+ x2. Rearranging terms, we express c′ as

c′ =
− (z1 − x1) · c− x2 + xT

(x− z1)
.

Now, we want to look at the distribution of ψ(y) given this fixing. Using this setting of c′ we get
that ψ(y) is a polynomial in c of degree (at most) q + 1. Furthermore, it is a polynomial whose
image is in a set of size q - the set

{

b ∈ Fq2 |(u, b) ∈ NH

}

. Hence, if it was a non-zero polynomial,
Lemma 7.7 would imply that φ(y) is 1

q -close to the uniform distribution on this set. It would then

follow that (ψ(x), ψ(y) is 1
q -close to the uniform distribution on NH .

So, what is left to do is to show that for most fixings of Z = (x, y), ψ(y) is a non-zero polynomial in c.

The coefficient of cq+1 in this polynomial is (z2−xq1z1+xq+1
1 −y1)+

(

y − zq1x+ zq+1
1 − z2

)(

(z1−x1)
(x−z1)

)q+1
.

For fixed P = (x1, y1), Z = (z1, z2), when x 6= z1, this will be zero exactly when

h(x, y) , (z2 − xq1z1 + xq+1
1 − y1) · (x− z1)

q+1 +
(

y − zq1x+ zq+1
1 − z2

)

(z1 − x1) = 0.

h(x, y) can have at most q2 + q zeros on the hermitian curve. So defining
SP,Z , {Z ′ = (x, y) ∈ NH |x 6= z1, h(x, y) 6= 0}, we are done.

8 Correction via high-degree samplers

In this section we examine correction via high-degree samplers. We define the required properties
of a base AG code for its degree lifting to be locally correctable in this manner (Theorem 8.3) and
construct an explicit set of high-degree samplers for degree lifted Hermitian codes which allows us
to locally correct them (Theorem 8.5).
So far we have used automorphisms in our correcting, this had the benefit of having the restriction
of the degree lifted code be a word in the base code. The downside of this is that the number of
automorphisms isn’t as large as we would like it to be. In the section we replace the automorphisms
with a larger class of functions that will allow us to easily sample the whole space but with some
increase in the curve degree of the restrictions of a code-word to a sampler.

7Actually, as we defined U , c and c′ vary uniformly in F∗
q2 , but in our decoding algorithm we can allow also c = 0.

This will add to our set of functions, for every (α, β) ∈ NH , the constant function mapping all of NH to (α, β).
Alternatively we could slightly increase the resulting α and ǫ in Theorem 7.4

31

Definition 8.1. A generalized automorphism of a function field is a function f : F/K → F/K
such that for all P ∈ PF the set f (P) is contained in only one place of F/K. We define f (P) to
be that unique place.

Definition 8.2 ((l, t)-samplers). The set of generalized automorphisms Φ is an (l, t)-sampler for

the code CL (G,D) if there is a subset A ⊆ L (G) of dimension l(G)
t such that for all f ∈ Φ and

g ∈ A, degC g + l ≥ degC f (g) and Φ has a (0, 0)-doubly transitive action on D.

Theorem 8.3 (High degree correction of degree lifted AG codes). If CL (G,D) is an [n, k, d]q code
which has an (l, t)-sampler Φ then for any f ∈ Am, point of correction (P1, P2 . . . Pm) ∈ Dm and
any δ-fraction of errors. Procedure 1 (when choosing functions from Φ) succeeds with probability at
least 1− 2δ

d−(m−1)l

Proof. For any z ∈ A and function ϕ ∈ Φ, degC ϕ (z) ≤ degC z+l so the restriction of a codeword f to
(P, σ2 (P) . . . σm (P)) is a codeword of CL (G′,D) for some G′ such that degG′ ≤ (m− 1) l+degG.

CL (G′,D) has distance d − (m− 1) l and so we can handle d−(m−1)l
2 errors. By Markov, the

probability of having more than d−(m−1)l
2 errors is at most 2δ

d−(m−1)l .

We will spend the remainder of this section proving the following theorem:

Theorem 8.4 (Samplers for Hermitian codes). Hermitian codes have a
(

q3

t , t
)

sampler for any

0 < t ≤ 1

The corollary of which will be:

Theorem 8.5 (High degree correction of degree lifted Hermitian codes).

Cm
L

(((

1− m

t

)

q3 − cδq3
)

·Q∞,D
)

has a locally correctable subcode of rate:

k

n
≈

((

1− m
t

)

q3 − cδq3
)m −m

((

1− m
t

)

q3 − cδq3
)m−1

q2

tm!q3m
=

1

tm!

(

1− m

t
− cδ − 1

q

)

, query complexity m
√
n and alphabet size of 1.5m

√
n .

Our set of functions will be:

ϕ (x) = ax+ b

ϕ (y) = aq+1y + bqax+ c+ T ∗ (αx+ βy)

Where a ∈ F∗
q2 , (b, c) ∈ NH , α, β ∈ Fq2 and T ∗ (z) = zq − z.

We note that Tr (T ∗ (z)) ≡ 0 so these are indeed generalized automorphisms.

We define Cm
L (r ·Q∞, NH) 1

t
to be the sub-code of Cm

L (r ·Q∞, NH) in which the y-degrees of the

evaluated functions are bound by q
t . This bounds the potential increase in the curve degree of the

functions by an additive factor of mq3

t , and decreases the dimension by a multiplicative factor of
at most 1

t . All that remains is to show that these functions cover the whole space uniformly. This
will be proven in lemma 8.9 but we need to do a little work before-hand.

First we show that these function are actually different from one another.

32

Lemma 8.6 (High degree testers are different). If ∀ (x, y) ∈ NH : ϕ1 (x, y) = ϕ2 (x, y) then ϕ1 ≡ ϕ2

Proof. we can immediately derive that a1 = a2 and b1 = b2, we are left with the equation
T ∗ ((α1 − α2) x+ (β1 − β2) y) + c1 − c2 = 0, pick y0 ∈ Fq2 s.t. yq0 + y = 1 and set y = y0.
This equation then become a degree q polynomial in x, but there are q+1 x values for which (x, y0)
is a Hermitian rational point. So this polynomial must have q + 1 zeroes, so we get that α1 = α2

and c1 = c2. We can then conclude that β1 = β2 and ϕ1 ≡ ϕ2.

Now we show that to correct a particular point we have many possible tests.

Lemma 8.7 (Equal number of functions through each point). Let
(x1, y1) , (x2, y2) ∈ NH , the number of functions for which ϕ (x1, y1) = (x2, y2) is q

4
(

q2 − 1
)

.

Proof. Pick any a
(

q2 − 1 options
)

, there is a single solution to ax1 + b = x2 so b is set.

We need y2 = bqax1+a
q+1y1+c+T

∗ (αx+ βy) pick any c such that bq+1 = cq+c (q options), and let
bqax1 + aq+1y1 + c = λ then we need y2 −λ = T ∗ (αx1 + βy1), note that Tr (λ) = N (x2) = Tr (y2)
so y2 − λ is a trace zero element, denote it by λ′.

There are q elements z in Fq2 such that zq − z = λ′ (T ∗is an additive homomorphism from Fq2 onto
the trace zero elements). So for any choice of α there are q options of β such that T ∗ (αx1 + βy1) =
λ′. (the only issue is if x1, y1 = (0, 0). However, in that case, ϕ (0, 0) = (b, c) regardless of a, α, β,
so we just set (b, c) = (x2, y2) and still get the same number of ϕ’s). So the number of ϕ′s going
through (x1, y1, x2, y2) is

(

q2 − 1
)

· q · q2 · q.

So when looking to correct a particular point, we can choose between q4
(

q2 − 1
)

different testers.

And now we can show that these tests cover nearly the whole space.

Lemma 8.8 (Equal number of functions through each 2 points). Let
(

x1, y1, x
′

1, y
′

1

)

,
(

x2, y2, x
′

2, y
′

2

)

be two points on the Hermitian plane such that x1 6= x2, x
′

1 6= x
′

2

then there are q3 functions such that ϕ (x1, y1) =
(

x
′

1, y
′

1

)

, ϕ (x2, y2) =
(

x
′

2, y
′

2

)

Proof. The conditions on the x’s yield the equations ax1+ b = x
′

1, ax2+ b = x
′

2 which have a single
solution when x1 6= x2.

Pick any c such that Tr (c) = N (b) (q options) and we now get the equations:

bqax1 + aq+1y1 + c+ T ∗ (αx1 + βy1) = y
′

1

bqax2 + aq+1y2 + c+ T ∗ (αx2 + βy2) = y
′

2

let bqax1+a
q+1y1+c = λ1, b

qax2+a
q+1y2+c = λ2 and note that Tr (λi) = Tr

(

y
′

i

)

so y
′

1−λ1 = λ
′

1

and y
′

2 − λ2 = λ
′

2 are both trace zero elements. Pick z1, z2 such that T ∗ (zi) = λ
′

i (q
2 options) ,

The set of equations αxi + βyi = zi has a solution unless ∃γ : (x1, y1) = (γx2, γy2) this however
implies that Tr (γy2) = N (γx2) =⇒

(

γq+1 − γq
)

= 0 and so can only happen if γ ∈ {0, 1}, γ = 1
would mean that both points are equal which is is not an option. If γ = 0 then x1 = y1 = 0. In
that case, instead of picking a random c we pick one where c = y

′

1. We get that ϕ (0, 0) = x
′

1, y
′

1 for
any values of α, β. But we still need to get T ∗ (αx2 + βy2) = λ

′

2 , for every choice of α there are q
options for β for a total of q3 total options.

33

Lemma 8.9 (Uniform coverage by high degree functions). The set of functions used to correct any
point cover nearly the whole space uniformly.

Proof. for any point
(

x1, y1, x
′

1, y
′

1

)

there are q4
(

q2 − 1
)

functions passing through it, pick (x2, y2)

such that x2 6= x1, For any choice of x
′

2, y
′

2 such that x
′

2 6= x
′

1 (there are
(

q2 − 1
)

q) such points),

there are q3 functions passing through
(

x1, y1, x
1
1, y

′

1

)

and
(

x2, y2, x
′

2, y
′

2

)

so going through all

the options for x
′

2, y
′

2 we cycle through all the functions passing through
(

x1, y1, x
′

1, y
′

1

)

, which

shows that the functions passing through a single point cover almost all of the space in a uniform
manner.

The fraction of points unsampled by the functions through a particular point is so small as to not
matter. We can then conclude that
Cm
L

(((

1− m
t

)

q3 − cδq3
)

·Q∞,D
)

q

t

is the subcode for which Theorem 8.5 applies.

Acknowledgments

We thank Ronald Cramer for a careful reading, and pointing out necessary changes in Sections 6
and 7.

References

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron, Testing
Reed-Muller codes, IEEE Transactions on Information Theory 51 (2005), no. 11, 4032–
4039.

[AS98] Sanjeev Arora and Shmuel Safra, Probabilistic checking of proofs: A new characteri-
zation of NP, Journal of the ACM 45 (1998), no. 1, 70–122.

[AS03] Sanjeev Arora and Madhu Sudan, Improved low-degree testing and its applications,
Combinatorica 23 (2003), no. 3, 365–426.

[BAETS10] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma, Local list decoding with
a constant number of queries, Electronic Colloquium on Computational Complexity
(ECCC) 17 (2010), 47.

[BATS09] Avraham Ben-Aroya and Amnon Ta-Shma, Constructing small-bias sets from
algebraic-geometric codes, FOCS, IEEE Computer Society, 2009, pp. 191–197.

[BF90] Donald Beaver and Joan Feigenbaum, Hiding instances in multioracle queries, Pro-
ceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science,
STACS ’90, 1990, pp. 37–48.

[BFL92] László Babai, Lance Fortnow, and Carsten Lund, Addendum to non-deterministic expo-
nential time has two-prover interactive protocols, Computational Complexity 2 (1992),
374.

34

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy, Checking com-
putations in polylogarithmic time, STOC ’91: Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (New York, NY, USA), ACM, 1991, pp. 21–32.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson, Bpp has subexponen-
tial time simulations unless exptime has publishable proofs, Computational Complexity
3 (1993), 307–318.

[BGK+09] Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Sudan, and Michael
Viderman, Locally testable codes require redundant testers, Proceedings of the 24th
Annual IEEE Conference on Computational Complexity (CCC), 2009, pp. 52–61.

[BGM+11] Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu Sudan,
On sums of locally testable affine invariant properties, Electronic Colloquium on Com-
putational Complexity (ECCC) 18 (2011), 79.

[BHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova, Some 3CNF properties
are hard to test, SIAM J. on Computing 35 (2005), no. 1, 1–21.

[BMSS10] Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan, Symmetric LDPC
codes are not necessarily locally testable, In preparation, 2010.

[BRS12] Eli Ben-Sasson, Noga Ron-Zewi, and Madhu Sudan, Sparse affine-invariant lin-
ear codes are locally testable, Electronic Colloquium on Computational Complexity
(ECCC) 19 (2012), 49.

[BS05] Eli Ben-Sasson and Madhu Sudan, Simple PCPs with poly-log rate and query com-
plexity, Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005 (Harold N. Gabow and Ronald Fagin, eds.),
ACM, 2005, pp. 266–275.

[BS10] , Limits on the rate of locally testable affine-invariant codes, Electronic Collo-
quium on Computational Complexity (ECCC) 17 (2010), 108.

[BSS03] László Babai, Amir Shpilka, and Daniel Stefankovic, Locally testable cyclic codes, Pro-
ceedings: 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2003, 11–14 October 2003, Cambridge, Massachusetts (pub-IEEE:adr) (IEEE, ed.),
IEEE Computer Society Press, 2003, pp. 116–125.

[BV09a] Eli Ben-Sasson and Michael Viderman, Composition of Semi-LTCs by Two-Wise Ten-
sor Products, Proceedings of the Approximation, Randomization, and Combinatorial
Optimization, (APPROX-RANDOM 2009), Lecture Notes in Computer Science, vol.
5687, Springer, 2009, pp. 378–391.

[BV09b] , Tensor Products of Weakly Smooth Codes are Robust, Theory of Computing
5 (2009), no. 1, 239–255.

[CFL+10] Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng Zhang, Query-
efficient locally decodable codes of subexponential length, CoRR abs/1008.1617 (2010).

[CGKS98] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan, Private informa-
tion retrieval, Journal of the ACM 45 (1998), 965–981.

35

[CR05] Don Coppersmith and Atri Rudra, On the Robust Testability of Product of Codes,
Electronic Colloquium on Computational Complexity (ECCC) (2005), no. 104.

[DGY10] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin, Matching vector codes, Electronic
Colloquium on Computational Complexity (ECCC) 17 (2010), 12.

[DJK+02] Amit Deshpande, Rahul Jain, Telikepalli Kavitha, Jaikumar Radhakrishnan, and
Satyanarayana V. Lokam, Better lower bounds for locally decodable codes, IEEE Con-
ference on Computational Complexity, 2002, pp. 184–193.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson, Robust local testability of tensor products
of LDPC codes, APPROX-RANDOM (Josep Dı́az, Klaus Jansen, José D. P. Rolim,
and Uri Zwick, eds.), Lecture Notes in Computer Science, vol. 4110, Springer, 2006,
pp. 304–315.

[Efr09] Klim Efremenko, 3-query locally decodable codes of subexponential length, STOC
(Michael Mitzenmacher, ed.), ACM, 2009, pp. 39–44.

[Efr12] , From irreducible representations to locally decodable codes, STOC, 2012,
pp. 327–338.

[FS95] Katalin Friedl and Madhu Sudan, Some improvements to total degree tests, ISTCS,
1995, pp. 190–198.

[FV11] Lance Fortnow and Salil P. Vadhan (eds.), Proceedings of the 43rd acm symposium on
theory of computing, stoc 2011, san jose, ca, usa, 6-8 june 2011, ACM, 2011.

[GKS09] Elena Grigorescu, Tali Kaufman, and Madhu Sudan, Succinct representation of codes
with applications to testing, APPROX-RANDOM (Irit Dinur, Klaus Jansen, Joseph
Naor, and José D. P. Rolim, eds.), Lecture Notes in Computer Science, vol. 5687,
Springer, 2009, pp. 534–547.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan, New affine-invariant codes from
lifting, ITCS, 2013, pp. 529–540.

[GKST02] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan, Lower
bounds for linear locally decodable codes and private information retrieval, IEEE Con-
ference on Computational Complexity, 2002, pp. 175–183.

[Gop82] V.D. Goppa, Algebraic-geometric codes, Izu. Akad. Nauk SSSR Ser. Mat 46 (1982),
no. 4, 762–781.

[Gop88] Valery Denisovich Goppa, Geometry and codes, Springer, 1988.

[GS96] Arnaldo Garcia and Henning Stichtenoth, On the Asymptotic Behaviour of Some Tow-
ers of Function Fields over Finite Fields, Journal of Number Theory 61 (1996), 248–
273.

[Ham50] Richard W. Hamming, Error detecting and error correcing codes, Bell System Technical
Journal 29 (1950), 147–160.

[Han01] S.H. Hansen, Error-correcting codes from higher-dimensional varieties, Finite Fields
Appl. 7 (2001), 530–552.

36

[HS90] Johan P. Hansen and Henning Stichtenoth, Group codes on certain algebraic curves
with many rational points, Appl. Algebra Eng. Commun. Comput. 1 (1990), 67–77.

[IS10] Toshiya Itoh and Yasuhiro Suzuki, Improved constructions for query-efficient locally
decodable codes of subexponential length, IEICE Transactions 93-D (2010), no. 2, 263–
270.

[IW97] Russell Impagliazzo and Avi Wigderson, P = BPP if e requires exponential circuits:
Derandomizing the xor lemma, STOC (Frank Thomson Leighton and Peter W. Shor,
eds.), ACM, 1997, pp. 220–229.

[KdW04] Iordanis Kerenidis and Ronald de Wolf, Exponential lower bound for 2-query locally
decodable codes via a quantum argument, J. Comput. Syst. Sci. 69 (2004), no. 3, 395–
420.

[KL12] Tali Kaufman and Alexander Lubotzky, Edge transitive ramanujan graphs and sym-
metric ldpc good codes, STOC (Howard J. Karloff and Toniann Pitassi, eds.), ACM,
2012, pp. 359–366.

[KS08] Tali Kaufman and Madhu Sudan, Algebraic property testing: the role of invariance,
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC),
2008, pp. 403–412.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin, High-rate codes with
sublinear-time decoding, in Fortnow and Vadhan [FV11], pp. 167–176.

[KT00] Jonathan Katz and Luca Trevisan, On the efficiency of local decoding procedures for
error-correcting codes, Proceedings of the thirty-second annual ACM symposium on
Theory of computing (New York, NY, USA), STOC ’00, ACM, 2000, pp. 80–86.

[KV10] Tali Kaufman and Michael Viderman, Locally testable vs. locally decodable codes,
APPROX-RANDOM (Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and José D. P.
Rolim, eds.), Lecture Notes in Computer Science, vol. 6302, Springer, 2010, pp. 670–
682.

[KW10] Tali Kaufman and Avi Wigderson, Symmetric ldpc codes and local testing, ICS (Andrew
Chi-Chih Yao, ed.), Tsinghua University Press, 2010, pp. 406–421.

[Lac93] G. Lachaud, Number of points of plane sections and linear codes defined on algebraic
varieties, Arithmetic, Geometry and Coding Theory, Proceedings Luminy (1993), 77–
104.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Nisan Noam, Algebraic methods
for interactive proof systems, Journal of the ACM 39 (1992), no. 4, 859–868.

[LGS05] J. Little L. Gold and H. Schenck, Cayley-bacharach and evaluation codes on complete
intersections, J. Pure Appl. Algebra 196 (2005), 91–99.

[Lip90] Richard J. Lipton, Efficient checking of computations, Proceedings of the 7th Annual
Symposium on Theoretical Aspects of Computer Science, STACS ’90, 1990, pp. 207–
215.

37

[Lit08] John B. Little, Algebraic geometry codes from higher dimensional varieties, CoRR
abs/0802.2349 (2008).

[MR08] Dana Moshkovitz and Ran Raz, Two-query PCP with subconstant error, Journal of
the ACM 57 (2008), 1–29, Preliminary version appeared in FOCS ’08.

[MS78] Florence J. MacWilliams and Neil J. A. Sloane, The theory of error-correcting codes,
North-Holland Amsterdam, 1978.

[MTZ82] S.G. Vladut M.A. Tsfasman and T. Zink, Modular curves, shimura curves, and goppa
codes, better than varshamov-gilbert bound, math. Nachr. 109 (1982), 21–28.

[Oba02] Kenji Obata, Optimal lower bounds for 2-query locally decodable linear codes, RAN-
DOM (José D. P. Rolim and Salil P. Vadhan, eds.), Lecture Notes in Computer Science,
vol. 2483, Springer, 2002, pp. 39–50.

[Ped92] J.P. Pedersen, A function field related to the ree group, Lect. Notes Math. 1518 (1992),
122–132.

[PS94] Alexander Polishchuk and Daniel A. Spielman, Nearly-linear size holographic proofs,
STOC ’94: Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(New York, NY, USA), ACM, 1994, pp. 194–203.

[Rag07] Prasad Raghavendra, A note on yekhanin’s locally decodable codes, Electronic Collo-
quium on Computational Complexity (ECCC) 14 (2007), no. 016.

[Ree54] Irving S. Reed, A class of multiple-error-correcting codes and the decoding scheme,
IEEE Transactions on Information Theory (1954), no. 4, 38–49.

[rod03] F. rodier, Codes from flag varieties over a finite field, J. Pure Appl. Algebra 178
(2003), 203–214.

[RS97] Ran Raz and Shmuel Safra, A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np, Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, STOC ’97, 1997, pp. 475–484.

[RY07] Alexander A. Razborov and Sergey Yekhanin, An omega(n1/3) lower bound for bilinear
group based private information retrieval, Theory of Computing 3 (2007), no. 1, 221–
238.

[Sha48] Claude E. Shannon, A mathematical theory of communication, Bell System Technical
Journal 27 (1948), 379–423, 623656.

[Sha53] , Communication theory - exposition of fundamentals, IEEE Transactions on
Information Theory 1 (1953), 44–47.

[Sha92] Adi Shamir, IP = PSPACE, Journal of the ACM 39 (1992), no. 4, 869–877.

[Sti] Henning Stichtenoth, On automorphisms of geometric goppa codes, Journal of Algebra,
113.

[Sti93] , Algebraic function fields and codes, Universitext, Springer, 1993.

38

[STV99] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan, Pseudorandom generators without
the xor lemma (extended abstract), STOC (Jeffrey Scott Vitter, Lawrence L. Larmore,
and Frank Thomson Leighton, eds.), ACM, 1999, pp. 537–546.

[SU05] Ronen Shaltiel and Christopher Umans, Simple extractors for all min-entropies and a
new pseudorandom generator, J. ACM 52 (2005), no. 2, 172–216.

[Sud10] Madhu Sudan, Invariance in property testing, Electronic Colloquium on Computational
Complexity (ECCC) (2010), no. 051.

[TS91] M.A. Tsfasman and S.G.Vladut, Algebraic-geometric codes, (Kluwer, Dordrecht, 1991.

[Val05] Paul Valiant, The tensor product of two codes is not necessarily robustly testable,
APPROX-RANDOM (Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca
Trevisan, eds.), Lecture Notes in Computer Science, vol. 3624, Springer, 2005, pp. 472–
481.

[WdW05] Stephanie Wehner and Ronald de Wolf, Improved lower bounds for locally decodable
codes and private information retrieval, ICALP (Lúıs Caires, Giuseppe F. Italiano, Lúıs
Monteiro, Catuscia Palamidessi, and Moti Yung, eds.), Lecture Notes in Computer
Science, vol. 3580, Springer, 2005, pp. 1424–1436.

[Woo07] David P. Woodruff, New lower bounds for general locally decodable codes, Electronic
Colloquium on Computational Complexity (ECCC) 14 (2007), no. 006.

[Xin95] Chaoping Xing, On automorphism groups of the hermitian codes, IEEE Transactions
on Information Theory 41 (1995), no. 6, 1629–1635.

[Yek08] Sergey Yekhanin, Towards 3-query locally decodable codes of subexponential length, J.
ACM 55 (2008), no. 1.

[Yek11] , Locally decodable codes: A brief survey, IWCC (Yeow Meng Chee, Zhenbo
Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing,
eds.), Lecture Notes in Computer Science, vol. 6639, Springer, 2011, pp. 273–282.

39

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

