
The Complexity of Somewhat Approximation Resistant Predicates

Subhash Khot∗ Madhur Tulsiani† Pratik Worah‡

December 5, 2012

Abstract

A boolean predicate f : {0, 1}k → {0, 1} is said to be somewhat approximation resistant if

for some constant τ > |f−1(1)|
2k , given a τ -satisfiable instance of the MAX k-CSP(f) problem, it is

NP-hard to find an assignment that strictly beats the naive algorithm that outputs a uniformly
random assignment. Let τ(f) denote the supremum over all τ for which this holds. It is known
that a predicate is somewhat approximation resistant precisely when its Fourier degree is at

least 3. For such predicates, we give a characterization of the hardness gap (τ(f)− |f−1(1)|
2k ) up

to a factor of O(k5). We also give a similar characterization of the integrality gap for the natural
SDP relaxation of MAX k-CSP(f) after Ω(n) rounds of the Lasserre hierarchy.

1 Introduction

Given a predicate f : {0, 1}k → {0, 1}, an instance of MAX k-CSP(f) problem consists of n boolean
variables and m constraints where each constraint is the predicate f applied on some (ordered)
subset of k variables and the variables are allowed to appear in negated form. The goal is to find
an assignment to the variables that satisfies maximum number of constraints.

Definition 1.1 Given a predicate f : {0, 1}k → {0, 1}, define the density ρ(f) := |f−1(1)|
2k

.

Definition 1.2 For a predicate f : {0, 1}k → {0, 1} and a constant τ > ρ(f), the predicate is said
to be τ -resistant if for an arbitrarily small constant ε > 0, it is NP-hard to distinguish instances
of MAX k-CSP(f) where a τ − ε fraction of constraints can be simultaneously satisfied from those
where at most ρ(f) + ε fraction of the constraints can be simultaneously satisfied.

A τ -resistant predicate with τ = 1 is more popularly known as approximation resistant. There
is a substantial body of work on trying to characterize approximation resistant predicates, e.g.
[21, 19, 13, 4, 3]. A recent survey by H̊astad [22] gives a comprehensive overview of many results in
this area. In particular, a celebrated result of his [21] shows that the predicates x∨y∨z (i.e. 3SAT)
and x⊕y⊕z = 0 (i.e. 3LIN) are approximation resistant. Such predicates have also been studied in
the context of unconditional lower bounds and especially in the context of Linear and Semidefinite
hierarchies [20, 12, 24]. In the context of such unconditional lower bounds approximation resistance
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is synonymous with similar lower bounds in the corresponding proof systems which establishes
strong connections with a large body of work in propositional proof complexity [6, 5, 2, 1]. A
complete characterization of approximation resistant predicates remains elusive (see [3] however for
some progress on this question). In this paper we study a related notion of somewhat approximation
resistance defined by H̊astad [22].

Definition 1.3 A predicate f : {0, 1}k → {0, 1} is said to be somewhat approximation resistant if
there exists some constant τ > ρ(f) such that the predicate is τ -resistant.

Definition 1.4 A predicate f : {0, 1}k → {0, 1} is said to be always approximable if for every con-
stant τ > ρ(f), there is a constant ν > ρ(f) and a polynomial time (possibly randomized) algorithm
that given an instance of MAX k-CSP(f) where a τ fraction of constraints can be simultaneously
satisfied, finds an assignment satisfying ν fraction of the constraints.

Clearly, the terms somewhat approximation resistant and always approximable are mutually ex-
clusive (assuming P 6= NP). We recall that any predicate f : {0, 1}k → {0, 1} has a Fourier
representation:

f(x) =
∑

α∈{0,1}k
f̂(α)(−1)α·x.

The Fourier degree of f is the maximum Hamming weight |α| such that f̂(α) 6= 0. We say that
f depends on a variable xi if that variable appears in the above representation (i.e. if there exists
α ∈ {0, 1}k such that αi = 1, f̂(α) 6= 0). We note that ρ(f) = f̂(0) =

∑
α f̂(α)2. H̊astad [22] shows

the following result:1

Theorem 1.5 A predicate f is always approximable if its Fourier degree is at most 2 and somewhat
approximation resistant otherwise. Moreover, a function of Fourier degree at most 2 can depend
on at most 4 variables.

In this paper, we focus our attention to the case when f has Fourier degree at least 3 and hence is
somewhat approximation resistant.

Definition 1.6 Let f : {0, 1}k → {0, 1} be a predicate with Fourier degree at least 3. Define τ(f)
to be the supremum over all τ such that f is τ -resistant.

The parameter τ(f)− ρ(f) may be considered as the hardness gap. Our goal is to characterize this
gap as closely as possible. As we demonstrate, the gap can be as small as 2−Ω(k) for some predicates.
Our main result is a characterization of this gap up to a multiplicative factor of O(k5). H̊astad’s

result [22] gives a lower bound of
(

max|α|≥3 |f̂(α)|
)

on the gap τ(f)−ρ(f).2 However we show that

this bound is too weak for some predicates and a stronger lower bound is Ω
(

1
k2
·
∑
|α|≥3 f̂(α)2

)
(clearly there are predicates where the maximum Fourier coefficient at/above level 3 is exponentially
far off from the total Fourier mass at/above level 3). However even this bound is not the correct
one for some predicates and the situation turns out to be a bit subtle. We show that the gap is
characterized by two factors:

1H̊astad provides only a sketch of proofs. The proof details for the first statement in the theorem can be filled in
easily. Regarding the second statement, namely that a function of Fourier degree at most 2 can depend on at most
4 variables, the proof follows from [17] (also see Section 3.1 in [18]).

2This is the bound that can be inferred from H̊astad’s proof sketch.
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1. Whether f is close to or far from the class of functions with Fourier degree at most 2. Not
surprisingly, this is related to whether the Fourier mass of f at level 3 and above is low or
high.

2. When f is close to some function g with Fourier degree at most 2, whether f is monotonically
below g.

Note that the upper and lower bound on the gap τ(f)−ρ(f) correspond to an algorithm and a NP-
hardness result respectively. We show that our upper and lower bounds also hold in the Lasserre
SDP hierarchy in the following sense: The algorithmic upper bound is achieved by a simple SDP
relaxation with one round of the natural Lasserre relaxation. On the other hand, for all lower bound
results, there is a Ω(n)-level Lasserre integrality gap construction with integrality gap similar to
the NP-hardness gap.

1.1 The Main Result

Let Q denote the set of boolean functions on k variables which are of Fourier degree at most 2. From
Theorem 1.5, if f ∈ Q then f is always approximable and otherwise it is somewhat approximation
resistant. We are interested in the case that f 6∈ Q. Let ∆(f,Q) denote the minimum Hamming
distance (normalized by a factor 2k so that it is in the range [0, 1]) of f from any function in Q.
We now state our main result.

Theorem 1.7 Let k ≥ 2215 and f : {0, 1}k → {0, 1} be a predicate with Fourier degree at least 3
(and hence ∆(f,Q) > 0). 3

1. If ∆(f,Q) ≥ 1/k3, then τ(f) ≥ ρ(f) + Ω(1/k5).

2. If ∆(f,Q) = δ ≤ 1/k3, then let g ∈ Q denote the unique function such that ∆(f, g) = δ.

(a) If ∃x ∈ {0, 1}k such that f(x) = 1 ∧ g(x) = 0 then τ(f) ≥ ρ(f) + Ω(1/k).

(b) Otherwise, g is monotonically above f . In this case, there is an absolute constant C
and a polynomial time algorithm that for any ε ≥ Ck3δ, given a ρ(f) + ε satisfiable

instance of MAX k-CSP(f), finds an assignment that is
(
ρ(f) + Ω( ε

k2 log(1/ε)
)
)

-satisfying.

In particular,
τ(f) ≤ ρ(f) +O(k3δ).

Moreover, τ(f) ≥ ρ(f) + Ω
(
δ
k2

)
.

Remark 1.8 We always have the trivial upper bound τ(f) − ρ(f) ≤ 1. Hence in all the cases,
τ(f)−ρ(f) is characterized up to a multiplicative factor of O(k5) as claimed. In Case (2b), δ could
be as small as 2−k, and so τ(f)−ρ(f) is of the same order. Note that characterizing τ(f) precisely
would in particular completely characterize approximation resistant predicates (with τ(f) = 1) which
is open even for the case k = 4 [13, 22]. We believe that even characterizing the gap τ(f) − ρ(f)
with a polylog(k) factor would require significantly new ideas.

3 The current lower bound on k for Theorem 1.7 is large, but it seems to be an artifact of our proof technique and

we expect it to hold for smaller values of k. The condition k ≥ 2215 arises only in our argument relating ∆(f,Q) to
the Fourier mass of f above level 2 (Section 4).
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Remark 1.9 Whenever Case (1) applies, we have ρ(f) ≥ 1
k3

(otherwise f would be 1
k3

-close to
the zero-function which is in Q). The functions g ∈ Q depend on at most 4 variables and thus
ρ(g) ∈ { `16 |` ∈ {0, 1, . . . , 16}}. Whenever Case (2) applies ρ(f) is 1

k3
-close to one of these 17

values.

We can also prove unconditional lower bounds without much extra effort. In this context the notion
of NP-hardness is replaced by the notion of the integrality gap which persists even after many levels
of Lasserre relaxations.

Definition 1.10 Given MAX k-CSP(f), we say that f is τ∗-resistant for the Lasserre hierarchy if
for all constant ε > 0, there exists a constant c = c(ε) > 0 and instances with n variables and m
constraints, for infinitely many values of n, such that the Lasserre relaxation after bcnc rounds has
value at least τ∗ but the integral optimum is at most ρ(f) + ε.

Definition 1.11 Let f : {0, 1}k → {0, 1} be a predicate with Fourier degree at least 3. Define τ∗(f)
to be the supremum over all τ∗ such that f is τ∗-resistant.

The two notions of τ -resistance (namely Definition 1.11 and 1.6) are very closely related and so
we have chosen to use a similar notation for both. Notice that we use a more precise notion of
integrality gap which specifies the optimal fractional and integral solution (i.e. the gap location)
and not just their ratio. Our main result regarding integrality gap mimics the result regarding
NP-hardness gap:

Theorem 1.12 Let k ≥ 2215 and f : {0, 1}k → {0, 1} be a predicate with Fourier degree at least 3
(and hence ∆(f,Q) > 0).

1. If ∆(f,Q) ≥ 1/k3, then τ∗(f) ≥ ρ(f) + Ω(1/k5).

2. If ∆(f,Q) = δ ≤ 1/k3, then let g ∈ Q denote the unique function such that ∆(f, g) = δ.

(a) If ∃x ∈ {0, 1}k such that f(x) = 1 ∧ g(x) = 0 then τ∗(f) ≥ ρ(f) + Ω(1/k).

(b) Otherwise, g is monotonically above f . In this case, SDP rounding of the
natural Lasserre relaxation, after just one round, finds an assignment that is(
ρ(f) + Ω( ε

k2 log(1/ε)
)
)

-satisfying if the instance is ρ(f) + ε satisfiable for any ε ≥ Ck3δ

and C is an absolute constant. In particular,

τ∗(f) ≤ ρ(f) +O(k3δ).

Moreover, τ∗(f) ≥ ρ(f) + Ω
(
δ
k2

)
.

1.2 Overview of the Proof

In this section, we provide a brief sketch of proof of Theorem 1.7, hiding many details however.
Our starting point is a recent result of Chan [7] showing that a predicate L : {0, 1}k 7→ {0, 1} is 1-
resistant (i.e. approximation resistant) if L−1(1) is an affine translate of the orthogonal complement
of a distance (at least) 3 code. We will call such a predicate a good predicate for this section. A
useful fact is that sparse good predicates exist (i.e. |L−1(1)| is O(k2)) and are numerous in the sense
that an affine translate of the orthogonal complement of a random linear subspace of dimension
k − 2 log2 k −O(1) works with probability 99%.
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A predicate f : {0, 1}k → {0, 1} is said to be τ -correlated with a good predicate L if a uniformly
random satisfying assignment for L is also a satisfying assignment for f with probability at least τ
(i.e. |L−1(1) ∩ f−1(1)|/|L−1(1)| ≥ τ). Given a predicate f : {0, 1}k 7→ {0, 1}, we observe that if f
is τ -correlated with a good predicate, then f is τ -resistant. The reason is rather straightforward.
Chan [7] gives a reduction showing that L is 1-resistant. We take the same reduction but pretend
that the predicate used for every constraint is f instead of L and this minor modification suffices
to show that f is τ -resistant.4 For the sake of future reference, we note that any predicate f , not
identically zero, always Ω

(
1
k2

)
-correlates with some good predicate. This is simply because we pick

an arbitrary good predicate L with |L−1(1)| ≤ O(k2) and translating it if necessary ensure that
L−1(1) ∩ f−1(1) 6= ∅. This gives correlation of at least 1/|L−1(1)|.
With these observations at hand, our first task is to (approximately) characterize the best possible
correlation that a given predicate f : {0, 1}k 7→ {0, 1} can have with a good predicate. We show that
this is related to the Fourier mass of f at level 3 and above, denoted γ3(f), which in turn is related
to the distance ∆(f,Q). In the range of parameters of interest, we show that f is τ -correlated with
a good predicate (and hence τ -resistant) with

τ ≥ ρ(f) + Ω

(
γ3(f)

k2

)
,

and moreover that
γ3(f) = Θ(∆(f,Q)).

The first claim uses a (somewhat novel) probabilistic argument showing that a random good predi-
cate works. The second claim uses Fourier analytic techniques from the works of KKL and Friedgut
[14, 10]5. Our lower bound on τ(f) in Case (1) and Case (2b) of Theorem 1.7 now follow immedi-
ately.

We are left with the Case (2a) and the upper bound in Case (2b) of Theorem 1.7. Note that we
are in the scenario where there is a function g ∈ Q with ∆(f, g) = δ for some tiny δ.

We illustrate Case (2a) first. For the sake of illustration, assume that g ≡ 0, which amounts to
saying that ρ(f) = δ. As we noted, f always Ω

(
1
k2

)
-correlates with a good predicate and hence is

Ω
(

1
k2

)
-resistant. Since ρ(f) = δ is tiny, we have τ(f) ≥ ρ(f) + Ω(1/k2) as desired (this is a bit

weaker than the bound we actually get/state in Theorem 1.7). The proof for Case (2a) in general
is a bit tricky and we refer the reader to Section 5.1. We note that this is the case where the gap
τ(f)− ρ(f) is large (i.e. Ω(1/k2)) even though the Fourier mass at level 3 and above is at most δ
which could be as low as 2−k.

Finally, we arrive at the upper bound in Case (2b). Here the algorithm is designed by using an
algorithm of Charikar and Wirth [8] as a black-box. Note that we are in the scenario where there
is a function g ∈ Q with ∆(f, g) = δ for a tiny δ and moreover that f implies g. Given an instance
of MAX k-CSP(f) that is (ρ(f) + ε)-satisfiable, we begin by pretending that it is an instance of
MAX k-CSP(g) with the predicate f on every constraint replaced by g. Since f implies g and
they are close in Hamming distance, the instance remains (ρ(g) + ε/2)-satisfiable as an instance of
MAX k-CSP(g). For the predicate g of Fourier degree at most 2, the algorithm of Charikar and Wirth
yields an assignment that is (ρ(g) + Ω(ε/ log(1/ε)))-satisfying. This assignment, by itself, might be

4One however needs to use some strong uniformity properties of Chan’s reduction. Firstly, that in the YES
Case, all satisfying assignments to L occur almost equally often. And secondly, that in the NO Case, for any global
assignment, the local view at a randomly chosen constraint is almost uniformly random.

5This result is similar, though quantitatively incomparable, to a result of Friedgut, Kalai and Naor [11] which
relates the Fourier mass above level 1 to the distance from dictator (and constant) functions.
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quite bad when viewed as an assignment for MAX k-CSP(f). To correct this, we re-randomize each
variable with probability 1 − 1

2k and show that it now serves as a (ρ(g) + Ω(1/k2 · ε/ log(1/ε)))-
satisfying assignment to MAX k-CSP(f) (and ρ(g) ≥ ρ(f)).

This completes our overview. In the context of Lasserre integrality gaps and Theorem 1.12, our
starting point is a result of the second author [23] that is analogous to Chan’s NP-hardness result.
The hardness reductions are now replaced by integrality gap constructions, but they are identical
in spirit with the same bounds.

It is apparent that most of our techniques are either elementary or borrowed from prior works.
We view our main contribution as the appropriate combination of these techniques so that they fit
together nicely and yield an (arguably) clean characterization.

2 Preliminaries

2.1 Fourier Analysis on the Boolean Hypercube

Given a function f : {0, 1}k → {0, 1} we can express it in the Fourier basis, comprising of characters
χα for α ∈ {0, 1}k and χα(x) = (−1)α·x, as follows:

f(x) =
∑

α∈{0,1}k
f̂(α)χα(x).

Definition 2.1 ([9]) Given f : {0, 1}k → {0, 1}, the influence of coordinate i, denoted as Infi(f),
is defined as:

Infi(f) :=
∑

α:αi=1

f̂(α)2.

Definition 2.2 ([9]) Given f : {0, 1}k → R, The Noise Operator Tε is defined as follows:

Tε(f) :=
∑
α

ε|α|f̂(α)χ(α),

where |α| denotes the hamming weight of α.

Lemma 2.3 ([9]) Given f : {0, 1}k → R, 1 ≤ p ≤ q and ε ≤
√

p−1
q−1 the Bonami-Beckner inequality

states:
||Tεf ||q ≤ ||f ||p.

Definition 2.4 Given f : {0, 1}k → {0, 1}, we define the difference along coordinate i as fi(x) :=
f(x)− f(x+ ei), where ei as usual is the unit vector which is 1 on coordinate i and 0 otherwise.

Observe that fi is {−1, 0, 1} valued and that fi = 2
∑

α:αi=1 f̂(α)χα. Therefore, for any p 6= 0

E [|fi|p] = E
[
|fi|2

]
= 4Infi(f).

We will let γr(f) denote the Fourier mass of predicate f at level r or more i.e.

γr(f) :=
∑
|α|≥r

f̂(α)2 .
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2.2 MAX k-CSP(f) and SDP Relaxations

For a predicate f : {0, 1}k → {0, 1}, an instance Φ of MAX k-CSP(f) on variables x1, . . . , xn is
given by a set of constraints, each on a k-tuple of variables. We denote the variables in a constraint
C by the tuple xC and each constraint is of the form f(xC + bC) where bC ∈ {0, 1}k determines
which variables are negated in the constraint. The objective is to maximize the fraction of satisfied
constraints denoted as EC∈Φ [f(xC + bC)].

The SDP relaxation for MAX k-CSP(f) given by r rounds of the Lasserre hierarchy introduces a
vector V(S,α) for each subset S ⊆ [n], |S| ≤ r and each α ∈ {0, 1}S . The intended solution is that
for an assignment A : [n]→ {0, 1} to all the variables, we set V(S,α) = 1 if A assigns all the variables
in S according to α and 0 otherwise. For any constraint C, we use SC to denote the set of indices
for the variables involved in C (note that the we denote the tuple of the variables by xC). For two
assignments α1 ∈ {0, 1}S1 and α2 ∈ {0, 1}S2 which agree on S1 ∩ S2, we use α1 ◦ α2 to denote the
extension of both assignments to S1 ∪ S2.

Lasserre SDP for MAX k-CSP(f)

maximize E
C∈Φ

∑
α∈{0,1}SC

f(α+ bC)·
∥∥V(SC ,α)

∥∥2

subject to
〈
V(S1,α1),V(S2,α2)

〉
= 0 ∀ α1(S1 ∩ S2) 6= α2(S1 ∩ S2)〈

V(S1,α1),V(S2,α2)

〉
=
〈
V(S3,α3),V(S4,α4)

〉
∀ S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4∑

j∈{0,1}

∥∥V({i},j)
∥∥2

= 1 ∀i ∈ [n]

〈
V(S1,α1),V(S2,α2)

〉
≥ 0 ∀S1, S2, α1, α2∥∥V(∅,∅)

∥∥ = 1

For any set S with |S| ≤ r, the vectors V(S,α) induce a probability distribution over {0, 1}S such that

the assignment α ∈ {0, 1}S appears with probability
∥∥V(S,α)

∥∥2
. The constraints can be understood

by thinking of valid solution as coming from a distribution of assignments for all the variables and
of
〈
V(S1,α1),V(S2,α2)

〉
as the probability of the event that variables in S1 get value according to α1

and those in S2 according to α2.

2.3 Linear Codes

A linear code over Fk2 is simply a subspace of Fk2. We will identify Fk2 with {0, 1}k in the natural
fashion and use the two interchangeably.

Definition 2.5 The dual space S⊥ of a linear space S ⊆ Fk2 is defined as:

S⊥ := {x ∈ Fk2 : x · y = 0, ∀y ∈ S} .

Also, for a linear code S, we define its distance as min{|x| : x ∈ S, x 6= 0}.

We will need the existence of low dimensional subspaces S such that S⊥ has distance at least 3.

Claim 2.6 For all t ≥ 3, there exists a subspace S ⊆ {0, 1}t such that |S| ≤ 2t and S⊥ is a linear
code with distance at least 3.
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Proof: Let r be such that 2r−1 − 1 < t ≤ 2r − 1. Then each element of [t] can be identified with
non-empty subset of [r]. Let F ⊆ 2[r] be the family of subsets which corresponds to the elements
of [t], such that ∀ ∈ [r], {i} ∈ F . Consider the space S defined by the following set of linearly
independent equations over F2

xT =
∑
i∈T

x{i} ∀T ∈ F , |T | > 1 .

Since the number of equations is t − r, the size of S is 2r = 2dlog2(t+1)e ≤ 2t. Also, since any
non-trivial linear combination of the above equations gives an equation with at least 3 variables,
S⊥ has distance at least 3.

We will also need to count the number of d-dimensional subspaces of Fk2, which is given by the
Gaussian binomial coefficients

(
k
d

)
2

defined as(
k

d

)
2

:=
Πd−1
i=0 (2k − 2i)

Πd−1
i=0 (2d − 2i)

for 0 ≤ d ≤ k and 0 otherwise.

2.4 Boolean Predicates

Definition 2.7 We say that a predicate f : {0, 1}k → {0, 1} τ -correlates with a predicate g :
{0, 1}k → {0, 1} if

|f−1(1) ∩ g−1(1)|
|g−1(1)|

≥ τ.

Equivalently Ex∈g−1(1) [f(x)] ≥ τ .

Definition 2.8 A linear predicate L : {0, 1}k → {0, 1} corresponds to set of assignments L−1(1)
which form a affine subspace of Fk2. We call such a predicate well distributed if the uniform distribu-
tion on L−1(1) is a balanced pairwise independent distribution on {0, 1}k i.e., ∀i 6= j ∈ [k], b1, b2 ∈
{0, 1}, Px∈L−1(1) [xi = b1, xj = b2] = 1/4.

The following alternate characterization of well distributed linear predicates is easy to prove.

Claim 2.9 Let L : {0, 1}k → {0, 1} be a linear predicate such that L−1(1) = S + z for a subspace
S of Fk2 and z ∈ Fk2. Then L is well distributed if and only if S⊥ forms a (linear) code of distance
at least 3 over {0, 1}k.

Proof: Since translation by z does affect the balance and pairwise independence of a distribution,
L is well distributed if and only if the uniform distribution on S is balanced and pairwise indepen-
dent. This is equivalent to the condition that Ex∈S [χα(x)] = 0 for all α such that 0 < |α| ≤ 2. Also,
Ex∈S [χα(x)] is 1 for α ∈ S⊥ and 0 otherwise, which implies that the above condition is equivalent
to saying S⊥ does not contain any α with 0 < |α| ≤ 2 i.e., it is a code with distance at least 3.
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3 A Relation to Level 3 Fourier Mass

The following theorem shows that a predicate f with high Fourier mass at level 3 and above (i.e.
high value of γ3(f)) has a high correlation, say τ , with a well distributed linear predicate. Since
a well-distributed linear predicate is 1-resistant, it immediately implies that f is τ -resistant. This
argument is used to prove the lower bound on τ(f) in Case (1) and Case (2b) in Theorem 1.7.

Theorem 3.1 Let k ≥ 16 and f : {0, 1}k → {0, 1} be a predicate. There exists

τ ≥
√
ρ(f)2 +

γ3(f)

100k2
(3.1)

such that f τ -correlates with some well distributed linear predicate (and hence is τ -resistant as well
as τ -resistant for the Lasserre hierarchy).

Proof: Note that ρ(f) = f̂(0) and our statement is equivalent to showing that there exists a
subspace S of Fk2 and z ∈ Fk2 such that S⊥ is a distance (at least) 3 code and

E
x∈S+z

[f(x)] ≥
√
f̂(0)2 +

γ3(f)

100k2
. (3.2)

We prove that choosing S, z at random works. Specifically, we show that when S, z are chosen at
random appropriately, the square of above inequality holds in expectation. For now fix S, z so that
S is a subspace and S⊥ is a distance (at least) 3-code. Let d be the dimension of S⊥. Then, for a
basis α1, . . . , αd of S⊥, S + z can be uniquely specified as the set of points satisfying the equations
αi · x = bi ∀i ∈ [d] over Fk2, where bi = αi · z. Observe that:

E
x∈S+z

[f(x)] =
2k

|S|
· E
x∈{0,1}k

[
1{S+z}(x) · f(x)

]
= 2d · E

x∈{0,1}k

[
d∏
i=1

(
1 + (−1)αi·x+bi

2

)
· f(x)

]

= E
x∈{0,1}k

[
d∏
i=1

(1 + (−1)αi·x+bi) · f(x)

]
=

∑
α∈S⊥

(−1)α·z · f̂(α).

Squaring both sides and taking expectation over a uniformly random choice of z gives (S is still
fixed and S⊥ has distance at least 3)

E
z

[(
E

x∈S+z
[f(x)]

)2
]

=
∑
α∈S⊥

f̂(α)2 = f̂(0)2 +
∑

α∈S⊥,α 6=0

f̂(α)2 = f̂(0)2 +
∑

α:|α|≥3

f̂(α)2 ·1{α∈S⊥} .

Now we consider the expectation over the choice of S which is same as the choice of S⊥. We
choose S⊥ to be a random code of dimension d = bk− 2 log2 k− 2c and distance (at least) 3. Since
|S⊥|
2k
≈ 1

4k2
and a random choice of S⊥ behaves as a random subset of {0, 1}k with this density,

it follows that over the choice of S⊥, every α with |α| ≥ 3 is in S⊥ with probability Ω(1/k2) (i.e.

ES⊥
[
1{α∈S⊥}

]
≥ Ω(1/k2)). This proves the theorem.
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Formally, let Cd denote the set of linear codes in Fk2 of dimension d and Cd3 ⊆ Cd denote the set of
codes with distance at least 3. We will assume d = bk − 2 log2 k − 2c and suppress it for brevity.
Choosing S⊥ to be a random code in C3, for any α with |α| ≥ 3, we get

E
S⊥

[
1{α∈S⊥}

]
= P

C∈C3
[α ∈ C] = P

C∈C
[α ∈ C|C ∈ C3] ≥ P

C∈C
[α ∈ C,C ∈ C3] .

The number of d dimensional codes C is X =
(
k
d

)
2
. The number of d dimensional codes C with

α ∈ C is Y =
(
k−1
d−1

)
2
, which is obtained by pre-including α and then choosing the basis for C. The

number of d dimensional codes C with α ∈ C and distance at most 2 is at most Z = k2 ·
(
k−2
d−2

)
2
,

which is obtained by pre-including α and some non-zero vector with Hamming weight at most 2 in
choosing a basis of C. Thus the probability above is at least

Y − Z
X

=

2k−1−1
2d−1−1

(
k−2
d−2

)
2
− k2 ·

(
k−2
d−2

)
2

(2k−1)(2k−2)
(2d−1)(2d−2)

(
k−2
d−2

)
2

≥ 1

2
· 2k−d − k2

22(k−d)
≥ 1

100k2
,

where we used 2 log2 k + 2 ≤ k − d ≤ 2 log2 k + 3.

4 Fourier Spectrum and Closeness to Q

In this section we show that if γ3(f) is sufficiently small then f is close in Hamming distance
to a quadratic function g ∈ Q. In fact the distance ∆(f,Q) is proportional to γ3(f) whenever
γ3(f) ≤ 1/k3 (note that we are interested in the case when γ3(f) is polynomially small in 1

k which
is somewhat atypical situation). This is similar, though incomparable to a result of Friedgut, Kalai
and Naor [11] which shows that if γ2(f) is a sufficiently small constant, then f is close to a constant
function or a dictator (Boolean functions of Fourier degree at most 1). Though our result works for
functions of higher Fourier degree, it requires the Fourier mass at higher levels to be polynomially
small in 1/k.

We also prove a version of the main result from this section (Theorem 4.2) in Appendix B, even
for the case when the Fourier mass at higher levels (say γ3(f)) is a sufficiently small constant. We
do get that such a function f must be close to a low-degree function (say g ∈ Q). However, the
distance there is no longer proportional to the Fourier mass as below.

Lemma 4.1 Let f : {0, 1}k 7→ {0, 1} be a predicate such that γ3(f) ≤ 1/k3 and k ≥ 2215. Then

γ3(f) ≤ ∆(f,Q) ≤ C · γ3(f),

for an absolute constant C and C = 128 works.

We note that the lower bound above holds because a function g ∈ Q has no non-zero Fourier
coefficient of degree 3 or more and hence

∆(f, g) = ‖f − g‖22 =
∑
α

(f̂(α)− ĝ(α))2 ≥
∑
|α|≥3

f̂(α)2 = γ3(f).

The proof of the upper bound above is similar to those in the papers by Kahn, Kalai, Linial [14]
and Friedgut [10]. We will work in the general setting when for some integer r ≥ 2, γr(f) ≤ 1/k3

and prove the following theorem (thus proving the above lemma when r = 3).
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Theorem 4.2 Let r ≥ 2 and f : {0, 1}k → {0, 1} be a predicate such that γr(f) ≤ 1/k3 and
k ≥ 225r . Then there exists g : {0, 1}k → {0, 1} such that

• ∆(f, g) ≤ 2r+4γr(f).

• deg(g) ≤ r − 1.

• g depends on at most 25r variables.

Proof: The proof proceeds in three steps. First we show that under the premise of the theorem,
the influences are either too small or too large.6 Denoting the set of coordinates with high influence
by I(f), we note that |I(f)| is bounded since the total influence is bounded. We next show that
most of the Fourier mass of f is contained inside I(f). Truncating from the Fourier representation
of f terms not contained in I(f) yields a multi-linear polynomial h. Though h is close to f in
`2-norm, it is non-boolean in general. Finally, we let g to be the indicator function of the event
h ≥ 1

2 . These steps are more or less standard as we noted.

We set the parameter θ = γr(f) for ease of notation. We begin by showing that:

∀i ∈ [k], Infi(f) ≤ 2θ or Infi(f) ≥ 1

23r+2
. (4.1)

Let Tε be the noise operator with ε = 1√
2
. We recall that the difference function along ith coordinate

is fi(x) := f(x)− f(x+ ei). The Bonami-Beckner inequality implies∥∥∥∥T 1√
2
fi

∥∥∥∥2

2

≤ ‖fi‖23/2 = E
[
|fi|3/2

]4/3
= 28/3 Infi(f)4/3. (4.2)

On the other hand (using
∑
|α|≥r f̂(α)2 ≤ θ),∥∥∥∥T 1√

2
fi

∥∥∥∥2

2

=
∑

α:αi=1

4f̂(α)2

2|α|
≥ 4

2r−1

∑
α:αi=1,
|α|≤r−1

f̂(α)2 ≥ 4

2r−1
· (Infi(f)− θ).

Combining the above two inequalities we get,

Infi(f)− θ
2r−1/3

≤ Infi(f)4/3.

If Infi(f) ≥ 2θ, we get Infi(f)4/3 ≥ Infi(f)

2r+2/3 and hence Infi(f) ≥ 1
23r+2 . This proves the claim in

Equation (4.1). Let I(f) denote the set of coordinates with high influence, i.e.

I(f) :=

{
i | Infi(f) ≥ 1

23r+2

}
.

Now we observe that the total influence and hence |I(f)| is bounded. Indeed,∑
i∈[k]

Infi(f) =
∑
α

|α| · f̂(α)2 ≤ r
∑
|α|≤r−1

f̂(α)2 + k
∑
|α|≥r

f̂(α)2 ≤ r + kθ ≤ r + 1,

6This might be a new and interesting observation. As far as we know, it does not appear explicitly in literature.
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and therefore |I(f)| ≤ (r + 1) · 23r+2 ≤ 25r. We next prove that most of the Fourier mass of f is
contained inside I(f). Since the Fourier mass at level r or above is already bounded by θ, we only
need to consider the mass at least below r and not contained in I(f). Specifically, we prove:∑

α:α∩I(f)6=∅,
|α|≤r−1

f̂(α)2 ≤ 2r+1kθ4/3, (4.3)

where we denoted by α also the set of coordinates {i|αi = 1}. We use Equation (4.2) again and
sum over all i ∈ I(f). Note that

∑
i∈I(f)

∥∥∥∥T 1√
2
fi

∥∥∥∥2

2

=
∑
α

1

2|α|
· 4f̂(α)2 · |α ∩ I(f)| ≥ 4

2r−1

∑
α:α∩I(f)6=∅,
|α|≤r−1

f̂(α)2.

Since Infi(f) ≤ 2θ for i ∈ I(f) and |I(f)| ≤ k, we immediately obtain

4

2r−1

∑
α:α∩I(f)6=∅,
|α|≤r−1

f̂(α)2 ≤
∑
i∈I(f)

28/3 Infi(f)4/3 ≤ k · 28/3 · (2θ)4/3,

proving the claim in Equation (4.3). Finally, we let

h :=
∑

α⊆I(f)

f̂(α)χα

and let g : {0, 1}k → {0, 1} be defined as g := 1{h≥1/2}. Clearly g depends only on the co-ordinates
in I(f). We will prove that ∆(f, g) ≤ 2r+4θ and deg(g) ≤ r − 1. Equation (4.3) and the bound∑
|α|≥r f̂(α)2 ≤ θ together imply that

||f − h||22 ≤ θ + 2r+1kθ4/3 ≤ 2r+2θ,

where we used θ ≤ 1/k3 in the second step. For x ∈ {0, 1}k, f(x) 6= g(x) only when h(x) < 1/2
and f(x) = 1, or when h(x) ≥ 1/2 and f(x) = 0. In both cases (f(x)− h(x))2 ≥ 1/4 and so

∆(f, g) = P [f 6= g] ≤ 4||f − h||22 ≤ 2r+4θ.

We finish the proof by showing that deg(g) ≤ r − 1. Suppose on the contrary that there exists
a Fourier coefficient in g of degree at least r. Since g depends only on |I(f)| coordinates, this
coefficient has magnitude at least 1

2|I(f)|
. Since 2r+4θ ≥ ∆(f, g) = ‖f − g‖22, the same Fourier

coefficient in f has value at least

1

2|I(f)| − 2(r+4)/2
√
θ ≥ 1

2|I(f)| − 2(r+4)/2 1

k3/2
≥ 1

k
− 1

2k
=

1

2k
,

contradicting the premise that the Fourier mass of f at or above level r is at most 1/k3. Noting
that |I(f)| ≤ 25r, it is enough to have k ≥ 225r for our argument to work.
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5 Proof of Main Theorem

In this section, we collect the rest of the pieces required in the proof of Theorem 1.7. We first show
the hardness of approximating MAX k-CSP(f) when f has good correlation with a well distributed
linear predicate (Lemma 5.2). Next, we show that MAX k-CSP(f) is hard to approximate when f
is close to a junta g which is not monotonically above f (Lemma 5.3). These two statements suffice
to prove the required lower bounds on τ(f) in Theorem 1.7 since we can show that f must have
the appropriate correlation with a well distributed linear predicate in cases (1) and (2b), and must
be close to a g ∈ Q in case (2a). Finally, we give an SDP based approximation algorithm for the
case when f is close to a g ∈ Q and g ≥ f .

5.1 Reductions from the hardness of approximating well distributed linear
predicates

We now give the reductions from Chan’s result [7] on the hardness of approximating well distributed
linear predicates. His result shows that a well distributed linear predicate L : {0, 1}k → {0, 1} is
1-resistant, even on MAX k-CSP(L) instances with certain uniformity properties. These properties
concern what the assignments to n variables look when restricted to the k variables in a randomly
chosen constraint from the instance. Recall that for an instance Φ of MAX k-CSP(L), a constraint
C ∈ Φ is of the form L(xi1 + bi1 , . . . , xik + bik). Let xC denote the tuple (xi1 , . . . , xik) of the
variables in the constraint C and Let bC denote the tuple (bi1 , . . . , bik). Also, for an assignment
A : [n] → {0, 1}, let A(xC) denote (A(xi1), . . . , A(xik)). The following follows easily from the
statement of Theorem 5.4 and the proof of Theorem 1.1 in [7].

Theorem 5.1 ([7]) Let k ≥ 3 and let η, ε > 0 be arbitrarily small constants. L : {0, 1}k → {0, 1}
be a well distributed linear predicate. Then, given an instance Φ of MAX k-CSP(L) on variables
x1, . . . , xn, it is NP-hard to distinguish between the following two cases:

Yes: There exists an assignment A : [n] → {0, 1} satisfying 1 − η fraction of the constraints. In
fact, for any z ∈ L−1(1)

1− η
|L−1(1)|

≤ P
C∈Φ

[A(xC) + bC = z] ≤ 1 + η

|L−1(1)|
.

No: For all assignments A : [n]→ {0, 1} and all z ∈ {0, 1}k, we have

1− ε
2k

≤ P
C∈Φ

[A(xC) + bC = z] ≤ 1 + ε

2k
.

Thus, the theorem states that in the Yes case, not only are most constraint satisfied, but the tuple
A(xC)+bC looks almost uniformly distributed over L−1(1), over the choice of a random constraint
C ∈ Φ. On the other hand, in the No case, A(xC)+bC looks almost uniformly distributed over all of
{0, 1}k. In particular, this means that the fraction of satisfied constraints is at most

∣∣L−1(1)
∣∣ /2k+ε.

Given the above theorem, it is easy to prove that a predicate f which correlates with some well
distributed linear predicate must also be hard to approximate.

Lemma 5.2 Let k ≥ 3 and let η, ε > 0 be arbitrarily small constants. Let f : {0, 1}k → {0, 1} be a
predicate which τ -correlates with some well distributed linear predicate L. Then, given an instance
Φ of MAX k-CSP(f) on variables x1, . . . , xn, it is NP-hard to distinguish between the following
cases:
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Yes: There exists an assignment A : [n]→ {0, 1} satisfying (1− η) · τ fraction of the constraints.

No: All assignments A : [n]→ {0, 1} satisfy at most (1 + ε) · ρ(f) fraction of the constraints.

Proof: The proof is by a simple reduction from the hardness of approximating L. Let ΦL be any
instance of MAX k-CSP(L). We can then create an instance of MAX k-CSP(f) such that if one can
distinguish between the two cases for Φ, then one can distinguish between the Yes an No cases for
ΦL in Theorem 5.1, which is known to be NP-hard. To construct Φ from ΦL, we simply replace
each constraint C ∈ ΦL of the form L(xC + bC) by the constraint f(xC + bC).

We first argue that if we are in the Yes case for ΦL, then we must be in the Yes case for Φ. Let A
be the optimal assignment for ΦL. We consider the fraction of constraints in Φ satisfied by A.

E
C∈Φ

[f(A(xC) + bC)] = E
C∈Φ

 ∑
z∈{0,1}k

f(z) · 1{A(xC)+bC}(z)


≥ E

C∈Φ

 ∑
z∈L−1(1)

f(z) · 1{A(xC)+bC}(z)


=

∑
z∈L−1(1)

f(z) · E
C∈Φ

[
1{A(xC)+bC}(z)

]
≥

∑
z∈L−1(1)

f(z) · 1− η
|L−1(1)|

≥ τ ·
∣∣L−1(1)

∣∣ · 1− η
|L−1(1)|

= τ · (1− η).

A similar argument gives that when we are in the No case for ΦL, we must also be in the No case
for Φ. For any assignment A, we consider the fraction of satisfied constraints:

E
C∈Φ

[f(A(xC) + bC)] = E
C∈Φ

 ∑
z∈{0,1}k

f(z) · 1{A(xC)+bC}(z)


≤
(
ρ(f) · 2k

)
· 1 + ε

2k

≤ (1 + ε) · ρ(f) .

Thus, the fraction of satisfied constraints is at most (1 + ε) · ρ(f).

Now we consider the case when f : {0, 1}k → {0, 1} is close to a function g with Fourier degree at
most 2, but is not monotonically dominated by it i.e., when f−1(1) ∩ g−1(0) 6= ∅. We show that
such an f is (ρ(f) + Ω(1/k))-resistant. In fact we prove the statement below for any function g
which is a junta depending only on s variables. This is sufficient because H̊astad’s result (Theorem
1.5) implies that a Boolean function g of degree 2 must depend on at most 4 of the k variables and
hence the required result will follow easily.

Lemma 5.3 Let k, s be such that k − s ≥ 3 and let ε > 0 be an arbitrarily small constant. Let
g : {0, 1}k → {0, 1} be an s-junta and let f : {0, 1}k → {0, 1} be a predicate such that ∆(f, g) = δ ≤
1/(2s+2 · k) and f−1(1) ∩ g−1(0) 6= ∅. Then, given an instance Φ of MAX k-CSP(f) on variables
x1, . . . , xn, it is NP-hard to distinguish between the following two cases:

14



Yes: There exists an assignment A : [n] → {0, 1} satisfying ρ(f) + 1/(2s+3 · k) fraction of the
constraints.

No: All assignments A : [n]→ {0, 1} satisfy at most (1 + ε) · ρ(f) fraction of the constraints in Φ.

Proof: We assume for notational convenience that g depends on the first s of the k variables. For
y ∈ {0, 1}s, let fy : {0, 1}k−s → {0, 1} denote the function on k − s variables obtained by setting
the first s variables in f according to y. Note that since g depends only on the first s variables, for
each y gy is either identically 1 or 0.

We will need to use well distributed linear predicates with very few accepting assignments. Let S
be the subspace on {0, 1}k−s (of size at most 2(k−s)) given by Claim 2.6 and let L be the predicate
such that L−1(1) = S. Since S⊥ has distance at least 3, L is well distributed. For each y ∈ {0, 1}s
we have

E
z∈{0,1}k−s

E
z′∈S+z

[
fy(z

′)
]

= E
z∈{0,1}k−s

E
z′∈S

[
fy(z + z′)

]
= E

z′∈S
E

z∈{0,1}k−s

[
fy(z + z′)

]
= ρ(fy) .

Thus, for each y, there exists zy such that Ez′∈S+zy [fy(z
′)] ≥ ρ(fy). Also, let x0 = (y0, z0) be such

that g(x0) = 0 and f(x0) = 1. Then S + z0 is an affine subspace of size at most 2(k − s) that
contains z0. Using these, we can now describe the reduction. Since L is a well distributed linear
predicate, we know that it is NP-hard to distinguish between the two cases in Theorem 5.1 for a
given instance ΦL of MAX-CSP(L). We describe how to transform an instance of MAX-CSP(L) to
an instance of MAX k-CSP(f) such that the two cases of Theorem 5.1 correspond to the two cases
in the statement of the lemma.

Let ΦL be an instance of MAX-CSP(L) as in Theorem 5.1, with parameter η to be chosen later and
ε as given. Recall that each constraint C ∈ ΦL is of the form L(xC + bC). We introduce s fresh
variables for each constraint C and denote the s-tuple by wC . We replace each constraint C by 2s

new constraints. For each y ∈ {0, 1}s, we add a constraint Cy defined as

Cy := f(wC + y,xC + bC + zy)

where zy is such that Ez′∈S+zy [fy(z
′)] ≥ ρ(fy) for y 6= y0 and zy = z0 for y = y0.

We first prove that the Yes case of Theorem 5.1 corresponds to the Yes case of the lemma. Let A
be the optimal assignment to the variables in ΦL. We extend A to an assignment A′ for Φ which
is the same as A for all the x variables in Φ and assigns all the new variables we introduced (wC

for each C ∈ ΦL) to 0. We show that A′ satisfies the required number of constraints.

Claim 5.4 For η = 1/(2s+3 ·k), the fraction of constraints satisfied by A′ is at least ρ(f)+1/(2s+3 ·
k).
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Proof: The fraction of constraints satisfied is given by

E
C∈ΦL

E
y∈{0,1}s

[
f(A′(wC) + y,A′(xC) + bC + zy)

]
= E
C∈ΦL

E
y∈{0,1}s

[f(y,A(xC) + bC + zy)]

= E
C∈ΦL

E
y∈{0,1}s

[fy(A(xC) + bC + zy)]

= E
C∈ΦL

E
y∈{0,1}s

 ∑
z∈{0,1}k−s

1{A(xC)+bC+zy}(z) · fy(z)


≥ E
C∈ΦL

E
y∈{0,1}s

 ∑
z∈S+zy

1{A(xC)+bC+zy}(z) · fy(z)


= E
y∈{0,1}s

[∑
z∈S

E
C∈ΦL

[
1{A(xC)+bC}(z)

]
· fy(z + zy)

]

≥ E
y∈{0,1}s

[
(1− η) · E

z∈S
[fy(z + zy)]

]
.

Note that Ez∈S [fy(z + zy)] = Ez∈S+zy [fy(z)] is at least ρ(fy) for y 6= y0 and at least 1/|S| ≥
1/2(k − s) ≥ 1/2k for y = y0. Thus the fraction of satisfied constraints is at least

(1− η) ·
{

E
y∈{0,1}s

[ρ(fy)]−
1

2s
·
(
ρ(fy0)− 1

2k

)}
where we added and subtracted (1/2s) · ρ(fy0) to obtain the term Ey∈{0,1}s [ρ(fy)] which is equal to
ρ(f). Since gy0 ≡ 0 and ∆(f, g) = δ, we must have ρ(fy0) ≤ 2s · δ. Thus, the fraction of satisfied
constraints is at least

(1− η) ·
{
ρ(f)− δ +

1

2s+1 · k

}
By the assumption on δ and η, the above is at least ρ(f) + 1/(2s+3 · k).

Next, we consider an instance ΦL that corresponds to the No case of Theorem 5.1. We show that
any assignment A to the variables of the instance Φ obtained by our reduction satisfies at most
(1 + ε) · ρ(f) fraction of the constraints.

Claim 5.5 Let Φ be as above. Then the fraction of constraints satisfied by any assignment A is at
most (1 + ε) · ρ(f).

Proof: As before, we consider the fraction of satisfied constraints given by

E
C∈ΦL

E
y∈{0,1}s

[f(A(wC) + y,A(xC) + bC + zy)]

= E
C∈ΦL

E
y∈{0,1}s

[
fA(wC)+y(A(xC) + bC + zy)

]
= E
C∈ΦL

E
y∈{0,1}s

 ∑
z∈{0,1}k−s

fA(wC)+y(z) · 1{A(xC)+bC+zy}(z)


= E
C∈ΦL

 ∑
z∈{0,1}k−s

E
y∈{0,1}s

[fy(z)] · 1{A(xC)+bC+zy}(z)

 ,
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where we used the fact that Ey∈{0,1}s
[
fA(wC)+y(z)

]
= Ey∈{0,1}s [fy(z)]. Since we are in the No case

of Theorem 5.1, we have that EC∈ΦL

[
1{A(xC)+bC+zy}(z)

]
is at most (1+ε)/2k−s. Hence, the above

expression is at most

(1 + ε) · E
y∈{0,1}s

E
z∈{0,1}k−s

[fy(z)] = (1 + ε) · ρ(f) .

This gives that the fraction of satisfied constraints is at most (1 + ε) · ρ(f)

Using the above two claims, we prove the lemma by choosing η = 1/(2s+3 · k).

5.2 Proofs of Lower Bounds on τ(f)

Using the previous section, we can now prove the lower bounds on τ(f) in Theorem 1.7.

• Case 1: ∆(f,Q) ≥ 1/k3 implies by Lemma 4.1 that γ3 ≥ 1/(12k3). Theorem 3.1 then gives
that f is τ -correlated with some well-distributed predicate for

τ ≥

√
ρ(f)2 + Ω

(
1

k5

)
≥ ρ(f) + Ω(1/k5) .

Lemma 5.2 then implies that f must be τ -resistant and hence τ(f) ≥ ρ(f) + Ω(1/k5).

• Case 2b: In this case, Lemma 4.1 again gives γ3 ≥ Ω(δ) and the Theorem 3.1 again gives that
f must τ -correlate with a well distributed linear predicate for

τ ≥

√
ρ(f)2 + Ω

(
δ

k2

)
≥ ρ(f) + Ω(δ/k2)

As before, an application of Lemma 5.2 completes the proof.

• Case 2a: In this case ∆(f, g) = δ ≤ 1/k3 for some g ∈ Q, which must be a 4-junta by Theorem
1.5. Then, if f−1(1) ∩ g−1(0) 6= ∅, Lemma 5.3 gives that τ(f) ≥ ρ(f) + Ω(1/k).

The remaining part i.e., the upper bound in case (2b) of Theorem 1.7 will follow from the algorithm
in Section 5.4.

5.3 Integrality Gaps in the Lasserre Hierarchy

We briefly sketch below the proofs of lower bounds on τ∗(f) i.e. Theorem 1.12. To obtain the
required lower bounds, we need to prove integrality gap results (for Ω(n) rounds of the Lasserre
hierarchy) analogous to the NP-hardness results in Section 5.1. We start with the following analogue
of Theorem 5.1.

Theorem 5.6 ([23]) Let k ≥ 3 and ε > 0. Let L : {0, 1}k → {0, 1} be a well distributed linear
predicate. Then there exists a constant c = c(ε) such that for every large enough n, there is an
instance Φ of MAX k-CSP(L) on n variables, with the following properties:

1. The value of the SDP relaxation obtained obtained by bcnc rounds of the Lasserre hierarchy
is equal to 1. In fact, for each C ∈ Φ and α ∈ {0, 1}SC such that L(α + bC) = 1, we have

that
∥∥V(SC ,α)

∥∥2
= 1/

∣∣L−1(1)
∣∣.

17



2. For all assignments A : [n]→ {0, 1} and all z ∈ {0, 1}k, we have

1− ε
2k

≤ P
C∈Φ

[A(xC) + bC = z] ≤ 1 + ε

2k
.

The second property, which is identical to the No case in Theorem 5.1, is not explicitly stated in [23]
but it is easy to prove. The version of Theorem 5.6 in [23] is for random instances of MAX k-CSP(L)
where each tuples xC and string bC is chosen uniformly at random, and the second property is
easy to verify for such instances.

To prove an analogue of Lemma 5.2 in the Lasserre hierarchy, we need to construct an instance
Φf of MAX k-CSP(f), given that f τ -correlates with L, for which the values of the SDP relaxation
is at least τ and property 2 (Theorem 5.6) holds for the instance. We start with an instance ϕ
of MAX k-CSP(L) as given by Theorem 5.6 and replace each constraint L(xC + bC) in Φ by the
constraint f(xC + bC) to obtain Φf (as in the proof of Lemma 5.2). Moreover, we use the same
vectors which form an optimal SDP solution for Φ to give a solution for Φf . The value of this SDP
solution for Φf is equal to

E
C∈Φf

 ∑
α∈{0,1}SC

f(α+ bC) ·
∥∥V(SC ,α)

∥∥2

 = E
C∈Φf

 ∑
α∈L−1(1)+bC

f(α+ bC) · (1/|L−1(1)|)

 = τ .

Therefore we get the following statement analogous to Lemma 5.2.

Lemma 5.7 Let k ≥ 3 and let ε > 0 be an arbitrarily small constant. Let f : {0, 1}k → {0, 1}
be a predicate which τ -correlates with some well distributed linear predicate L. Then there exists a
constant c = c(ε), such that for every large enough n there is an instance Φ of MAX k-CSP(f) on
n variables satisfying the following:

• The value of the relaxation obtained by bcnc rounds of the Lasserre hierarchy is at least τ .

• All assignments A : [n]→ {0, 1} satisfy at most (1 + ε) · ρ(f) fraction of the constraints.

Theorem 3.1 and Lemma 5.7 together imply the lower bounds in case (1) and case (2b) of Theo-
rem 1.12.

Similarly, to prove an analogue of Lemma 5.3, we start with an instance Φ of MAX k-CSP(L) for
L as chosen in Lemma 5.3. We use the same reduction and replace each constraint C ∈ Φ by
2s constraints of the form Cy := f(wC + y,xC + bC + zy) for a fresh set of variables wC for
each C, for y ∈ {0, 1}s and zy as chosen in Lemma 5.3. We now need to define the SDP vectors
for any set S of variables and α ∈ {0, 1}S . Let S = S1 ∪ S2 where S1 is the set of original
variables from Φ and S2 is the set of variables of the form wc which we added during the reduction.
Correspondingly, let α = α1 ◦ α2. Since the intended solution is to assign all the wC variables to
0, we take V(S,α) = V(S1,α1) if α2 = 0|S2| and V(S,α) = 0 otherwise. It is easy to verify that all
SDP constraints are satisfied and that the SDP value is at least ρ(f) + Ω(1/k), thereby proving the
lower bound in case (2a) of Theorem 1.12.

5.4 An SDP Rounding Algorithm

We now provide an SDP rounding algorithm based on the algorithm by Charikar and Wirth [8]
to prove the upper bound in case (2b) of Theorem 1.7. For f and δ as in case (2b), and Φ
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which is a (ρ(f)+ε)-satisfiable instance of MAX k-CSP(f), the algorithm below yields a non-trivial
approximation when ε = Ω(k3 · δ). This gives τ(f) ≤ ρ(f) +O(k3 · δ).
H̊astad [22] observed that algorithm of Charikar and Wirth [8], which rounds an SDP relaxation
for maximizing a homogeneous quadratic objective function, can in fact be used for approximating
MAX k-CSP(g) for any g : {0, 1}k → {0, 1} which has Fourier degree at most 2 (by rounding the
standard SDP relaxation). This observation gives the following lemma for which we provide a proof
in the appendix.

Lemma 5.8 Let g ∈ Q. Then there exists a randomized polynomial time algorithm for rounding
the standard SDP relaxation of MAX k-CSP(g), which given an instance Φ with SDP value ρ(g)+ε,
outputs an assignment A satisfying at least ρ(g) + c·ε

log(1/ε) fraction of the constraints in expectation.
Here c is an absolute constant.

We now proceed to the main theorem for this section. The proof will essentially replace an instance
Φ of MAX k-CSP(f) by an appropriate instance Φg of MAX k-CSP(g) and use the algorithm in
Lemma 5.8 to find an assignment Ag for Φg. Our assignment for Φ will be obtained from Ag by a
simple transformation which trades-off the approximation factor to avoid the bad situation where
Ag ends up falsifying many constraints in Φ while still satisfying many constraints in Φg. We show
the following:

Theorem 5.9 Let f : {0, 1}k → {0, 1} be a predicate such that there exists another predicate
g ∈ Q satisfying g ≥ f and ∆(f, g) = δ ≤ 1/k3. Then there exists a randomized polynomial time
algorithm, which given an instance of MAX k-CSP(f) in which ρ(f) + ε fraction of constraints can
be satisfied for ε = Ω(k3 · δ), finds an assignment such that EA [valΦ(A)] ≥ ρ(f) + c·ε

8k2 log( 1
ε

)
.

Proof: Given Φ, we first construct an instance Φg of MAX k-CSP(g) as follows. For each constraint
C ∈ Φ of the form f(xC + bC), we simply replace it by a constraint C ′ of the form g(xC + bC).
Let A0 be any assignment which satisfies ρ(f) + ε fraction of the constraints in Φ. Since we have
g ≥ f , the same assignment also satisfies at least ρ(f) + ε ≥ ρ(g) + (ε− δ) ≥ ρ(g) + ε/2 fraction of
the constraints in Φg.

We now use the algorithm from Lemma 5.8 to find an assignment Ag which in expectation satisfies at
least ρ(g)+ c·ε

log(1/ε) fraction of the constraints in Φg. We use this to construct a random assignment

Af as follows. For each variable xi, we independently set (with α to be chosen later)

Af (xi) :=


Ag(xi) with probability α
0 with probability 1−α

2
1 with probability 1−α

2

We will show that Af still satisfies a good fraction of the constraints in Φg and that for each
constraint C ′ ∈ Φg, the probability that Af satisfies C ′ but does not satisfy the corresponding
C ∈ Φ is small. Together, these will complete the proof.

Before we analyze the fraction of constraints in Φg satisfied by Af , we will need an assumption
on the starting assignment Ag. For each variable xi ∈ {0, 1}, let yi denote (−1)xi ∈ {−1, 1} and
for an assignment A, let A(yi) = (−1)A(xi). Since g has Fourier degree at most 2, the fraction
of constraints in Φg satisfied by an assignment to the variables can be written as a quadratic
polynomial in the variables yi as

E
C′∈Φg

[g(xC′ + bC′)] = ρ(g) +
∑
i

ai · yi +
∑
i,j

bij · yiyj .
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We will assume that Ag is such that the degree 1 part of the above expression is non-negative i.e.,∑
i ai · A(yi) ≥ 0. If this is not the case, we can flip all the bits in Ag to ensure this. Since the

value of the degree-0 and degree-2 terms remain unchanged by this, it can only increase valΦg(Ag).
We can now prove the following claim.

Claim 5.10 Let Ag and Af be as above. Then EAf
[
valΦg(Af )

]
≥ ρ(g) + α2 · c·ε

log(1/ε) .

Proof: We know that valΦg(Ag) equals

valΦg(Ag) = ρ(g) +
∑
i

ai ·Ag(yi) +
∑
i,j

bij ·Ag(yi) ·Ag(yj) ≥ ρ(g) +
c · ε

log(1/ε)
.

Also, from the definition of Af , it is easy to see that for all i 6= j

E
Af

[Af (yi)] = α ·Ag(yi) and E
Af

[Af (yi) ·Af (yj)] = α2 ·Ag(yi) ·Ag(yj) .

Thus,

E
Af

[
valΦg(Ag)

]
= ρ(g) + α ·

∑
i

ai ·Ag(yi) + α2 ·
∑
i,j

bij ·Ag(yi) ·Ag(yj)

Using the assumption
∑

i ai ·Ag(yi) ≥ 0, we get that EAf
[
valΦg(Af )

]
≥ ρ(g) + α2 · c·ε

log(1/ε) .

Next we argue that the probability that Af satisfies a constraint C ′ ∈ Φg but does not satisfy the
corresponding constraint C ∈ Φ is small. Let C be of the form f(xC + bC) which means C ′ is of
the form g(xC + bC). We will show that the probability that Af (xC) + bC ∈ g−1(1) ∩ f−1(0) is
small.

Consider the random string z = Af (xC) + Ag(xC). Each bit of z is 1 with probability (1 − α)/2
and 0 with probability (1 + α)/2. Let BC denote the set g−1(1) ∩ f−1(0) + bC + Ag(xC). Then
Af (xC) + bC ∈ g−1(1) ∩ f−1(0) if an only if z ∈ BC . Also, |BC | ≤ δ · 2k by assumption. For a
set B, Let µp(B) denote the probability that a random string zp where each bit is independently 1
with probability p and 0 with probability 1− p, lands inside B. Then, we know that µ1/2(BC) ≤ δ
and are interested in bounding µ1/2−α(BC). The following claim gives the required bound.

Claim 5.11 Let B ⊆ {0, 1}k be such that µ1/2(B) ≤ δ. Then, for α ≤ 1/2k, we have that
µ1/2−α(B) ≤ 3δ.

Proof: For any string w ∈ {0, 1}k, we have that

µ1/2−α(w) = (1/2− α)|w| · (1/2 + α)k−|w| ≤ (1/2k) · (1 + 2α)k .

Since α ≤ 1/2k, we have that (1 + 2α)k ≤ e ≤ 3. Thus, for any w, µ1/2−α(w) ≤ 3 · µ1/2(w) which
gives µ1/2−α(B) ≤ 3δ.

Choosing α = 1/2k, the expected fraction of constraints C ∈ Φ for which Af (xC) + bC ∈ g−1(1) ∩
f−1(0) is at most 3δ. Combining this with Claim 5.10, we get that

E
Af

[valΦ(Af )] ≥ E
Af

[
valΦg(Af )

]
− 3δ ≥ ρ(g) +

1

4k2
· c · ε

log(1/ε)
− 3δ .

The above is at least ρ(g) + 1
8k2
· c·ε

log(1/ε) if 3δ ≤ 1
8k2
· c·ε

log(1/ε) , which if true when ε ≥ C · k3δ for
some appropriately large constant C.
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A Charikar-Wirth SDP Rounding

Charikar and Wirth [8] gave a semidefinite programming based algorithm to approximate the value
of quadratic programs of the form

max
y∈{−1,1}n

∑
i,j

Bij · yiyj .

We show how to modify their algorithm to obtain an approximation algorithm for MAX k-CSP(g)
for g ∈ Q. For a quadratic program of the above form, they solve the standard SDP relaxation
which can be written as

maximize
∑
i,j

Bij · 〈Ui,Uj〉

subject to ‖Ui‖2 = 1 ∀i ∈ [n]

They use the following rounding algorithm which we will need to modify appropriately for
MAX k-CSP(g). We can assume that Ui ∈ Rn ∀i. The parameter T > 0 will be chosen later.

• Sample a random Gaussian vector g ∼ N(0, 1)n.

• For each i, set zi = (1/T ) · 〈g,Ui〉 if (1/T ) · 〈g,Ui〉 ∈ [−1, 1] and sign(〈g,Ui〉) otherwise.

• Set yi = 1 independently with probability (1 + zi)/2 and yi = −1 otherwise.
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They show that under this rounding scheme, for each i, j and value Bij

E [Bij · yiyj ] ≥ (1/T 2) ·Bij · 〈Ui,Uj〉 − 8e−T
2/2 · |Bij | . (A.1)

Choosing an appropriate value for T then gives the required approximation guarantee. We will use
a slight modification of their algorithm to prove the following.

Lemma A.1 Let g ∈ Q. Then there exists a randomized polynomial time algorithm for rounding
the standard SDP relaxation of MAX k-CSP(g), which given an instance Φ with SDP value ρ(g)+ε,
outputs an assignment A satisfying at least ρ(g) + c·ε

log(1/ε) fraction of the constraints in expectation.
Here c is an absolute constant.

Proof: Given an instance Φ of MAX k-CSP(g) in variables x1, . . . , xn, we can write the fraction
of satisfied constraints as

E
C∈Φg

[g(xC + bC)] = ρ(g) +
∑
i

ai · yi +
∑
i,j

bij · yiyj ,

where yi = (−1)xi and we used the fact that g ∈ Q. We can introduce a variable y0 which is
intended to be equal to 1 and consider the following semidefinite relaxation

maximize ρ(g) +
∑
i

ai · 〈U0,Ui〉+
∑
i,j

bij · 〈Ui,Uj〉

subject to ‖Ui‖2 = 1 ∀i ∈ {0} ∪ [n]

We (randomly) round all the variables including an extra variable corresponding to U0 to obtain
values w0, w1, . . . , wn ∈ {−1, 1} exactly as in the Charikar-Wirth algorithm. Finally, we set yi =
w0 · wi for each i. By equation A.1 we have that for each i and j

E [ai · yi] = E [ai · w0wi] ≥ (1/T 2) · ai · 〈U0,Ui〉 − 8e−T
2/2 · |ai|

E [bij · yiyj ] = E [bij · wiwj ] ≥ (1/T 2) · bij · 〈Ui,Uj〉 − 8e−T
2/2 · |bij | .

Let ROUND denote the fraction of constraints satisfied by the assignment given by the above
algorithm and let FRAC denote the value of the SDP relaxation. Then, using the above we have

E [ROUND− ρ(g)] ≥ (1/T 2) · E [FRAC− ρ(g)]− 8e−T
2/2 ·

∑
i

|ai|+
∑
ij

|bij |

 .

To obtain a bound on the second term, we note that

∑
i

|ai|+
∑
ij

|bij | ≤ E
C∈Φ

[∑
α

|ĝ(α)|

]
≤ 16 ,

Since g has Fourier degree at most 2 and can depend on at most 4 variables by Theorem 1.5.
Choosing T =

√
4 · loge(1/ε) and using that FRAC− ρ(g) ≥ ε, we get that

E [ROUND] ≥ ρ(g) +
ε

4 · loge(1/ε)
− 128 · ε2

which is at least ρ(g) + ε
8 loge(1/ε)

for sufficiently small ε.
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B An improved version of Theorem 4.2

In this section we prove an improved version of Theorem 4.2, which is perhaps more directly
comparable to the results of Friedgut et al. [11]. Theorem 4.2 shows that a a function f : {0, 1}k →
{0, 1} for which the Fourier mass at level r and above (γr(f)) is small, is close to a function g with
Fourier degree at most r− 1. There we require γr(f) to be polynomially small in k (γr(f) ≤ 1/k3).

Here, we prove that even if γr(f) is a sufficiently small constant (depending on r), then f is close
to a function g with Fourier degree at most r − 1. However, the distance ∆(f, g) is no longer
Or(γr(f)). Formally, we prove the following.

Theorem B.1 Let r ≥ 2. Then there exist constants cr and Cr such that for any f : {0, 1}k →
{0, 1} with γr(f) ≤ cr, there exists g : {0, 1}k → {0, 1} satisfying

• ∆(f, g) ≤ Cr/ log(1/γr(f)).

• deg(g) ≤ r − 1.

• g depends on at most 24r variables.

Proof: As before, we will proceed by showing that all influences are either too small or too large,
and use I(f) to denote the set of coordinates with high influence. However, since we can no longer
use γr(f) to obtain a bound on the total influence (and hence the size of I(f)), we will need to
work with degree bounded influences. For f : {0, 1}k → {0, 1}, the degree d bounded influence of a
coordinate i is defined as

Inf≤di (f) :=
∑
αi=1
|α|≤d

f̂(α)2 .

It is easy to see that the total degree d bounded influence equals
∑
|α|≤d |α| · f̂(α)2, which is at

most d. Taking I(f) to be the set of coordinates with high degree (r − 1) influence will give the
required bound on |I(f)|.
Again as before, we will take h to be the function obtained by dropping the terms not contained
in I(f) from the Fourier expansion of f , and g to be the indicator for h ≥ 1

2 . However, to show
that the Fourier mass of f is mostly contained in I(f) (and hence g is close to f), it will no longer
be sufficient to use a simple union bound as in the proof of Theorem 4.2. Instead, we will need
to use the invariance principle of Mossel et al. [16] and tail estimates for polynomials of Gaussian
variables by Lata la [15].

As before, we set θ = γr(f) and begin by showing:

∀i ∈ [k], Inf
≤(r−1)
i (f) ≤ θ or Inf

≤(r−1)
i (f) ≥ 1

23r+3
. (B.1)

Let Tε be the noise operator with ε = 1√
2

and letfi be the difference function along ith coordinate

defined as fi(x) := f(x)− f(x+ ei). The Bonami-Beckner inequality implies∥∥∥∥T 1√
2
fi

∥∥∥∥2

2

≤ ‖fi‖23/2 = E
[
|fi|3/2

]4/3

= 28/3 · (Infi(f))4/3

≤ 28/3 ·
(

Inf
≤(r−1)
i (f) + θ

)4/3
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On the other hand (using
∑
|α|≥r f̂(α)2 ≤ θ),∥∥∥∥T 1√

2
fi

∥∥∥∥2

2

=
∑

α:αi=1

4f̂(α)2

2|α|
≥ 4

2r−1

∑
α:αi=1,
|α|≤r−1

f̂(α)2 =
4

2r−1
· Inf

≤(r−1)
i (f) .

Combining the above two inequalities we get,

Inf
≤(r−1)
i (f)

2r−1/3
≤
(

Inf
≤(r−1)
i (f) + θ

)4/3
.

If Inf
≤(r−1)
i (f) ≥ θ, we get

Inf
≤(r−1)
i (f)

2r−1/3 ≤
(

2 · Inf
≤(r−1)
i (f)

)4/3
and hence Inf

≤(r−1)
i (f) ≥ 1

23r+3 .

Let I(f) denote the set of coordinates with high influence, i.e.

I(f) :=

{
i : Inf

≤(r−1)
i (f) ≥ 1

23r+3

}
.

Since the total degree r − 1 influence is at most r − 1, we have that |I(f)| ≤ (r − 1) · 23r+3 ≤ 24r.

The following lemma proves that most of the Fourier mass of f is contained in I(f). The proof of
the lemma is where the argument differs significantly from the one used in the proof of Theorem
4.2. Note that below we also use α to denote the set {i : αi = 1}.

Lemma B.2 There exists a constant Cr such that for γr(f) = θ and the set I(f) defined as above,∑
α:α∩I 6=∅

f̂(α)2 ≤ Cr/ log(1/θ) .

Proof: For ease of notation, we denote the set I(f) simply as I. For z ∈ {0, 1}I , let fI→z denote
function obtained by fixing the inputs of f in I according to z. We will fix the bits in I so that
the function fI→z has variance equal to

∑
α:α∩I(f)6=∅ f̂(α)2 and the degree r− 1 influence of all the

unfixed variables is small. We will then bound the variance of fI→z using the invariance principle.

Claim B.3 There exists z ∈ {0, 1}I such that for the function F = fI→z, we have

• Var(F ) ≥
∑

α:α∩I(f)6=∅ f̂(α)2.

• For all i ∈ I, Inf
≤(r−1)
i (F ) ≤ 2|I| · θ.

•
∑

β∈{0,1}I
|β|≥r

F̂ (β)2 ≤ 2I · θ.

Proof: We first consider the expected variance of fI→z over the choice of a random z ∈ {0, 1}I .
For β ∈ {0, 1}I and β′ ∈ {0, 1}I , we use β ◦β′ to denote the string in {0, 1}k obtained by combining
the two.

E
z∈{0,1}I

[Var(fI→z)] = E
z∈{0,1}I

 ∑
β∈{0,1}I ,β 6=0|I|

f̂I→z(β)2


= E

z∈{0,1}I

 ∑
β∈{0,1}I ,β 6=0|I|

 ∑
β′∈{0,1}I

f̂(β ◦ β′) · χβ′(z)

2
=

∑
α:α∩I 6=∅

f̂(α)2 .
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Thus, there exists a z ∈ {0, 1}I such that Var(fI→z) ≥
∑

α:α∩I 6=∅ f̂(α)2. We fix such a z and let

F denote the function fI→z on {0, 1}I . By a calculation as above, it is easy to check that for any

i ∈ I, Ez∈{0,1}I
[
Inf
≤(r−1)
i (fI→z)

]
= Inf

≤(r−1)
i (f). Since Inf

≤(r−1)
i (f) ≤ θ for all i ∈ I, we must

have that Inf
≤(r−1)
i (F ) ≤ 2|I| · θ for each i ∈ I. Similarly, we also have that

E
z∈{0,1}I

∑
|β|≥r

f̂I→z(β)2

 = E
z∈{0,1}I

∑
|β|≥r

 ∑
β′∈{0,1}I

f̂(β ◦ β′) · χβ′(z)

2
=

∑
|α∩I|≥r

f̂(α)2 ≤ θ .

Hence,
∑
|β|≥r F̂ (β)2 ≤ 2|I| · θ.

By the invariance principle of Mossel et al. [16], we will get that F is close to a function F̃ on
Gaussian variables obtained by replacing each (−1)xi by a standard normal variable Gi in the
Fourier expansion of F . Since F is Boolean, it takes values only in the interval [0, 1]. By the
invariance principle, F̃ must also take values only in this interval, except for very small probability.
By the results of Lata la [15], this will lead to a bound on Var(F̃ ) = Var(F ). The actual proof is
a little more complicated since we will actually apply the invariance principle to the “low-degree”
part of F , which is not Boolean (but will take large values only with a small probability).

We now consider the low-degree part of F . Let ν denote the quantity
∑

β∈{0,1}I
0<|β|≤r−1

F̂ (β)2. Note that

it is sufficient to upper bound ν since we already know that
∑

β∈{0,1}I
|β|≥r

F̂ (β)2 ≤ 2I · θ. We define

the following (normalized) polynomial P on variables Z1, . . . , Z|I|, corresponding to the low-degree
part in the Fourier expansion of F .

P :=
1√
ν
·
∑

β∈{0,1}I
|β|≤r−1

F̂ (β) ·
∏
i∈β

Zi =
∑

β∈{0,1}I
|β|≤r−1

cβ ·
∏
i∈β

Zi ,

where cβ = F̂ /
√
ν. By definition of P, we have that

∑
β 6=0|I|

c2
β = 1 and ∀i ∈ I,

∑
β3i

c2
β =

1

ν
· Inf

≤(r−1)
i (F ) ≤ 2|I| · θ

ν
.

Let τ = 2|I|·θ
ν . Then by the invariance principle (Theorem 2.1) of [16], we get that

sup
t

∣∣∣P [P(X1, . . . , X|I|) ≥ t
]
− P

[
P(G1, . . . , G|I|) ≥ t

]∣∣∣ ≤ O(r · τ1/(8(r−1))) , (B.2)

where X1, . . . , XI are independent random variables taking values in {−1, 1} and G1, . . . , GI are
independent random variables with each Gi ∼ N(0, 1). By estimates on the tails of polynomials
in Gaussian variables Lata la [15], we get that there exists a constant C(r) such that for any t ≥ 0
and polynomial P of degree r as above

P
[
P(G1, . . . , G|I|) ≥ t

]
≥ 1

C(r)
exp

(
−C(r) · t2

)
(B.3)
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We now to upper bound the probability that P(X1, . . . , X|I|) > t. In the calculation below, for

x ∈ {0, 1}I , we abuse the notation P(x) to denote P((−1)x1 , . . . , (−1)
x|I|). We then want to bound

the probability over x ∈ {0, 1}I that P(x) ≥ t.

P [P(x) ≥ t] = P
[√
ν · P(x) ≥ t ·

√
ν
]
≤ P

[∣∣F (x)−
√
ν · P(x)

∣∣ ≥ t√ν − 1
]

≤
‖F − ν · P‖22
(t ·
√
ν − 1)2

=

∑
|β|≥r F̂ (β)2

(t ·
√
ν − 1)2

≤ 2|I| · θ
(t ·
√
ν − 1)2

(B.4)

Combining the bounds from equations (B.2), (B.3) and (B.4), and substituting t = 2/
√
ν gives

1

C(r)
· exp (−2 · C(r)/ν)− 2|I| · θ ≤ O

(
r ·
(

2|I| · θ/ν
)1/(8(r−1))

)
.

If ν ≤
√

2|I| · θ, then we are done. Else, the above inequality gives

1

C(r)
· exp (−2 · C(r)/ν) ≤ O

(
r ·
(

2|I| · θ
)1/(16(r−1))

)
.

Since |I| ≤ 24r, this implies ν ≤ C ′(r)/ log(1/θ) for some constant C ′(r).

Finally, we get∑
α:α∩I 6=∅

f̂(α)2 ≤ Var(F ) =
∑

0<|β|≤r−1

F̂ (β)2 +
∑
|β|≥r

F̂ (β)2 ≤ C ′(r)

log(1/θ)
+ 2|I| · θ ≤ Cr

log(1/θ)
,

for some constant Cr.

Given the above lemma, we again take

h :=
∑

α⊆I(f)

f̂(α)χα and g := 1{h≥1/2} .

Again, g depends only on the variables in I(f). Also, from Lemma B.2, we have that

‖f − h‖22 =
∑

α:α∩I(f)6=∅

f̂(α)2 ≤ Cr/ log(1/θ) .

Also, for each x, |f(x)− g(x)| ≤ 2 · |f(x)− h(x)| and hence

∆(f, g) = P [f 6= g] = ‖f − g‖22 ≤ 4 · Cr/ log(1/θ) .

Finally, we show deg(g) ≤ r − 1 as before. If this is not the case then we must have a Fourier
coefficient in g with degree at least r and magnitude at least 1/2|I(f)|. Since ‖f − g‖22 ≤ 4 ·
Cr/ log(1/θ), this Fourier coefficient in f must have magnitude at least 1/2|I(f)|−

√
4 · Cr/ log(1/θ).

Since the Fourier mass above level r − 1 is θ, we must have that

1

2|I(f)| −

√
4 · Cr

log(1/θ)
≤
√
θ .

If θ is sufficiently small so that
√

4 · Cr/ log(1/θ) ≤ (1/2) · (1/224r) ≤ (1/2) · (1/2|I(f)|) and
√
θ <

(1/2) · (1/224r) ≤ (1/2) · (1/2|I(f)|), then this leads to a contradiction.
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