
Inverse problems in approximate uniform generation

Anindya De∗

University of California, Berkeley
Ilias Diakonikolas†

University of Edinburgh
Rocco A. Servedio‡

Columbia University

Abstract

We initiate the study of inverse problems in approximate uniform generation, focusing on uniform
generation of satisfying assignments of various types of Boolean functions. In such an inverse problem,
the algorithm is given uniform random satisfying assignments of an unknown function f belonging to
a class C of Boolean functions (such as linear threshold functions or polynomial-size DNF formulas),
and the goal is to output a probability distribution D which is ε-close, in total variation distance, to the
uniform distribution over f−1(1). Problems of this sort comprise a natural type of unsupervised learning
problem in which the unknown distribution to be learned is the uniform distribution over satisfying
assignments of an unknown function f ∈ C.

Positive results: We prove a general positive result establishing sufficient conditions for efficient
inverse approximate uniform generation for a class C. We define a new type of algorithm called a
densifier for C, and show (roughly speaking) how to combine (i) a densifier, (ii) an approximate counting
/ uniform generation algorithm, and (iii) a Statistical Query learning algorithm, to obtain an inverse
approximate uniform generation algorithm. We apply this general result to obtain a poly(n, 1/ε)-time
inverse approximate uniform generation algorithm for the class of n-variable linear threshold functions
(halfspaces); and a quasipoly(n, 1/ε)-time inverse approximate uniform generation algorithm for the
class of poly(n)-size DNF formulas.

Negative results: We prove a general negative result establishing that the existence of certain types
of signature schemes in cryptography implies the hardness of certain inverse approximate uniform gen-
eration problems. We instantiate this negative result with known signature schemes from the cryp-
tographic literature to prove (under a plausible cryptographic hardness assumption) that there are no
subexponential-time inverse approximate uniform generation algorithms for 3-CNF formulas; for in-
tersections of two halfspaces; for degree-2 polynomial threshold functions; and for monotone 2-CNF
formulas.

Finally, we show that there is no general relationship between the complexity of the “forward” ap-
proximate uniform generation problem and the complexity of the inverse problem for a class C – it
is possible for either one to be easy while the other is hard. In one direction, we show that the exis-
tence of certain types of Message Authentication Codes (MACs) in cryptography implies the hardness
of certain corresponding inverse approximate uniform generation problems, and we combine this gen-
eral result with recent MAC constructions from the cryptographic literature to show (under a plausible
cryptographic hardness assumption) that there is a class C for which the “forward” approximate uniform
generation problem is easy but the inverse approximate uniform generation problem is computationally
hard. In the other direction, we also show (assuming the GRAPH ISOMORPHISM problem is com-
putationally hard) that there is a problem for which inverse approximate uniform generation is easy but
“forward” approximate uniform generation is computationally hard.

∗anindya@cs.berkeley.edu. Research supported by NSF award CCF-0915929 and Umesh Vazirani’s Templeton Foun-
dation Grant 21674.
†ilias.d@ed.ac.uk. Most of this work was done while the author was at UC Berkeley supported by a Simons Postdoctoral

Fellowship.
‡rocco@cs.columbia.edu. Supported by NSF grant CCF-1115703, CCF-0915929.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 152 (2012)

1 Introduction

The generation of (approximately) uniform random combinatorial objects has been an important research
topic in theoretical computer science for several decades. In complexity theory, well-known results have
related approximate uniform generation to other fundamental topics such as approximate counting and the
power of nondeterminism [JS89, JVV86, SJ89, Sip83, Sto83]. On the algorithms side, celebrated algorithms
have been given for a wide range of approximate uniform generation problems such as perfect matchings
[JSV04], graph colorings (see e.g. [Jer95, Vig99, HV03]), satisfying assignments of DNF formulas [KL83,
JVV86, KLM89], of linear threshold functions (i.e., knapsack instances) [MS04, Dye03] and more.

Before describing the inverse problems that we consider, let us briefly recall the usual framework of
approximate uniform generation. An approximate uniform generation problem is defined by a class C of
combinatorial objects and a polynomial-time relation R(x, y) over C × {0, 1}∗. An input instance of the
problem is an object x ∈ C, and the problem, roughly speaking, is to output an approximately uniformly ran-
dom element y from the set Rx := {y : R(x, y) holds}. Thus an algorithm A (which must be randomized)
for the problem must have the property that for all x ∈ C, the output distribution ofA(x) puts approximately
equal weight on every element ofRx. For example, taking the class of combinatorial objects to be {all n×n
bipartite graphs} and the polynomial-time relation R over (G,M) pairs to be “M is a perfect matching in
G,” the resulting approximate uniform generation problem is to generate an (approximately) uniform perfect
matching in a given bipartite graph; a poly(n, log(1/ε))-time algorithm was given in [JSV04]. As another
example, taking the combinatorial object to be a linear threshold function (LTF) f(x) = sign(w · x − θ)
mapping {−1, 1}n → {−1, 1} (represented as a vector (w1, . . . , wn, θ)) and the polynomial-time relation
R over (f, x) to be “x is a satisfying assignment for f ,” we arrive at the problem of generating approxi-
mately uniform satisfying assignments for an LTF (equivalently, feasible solutions to zero-one knapsack).
A polynomial-time algorithm was given by [MS04] and a faster algorithm was subsequently proposed by
[Dye03].

The focus of this paper is on inverse problems in approximate uniform generation. In such problems,
instead of having to output (near-)uniform elements ofRx, the input is a sample of elements drawn uniformly
from Rx, and the problem (roughly speaking) is to “reverse engineer” the sample and output a distribution
which is close to the uniform distribution over Rx. More precisely, following the above framework, a
problem of this sort is again defined by a class C of combinatorial objects and a polynomial-time relation
R. However, now an input instance of the problem is a sample {y1, . . . , ym} of strings drawn uniformly at
random from the set Rx := {y : R(x, y) holds}, where now x ∈ C is unknown. The goal is to output an
ε-sampler for Rx, i.e., a randomized algorithm (which takes no input) whose output distribution is ε-close
in total variation distance to the uniform distribution overRx. Revisiting the first example from the previous
paragraph, for the inverse problem the input would be a sample of uniformly random perfect matchings of
an unknown bipartite graph G, and the problem is to output a sampler for the uniform distribution over all
perfect matchings of G. For the inverse problem corresponding to the second example, the input is a sample
of uniform random satisfying assignments of an unknown LTF over the Boolean hypercube, and the desired
output is a sampler that generates approximately uniform random satisfying assignments of the LTF.

Discussion. Before proceeding we briefly consider some possible alternate definitions of inverse approxi-
mate uniform generation, and argue that our definition is the “right” one (we give a precise statement of our
definition in Section 2, see Definition 11).

One stronger possible notion of inverse approximate uniform generation would be that the output dis-
tribution should be supported on Rx and put nearly the same weight on every element of Rx, instead of just
being ε-close to uniform over Rx. However a moment’s thought suggests that this notion is too strong, since
it is impossible to efficiently achieve this strong guarantee even in simple settings. (Consider, for exam-
ple, the problem of inverse approximate uniform generation of satisfying assignments for an unknown LTF.

1

Given access to uniform satisfying assignments of an LTF f , it is impossible to efficiently determine whether
f is (say) the majority function or an LTF that differs from majority on precisely one point in {−1, 1}n, and
thus it is impossible to meet this strong guarantee.)

Another possible definition of inverse approximate uniform generation would be to require that the
algorithm output an ε-approximation of the unknown object x instead of an ε-sampler for Rx. Such a
proposed definition, though, leads immediately to the question of how one should measure the distance
between a candidate object x′ and the true “target” object x. The most obvious choice would seem to be the
total variation distance between URx (the uniform distribution over Rx) and URx′ ; but given this distance
measure, it seems most natural to require that the algorithm actually output an ε-approximate sampler for
Rx.

Inverse approximate uniform generation via reconstruction and sampling. While our ultimate goal,
as described above, is to obtain algorithms that output a sampler, algorithms that attempt to reconstruct
the unknown object x will also play an important role for us. Given C, R as above, we say that an (ε, δ)-
reconstruction algorithm is an algorithm Areconstruct that works as follows: for any x ∈ C, if Areconstruct

is given as input a sample of m = m(ε, δ) i.i.d. draws from the uniform distribution over Rx, then with
probability 1−δ the output ofAreconstruct is an object x̃ ∈ C̃ such that the variation distance dTV(URx ,URx̃)
is at most ε. (Note that the class C̃ need not coincide with the original class C̃, so x̃ need not necessarily
belong to C.) With this notion in hand, an intuitively appealing schema for algorithms that solve inverse
approximate uniform generation problems is to proceed in the following two stages:

1. (Reconstruct the unknown object): Run a reconstruction algorithm Areconstruct with accuracy and
confidence parameters ε/2, δ/2 to obtain x̃ ∈ C̃;

2. (Sample from the reconstructed object): LetAsample be an algorithm which solves the approximate
uniform generation problem (C̃, R) to accuracy ε/2 with confidence 1− δ/2. The desired sampler is
the algorithm Asample with its input set to x̃.

We refer to this as the standard approach for solving inverse approximate uniform generation problems.
Most of our positive results for inverse approximate uniform generation can be viewed as following this
approach, but we will see an interesting exception in Section 7, where we give an efficient algorithm for an
inverse approximate uniform generation problem which does not follow the standard approach.

1.1 Relation between inverse approximate uniform generation and other problems. Most of our re-
sults will deal with uniform generation problems in which the class C of combinatorial objects is a class
of syntactically defined Boolean functions over {−1, 1}n (such as the class of all LTFs, all poly(n)-term
DNF formulas, all 3-CNFs, etc.) and the polynomial-time relation R(f, y) for f ∈ C is “y is a satisfying
assignment for f .” In such cases our inverse approximate uniform generation problem can be naturally
recast in the language of learning theory as an unsupervised learning problem (learning a probability distri-
bution from a known class of possible target distributions): we are given access to samples from Uf−1(1),
the uniform distribution over satisfying assignments of f ∈ C, and the task of the learner is to construct a
hypothesis distribution D such that dTV(Uf−1(1), D) ≤ ε with high probability. We are not aware of prior
work in unsupervised learning that focuses specifically on distribution learning problems of this sort (where
the target distribution is uniform over the set of satisfying assignments of an unknown member of a known
class of Boolean functions).

Our framework also has some similarities to “uniform-distribution learning from positive examples
only,” since in both settings the input to the algorithm is a sample of points drawn uniformly at random from
f−1(1), but there are several differences as well. One difference is that in uniform-distribution learning
from positive examples the goal is to output a hypothesis function h, whereas here our goal is to output
a hypothesis distribution (note that outputting a function h essentially corresponds to the reconstruction

2

problem described above). A more significant difference is that the success criterion for our framework is
significantly more demanding than for uniform-distribution learning. In uniform-distribution learning of a
Boolean function f over the hypercube {−1, 1}n, the hypothesis h must satisfy Pr[h(x) 6= f(x)] ≤ ε,
where the probability is uniform over all 2n points in {−1, 1}n. Thus, for a given setting of the error pa-
rameter ε, in uniform-distribution learning the constant −1 function is an acceptable hypothesis for any
function f that has |f−1(1)| ≤ ε2n. In contrast, in our inverse approximate uniform generation framework
we measure error by the total variation distance between Uf−1(1) and the hypothesis distribution D, so no
such “easy way out” is possible when |f−1(1)| is small; indeed the hardest instances of inverse approxi-
mate uniform generation problems are often those for which f−1(1) is a very small fraction of {−1, 1}n.
Essentially we require a hypothesis with small multiplicative error relative to |f−1(1)|/2n rather than the
additive-error criterion that is standard in uniform-distribution learning. We are not aware of prior work on
learning Boolean functions in which such a “multiplicative-error” criterion has been employed.

We summarize the above discussion with the following observation, which essentially says that recon-
struction algorithms directly yield uniform-distribution learning algorithms:

Observation 1. Let C be a class of Boolean functions {−1, 1}n → {−1, 1} and let R(f, y) be the relation
“y is a satisfying assignment for f .” Suppose there exists a t(n, ε, δ)-time (ε, δ)-reconstruction algorithm
for C that outputs elements of C̃. Then there is an (O(log(1/δ)/ε2) + O(t(n, ε, δ/3) · log(1/δ)/ε))-time
uniform-distribution learning algorithm that outputs hypotheses in C̃ (i.e., given access to uniform random
labeled examples (x, f(x)) for any f ∈ C, the algorithm with probability 1− δ outputs a hypothesis h ∈ C̃
such that Pr[h(x) 6= f(x)] ≤ ε).

Proof. The learning algorithm draws an initial set of O(log(1/δ)/ε2) uniform labeled examples to esti-
mate |f−1(1)|/2n to within an additive ±(ε/4) with confidence 1 − δ/3. If the estimate is less than 3ε/4
the algorithm outputs the constant −1 hypothesis. Otherwise, by drawing O(t(n, ε, δ/3) · log(1/δ)/ε))
uniform labeled examples, with failure probability at most δ/3 it can obtain t(n, ε, δ/3) positive exam-
ples (i.e., points that are uniformly distributed over f−1(1)). Finally the learning algorithm can use these
points to run the reconstruction algorithm with parameters ε, δ/3 to obtain a hypothesis h ∈ C̃ that has
dTV(Uf−1(1),Uh−1(1)) ≤ ε with failure probability at most δ/3. Such a hypothesis h is easily seen to satisfy
Pr[h(x) 6= f(x)] ≤ ε.

As described in the following subsection, in this paper we prove negative results for the inverse ap-
proximate uniform generation problem for classes such as 3CNF-formulas, monotone 2-CNF formulas,
and degree-2 polynomial threshold functions. Since efficient uniform-distribution learning algorithms are
known for these classes, these results show that the inverse approximate uniform generation problem is in-
deed harder than standard uniform-distribution learning for some natural and interesting classes of functions.

The problem of inverse approximate uniform generation is also somewhat reminiscent of the problem
of reconstructing Markov Random Fields (MRFs) from random samples [BMS08, DMR06, Mos07]. Much
progress has been made on this problem over the past decade, especially when the hidden graph is a tree.
However, there does not seem to be a concrete connection between this problem and the problems we study.
One reason for this seems to be that in MRF reconstruction, the task is to reconstruct the model and not just
the distribution; because of this, various conditions need to be imposed in order to guarantee the uniqueness
of the underlying model given random samples from the distribution. In contrast, in our setting the explicit
goal is to construct a high-accuracy distribution, and it may indeed be the case that there is no unique
underlying model (i.e., Boolean function f) given the samples received from the distribution.

1.2 Our results. We give a wide range of both positive and negative results for inverse approximate uni-
form generation problems. As noted above, most of our results deal with uniform generation of satisfying
assignments, i.e., C is a class of Boolean functions over {−1, 1}n and for f ∈ C the relation R(f, y) is “y

3

is a satisfying assignment for f .” All the results, both positive and negative, that we present below are for
problems of this sort unless indicated otherwise.

Positive results: A general approach and its applications. We begin by presenting a general approach
for obtaining inverse approximate uniform generation algorithms. This technique combines approximate
uniform generation and counting algorithms and Statistical Query (SQ) learning algorithms with a new type
of algorithm called a “densifier,” which we introduce and define in Section 3. Very roughly speaking, the
densifier lets us prune the entire space {−1, 1}n to a set S which (essentially) contains all of f−1(1) and
is not too much larger than f−1(1) (so f−1(1) is “dense” in S). By generating approximately uniform
elements of S it is possible to run an SQ learning algorithm and obtain a high-accuracy hypothesis which
can be used, in conjunction with the approximate uniform generator, to obtain a sampler for a distribution
which is close to the uniform distribution over f−1(1). (The approximate counting algorithm is needed for
technical reasons which we explain in Section 3.1.) In Section 3 we describe this technique in detail and
prove a general result establishing its effectiveness.

In Sections 4 and 5 we give two main applications of this general technique to specific classes of func-
tions. The first of these is the class LTF of all LTFs over {−1, 1}n. Our main technical contribution here
is to construct a densifier for LTFs; we do this by carefully combining known efficient online learning algo-
rithms for LTFs (based on interior-point methods for linear programming) [MT94] with known algorithms
for approximate uniform generation and counting of satisfying assignments of LTFs [MS04, Dye03]. Given
this densifier, our general approach yields the desired inverse approximate uniform generator for LTFs:

Theorem 2. (Informal statement) There is a poly(n, 1/ε)-time algorithm for the inverse problem of ap-
proximately uniformly generating satisfying assignments for LTFs.

Our second main positive result for a specific class, in Section 5, is for the well-studied class DNFn,s of
all size-sDNF formulas over n Boolean variables. Here our main technical contribution is to give a densifier
which runs in time nO(log(s/ε)) and outputs a DNF formula. A challenge here is that known SQ algorithms
for learning DNF formulas require time exponential in n1/3. To get around this, we view the densifier’s out-
put DNF as an OR over nO(log(s/ε)) “metavariables” (corresponding to all possible conjunctions that could
be present in the DNF output by the densifier), and we show that it is possible to apply known malicious
noise tolerant SQ algorithms for learning sparse disjunctions as the SQ-learning component of our general
approach. Since efficient approximate uniform generation and approximate counting algorithms are known
[JVV86, KL83] for DNF formulas, with the above densifier and SQ learner we can carry out our general
technique, and we thereby obtain our second main positive result for a specific function class:

Theorem 3. (Informal statement) There is a nO(log(s/ε))-time algorithm for the inverse problem of approx-
imately uniformly generating satisfying assignments for s-term DNF formulas.

Negative results based on cryptography. In light of the “standard approach,” it is clear that in order for an
inverse approximate uniform generation problem (C, R) to be computationally hard, it must be the case that
either stage (1) (reconstructing the unknown object) or stage (2) (sampling from the reconstructed object) is
hard. (If both stages have efficient algorithms Areconstruct and Asample respectively, then there is an efficient
algorithm for the whole inverse approximate uniform generation problem that combines these algorithms
according to the standard approach.) Our first approach to obtaining negative results can be used to obtain
hardness results for problems for which stage (2), near-uniform sampling, is computationally hard. The
approach is based on signature schemes from public-key cryptography; roughly speaking, the general result
which we prove is the following (we note that the statement given below is a simplification of our actual
result which omits several technical conditions; see Theorem 60 of Section 6.1 for a precise statement):

Theorem 4. (Informal statement) Let C be a class of functions such that there is a parsimonious reduction
from CIRCUIT-SAT to C-SAT. Then known constructions of secure signature schemes imply that there is

4

no subexponential-time algorithm for the inverse problem of approximately uniformly generating satisfying
assignments to functions in C.

This theorem yields a wide range of hardness results for specific classes that show that our positive
results (for LTFs and DNF) lie quite close to the boundary of what classes have efficient inverse approximate
uniform generation algorithms. We prove:

Corollary 5. (Informal statement) Under known constructions of secure signature schemes, there is no
subexponential-time algorithm for the inverse approximate uniform generation problem for either of the
following classes of functions: (i) 3-CNF formulas; (ii) intersections of two halfspaces.

We show that our signature-scheme-based hardness approach can be extended to settings where there
is no parsimonious reduction as described above. Using “blow-up”-type constructions of the sort used to
prove hardness of approximate counting, we prove the following:

Theorem 6. (Informal statement) Under the same assumptions as Corollary 5, there is no subexponential-
time algorithm for the inverse approximate uniform generation problem for either of the following classes:
(i) monotone 2-CNF; (ii) degree-2 polynomial threshold functions.

It is instructive to compare the above hardness results with the problem of uniform generation of NP-
witnesses. In particular, while it is obvious that no efficient randomized algorithm can produce even a single
satisfying assignment of a given 3-SAT instance (assuming NP 6⊆ BPP), the seminal results of Jerrum
et al. [JVV86] showed that given access to an NP-oracle, it is possible to generate approximately uniform
satisfying assignments for a given 3-SAT instance. It is interesting to ask whether one requires the full
power of adaptive access to NP-oracles for this task, or whether a weaker form of “advice” suffices. Our
hardness results can be understood in this context as giving evidence that receiving polynomially many
random satisfying assignments of a 3-SAT instance does not help in further uniform generation of satisfying
assignments.1

Our signature-scheme based approach cannot give hardness results for problems that have polynomial-
time algorithms for the “forward” problem of sampling approximately uniform satisfying assignments. Our
second approach to proving computational hardness can (at least sometimes) surmount this barrier. The
approach is based on Message Authentication Codes in cryptography; the following is an informal statement
of our general result along these lines (as before the following statement ignores some technical conditions;
see Theorem 80 for a precise statement):

Theorem 7. (Informal statement) There are known constructions of MACs with the following property:
Let C be a class of circuits such that the verification algorithm of the MAC can be implemented in C. Then
there is no subexponential-time inverse approximate uniform generation algorithm for C.

We instantiate this general result with a specific construction of a MAC that is a slight variant of a
construction due to Pietrzak [Pie12]. This specific construction yields a class C for which the “forward”
approximate uniform generation problem is computationally easy, but (under a plausible computational
hardness assumption) the inverse approximate uniform generation problem is computationally hard.

The above construction based on MACs shows that there are problems (C, R) for which the inverse
approximate uniform generation problem is computationally hard although the “forward” approximate uni-
form generation problem is easy. As our last result, we exhibit a group-theoretic problem (based on graph
automorphisms) for which the reverse situation holds: under a plausible hardness assumption the forward

1There is a small caveat here in that we are not given the 3-SAT formula per se but rather access to random satisfying assignments
of the formula. However, there is a simple elimination based algorithm to reconstruct a high-accuracy approximation for a 3-SAT
formula if we have access to random satisfying assignments for the formula.

5

approximate uniform generation problem is computationally hard, but we give an efficient algorithm for
the inverse approximate uniform generation problem (which does not follow our general technique or the
“standard approach”).

Structure of this paper. After the preliminaries in Section 2, we present in Section 3 our general upper
bound technique. In Sections 4 and 5 we apply this technique to obtain efficient inverse approximate uniform
generation algorithms for LTFs and DNFs respectively. Section 6 contains our hardness results. In Section 7
we give an example of a problem for which approximate uniform generation is hard, while the inverse
problem is easy. Finally, in Section 8 we conclude the paper suggesting further directions for future work.

2 Preliminaries and Useful Tools

2.1 Notation and Definitions. For n ∈ Z+, we will denote by [n] the set {1, . . . , n}. For a distribution D
over a finite setW we denote by D(x), x ∈ W , the probability mass that D assigns to point x, so D(x) ≥ 0
and

∑
x∈W D(x) = 1. For S ⊆ W , we write D(S) to denote

∑
x∈S D(x). For a finite set X we write

x ∈U X to indicate that x is chosen uniformly at random from X. For a random variable x, we will write
x ∼ D to denote that x follows distribution D. Let D,D′ be distributions over W . The total variation
distance between D and D′ is dTV(D,D′)

def
= maxS⊆W |D(S)−D′(S)| = (1/2) · ‖D − D′‖1, where

‖D −D′‖1 =
∑

x∈W |D(x)−D′(x)| is the L1–distance between D and D′.
We will denote by Cn, or simply C, a Boolean concept class, i.e., a class of functions mapping {−1, 1}n

to {−1, 1}. We usually consider syntactically defined classes of functions such as the class of all n-variable
linear threshold functions or the class of all n-variable s-term DNF formulas. We stress that throughout this
paper a class C is viewed as a representation class. Thus we will say that an algorithm “takes as input a
function f ∈ C” to mean that the input of the algorithm is a representation of f ∈ C.

We will use the notation Un (or simply U , when the dimension n is clear from the context) for the
uniform distribution over {−1, 1}n. Let f : {−1, 1}n → {−1, 1}. We will denote by Uf−1(1) the uniform
distribution over satisfying assignments of f . Let D be a distribution over {−1, 1}n with 0 < D(f−1(1)) <
1. We write Df,+ to denote the conditional distribution D restricted to f−1(1); so for x ∈ f−1(1) we have
Df,+(x) = D(x)/D(f−1(1)). Observe that, with this notation, we have that Uf−1(1) ≡ Uf,+.

We proceed to define the notions of approximate counting and approximate uniform generation for a
class of Boolean functions:

Definition 8 (approximate counting). Let C be a class of n-variable Boolean functions. A randomized
algorithm ACcount is an efficient approximate counting algorithm for class C, if for any ε, δ > 0 and any
f ∈ C, on input ε, δ and f ∈ C, it runs in time poly(n, 1/ε, log(1/δ)) and with probability 1 − δ outputs a
value p̂ such that

1

(1 + ε)
·Prx∼U [f(x) = 1] ≤ p̂ ≤ (1 + ε) ·Prx∼U [f(x) = 1].

Definition 9 (approximate uniform generation). Let C be a class of n-variable Boolean functions. A ran-
domized algorithm ACgen is an efficient approximate uniform generation algorithm for class C, if for any
ε > 0 and any f ∈ C, there is a distribution D = Df,ε supported on f−1(1) with

1

1 + ε
· 1

|f−1(1)|
≤ D(x) ≤ (1 + ε) · 1

|f−1(1)|

for each x ∈ f−1(1), such that for any δ > 0, on input ε, δ and f ∈ C, algorithm ACgen(ε, δ, f) runs in
time poly(n, 1/ε, log(1/δ)) and either outputs a point x ∈ f−1(1) that is distributed precisely according to
D = Df,ε, or outputs ⊥. Moreover the probability that it outputs ⊥ is at most δ.

6

An approximate uniform generation algorithm is said to be fully polynomial if its running time depen-
dence on ε is poly(log(1/ε)).

Before we define our inverse approximate uniform generation problem, we need the notion of a sampler
for a distribution:

Definition 10. Let D be a distribution over {−1, 1}n. A sampler for D is a circuit C with m = poly(n)
input bits z ∈ {−1, 1}m and n output bits x ∈ {−1, 1}n which is such that when z ∼ Um then x ∼ D. For
ε > 0, an ε-sampler for D is a sampler for some distribution D′ which has dTV(D′, D) ≤ ε.

For clarity we sometimes write “C is a 0-sampler for D” to emphasize the fact that the outputs of C(z)
are distributed exactly according to distribution D. We are now ready to formally define the notion of an
inverse approximate uniform generation algorithm:

Definition 11 (inverse approximate uniform generation). Let C be a class of n-variable Boolean functions.
A randomized algorithmACinv is an inverse approximate uniform generation algorithm for class C, if for any
ε, δ > 0 and any f ∈ C, on input ε, δ and sample access to Uf−1(1), with probability 1 − δ algorithm ACinv

outputs an ε-sampler Cf for Uf−1(1).

2.2 Hypothesis Testing. Our general approach works by generating a collection of hypothesis distribu-
tions, one of which is close to the target distribution Uf−1(1). Thus, we need a way to select a high-accuracy
hypothesis distribution from a pool of candidate distributions which contains at least one high-accuracy hy-
pothesis. This problem has been well studied, see e.g. Chapter 7 of [DL01]. We use the following result
which is an extension of Lemma C.1 of [DDS12a].

Proposition 12. Let D be a distribution over a finite set W and Dε = {Dj}Nj=1 be a collection of N
distributions over W with the property that there exists i ∈ [N] such that dTV(D,Di) ≤ ε. There is an
algorithm T D, which is given access to:

(i) samplers for D and Dk, for all k ∈ [N],

(ii) a (1 + β)–approximate evaluation oracle EVALDk(β), for all k ∈ [N], which, on input w ∈ W ,
deterministically outputs a value D̃β

k (w), such that Dk(w)/(1 + β) ≤ D̃β
k (w) ≤ (1 + β)Dk(w),

where β > 0 is any parameter satisfying (1 + β)2 ≤ 1 + ε/8,

an accuracy parameter ε and a confidence parameter δ, and has the following behavior: It makes

m = O
(
(1/ε2) · (logN + log(1/δ))

)
draws from D and from each Dk, k ∈ [N], and O(m) calls to each oracle EVALDk(β), k ∈ [N], per-
forms O(mN2) arithmetic operations, and with probability 1 − δ outputs an index i? ∈ [N] that satisfies
dTV(D,Di?) ≤ 6ε.

Before we proceed with the proof, we note that there are certain crucial differences between the current
setting and the setting of [DDS12a, DDS12b] (as well as other related works that use versions of Proposi-
tion 12). In particular, in our setting, the setW is of size 2n, which was not the case in [DDS12a, DDS12b].
Hence, we cannot assume the distributions Di are given explicitly in the input. Thus Proposition 12 care-
fully specifies what kind of access to these distributions is required. Proposition 12 is an extension of
similar results in the previous works; while the idea of the proof is essentially the same, the details are more
involved.

7

Proof of Proposition 12. At a high level, the algorithm T D performs a tournament by running a “compe-
tition” Choose-HypothesisD for every pair of distinct distributions in the collection Dε. It outputs a
distribution D? ∈ Dε that was never a loser (i.e., won or achieved a draw in all its competitions). If no
such distribution exists in Dε then the algorithm outputs “failure.” We start by describing and analyzing the
competition subroutine between a pair of distributions in the collection.

Lemma 13. In the context of Proposition 12, there is an algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′)

which is given access to

(i) independent samples from D and Dk, for k ∈ {i, j},

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter ε′ and a confidence parameter δ′, and has the following behavior: It uses m′ =

O
(

(1/ε′2) log(1/δ′)
)

samples from each ofD,Di andDj , it makesO(m′) calls to the oracles EVALDk(β),

k ∈ {i, j}, performs O(m′) arithmetic operations, and if some Dk, k ∈ {i, j}, has dTV(Dk, D) ≤ ε′ then
with probability 1− δ′ it outputs an index k? ∈ {i, j} that satisfies dTV(D,Dk?) ≤ 6ε′.

Proof. To set up the competition between Di and Dj , we consider the following subset ofW:

Hij = Hij(Di, Dj)
def
= {w ∈ W | Di(w) ≥ Dj(w)}

and the corresponding probabilities pi,j
def
= Di(Hij) and qi,j

def
= Dj(Hij). Clearly, it holds pi,j ≥ qi,j and by

definition of the total variation distance we can write

dTV(Di, Dj) = pi,j − qi,j .

For the purposes of our algorithm, we would ideally want oracle access to the set Hij . Unfortunately
though, this is not possible since the evaluation oracles are only approximate. Hence, we will need to define
a more robust version of the setHij which will turn out to have similar properties. In particular, we consider
the set

Hβ
ij

def
= {w ∈ W | D̃β

i (w) ≥ D̃β
j (w)}

and the corresponding probabilities pβi,j
def
= Di(H

β
ij) and qβi,j

def
= Dj(H

β
ij). We claim that the difference

∆
def
= pβi,j − q

β
i,j is an accurate approximation to dTV(Di, Dj). In particular, we show:

Claim 14. We have
∆ ≤ dTV(Di, Dj) ≤ ∆ + ε/4. (1)

Before we proceed with the proof, we stress that (1) crucially uses our assumption that the evaluation
oracles provide a multiplicative approximation to the exact probabilities.

Proof. To show (1) we proceed as follows: Let A = Hij ∩Hβ
ij , B = Hij ∩Hβ

ij and C = Hij ∩Hβ
ij . Then

we can write
dTV(Di, Dj) = (Di −Dj)(A) + (Di −Dj)(B)

and
∆ = (Di −Dj)(A) + (Di −Dj)(C).

We will show that
0 ≤ (Di −Dj)(B) ≤ ε/8 (2)

8

and similarly
− ε/8 ≤ (Di −Dj)(C) ≤ 0 (3)

from which the claim follows. We proceed to prove (2), the proof of (3) being very similar. Letw ∈ B. Then
Di(w) ≥ Dj(w) (since w ∈ Hij) which gives (Di − Dj)(B) ≥ 0, establishing the LHS of (2). We now

establish the RHS. For w ∈ B we also have that D̃β
i (w) < D̃β

j (w) (since w ∈ Hβ
ij). Now by the definition

of the evaluation oracles, it follows that D̃β
i (w) ≥ Di(w)

(1+β) and D̃β
j (w) ≤ (1 + β)Dj(w). Combining these

inequalities yields
Di(w) ≤ (1 + β)2Dj(w) ≤ (1 + ε/8)Dj(w)

where the second inequality follows by our choice of β. Therefore,

(Di −Dj)(B) =
∑
w∈B

(Di(w)−Dj(w)) ≤ (ε/8) ·Dj(B) ≤ ε/8

as desired.

Note that the probabilities pβi,j and qβi,j are not available to us explicitly. Hence, Choose-Hypothesis
requires a way to empirically estimate each of these probability values (up to a small additive accuracy).
This task can be done efficiently because we have sample access to the distributions Di, Dj and oracle
access to the set Hβ

ij thanks to the EVALDk(β) oracles. The following claim provides the details:

Claim 15. There exists a subroutine Estimate(Di, H
β
ij , γ, δ) which is given access to

(i) independent samples from Di,

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter γ and a confidence parameter δ, and has the following behavior: It makes m =
O
(
(1/γ2) log(1/δ)

)
draws from Di and O(m) calls to the oracles EVALDk(β), k = i, j, performs O(m)

arithmetic operations, and with probability 1− δ outputs a number p̃βi,j such that |p̃βi,j − p
β
i,j | ≤ γ.

Proof. The desired subroutine amounts to a straightforward random sampling procedure, which we include
here for the sake of completeness. We will use the following elementary fact, a simple consequence of the
additive Chernoff bound.

Fact 16. Let X be a random variable taking values in the range [−1, 1]. Then E[X] can be estimated to
within an additive ±τ , with confidence probability 1− δ, using m = Ω((1/τ2) log(1/δ)) independent sam-
ples from X . In particular, the empirical average X̂m = (1/m)

∑m
i=1Xi, where the Xi’s are independent

samples of X , satisfies Pr
[
|X̂m −E[X]| ≤ τ

]
≥ 1− δ.

We shall refer to this as “empirically estimating” the value of E[X].
Consider the indicator function I

Hβ
ij

of the set Hβ
ij , i.e., I

Hβ
ij

: W → {0, 1} with I
Hβ
ij

(x) = 1 if and

only if x ∈ Hβ
ij . It is clear that Ex∼Di

[
I
Hβ
ij

(x)
]

= Di(H
β
ij) = pβi,j . The subroutine is described in the

following pseudocode:

Subroutine Estimate(Di, H
β
ij , γ, δ):

Input: Sample access to Di and oracle access to EVALDk(β), k = i, j.
Output: A number p̃βij such that with probability 1− δ it holds |p̃βij −Di(H

β
ij)| ≤ γ.

9

1. Draw m = Θ
(
(1/γ2) log(1/δ)

)
samples s = {s`}m`=1 from Di.

2. For each sample s`, ` ∈ [m]:

(a) Use the oracles EVALDi(β), EVALDj (β), to approximately evaluate Di(s`), Dj(s`).

(b) If D̃β
i (s`) ≥ D̃β

j (s`) set I
Hβ
ij

(s`) = 1, otherwise I
Hβ
ij

(s`) = 0.

3. Set p̃βij = 1
m

∑m
`=1 IHβ

ij
(s`).

4. Output p̃βij .

The computational efficiency of this simple random sampling procedure follows from the fact that we
can efficiently decide membership in Hβ

ij . To do this, for a given x ∈ W , we make a query to each of the

oracles EVALDi(β), EVALDj (β) to obtain the probabilities D̃β
i (x), D̃β

j (x). We have that x ∈ Hβ
ij (or

equivalently I
Hβ
ij

(x) = 1) if and only if D̃β
i (x) ≥ D̃β

j (x). By Fact 16, applied for the random variable

I
Hβ
ij

(x), where x ∼ Di, after m = Ω((1/γ2) log(1/δ)) samples from Di we obtain a ±γ-additive estimate

to pβi,j with probability 1 − δ. For each sample, we make one query to each of the oracles, hence the total
number of oracle queries is O(m) as desired. The only non-trivial arithmetic operations are the O(m)
comparisons done in Step 2(b), and Claim 15 is proved.

Now we are ready to prove Lemma 13. The algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′) per-

forming the competition between Di and Dj is the following:

Algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′):

Input: Sample access to D and Dk, k = i, j, oracle access to EVALDk(β), k = i, j.

1. Set p̃βi,j =Estimate(Di, H
β
ij , ε
′/8, δ′/4) and q̃βi,j =Estimate(Dj , H

β
ij , ε
′/8, δ′/4).

2. If p̃βi,j − q̃
β
i,j ≤ 9ε′/2, declare a draw and return either i or j. Otherwise:

3. Draw m′ = Θ
(

(1/ε′2) log(1/δ′)
)

samples s′ = {s`}m
′

`=1 from D.

4. For each sample s`, ` ∈ [m′]:

(a) Use the oracles EVALDi(β), EVALDj (β) to evaluate D̃β
i (s`), D̃β

j (s`).

(b) If D̃β
i (s`) ≥ D̃β

j (s`) set I
Hβ
ij

(s`) = 1, otherwise I
Hβ
ij

(s`) = 0.

5. Set τ = 1
m′
∑m′

`=1 IHβ
ij

(s`), i.e., τ is the fraction of samples that fall inside Hβ
ij .

6. If τ > p̃βi,j −
13
8 ε
′, declare Di as winner and return i; otherwise,

7. if τ < q̃βi,j + 13
8 ε
′, declare Dj as winner and return j; otherwise,

8. declare a draw and return either i or j.

10

It is not hard to check that the outcome of the competition does not depend on the ordering of the pair
of distributions provided in the input; that is, on inputs (Di, Dj) and (Dj , Di) the competition outputs the
same result for a fixed set of samples {s1, . . . , sm′} drawn from D.

The upper bounds on sample complexity, query complexity and number of arithmetic operations can
be straightforwardly verified. Hence, it remains to show correctness. By Claim 15 and a union bound,
with probability at least 1 − δ′/2, we will have that |p̃βi,j − pβi,j | ≤ ε′/8 and |q̃βi,j − qβi,j | ≤ ε′/8. In
the following, we condition on this good event. The correctness of Choose-Hypothesis is then an
immediate consequence of the following claim.

Claim 17. Suppose that dTV(D,Di) ≤ ε′. Then:

(i) If dTV(D,Dj) > 6ε′, then the probability that the competition between Di and Dj does not declare
Di as the winner is at most e−m

′ε′2/8. (Intuitively, if Dj is very far from D then it is very likely that
Di will be declared winner.)

(ii) The probability that the competition betweenDi andDj declaresDj as the winner is at most e−m
′ε′2/8.

(Intuitively, since Di is close to D, a draw with some other Dj is possible, but it is very unlikely that
Dj will be declared winner.)

Proof. Let rβ = D(Hβ
ij). The definition of the variation distance implies that |rβ − pβi,j | ≤ dTV(D,Di) ≤

ε′. Therefore, we have that |rβ − p̃βi,j | ≤ |rβ − p
β
i,j | + |p̃

β
i,j − p

β
i,j | ≤ 9ε′/8. Consider the indicator (0/1)

random variables {Z`}m
′

`=1 defined as Z` = 1 if and only if s` ∈ Hβ
ij . Clearly, τ = 1

m′
∑m′

`=1 Z` and
Es′ [τ] = Es`∼D[Z`] = rβ . Since the Z`’s are mutually independent, it follows from the Chernoff bound that
Pr[τ ≤ rβ − ε′/2] ≤ e−m′ε′

2/8. Using |rβ − p̃βi,j | ≤ 9ε′/8. we get that Pr[τ ≤ p̃βi,j − 13ε′/8] ≤ e−m′ε′
2/8.

• For part (i): If dTV(D,Dj) > 6ε′, from the triangle inequality we get that pi,j−qi,j = dTV(Di, Dj) >

5ε′ Claim 14 implies that pβi,j − q
β
i,j > 19ε′/4 and our conditioning finally gives p̃βi,j − q̃

β
i,j > 9ε′/2.

Hence, the algorithm will go beyond Step 2, and with probability at least 1− e−m′ε′2/8, it will stop at
Step 6, declaring Di as the winner of the competition between Di and Dj .

• For part (ii): If p̃βi,j − q̃
β
i,j ≤ 9ε′/2 then the competition declares a draw, hence Dj is not the winner.

Otherwise we have p̃βi,j − q̃
β
i,j > 9ε′/2 and the argument of the previous paragraph implies that the

competition between Di and Dj will declare Dj as the winner with probability at most e−m
′ε′2/8.

This concludes the proof of Claim 17.

This completes the proof of Lemma 13.

We now proceed to describe the algorithm T D and establish Proposition 12. The algorithm performs
a tournament by running the competition Choose-HypothesisD(Di, Dj , ε, δ/(2N)) for every pair of
distinct distributions Di, Dj in the collection Dε. It outputs a distribution D? ∈ Dε that was never a loser
(i.e., won or achieved a draw in all its competitions). If no such distribution exists in Dε then the algorithm
outputs “failure.” A detailed pseudocode follows:

Algorithm T D({Dj}Nj=1, ε, δ):

Input: Sample access to D and Dk, k ∈ [N], and oracle access to EVALDk , k ∈ [N].

1. Draw m = Θ
(
(1/ε2)(logN + log(1/δ))

)
samples from D and each Dk, k ∈ [N].

11

2. For all i, j ∈ [N], i 6= j, run Choose-HypothesisD(Di, Dj , ε, δ/(2N)) using this sample.

3. Output an index i? such that Di? was never declared a loser, if one exists.

4. Otherwise, output “failure”.

We now proceed to analyze the algorithm. The bounds on the sample complexity, running time and
query complexity to the evaluation oracles follow from the corresponding bounds for Choose-Hypothesis.
Hence, it suffices to show correctness. We do this below.

By definition, there exists some Di ∈ Dε such that dTV(D,Di) ≤ ε. By Claim 17, the distribution Di

never loses a competition against any other Dj ∈ Dε (so the algorithm does not output “failure”). A union
bound over all N distributions in Dε shows that with probability 1 − δ/2, the distribution D′ never loses a
competition.

We next argue that with probability at least 1 − δ/2, every distribution Dj ∈ Dε that never loses has
small variation distance from D. Fix a distribution Dj such that dTV(Dj , D) > 6ε; Claim 17(i) implies that
Dj loses to Di with probability 1 − 2e−mε

2/8 ≥ 1 − δ/(2N). A union bound yields that with probability
1− δ/2, every distribution Dj that has dTV(Dj , D) > 6ε loses some competition.

Thus, with overall probability at least 1− δ, the tournament does not output “failure” and outputs some
distribution D? such that dTV(D,D?) is at most 6ε. The proof of Proposition 12 is now complete.

Remark 18. As stated Proposition 12 assumes that algorithm T D has access to samplers for all the dis-
tributions Dk, so each call to such a sampler is guaranteed to output an element distributed according to
Dk. Let D⊥k be a distribution overW ∪ {⊥} which is such that (i) D⊥k (⊥) ≤ 1/2, and (ii) the conditional
distribution (D⊥k)W of D⊥k conditioned on not outputting ⊥ is precisely Dk. It is easy to see that the proof
of Proposition 12 extends to a setting in which T D has access to samplers for D⊥k rather than samplers for
Dk; each time a sample from Dk is required the algorithm can simply invoke the sampler for D⊥k repeatedly
until an element other than ⊥ is obtained. (The low-probability event that many repetitions are ever needed
can be “folded into” the failure probability δ.)

3 A general technique for inverse approximate uniform generation

In this section we present a general technique for solving inverse approximate uniform generation problems.
Our main positive results follow this conceptual framework. At the heart of our approach is a new type of
algorithm which we call a densifier for a concept class C. Roughly speaking, this is an algorithm which,
given uniform random positive examples of an unknown f ∈ C, constructs a set S which (essentially)
contains all of f−1(1) and which is such that f−1(1) is “dense” in S. Our main result in this section,
Theorem 21, states (roughly speaking) that the existence of (i) a computationally efficient densifier, (ii) an
efficient approximate uniform generation algorithm, (iii) an efficient approximate counting algorithm, and
(iv) an efficient statistical query (SQ) learning algorithm, together suffice to yield an efficient algorithm for
our inverse approximate uniform generation problem.

We have already defined approximate uniform generation and approximate counting algorithms, so
we need to define SQ learning algorithms and densifiers. The statistical query (SQ) learning model is a
natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates
of statistical properties of the examples but cannot directly access the examples themselves. Let D be a
distribution over {−1, 1}n. In the SQ model [Kea98], the learning algorithm has access to a statistical query
oracle, STAT(f,D), to which it can make a query of the form (χ, τ), where χ : {−1, 1}n × {−1, 1} →

12

[−1, 1] is the query function and τ > 0 is the tolerance. The oracle responds with a value v such that
|Ex∼D [χ (x, f(x))]− v| ≤ τ , where f ∈ C is the target concept. The goal of the algorithm is to output
a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε. The following is a precise
definition:

Definition 19. Let C be a class of n-variable boolean functions and D be a distribution over {−1, 1}n. An
SQ learning algorithm for C under D is a randomized algorithm ACSQ that for every ε, δ > 0, every target
concept f ∈ C, on input ε, δ and with access to oracle STAT(f,D) and to independent samples drawn from
D, outputs with probability 1−δ a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε.
Let t1(n, 1/ε, 1/δ) be the running time ofACSQ (assuming each oracle query is answered in unit time), t2(n)
be the maximum running time to evaluate any query provided to STAT(f,D) and τ(n, 1/ε) be the minimum
value of the tolerance parameter ever provided to STAT(f,D) in the course of ACSQ’s execution. We say
thatACSQ is efficient (and that C is efficiently SQ learnable with respect to distributionD), if t1(n, 1/ε, 1/δ)
is polynomial in n, 1/ε and 1/δ, t2(n) is polynomial in n and τ(n, 1/ε) is lower bounded by an inverse
polynomial in n and 1/ε. We call an SQ learning algorithm ACSQ for C distribution independent if ACSQ

succeeds for any distribution D. If C has an efficient distribution independent SQ learning algorithm we
say that C is efficiently SQ learnable (distribution independently).

We sometimes write an “(ε, δ)–SQ learning algorithm” to explicitly state the accuracy parameter ε and
confidence parameter Throughout this paper, we will only deal with distribution independent SQ learning
algorithms.

To state our main result, we introduce the notion of a densifier for a class C of Boolean functions.
Intuitively, a densifier is an algorithm which is given access to samples from Uf−1(1) (where f is an unknown
element of C) and outputs a subset S ⊆ {−1, 1}n which is such that (i) S contains “almost all” of f−1(1),
but (ii) S is “much smaller” than {−1, 1}n – in particular it is small enough that f−1(1) ∩ S is (at least
moderately) “dense” in S.

Definition 20. Fix a function γ(n, 1/ε, 1/δ) taking values in (0, 1] and a class C of n-variable Boolean
functions. An algorithm A(C,C′)

den is said to be a γ-densifier for function class C using class C′ if it has the
following behavior: For every ε, δ > 0, every 1/2n ≤ p̂ ≤ 1, and every f ∈ C, given as input ε, δ, p̂ and a set

of independent samples from Uf−1(1), the following holds: Let p
def
= Prx∼Un [f(x) = 1]. If p ≤ p̂ < (1+ε)p,

then with probability at least 1− δ, algorithm A(C,C′)
den outputs a function g ∈ C′ such that:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε.

(b) Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, 1/ε, 1/δ).

We will sometimes write an “(ε, γ, δ)–densifier” to explicitly state the parameters in the definition.
Our main conceptual approach is summarized in the following theorem:

Theorem 21 (General Upper Bound). Let C, C′ be classes of n-variable boolean functions. Suppose that

• A(C,C′)
den is an (ε, γ, δ)-densifier for C using C′ running in time Tden(n, 1/ε, 1/δ).

• AC′gen is an (ε, δ)-approximate uniform generation algorithm for C′ running in time Tgen(n, 1/ε, 1/δ).

• AC′count is an (ε, δ)-approximate counting algorithm for C′ running in time Tcount(n, 1/ε, 1/δ).

• ACSQ is an (ε, δ)-SQ learning algorithm for C such that: ACSQ runs in time t1(n, 1/ε, 1/δ) , t2(n) is the
maximum time needed to evaluate any query provided to STAT(f,D), and τ(n, 1/ε) is the minimum
value of the tolerance parameter ever provided to STAT(f,D) in the course of ACSQ’s execution.

13

Then there exists an inverse approximate uniform generation algorithm ACinv for C. The running time of
ACinv is polynomial in Tden(n, 1/ε, 1/δ), 1/γ, Tgen(n, 1/ε, 1/δ), Tcount (n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ), t2(n)
and 1/τ(n, 1/ε). 2

Sketch of the algorithm. The inverse approximate uniform generation algorithm ACinv for C works in three
main conceptual steps. Let f ∈ C be the unknown target function and recall that our algorithmACinv is given
access to samples from Uf−1(1).

(1) In the first step, ACinv runs the densifier A(C,C′)
den on a set of samples from Uf−1(1). Let g ∈ C′ be the

output function of A(C,C′)
den .

Note that by setting the input to the approximate uniform generation algorithm AC′gen to g, we obtain an
approximate sampler Cg for Ug−1(1). The output distribution D′ of this sampler, is by definition supported
on g−1(1) and is close to D = Ug−1(1) in total variation distance.

(2) The second step is to run the SQ-algorithmACSQ to learn the function f ∈ C under the distribution D.
Let h be the hypothesis constructed by ACSQ.

(3) In the third and final step, the algorithm simply samples from Cg until it obtains an example x that
has h(x) = 1, and outputs this x.

Remark 22. The reader may have noticed that the above sketch does not seem to use the approximate
counting algorithm AC′count; we will revisit this point below.

Remark 23. The connection between the above algorithm sketch and the “standard approach” discussed in
the Introduction is as follows: The function g ∧ h essentially corresponds to the reconstructed object x̃ of
the “standard approach.” The process of sampling from Cg and doing rejection sampling until an input that
satisfies h is obtained, essentially corresponds to the Asample procedure of the “standard approach.”

3.1 Intuition, motivation and discussion. To motivate the high-level idea behind our algorithm, consider
a setting in which f−1(1) is only a tiny fraction (say 1/2Θ(n)) of {−1, 1}n. It is intuitively clear that we
would like to use some kind of a learning algorithm in order to come up with a good approximation of
f−1(1), but we need this approximation to be accurate at the “scale” of f−1(1) itself rather than at the scale
of all of {−1, 1}n, so we need some way to ensure that the learning algorithm’s hypothesis is accurate at this
small scale. By using a densifier to construct g such that g−1(1) is not too much larger than f−1(1), we can
use the distribution D = Ug−1(1) to run a learning algorithm and obtain a good approximation of f−1(1) at
the desired scale. (Since D and D′ are close in variation distance, this implies we also learn f with respect
to D′.)

To motivate our use of an SQ learning algorithm rather than a standard PAC learning algorithm, observe
that there seems to be no way to obtain correctly labeled examples distributed according to D. However,
we show that it is possible to accurately simulate statistical queries under D having access only to random
positive examples from f−1(1) and to unlabeled examples drawn from D (subject to additional technical
caveats discussed below). We discuss the issue of how it is possible to successfully use an SQ learner in our
setting in more detail below.

Discussion and implementation issues. While the three main conceptual steps (1)-(3) of our algorithm
may (hopefully) seem quite intuitive in light of the preceding motivation, a few issues immediately arise
in thinking about how to implement these steps. The first one concerns running the SQ-algorithm ACSQ in

2It is straightforward to derive an explicit running time bound for ACinv in terms of the above functions from our analysis, but
the resulting expression is extremely long and rather uninformative so we do not provide it.

14

Step 2 to learn f under distribution D (recall that D = Ug−1(1) and is close to D′). Our algorithm ACinv

needs to be able to efficiently simulate ACSQ given its available information. While it would be easy to do
so given access to random labeled examples (x, f(x)), where x ∼ D, such information is not available in
our setting. To overcome this obstacle, we show (see Proposition 25) that for any samplable distribution D,
we can efficiently simulate a statistical query algorithm under D using samples from Df,+. This does not
quite solve the problem, since we only have samples from Uf−1(1). However, we show (see Claim 28) that
for our setting, i.e., for D = Ug−1(1), we can simulate a sample from Df,+ by a simple rejection sampling
procedure using samples from Uf−1(1) and query access to g.

Some more issues remain to be handled. First, the simulation of the statistical query algorithm sketched
in the previous paragraph only works under the assumption that we are given a sufficiently accurate approx-
imation b̃f of the probability Prx∼D[f(x) = 1]. (Intuitively, our approximation should be smaller than
the smallest tolerance τ provided to the statistical query oracle by the algorithm ACSQ.) Second, by Defini-
tion 20, the densifier only succeeds under the assumption that it is given in its input an (1+ ε)-multiplicative
approximation p̂ to p = Prx∈Un [f(x) = 1].

We handle these issues as follows: First, we show (see Claim 29) that, given an accurate estimate p̂ and
a “dense” function g ∈ C′, we can use the approximate counting algorithm AC′count to efficiently compute an
accurate estimate b̃f . (This is one reason why Theorem 21 requires an approximate counting algorithm for
C′.) To deal with the fact that we do not a priori have an accurate estimate p̂, we run our sketched algorithm
for all possible values of Prx∼Un [f(x) = 1] in an appropriate multiplicative “grid” of size N = O(n/ε),
covering all possible values from 1/2n to 1. We thus obtain a set D of N candidate distributions one of
which is guaranteed to be close to the true distribution Uf−1(1) in variation distance. At this point, we would
like to apply our hypothesis testing machinery (Proposition 12) to find such a distribution. However, in
order to use Proposition 12, in addition to sample access to the candidate distributions (and the distribution
being learned), we also require a multiplicatively accurate approximate evaluation oracle to evaluate the
probability mass of any point under the candidate distributions. We show (see Lemma 39) that this is
possible in our generic setting, using properties of the densifier and the approximate counting algorithm
AC′count for C′.

Now we are ready to begin the detailed proof of Theorem 21.

3.2 Simulating statistical query algorithms. Our algorithmACinv will need to simulate a statistical query
algorithm for C, with respect to a specific distribution D. Note, however that Ainv only has access to
uniform positive examples of f ∈ C, i.e., samples from Uf−1(1). Hence we need to show that a statistical
query algorithm can be efficiently simulated in such a setting. To do this it suffices to show that one can
efficiently provide valid responses to queries to the statistical query oracle STAT(f,D), i.e., that one can
simulate the oracle. Assuming this can be done, the simulation algorithm ASQ−SIM is very simple: Run the
statistical query algorithm ASQ, and whenever it makes a query to STAT(f,D), simulate it. To this end, in
the following lemma we describe a procedure that simulates an SQ oracle. (Our approach here is similar to
that of earlier simulation procedures that have been given in the literature, see e.g. Denis et al. [DGL05].)

Lemma 24. Let C be a concept class over {−1, 1}n, f ∈ C, and D be a samplable distribution over
{−1, 1}n. There exists an algorithm Simulate-STATDf with the following properties: It is given access

to independent samples from Df,+, and takes as input a number b̃f ∈ [0, 1], a t(n)-time computable query
function χ : {−1, 1}n×{−1, 1} → [−1, 1], a tolerance τ and a confidence δ. It has the following behavior:
it uses m = O

(
(1/τ2) log(1/δ)

)
samples from D and Df,+, runs in time O (m · t(n)) , and if |b̃f −

Prx∼D[f(x) = 1]| ≤ τ ′, then with probability 1− δ it outputs a number v such that

|Ex∼D [χ (x, f(x))]− v| ≤ τ + τ ′. (4)

15

Proof. To prove the lemma, we start by rewriting the expectation in (4) as follows:

Ex∼D [χ(x, f(x))] = Ex∼Df,+ [χ(x, 1)] ·Prx∼D[f(x) = 1] + Ex∼Df,− [χ(x,−1)] ·Prx∼D[f(x) = −1].

We also observe that

Ex∼D [χ(x,−1)] = Ex∼Df,+ [χ(x,−1)] ·Prx∼D[f(x) = 1] + Ex∼Df,− [χ(x,−1)] ·Prx∼D[f(x) = −1].

Combining the above equalities we get

Ex∼D [χ(x, f(x))] = Ex∼D [χ(x,−1)] + Ex∼Df,+ [χ(x, 1)− χ(x,−1)] ·Prx∼D[f(x) = 1]. (5)

Given the above identity, the algorithm Simulate-STATDf is very simple: We use random sampling from
D to empirically estimate the expectations Ex∼D [χ(x,−1)] (recall thatD is assumed to be a samplable dis-
tribution), and we use the independent samples fromDf,+ to empirically estimate Ex∼Df,+ [χ(x, 1)− χ(x,−1)].
Both estimates are obtained to within an additive accuracy of ±τ/2 (with confidence probability 1 − δ/2
each). We combine these estimates with our estimate b̃f for Prx∼D[f(x) = 1] in the obvious way (see
Step 2 of pseudocode below).

Subroutine Simulate-STATDf (D,Df,+,χ, τ, b̃f , δ):

Input: Independent samples from D and Df,+, query access to χ : {−1, 1}n → {−1, 1}, accuracy τ ,
b̃f ∈ [0, 1] and confidence δ.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ ′, a number v that with probability 1 − δ satisfies
|Ex∼D[χ(x, f(x))]− v| ≤ τ + τ ′.

1. Empirically estimate the values Ex∼D[χ(x,−1)] and Ex∼Df,+ [χ(x, 1)− χ(x,−1)] to within an
additive ±τ/2 with confidence probability 1− δ/2. Let Ẽ1, Ẽ2 be the corresponding estimates.

2. Output v = Ẽ1 + Ẽ2 · b̃f .

By Fact 16, we can estimate each expectation using m = Θ
(
(1/τ2) log(1/δ)

)
samples (from D, Df,+

respectively). For each such sample the estimation algorithm needs to evaluate the function χ (once for
the first expectation and twice for the second). Hence, the total number of queries to χ is O(m), i.e., the
subroutine Simulate-STATDf runs in time O(m · t(n)) as desired.

By a union bound, with probability 1− δ both estimates will be ±τ/2 accurate. The bound (4) follows
from this latter fact and (5) by a straightforward application of the triangle inequality. This completes the
proof of Lemma 24.

Given the above lemma, we can state and prove our general result for simulating SQ algorithms:

Proposition 25. Let C be a concept class and D be a samplable distribution over {−1, 1}n. Suppose there
exists an SQ-learning algorithm ASQ for C under D with the following performance: ASQ runs in time
T1 = t1(n, 1/ε, 1/δ), each query provided to STAT(f,D) can be evaluated in time T2 = t2(n), and the
minimum value of the tolerance provided to STAT(f,D) in the course of its execution is τ = τ(n, 1/ε).
Then, there exists an algorithm ASQ−SIM that is given access to

(i) independent samples from Df,+; and

(ii) a number b̃f ∈ [0, 1],

16

and efficiently simulates the behavior of ASQ. In particular, ASQ−SIM has the following performance guar-
antee: on input an accuracy ε and a confidence δ, it uses m = O

(
(1/τ2) · log(T1/δ) · T1

)
samples from D

and Df,+, runs in time TSQ−SIM = O (mT2), and if |b̃f −Prx∼D[f(x) = 1]| ≤ τ/2 then with probability
1− δ it outputs a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε.

Proof. The simulation procedure is very simple. We run the algorithm ASQ by simulating its queries using
algorithm Simulate-STATDf . The algorithm is described in the following pseudocode:

Algorithm ASQ−SIM(D,Df,+, ε, b̃f , δ):

Input: Independent samples from D and Df,+, b̃f ∈ [0, 1], ε, δ > 0.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ/2, a hypothesis h that with probability 1 − δ satisfies
Prx∼D[h(x) 6= f(x)] ≤ ε.

1. Let τ = τ(n, 1/ε) be the minimum accuracy ever used in a query to STAT(f,D) during the
execution of ASQ(ε, δ/2).

2. Run the algorithm ASQ(ε, δ/2), by simulating each query to STAT(f,D) as follows:
whenever ASQ makes a query (χ, τ) to STAT(f,D), the simulation algorithm runs
Simulate-STATDf (D,Df,+,χ, τ/2, τ/2, δ/(2T1)).

3. Output the hypothesis h obtained by the simulation.

Note that we run the algorithm ASQ with confidence probability 1 − δ/2. Moreover, each query to
the STAT(f,D) oracle is simulated with confidence 1 − δ/(2T1). Since ASQ runs for at most T1 time
steps, it certainly performs at most T1 queries in total. Hence, by a union bound over these events, with
probability 1− δ/2 all answers to its queries will be accurate to within an additive ±τ/2. By the guarantee
of algorithmASQ and a union bound, with probability 1−δ, the algorithmASQ−SIM will output a hypothesis
h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε. The sample complexity and running time
follow from the bounds for Simulate-STATDf . This completes the proof of Proposition 25.

Proposition 25 tells us we can efficiently simulate a statistical query algorithm for a concept class C
under a samplable distribution D if we have access to samples drawn from Df,+ (and a very accurate
estimate of Prx∼D[f(x) = 1]). In our setting, we have that D = Ug−1(1) where g ∈ C′ is the function that

is output byA(C,C′)
den . So, the two issues we must handle are (i) obtaining samples from D, and (ii) obtaining

samples from Df,+.
For (i), we note that, even though we do not have access to samples drawn exactly from D, it suffices

for our purposes to use a τ ′-sampler for D for a sufficiently small τ ′. To see this we use the following fact:

Fact 26. Let D,D′ be distributions over {−1, 1}n with dTV(D,D′) ≤ τ ′. Then for any bounded function
φ : {−1, 1}n → [−1, 1] we have that |Ex∼D[φ(x)]−Ex∼D′ [φ(x)]| ≤ 2τ ′.

17

Proof. By definition we have that

|Ex∼D[φ(x)]−Ex∼D′ [φ(x)]| =

∣∣∣∣∣ ∑
x∈{−1,1}n

(
D(x)−D′(x)

)
φ(x)

∣∣∣∣∣
≤

∑
x∈{−1,1}n

∣∣(D(x)−D′(x)
)∣∣ |φ(x)|

≤ maxx∈{−1,1}n |φ(x)| ·
∑

x∈{−1,1}n

∣∣D(x)−D′(x)
∣∣

≤ 1 · ‖D −D′‖1
= 2dTV(D,D′)

≤ 2τ ′

as desired.

The above fact implies that the statement of Proposition 25 continuous to hold with the same parameters
if instead of a 0-sampler forD we have access to a τ ′-sampler forD, for τ ′ = τ/8. The only difference is that
in Step 1 of the subroutine Simulate-STATDf we empirically estimate the expectation Ex∼D′ [χ(x,−1)]
up to an additive ±τ/4. By Fact 26, this will be a ±(τ/4 + 2τ ′) = ±τ/2 accurate estimate for the
Ex∼D[χ(x,−1)]. That is, we have:

Corollary 27. The statement of Proposition 25 continues to hold with the same parameters if instead of a
0-sampler for D we have access to a τ ′ = τ/8-sampler for D.

For (ii), even though we do not have access to the distribution D = Ug−1(1) directly, we note below
that we can efficiently sample from Df,+ using samples from Uf−1(1) together with evaluations of g (recall
again that g is provided as the output of the densifier).

Claim 28. Let g : {−1, 1}n → {−1, 1} be a tg(n) time computable function such that Prx∼Uf−1(1)
[g(x) = 1]≥ ε′.

There is an efficient subroutine that is given ε′ and a circuit to compute g as input, usesm = O((1/ε′) log(1/δ))
samples from Uf−1(1), runs in time O(m · tg(n)), and with probability 1 − δ outputs a sample x such that
x ∼ Df,+, where D = Ug−1(1).

Proof. To simulate a sample from Df,+ we simply draw samples from Uf−1(1) until we obtain a sample x
with g(x) = 1. The following pseudocode makes this precise:

Subroutine Simulate-sampleDf,+(Uf−1(1), g, ε
′, δ):

Input: Independent samples from Uf−1(1), a circuit computing g, a value ε′ > 0 such that ε′ ≤
Prx∼Uf−1(1)

[g(x) = 1] and confidence parameter δ.
Output: A point x ∈ {−1, 1}n that with probability 1− δ satisfies x ∼ Df,+.

1. Repeat the following at most m = Θ ((1/ε′) log(1/δ)) times:

(a) Draw a sample x ∼ Uf−1(1).

(b) If the circuit for g evaluates to 1 on input x then output x.

2. If no point x with g(x) = 1 has been obtained, halt and output “failure.”

18

Since Prx∼Uf−1(1)
[g(x) = 1]≥ ε′, after repeating this process m = Ω ((1/ε′) log(1/δ)) times, we will

obtain a satisfying assignment to g with probability at least 1−δ. It is clear that such a sample x is distributed
according to Df,+. For each sample we need to evaluate g once, hence the running time follows.

Getting a good estimate b̃f of Prx∼D[f(x) = 1]. The simulations presented above require an additively
accurate estimate b̃f of Prx∼D[f(x) = 1]. We now show that in our context, such an estimate can be easily
obtained if we have access to a good estimate p̂ of p = Prx∈Un [f(x) = 1], using the fact that we have an
efficient approximate counting algorithm for C′ and that D ≡ Ug−1(1) where g ∈ C′.
Claim 29. Let g : {−1, 1}n → {−1, 1}, g ∈ C′ be a tg(n) time computable function, satisfying Prx∼Ug−1(1)

[f(x) =

1] ≥ γ′ and Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε′. LetAC′count be an (ε, δ)-approximate counting algorithm for C′

running in time Tcount(n, 1/ε, 1/δ). There is a procedure Estimate-Bias with the following behavior:
Estimate-Bias takes as input a value 0 < p̂ ≤ 1, a parameter τ ′ > 0, a confidence parameter δ′, and
a representation of g ∈ C′. Estimate-Bias runs in time O(tg · Tcount(n, 2/τ

′, 1/δ′)) and satisfies the

following: if p
def
= Prx∼Un [f(x) = 1] < p̂ ≤ (1 + ε′)p, then with probability 1 − δ′ Estimate-Bias

outputs a value b̃f such that |b̃f −Prx∼D[f(x) = 1]| ≤ τ ′.
Proof. The procedure Estimate-Bias is very simple. It runs AC′count on inputs ε? = τ ′/2, δ′, using the
representation for g ∈ C′. Let pg be the value returned by the approximate counter; Estimate-Bias
returns p̂/pg.

The claimed running time bound is obvious. To see that the procedure is correct, first observe that by
Definition 8, with probability 1− δ′ we have that

|g−1(1)|
2n

· 1

1 + ε?
≤ pg ≤

|g−1(1)|
2n

· (1 + ε?).

For the rest of the argument we assume that the above inequality indeed holds. Let A denote |g−1(1)|, let B
denote |f−1(1) ∩ g−1(1)|, and let C denote |f−1(1) \ g−1(1)|, so the true value Prx∼D[f(x) = 1] equals
B
A and the above inequality can be rephrased as

A

1 + ε?
≤ pg · 2n ≤ A · (1 + ε?).

By our assumption on p̂ we have that

B + C ≤ p̂ · 2n ≤ (1 + ε′)(B + C);

since Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε′ we have

C

B + C
≤ ε′ (i.e., C ≤ ε′

1− ε′
·B);

and since Prx∼Ug−1(1)
[f(x) = 1] ≥ γ′ we have

B

A
≥ γ′.

Combining these inequalities we get

1

1 + ε?
· B
A
≤ 1

1 + ε?
· B + C

A
≤ p̂

pg
≤ B

A
· (1 + ε′)(1 + ε?)

(
1 +

ε′

1− ε′

)
=
B

A
· (1 + ε?)

Hence ∣∣∣∣BA − p̂

pg

∣∣∣∣ ≤ B

A

(
1 + ε? − 1

1 + ε?

)
≤ 2ε?

1 + ε?
≤ 2ε?,

where we have used B ≤ A. Recalling that ε? = τ ′/2, the lemma is proved.

19

3.3 An algorithm that succeeds given the (approximate) bias of f. In this section, we present an al-
gorithm A′Cinv(ε, δ, p̂) which, in addition to samples from Uf−1(1), takes as input parameters ε, δ, p̂. The
algorithm succeeds in outputting a hypothesis distribution Df satisfying dTV(Df ,Uf−1(1)) ≤ ε if the input
parameter p̂ is a multiplicatively accurate approximation to Prx∼Un [f(x) = 1]. The algorithm follows the
three high-level steps previously outlined and uses the subroutines of the previous subsection to simulate the
statistical query algorithm. Detailed pseudocode follows:

Algorithm A′Cinv(Uf−1(1), ε, δ, p̂):
Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ, and a value 1/2n <
p̂ ≤ 1.
Output: If Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)Prx∼Un [f(x) = 1], with probability 1 − δ outputs an
ε-sampler Cf for Uf−1(1) .

1. [Run the densifier to obtain g]

Fix ε1
def
= ε/6 and γ def

= γ(n, 1/ε1, 3/δ). Run the γ-densifier A(C,C′)
den (ε1, δ/3, p̂) using random

samples from Uf−1(1). Let g ∈ C′ be its output.

2. [Run the SQ-learner, using the approximate uniform generator for g, to obtain hypothesis
h]

(a) Fix ε2
def
= εγ/7, τ2

def
= τ(n, 1/ε2) and m

def
= Θ

(
(1/τ2

2) · log(T1/δ) · T1

)
, where T1 =

t1(n, 1/ε2, 12/δ).
(b) Run the generator AC′gen(g, τ2/8, δ/(12m)) m times and let SD ⊆ {−1, 1}n be the multiset

of samples obtained.
(c) Run Simulate-sampleDf,+(Uf−1(1), g, γ, δ/(12m))m times and let SDf,+ ⊆ {−1, 1}n

be the multiset of samples obtained.
(d) Run Estimate-Bias with parameters p̂, τ ′ = τ2/2, δ′ = δ/12 , using the representation

for g ∈ C′, and let b̃f be the value it returns.

(e) Run ASQ−SIM(SD, SDf,+ , ε2, b̃f , δ/12). Let h : {−1, 1}n → {−1, 1} be the output hy-
pothesis.

3. [Output the sampler which does rejection sampling according to h on draws from the ap-
proximate uniform generator for g]
Output the sampler Cf which works as follows:

For i = 1 to t = Θ ((1/γ) log(1/(δε)) do:

(a) Set ε3
def
= εγ/48000.

(b) Run the generator AC′gen(g, ε3, δε/(12t)) and let x(i) be its output.

(c) If h(x(i)) = 1, output x(i).

If no x(i) with h(x(i)) = 1 has been obtained, output the default element ⊥.

Let D̂ denote the distribution over {−1, 1}n∪{⊥} for which Cf is a 0-sampler, and let D̂′ denote
the conditional distribution of D̂ restricted to {−1, 1}n (i.e., excluding ⊥).

20

We note that by inspection of the code forCf , we have that the distribution D̂′ is identical to (Dg,ε3)h−1(1),
whereDg,ε3 is the distribution corresponding to the output of the approximate uniform generator when called
on function g and error parameter ε3 (see Definition 9) and (Dg,ε3)h−1(1) is Dg,ε3 conditioned on h−1(1).

We have the following:

Theorem 30. Let p
def
= Prx∈Un [f(x) = 1]. Algorithm A′Cinv(ε, δ, p̂) has the following behavior: If p ≤ p̂ <

(1 + ε)p, then with probability 1− δ the following both hold:

(i) the output Cf is a sampler for a distribution D̂ such that dTV(D̂,Uf−1(1)) ≤ ε; and

(ii) the functions h, g satisfy |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2.

The running time ofA′Cinv is polynomial in Tden(n, 1/ε, 1/δ), Tgen(n, 1/ε, 1/δ), Tcount(n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ),
t2(n), 1/τ(n, 1/ε), and 1/γ(n, 1/ε, 1/δ).

Proof. We give an intuitive explanation of the pseudocode in tandem with a proof of correctness. We argue
that Steps 1-3 of the algorithm implement the corresponding steps of our high-level description and that the
algorithm succeeds with confidence probability 1− δ.

We assume throughout the argument that indeed p̂ lies in [p, (1 + ε)p). Given this, by Definition 20 with
probability 1− δ/3 the function g satisfies properties (a) and (b) of Definition 20, i.e., Prx∼Uf−1(1)

[g(x) =

1] ≥ 1− ε1 and Prx∼Ug−1(1)
[f(x) = 1] ≥ γ. We condition on this event (which we denote E1) going forth.

We now argue that Step 2 simulates the SQ learning algorithm ACSQ to learn the function f ∈ C under
distributionD ≡ Ug−1(1) to accuracy ε2 with confidence 1−δ/3. Note that the goal of Step (b) is to obtainm
samples from a distribution D′′ (the distribution “Dg,τ2/8” of Definition 9) such that dTV(D′′, D) ≤ τ2/8.
To achieve this, we call the approximate uniform generator for g a total of m times with failure probability
δ/(12m) for each call (i.e., each call returns ⊥ with probability at most δ/(12m)). By a union bound,
with failure probability at most δ/12, all calls to the generator are successful and we obtain a set SD of
m independent samples from D′′. Similarly, the goal of Step (c) is to obtain m samples from Df,+ and
to achieve it we call the subroutine Simulate-sampleDf,+ a total of m times with failure probability
δ/(12m) each. By Claim 28 and a union bound, with failure probability at most δ/12, this step is successful,
i.e., it gives a set SDf,+ of m independent samples from Df,+. The goal of Step (d) is to obtain a value b̃f
satisfying |b̃f − Prx∼D[f(x) = 1]| ≤ τ2/2; by Claim 29, with failure probability at most δ/12 the value
b̃f obtained in this step is as desired. Finally, Step (e) applies the simulation algorithm ASQ−SIM using the
samples SD and SDf,+ and the estimate b̃f of Prx∼D[f(x) = 1] obtained in the previous steps. Conditioning
on Steps (b), (c) and (d) being successful Corollary 27 implies that Step (e) is successful with probability
1 − δ/12, i.e., it outputs a hypothesis h that satisfies Prx∼D[f(x) 6= h(x)] ≤ ε2. A union bound over
Steps (c), (d) and (e) completes the analysis of Step 2. For future reference, we let E2 denote the event
that the hypothesis h constructed in Step 2(e) has Prx∼D[f(x) 6= h(x)] ≤ ε2 (so we have that E2 holds
with probability at least 1 − δ/3; we additionally condition on this event going forth). We observe that
since (as we have just shown) Prx∼Ug−1(1)

[f(x) 6= h(x)] ≤ ε2 and Prx∼Ug−1(1)
[f(x) = 1] ≥ γ, we have

Prx∼Ug−1(1)
[h(x) = 1] ≥ γ − ε2 ≥ γ/2, which gives item (ii) of the theorem; so it remains to establish

item (i) and the claimed running time bound.
To establish (i), we need to prove that the output distribution D̂ of the sampler Cf is ε-close in total

variation distance to Uf−1(1). This sampler attempts to draws t samples from a distribution D′ such that
dTV(D′, D) ≤ ε3 (this is the distribution “Dg,ε3” in the notation of Definition 9) and it outputs one of these
samples that satisfies h (unless none of these samples satisfies h, in which case it outputs a default element
⊥). The desired variation distance bound follows from the next lemma for our choice of parameters:

21

Lemma 31. Let D̂ be the output distribution of A′Cinv(Uf−1(1), ε, δ, p̂). If Prx∼Un [f(x) = 1] ≤ p̂ ≤ (1 +
ε)Prx∼Un [f(x) = 1], then conditioned on Events E1 and E2, we have

dTV(D̂,Uf−1(1)) ≤
ε

6
+
ε

6
+

4ε3
γ

+ ε1 +
ε2
2γ

+
ε2

γ − ε2
≤ ε

6
+
ε

6
+

ε

12000
+
ε

6
+

ε

14
+
ε

6
< ε.

Proof. Consider the distribution D′ = Dg,ε3 (see Definition 9) produced by the approximate uniform gen-
erator in Step 3 of the algorithm. Let D′|h−1(1) denote distribution D′ restricted to h−1(1). Let S denote the
set g−1(1)∩ h−1(1). The lemma is an immediate consequence of Claims 32, 34, 35 and 36 below using the
triangle inequality (everything below is conditioned on E1 and E2).

Claim 32. dTV(D̂, D̂′) ≤ ε/6.

Proof. Recall that D̂′ is simply D̂ conditioned on not outputting ⊥.
We first claim that with probability at least 1 − δε/12 all t points drawn in Step 3 of the code for Cf

are distributed according to the distribution D′ = Dg,ε3 over g−1(1). Each of the t calls to the approximate
uniform generator has failure probability δε/(12t) (of outputting⊥ rather than a point distributed according
to D′) so by a union bound no calls fail with probability at least 1− δε/12, and thus with probability at least
1− δε/12 indeed all t samples are independently drawn from such a distribution D′.

Conditioned on this, we claim that a satisfying assignment for h is obtained within the t samples with
probability at least 1− δε/12. This can be shown as follows:

Claim 33. Let h : {−1, 1}n → {−1, 1} be the hypothesis output by ACSQ−SIM. We have

Prx∼D′ [h(x) = 1] ≥ γ/4.

Proof. First recall that, by property (b) in the definition of the densifier (Definition 20), we have Prx∼D[f(x) =
1] ≥ γ. Since dTV(D′, D) ≤ ε3, by definition we get

Prx∼D′ [f(x) = 1] ≥ Prx∼D[f(x) = 1]− ε3 ≥ γ − ε3 ≥ 3γ/4.

Now by the guarantee of Step 2 we have that Prx∼D[f(x) 6= h(x)] ≤ ε2. Combined with the fact that
dTV(D′, D) ≤ ε3, this implies that

Prx∼D′ [f(x) 6= h(x)] ≤ ε2 + ε3 ≤ γ/2.

Therefore, we conclude that

Prx∼D′ [h(x) = 1] ≥ Prx∼D′ [f(x) = 1]−Prx∼D′ [f(x) 6= h(x)] ≥ 3γ/4− γ/2 ≥ γ/4

as desired.

Hence, for an appropriate constant in the big-Theta specifying t, with probability at least 1 − δε/12 >
1−δ/12 some x(i) is a satisfying assignment of h. that with probability at least 1−δε/12 some x(i), i ∈ [t],
has h(x) = 1. Thus with overall failure probability at most δε/6 a draw from D̂′ is not ⊥, and consequently
we have dTV(D̂, D̂′) ≤ δε/6 ≤ ε/6.

Claim 34. dTV(D̂′, D′|h−1(1)) ≤ ε/6.

22

Proof. The probability that any of the t points x(1), . . . , x(t) is not drawn from D′ is at most t · δε/(12t) <
ε/12. Assuming that this does not happen, the probability that no x(i) lies in h−1(1) is at most (1−γ/4)t <
δε/12 < ε/12 by Claim 33. Assuming this does not happen, the output of a draw from D̂ is distributed
identically according to D′|h−1(1). Consequently we have that dTV(D̂,D′|h−1(1)) ≤ ε/6 as claimed.

Claim 35. dTV(D′|h−1(1),US) ≤ 4ε3/γ.

Proof. The definition of an approximate uniform generator gives us that dTV(D′,Ug−1(1)) ≤ ε3, and
Claim 33 gives that Prx∼D′ [h(x) = 1] ≥ γ/4. We now recall the fact that for any two distributions D1, D2

and any event E, writing Di|E to denote distribution Di conditioned on event E, we have

dTV(D1|E , D2|E) ≤ dTV(D1, D2)

D1(E)
.

The claim follows since Ug−1(1)|h−1(1) is equivalent to US .

Claim 36. dTV(US ,Uf−1(1)) ≤ ε1 + ε2
2γ + ε2

γ−ε2 .

Proof. The proof requires a careful combination of the properties of the function g constructed by the
densifier and the guarantee of the SQ algorithm. Recall that S = g−1(1) ∩ h−1(1). We consider the set
S′ = g−1(1) ∩ f−1(1). By the triangle inequality, we can bound the desired variation distance as follows:

dTV(US ,Uf−1(1)) ≤ dTV(Uf−1(1),US′) + dTV(US′ ,US). (6)

We will bound from above each term of the RHS in turn. To proceed we need an expression for the total
variation distance between the uniform distribution on two finite sets. The following fact is obtained by
straightforward calculation:

Fact 37. LetA,B be subsets of a finite setW and UA, UB be the uniform distributions onA, B respectively.
Then,

dTV(UA,UB) = (1/2) · |A ∩B|
|A|

+ (1/2) · |B ∩A|
|B|

+ (1/2) · |A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ . (7)

To bound the first term of the RHS of (6) we apply the above fact for A = f−1(1) and B = S′. Note that in
this case B ⊆ A, hence the second term of (7) is zero. Regarding the first term, note that

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,

where the inequality follows from Property (a) of the densifier definition. Similarly, for the third term we
can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = 1− |B|
|A|

= 1− |f
−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,

where the inequality also follows from Property (a) of the densifier definition. We therefore conclude that
dTV(Uf−1(1),US′) ≤ ε1.

We now proceed to bound the second term of the RHS of (6) by applying Fact 37 for A = S′ and
B = S. It turns out that bounding the individual terms of (7) is trickier in this case. For the first term we
have:

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|f−1(1) ∩ g−1(1)|
=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|g−1(1)|
· |g−1(1)|
|f−1(1) ∩ g−1(1)|

≤ ε2
γ
,

23

where the last inequality follows from the guarantee of the SQ learning algorithm and Property (b) of the
densifier definition. For the second term we have

|B ∩A|
|B|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|g−1(1) ∩ h−1(1)|
.

To analyze this term we recall that by the guarantee of the SQ algorithm it follows that the numerator satisfies

|f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ ε2 · |g−1(1)|.

From the same guarantee we also get

|f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ ε2 · |g−1(1)|.

Now, Property (b) of the densifier definition gives |f−1(1) ∩ g−1(1)| ≥ γ · |g−1(1)|. Combing these two
inequalities implies that

|g−1(1) ∩ h−1(1)| ≥ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≥ (γ − ε2) · |g−1(1)|.

In conclusion, the second term is upper bounded by (1/2) · ε2
γ−ε2 .

For the third term, we can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |f−1(1) ∩ g−1(1) ∩ h−1(1)| ·
∣∣∣∣ 1

|f−1(1) ∩ g−1(1)|
− 1

|g−1(1) ∩ h−1(1)|

∣∣∣∣ .
To analyze these term we relate the cardinalities of these sets. In particular, we can write

|f−1(1) ∩ g−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|

≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2
γ
· |f−1(1) ∩ g−1(1)|

where the last inequlity is Property (b) of the densifier defintion. Therefore, we obtain

(1− ε2
γ

) · |f−1(1) ∩ g−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1)|.

Similarly, we have

|g−1(1) ∩ h−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|

≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2
γ − ε2

· |g−1(1) ∩ h−1(1)|

and therefore

(1− ε2
γ − ε2

) · |g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |g−1(1) ∩ h−1(1)|.

The above imply that the third term is bounded by (1/2) · ε2
γ−ε2 . This completes the proof of the claim.

With Lemma 31 established, to finish the proof of Theorem 30 it remains only to establish the claimed
running time bound. This follows from a straightforward (but somewhat tedious) verification, using the
running time bounds established in Lemma 24, Proposition 25, Corollary 27, Claim 28 and Claim 29.

24

3.4 Getting fromA′Cinv toACinv: An approximate evaluation oracle. Recall that the algorithmA′Cinv from
the previous subsection is only guaranteed (with high probability) to output a sampler for a hypothesis
distribution D̂ that is statistically close to the target distribution Uf−1(1) if it is given an input parameter p̂

satisfying p ≤ p̂ < (1 + ε)p, where p def
= Prx∈Un [f(x) = 1]. Given this, a natural idea is to run A′Cinv a total

of k = O(n/ε) times, using “guesses” for p̂ that increase multiplicatively as powers of 1+ε, starting at 1/2n

(the smallest possible value) and going up to 1. This yields hypothesis distributions D̂1, . . . , D̂k where D̂i

is the distribution obtained by setting p̂ to p̂i
def
= (1 + ε)i−1/2n. With such distributions in hand, an obvious

approach is to use the “hypothesis testing” machinery of Section 2 to identify a high-accuracy D̂i from this
collection.

This is indeed the path we follow, but some care is needed to make the approach go through. Recall that
as described in Proposition 12, the hypothesis testing algorithm requires the following:

1. independent samples from the target distribution Uf−1(1) (this is not a problem since such samples are
available in our framework);

2. independent samples from D̂i for each i (also not a problem since the i-th run of algorithm A′Cinv

outputs a sampler for distribution D̂i; and

3. a (1 +O(ε))-approximate evaluation oracle EVALD̂i for each distribution D̂i.

In this subsection we show how to construct item (3) above, the approximate evaluation oracle. In more
detail, we first describe a randomized procedure Check which is applied to the output of each execution
of A′Cinv (across all k different settings of the input parameter p̂i). We show that with high probability the
“right” value p̂i∗ (the one which satisfies p ≤ p̂i∗ < (1+ε)p) will pass the procedure Check. Then we show
that for each value p̂i∗ that passed the check a simple deterministic algorithm gives the desired approximate
evaluation oracle for D̂i.

We proceed to describe the Check procedure and characterize its performance.

Algorithm Check(g, h, δ′, ε) :

Input: functions g and h as described in Lemma 38, a confidence parameter δ′, and an accuracy param-
eter ε
Output: If |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2, with probability 1 − δ′ outputs a pair (α, κ) such that
|α−|h−1(1)∩g−1(1)|/|g−1(1)|| ≤ µ · |h−1(1)∩g−1(1)|/|g−1(1)| and |g

−1(1)|
1+τ ≤ κ ≤ (1+τ)|g−1(1)|,

where µ = τ = ε/40000.

1. Samplem = O(log(2/δ′)/(γµ2)) points x1, . . . , xm fromAC′gen(g, γ/4, δ′/(2m)). If any xj = ⊥
halt and output “failure.”

2. Let α be (1/m) times the number of points xj that have h(x) = 1.

3. Call AC′count(τ, δ
′/2) on g and set κ to 2n times the value it returns.

Lemma 38. Fix i ∈ [k]. Consider a sequence of k runs of A′Cinv where in the i-th run it is given p̂i
def
=

(1 + ε)i−1/2n as its input parameter. Let gi be the function in C′ constructed by A′Cinv in Step 1 of its i-th
run and hi be the hypothesis function constructed by A′Cinv in Step 2(e) of its i-th run. Suppose Check is
given as input gi, hi, a confidence parameter δ′, and an accuracy parameter ε′. Then it either outputs “no”

25

or a pair (αi, κi) ∈ [0, 1] × [0, 2n+1], and satisfies the following performance guarantee: If |h−1
i (1) ∩

g−1
i (1)|/|g−1

i (1)| ≥ γ/2 then with probability at least 1− δ′ Check outputs a pair (αi, κi) such that∣∣∣∣αi − |h−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

∣∣∣∣ ≤ µ · |h−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

(8)

and
|g−1
i (1)|
1 + τ

≤ κi ≤ (1 + τ)|g−1
i (1)|, (9)

where µ = τ = ε/40000.

Proof. Suppose that i is such that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2. Recall from Definition 9 that each

point xj drawn fromAC′gen(gi, γ/4, δ
′/(2m)) in Step 1 is with probability 1− δ′/(2m) distributed according

to Dgi,γ/4; by a union bound we have that with probability at least 1 − δ′/2 all m points are distributed
this way (and thus none of them are ⊥). We condition on this going forward. Definition 9 implies that
dTV(Dgi,γ/4,Ug−1

i (1)) ≤ γ/4; together with the assumption that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2, this

implies that each xj independently has proability at least γ/4 of having h(x) = 1. Consequently, by the
choice of m in Step 1, a standard multiplicative Chernoff bound implies that∣∣∣∣αi − |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

with failure probability at most δ′/4, giving (8).
Finally, Definition 8 gives that (9) holds with failure probability at most δ′/4. This concludes the proof.

Next we show how a high-accuracy estimate αi of |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| yields a deterministic

approximate evaluation oracle for D̂′i.

Lemma 39. Algorithm Simulate-Approx-Eval (which is deterministic) takes as input a value α ∈
[0, 1], a string x ∈ {−1, 1}n, a parameter κ, (a circuit for) h : {−1, 1}n → {−1, 1}, and (a representation
for) g : {−1, 1}n → {−1, 1}, g ∈ C′, where h, g are obtained from a run of A′Cinv. Suppose that∣∣∣∣α− |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

and
|g−1(1)|
1 + τ

≤ κ ≤ (1 + τ)|g−1(1)|

where µ = τ = ε/40000. Then Simulate-Approx-Eval outputs a value ρ such that

D̂′(x)

1 + β
≤ ρ ≤ (1 + β)D̂′(x), (10)

where β = ε/192, D̂ is the output distribution constructed in Step 3 of the run of ACinv that produced h, g,
and D̂′ is D̂ conditioned on {−1, 1}n (excluding ⊥).

Proof. The Simulate-Approx-Eval procedure is very simple. Given an input x ∈ {−1, 1}n it evalu-
ates both g and h on x, and if either evaluates to−1 it returns the value 0. If both evaluate to 1 then it returns
the value 1/(κα).

26

For the correctness proof, note first that it is easy to see from the definition of the sampler Cf (Step 3
of A′Cinv) and Definition 9 (recall that the approximate uniform generator AC′gen(g) only outputs strings that
satisfy g) that if x ∈ {−1, 1}n, x /∈ h−1(1) ∩ g−1(1) then D̂ has zero probability of outputting x, so
Simulate-Approx-Eval behaves appropriately in this case.

Now suppose that h(x) = g(x) = 1. We first show that the value 1/(κα) is multiplicatively close
to 1/|h−1(1) ∩ g−1(1)|. Let us write A to denote |g−1(1)| and B to denote |h−1(1) ∩ g−1(1)|. With this
notation we have ∣∣∣∣α− B

A

∣∣∣∣ ≤ µ · BA and
A

1 + τ
≤ κ ≤ (1 + τ)A.

Consequently, we have

B(1− µ− τ) ≤ B · 1− µ
1 + τ

=
B

A
(1− µ) · A

1 + τ
≤ κα ≤ B

A
(1 + µ) · (1 + τ)A ≤ B(1 + 2µ+ 2τ),

and hence
1

B
· 1

1 + 2µ+ 2τ
≤ 1

κα
≤ 1

B
· 1

1− µ− τ
. (11)

Now consider any x ∈ h−1(1) ∩ g−1(1). By Definition 9 we have that

1

1 + ε3
· 1

|g−1(1)|
≤ Dg,ε3(x) ≤ (1 + ε3) · 1

|g−1(1)|
.

Since a draw from D̂′ is obtained by taking a draw from Dg,ε3 and conditioning on it lying in h−1(1), it
follows that we have

1

1 + ε3
· 1

B
≤ D̂′(x) ≤ (1 + ε3) · 1

B
.

Combining this with (11) and recalling that µ = τ = ε/40000 and ε3 = εγ/48000, we get (10) as desired.

3.5 The final algorithm: Proof of Theorem 21. Finally we are ready to give the inverse approximate
uniform generation algorithm ACinv for C.

Algorithm ACinv(Uf−1(1), ε, δ)

Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ.
Output: With probability 1− δ outputs an ε-sampler Cf for Uf−1(1) .

1. For i = 1 to k = O(n/ε):

(a) Set p̂i
def
= (1 + ε)i−1/2n.

(b) Run A′Cinv(Uf−1(1), ε/12, δ/3, p̂i). Let gi ∈ C′ be the function constructed in Step 1, hi be
the hypothesis function constructed in Step 2(e), and (Cf)i be the sampler for distribution
D̂i constructed in Step 3.

(c) Run Check(gi, hi, δ/3, ε). If it returns a pair (αi, κi) then add i to the set S (initially
empty).

27

2. Run the hypothesis testing procedure T Uf−1(1) over the set {D̂′i}i∈S of hypothesis distributions,
using accuracy parameter ε/12 and confidence parameter δ/3. Here T Uf−1(1) is given access to
Uf−1(1), uses the samplers (Cf)i to generate draws from distributions D̂′i (see Remark 18), and
uses the procedure Simulate-Approx-Eval(αi, κi, hi, gi) for the (1 + ε/192)-approximate
evaluation oracle EVALD̂′i

for D̂′i. Let i? ∈ S be the index of the distribution that it returns.

3. Output the sampler (Cf)i? .

Proof of Theorem 21: Let p ≡ Prx∈Un [f(x) = 1] denote the true fraction of satisfying assignments for f
in {−1, 1}n. Let i∗ be the element of [k] such that p ≤ p̂i∗ < (1 + ε/6)p. By Theorem 30, with probability
at least 1− δ/3 we have that both

(i) (Cf)i∗ is a sampler for a distribution D̂i∗ such that dTV(D̂i∗ ,Uf−1(1)) ≤ ε/6; and

(ii) |h−1
i∗ (1) ∩ g−1

i∗ (1)|/|g−1
i∗ (1)| ≥ γ/2.

We condition on these two events holding. By Lemma 38, with probability at least 1−δ/3 the procedure
Check outputs a value αi∗ such that∣∣∣∣αi∗ − |h−1

i∗ (1) ∩ g−1
i∗ (1)|

|g−1
i∗ (1)|

∣∣∣∣ ≤ µ · |h−1
i∗ (1) ∩ g−1

i∗ (1)|
|g−1
i∗ (1)|

for µ = ε/40000.We condition on this event holding. Now Lemma 39 implies that Simulate-Approx-Eval((Cf)i∗)
meets the requirements of a (1 + β)-approximate evaluation oracle for EVALD̂′

i∗
from Proposition 12, for

β = ε
192 . Hence by Proposition 12 (or more precisely by Remark 18) with probability at least 1 − δ/3 the

index i? that T Uf−1(1) returns is such that D̂′i? is an ε/2-sampler for Uf−1(1) as desired.
As in the proof of Theorem 30, the claimed running time bound is a straightforward consequence of the

various running time bounds established for all the procedures called by ACinv. This concludes the proof of
our general positive result, Theorem 21.

4 Linear Threshold Functions

In this section we apply our general framework from Section 3 to prove Theorem 2, i.e., obtain a polynomial
time algorithm for the problem of inverse approximate uniform generation for the class C = LTFn of
n-variable linear threshold functions over {−1, 1}n. More formally, we prove:

Theorem 40. There is an algorithm ALTF
inv which is a poly (n, 1/ε, log(1/δ))-time inverse approximate

uniform generation algorithm for the class LTFn.

The above theorem will follow as an application of Theorem 21 for C′ = C = LTFn. The literature
provides us with three of the four ingredients that our general approach requires for LTFs – approximate uni-
form generation, approximate counting, and Statistical Query learning – and our main technical contribution
is giving the fourth necessary ingredient, a densifier. We start by recalling the three known ingredients in
the following subsection.

28

4.1 Tools from the literature. We first record two efficient algorithms for approximate uniform genera-
tion and approximate counting for LTFn, due to Dyer [Dye03]:

Theorem 41. (approximate uniform generation for LTFn, [Dye03]) There is an algorithm ALTF
gen that on

input (a weights–based representation of) an arbitrary h ∈ LTFn and a confidence parameter δ > 0, runs
in time poly(n, log(1/δ)) and with probability 1− δ outputs a point x such that x ∼ Uh−1(1).

We note that the above algorithm gives us a somewhat stronger guarantee than that in Definition 9. Indeed,
the algorithmALTF

gen with high probability outputs a point x ∈ {−1, 1}n whose distribution is exactly Uh−1(1)

(as opposed to a point whose distribution is close to Uh−1(1)).

Theorem 42. (approximate counting for LTFn, [Dye03]) There is an algorithm ALTF
count that on input (a

weights–based representation of) an arbitrary h ∈ LTFn, an accuracy parameter ε > 0 and a confidence
parameter δ > 0, runs in time poly(n, 1/ε, log(1/δ)) and outputs p̂ ∈ [0, 1] that with probability 1 − δ
satisfies p̂ ∈ [1− ε, 1 + ε] ·Prx∼Un [h(x) = 1].

We also need an efficient SQ learning algorithm for halfpaces. This is provided to us by a result of Blum
et. al. [BFKV97]:

Theorem 43. (SQ learning algorithm for LTFn, [BFKV97]) There is a distribution-independent SQ
learning algorithm ALTF

SQ for LTFn that has running time t1 = poly(n, 1/ε, log(1/δ)), uses at most
t2 = poly(n) time to evaluate each query, and requires tolerance of its queries no smaller than τ =
1/poly(n, 1/ε).

4.2 A densifier for LTFn. The last ingredient we need in order to apply our Theorem 21 is a computation-
ally efficient densifer for LTFn. This is the main technical contribution of this section and is summarized
in the following theorem:

Theorem 44. (efficient proper densifier for LTFn) Set γ(ε, δ, n)
def
= Θ

(
δ/(n2 log n)

)
. There is an (ε, γ, δ)–

densifier ALTF
den for LTFn that, for any input parameters 0 < ε, δ, 1/2n ≤ p̂ ≤ 1, outputs a function

g ∈ LTFn and runs in time poly(n, 1/ε, log(1/δ)).

Discussion and intuition. Before we prove Theorem 44, we provide some intuition. Let f ∈ LTFn be the
unknown LTF and suppose that we would like to design an (ε, γ, δ)–densifier ALTF

den for f . That is, given
sample access to Uf−1(1), and a number p̂ satisfying p ≤ p̂ < (1 + ε)p, where p = Prx∈Un [f(x) = 1],
we would like to efficiently compute (a weights–based representation for) an LTF g : {−1, 1}n → {−1, 1}
such that the following conditions are satisfied:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε, and

(b) Prx∼Un [g(x) = 1] ≤ (1/γ) ·Prx∼Un [f = 1].

(While condition (b) above appears slightly different than property (b) in our Definition 20, because of
property (a), the two statements are essentially equivalent up to a factor of 1/(1− ε) in the value of γ.)

We start by noting that it is easy to handle the case that p̂ is large. In particular, observe that if p̂ ≥ 2γ
then p = Prx∼Un [f(x) = 1] ≥ p̂/(1 + ε) ≥ p̂/2 ≥ γ, and we can just output g ≡ 1 since it clearly
satisfies both properties of the definition. For the following intuitive discussion we will henceforth assume
that p̂ ≤ 2γ.

Recall that our desired function g is an LTF, i.e., g(x) = sign(v · x− t), for some (v, t) ∈ Rn+1. Recall
also that our densifier has sample access to Uf−1(1), so it can obtain random positive examples of f , each
of which gives a linear constraint over the v, t variables. Hence a natural first approach is to attempt to

29

construct an appropriate linear program over these variables whose feasible solutions satisfy conditions (a)
and (b) above. We begin by analyzing this approach; while it turns out to not quite work, it will gives us
valuable intuition for our actual algorithm, which is presented further below.

Note that following this approach, condition (a) is relatively easy to satisfy. Indeed, consider any ε > 0
and suppose we want to construct an LTF g = sign(v · x − t) such that Prx∼Uf−1(1)

[g(x) = 1] ≥ 1 − ε.
This can be done as follows: draw a set S+ of N+ = Θ

(
(1/ε) · (n2 + log(1/δ))

)
samples from Uf−1(1)

and consider a linear program LP+ with variables (w, θ) ∈ Rn+1 that enforces all these examples to be
positive. That is, for each x ∈ S+, we will have an inequality w ·x ≥ θ. It is clear that LP+ is feasible (any
weights–based representation for f is a feasible solution) and that it can be solved in poly(n, 1/ε, log(1/δ))
time, since it is defined byO(N+) many linear constraints and the coefficients of the constraint matrix are in
{±1}. The following simple claim shows that with high probability any feasible solution of LP+ satisfies
condition (a):

Claim 45. With probability at least 1 − δ over the sample S+, any g ∈ LTFn consistent with S+ satisfies
condition (a).

Proof. Consider an LTF g and suppose that it does not satisfy condition (a), i.e., Prx∼Un [g(x) = −1|f(x) =
1] > ε. Since each sample x ∈ S+ is uniformly distributed in f−1(1), the probability it does not “hit” the
set g−1(−1)∩ f−1(1) is at most 1− ε. The probability that no sample in S+ hits g−1(−1)∩ f−1(1) is thus
at most (1 − ε)N+ ≤ δ/2n

2
. Recalling that there exist at most 2n

2
distinct LTFs over {−1, 1}n [Mur71],

it follows by a union bound that the probability there exists an LTF that does not satisfy condition (a) is at
most δ as desired.

The above claim directly implies that with high probability any feasible solution (w∗, θ∗) to LP+ is
such that g∗(x) = sign(w∗ · x − θ∗) satisfies condition (a). Of course, an arbitrary feasible solution to
LP+ is by no means guaranteed to satisfy condition (b). (Note for example that the constant 1 function is
certainly feasible for LP+.) Hence, a natural idea is to include additional constraints in our linear program
so that condition (b) is also satisfied.

Along these lines, consider the following procedure: Draw a set S−of N− = bδ/p̂c uniform unlabeled
samples from {−1, 1}n and label them negative. That is, for each sample x ∈ S−, we add the constraint
w · x < θ to our linear program. Let LP be the linear program that contains all the constraints defined
by S+ ∪ S−. It is not hard to prove that with probability at least 1 − 2δ over the sample S−, we have that
S− ⊆ f−1(−1) and hence (any weight based representation of) f is a feasible solution to LP . In fact, it is
possible to show that if γ is sufficiently small — roughly, γ ≤ δ/

(
4(n2 + log(1/δ))

)
is what is required —

then with high probability each solution to LP also satisfies condition (b). The catch, of course, is that the
above procedure is not computationally efficient because N− may be very large – if p̂ is very small, then it
is infeasible even to write down the linear program LP .

Algorithm Description. The above discussion motivates our actual densifier algorithm as follows: The
problem with the above described naive approach is that it generates (the potentially very large set) S− all
at once at the beginning of the algorithm. Note that having a large set S− is not necessarily in and of itself
a problem, since one could potentially use the ellipsoid method to solve LP if one could obtain an efficient
separation oracle. Thus intuitively, if one had an online algorithm which would generate S− on the fly, then
one could potentially get a feasible solution to LP in polynomial time. This serves as the intuition behind
our actual algorithm.

More concretely, our densifier ALTF
den will invoke a computationally efficient online learning algorithm

for LTFs. In particular, ALTF
den will run the online learner ALTF

MT for a sequence of stages and in each stage
it will provide as counterexamples to ALTF

MT judiciously chosen labeled examples, which will be positive
for the online learner’s current hypothesis, but negative for f (with high probability). Since ALTF

MT makes a

30

small number of mistakes in the worst-case, this process is guaranteed to terminate after a small number of
stages (since in each stage we force the online learner to make a mistake).

We now provide the details. We start by recalling the notion of online learning for a class C of boolean
functions. In the online model, learning proceeds in a sequence of stages. In each stage the learning
algorithm is given an unlabeled example x ∈ {−1, 1}n and is asked to predict the value f(x), where f ∈ C
is the unknown target concept. After the learning algorithm makes its prediction, it is given the correct value
of f(x). The goal of the learner is to identify f while minimizing the total number of mistakes. We say that
an online algorithm learns class C with mistake bound M if it makes at most M mistakes on any sequence
of examples consistent with some f ∈ C. Our densifier makes essential use of a computationally efficient
online learning algorithm for the class of linear threshold functions by Maass and Turan [MT94]:

Theorem 46. ([MT94], Theorem 3.3) There exists a poly(n) time deterministic online learning algorithm

ALTF
MT for the class LTFn with mistake bound M(n)

def
= Θ(n2 log n). In particular, at every stage of its

execution, the current hypothesis maintained by ALTF
MT is a (weights–based representation of an) LTF that

is consistent with all labeled examples received so far.

We note that the above algorithm works by reducing the problem of online learning for LTFs to a convex
optimization problem. Hence, one can use any efficient convex optimization algorithm to do online learning
for LTFs, e.g. the ellipsoid method [Kha80, GLS88]. The mistake bound in the above theorem follows by
plugging in the algorithm of Vaidya [Vai89, Vai96].

We now proceed with a more detailed description of our densifier followed by pseudocode and a proof of
correctness. As previously mentioned, the basic idea is to execute the online learner to learn f while cleverly
providing counterexamples to it in each stage of its execution. Our algorithm starts by samplingN+ samples
from Uf−1(1) and making sure that these are classified correctly by the online learner. This step guarantees
that our final solution will satisfy condition (a) of the densifier. Let h ∈ LTFn be the current hypothesis at
the end of this process. If h satisfies condition (b) (we can efficiently decide this by using our approximate
counter for LTFn), we output h and terminate the algorithm. Otherwise, we use our approximate uniform
generator to construct a uniform satisfying assignment x ∈ Uh−1(1) and we label it negative, i.e., we give the
labeled example (x,−1) as a counterexample to the online learner. Since h does not satisfy condition (b),
i.e., it has “many” satisfying assignments, it follows that with high probability (roughly, at least 1− γ) over
the choice of x ∈ Uh−1(1), the point x output by the generator will indeed be negative for f . We continue
this process for a number of stages. If all counterexamples thus generated are indeed consistent with f (this
happens with probability roughly 1 − γ ·M , where M = M(n) = Θ(n2 log n) is an upper bound on the
number of stages), after at most M stages we have either found a hypothesis h satisfying condition (b) or
the online learner terminates. In the latter case, the current hypothesis of the online learner is identical to f ,
as follows from Theorem 46. (Note that the above argument puts an upper bound of O(δ/M) on the value
of γ.) Detailed pseudocode follows:

Algorithm ALTF
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n ≤ p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1+ ε)p, with probability 1− δ outputs a function g ∈ LTFn satisfying conditions
(a) and (b).

1. Draw a set S+ of N+ = Θ
(
(1/ε) · (n2 + log(1/δ))

)
examples from Uf−1(1).

2. Initialize i = 0 and set M def
= Θ(n2 log n).

While (i ≤M) do the following:

31

(a) Execute the i-th stage of ALTF
MT and let h(i) ∈ LTFn be its current hypothesis.

(b) If there exists x ∈ S+ with h(i)(x) = −1 do the following:

• Give the labeled example (x, 1) as a counterexample to ALTF
MT .

• Set i = i+ 1 and go to Step 2.

(c) Run ALTF
count(h

(i), ε, δ/(4M)) and let p̂i be its output.

(d) Set γ def
= δ/(16M). If p̂i ≤ p̂/

(
γ · (1 + ε)2

)
then output h(i);

(e) otherwise, do the following:

• Run ALTF
gen (h(i), δ/(4M)) and let x(i) be its output.

• Give the point (x(i),−1) as a counterexample to ALTF
MT .

• Set i = i+ 1 and go to Step 2.

3. Output the current hypothesis h(i) of ALTF
MT .

Theorem 47. Algorithm ALTF
den (Uf−1(1), ε, δ, p̂) runs in time poly (n, 1/ε, log(1/δ)). If p ≤ p̂ < (1 + ε)p

then with probability 1 − δ it outputs a vector (w, θ) such that g(x) = sign(w · x − θ) satisfies conditions
(a) and (b) at the start of Section 4.2.

Proof. First note that by Claim 45, with probability at least 1−δ/4 over S+ any LTF consistent with S+ will
satisfy condition (a). We will condition on this event and also on the event that each call to the approximate
counting algorithm and to the approximate uniform generator is successful. Since Step 2 involves at most
M iterations, by a union bound, with probability at least 1− δ/4 all calls to ALTF

count will be successful, i.e.,
for all i we will have that pi/(1 + ε) ≤ p̂i ≤ (1 + ε) · pi, where pi = Prx∈Un [h(i)(x) = 1]. Similarly,
with failure probability at most δ/4, all points x(i) constructed by ALTF

gen will be uniformly random over
(h(i))−1(1). Hence, with failure probability at most 3δ/4 all three conditions will be satisfied.

Conditioning on the above events, if the algorithm outputs a hypothesis h(i) in Step 2(d), this hypothesis
will certainly satisfy condition (b), since pi ≤ (1 + ε)p̂i ≤ p̂/

(
γ · (1 + ε)

)
≤ p/γ. In this case, the algorithm

succeeds with probability at least 1 − 3δ/4. It remains to show that if the algorithm returns a hypothesis
in Step 3, it will be successful with probability at least 1 − δ. To see this, observe that if no execution of
Step 2(e) generates a point x(i) with f(x(i)) = 1, all the counterexamples given to ALTF

MT are consistent with
f . Therefore, by Theorem 46, the hypothesis of Step 3 will be identical to f , which trivially satisfies both
conditions.

We claim that with overall probability at least 1 − δ/4 all executions of Step 2(e) generate points x(i)

with f(x(i)) = −1. Indeed, fix an execution of Step 2(e). Since p̂i > p̂/
(
(1 + ε)2 · γ

)
, it follows that

p ≤ (4γ)pi. Hence, with probability at least 1− 4γ a uniform point x(i) ∼ U(hi)−1(1) is a negative example
for f , i.e., x(i) ∈ f−1(−1). By a union bound over all stages, our claim holds except with failure probability
4γ ·M = δ/4, as desired. This completes the proof of correctness.

It remains to analyze the running time. Note that Step 2 is repeated at most M = O(n2 log n) times.
Each iteration involves (i) one round of the online learner ALTF

MT (this takes poly(n) time by Theorem 46),
(ii) one call of ALTF

count (this takes poly(n, 1/ε, log(1/δ)) time by Theorem 42), and (iii) one call to ALTF
gen

(this takes poly(n, 1/ε, log(1/δ)) time by Theorem 41). This completes the proof of Theorem 47.

32

5 DNFs

In this section we apply our general positive result, Theorem 21, to give a quasipolynomial-time algorithm
for the inverse approximate uniform generation problem for s-term DNF formulas. Let DNFn,s denote
the class of all s-term DNF formulas over n Boolean variables (which for convenience we think of as 0/1
variables). Our main result of this section is the following:

Theorem 48. There is an algorithm ADNFn,s
inv which is an inverse approximate uniform generation algo-

rithm for the class DNFn,s. Given input parameters ε, δ the algorithm runs in time poly
(
nlog(s/ε), log(1/δ)

)
.

We note that even in the standard uniform distribution learning model the fastest known running time for
learning s-term DNF formulas to accuracy ε is poly(nlog(s/ε), log(1/δ)) [Ver90, Val12]. Thus it seems likely
that obtaining a poly(n, s, 1/ε)-time algorithm would require a significant breakthrough in computational
learning theory.

For our application of Theorem 21 for DNFs we shall have C = DNFn,s and C′ = DNFn,t for some
t which we shall specify later. As in the case of LTFs, the literature provides us with three of the four
ingredients that our general approach requires for DNF — approximate uniform generation, approximate
counting, and Statistical Query learning (more on this below) — and our main technical contribution is
giving the fourth necessary ingredient, a densifier. Before presenting and analyzing our densifier algorithm
we recall the other three ingredients.

5.1 Tools from the literature. Karp, Luby and Madras [KLM89] have given approximate uniform gen-
eration and approximate counting algorithms for DNF formulas. (We note that [JVV86] give an efficient
algorithm that with high probability outputs an exactly uniform satisfying assignment for DNFs.)

Theorem 49. (Approximate uniform generation for DNFs, [KLM89]) There is an approximate uniform
generation algorithm ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).

Theorem 50. (Approximate counting for DNFs, [KLM89]) There is an approximate counting algorithm
ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).

The fastest known algorithm in the literature for SQ learning s-term DNF formulas under arbitrary
distributions runs in time nO(n1/3 log s) · poly(1/ε) [KS04], which is much more than our desired running
time bound. However, we will see that we are able to use known malicious noise tolerant SQ learning
algorithms for learning sparse disjunctions over N Boolean variables rather than DNF formulas. In more
detail, our densifier will provide us with a set of N = nO(log(s/ε)) many conjunctions which is such that
the target function f is very close to a disjunction (which we call f ′) over an unknown subset of at most
s of these N conjunctions. Thus intuitively any learning algorithm for disjunctions, run over the “feature
space” of conjunctions provided by the densifier, would succeed if the target function were f ′, but the target
function is actually f (which is not necessarily exactly a disjunction over these N variables). Fortunately,
known results on the malicious noise tolerance of specific SQ learning algorithms imply that it is in fact
possible to use these SQ algorithms to learn f to high accuracy, as we now explain.

We now state the precise SQ learning result that we will use. The following theorem is a direct conse-
quence of, e.g., Theorems 5 and 6 of [Dec93] or alteratively of Theorems 5 and 6 of [AD98]:

Theorem 51. (Malicious noise tolerant SQ algorithm for learning sparse disjunctions) Let CDISJ,k be the
class of all disjunctions of length at most k over N Boolean variables x1, . . . , xN . There is a distribution-
independent SQ learning algorithmADISJ

SQ for CDISJ,k that has running time t1 = poly(N, 1/ε, log(1/δ)),
uses at most t2 = poly(N) time to evaluate each query, and requires tolerance of its queries no smaller
than τ = 1/poly(k, 1/ε). The algorithm outputs a hypothesis which is a disjunction over x1, . . . , xN .

33

Moreover, there is a fixed polynomial `(·) such that algorithm ADISJ
SQ has the following property: Fix a

distribution D over {0, 1}N . Let f be an N -variable Boolean function which is such that Prx∼D[f ′(x) 6=
f(x)] ≤ κ, where f ′ ∈ CDISJ,k is some k-variable disjunction and κ ≤ `(ε/k) < ε/2. Then if ADISJ

SQ is
run with a STAT(f,D) oracle, with probability 1 − δ it outputs a hypothesis h such that Prx∼D[h(x) 6=
f ′(x)] ≤ ε/2, and hence Prx∼D[h(x 6= f(x)] ≤ ε.

(We note in passing that at the heart of Theorem 51 is an attribute-efficient SQ algorithm for learning
sparse disjunctions. Very roughly speaking, an attribute efficient SQ learning algorithm is one which can
learn a target function over N variables, which actually depends only on an unknown subset of k � N
of the variables, using statistical queries for which the minimum value of the tolerance τ is “large.” The
intuition behind Theorem 51 is that since the distance between f and f ′ is much less than τ , the effect of
using a STAT(f,D) oracle rather than a STAT(f ′,D) oracle is negligible, and hence the SQ algorithm will
succeed whether it is run with f or f ′ as the target function.)

5.2 A densifier for DNFn,s and the proof of Theorem 48. In this subsection we state our main theorem
regarding the existence of densifiers for DNF formulas, Theorem 52, and show how Theorem 48 follows
from this theorem.

Theorem 52. Let γ(n, s, 1/ε, 1/δ) = 1/(4n2 log(2s/`(ε/s)) log(s/δ)). Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂)

outputs a collection S of conjunctions C1, . . . , C|S| and has the following performance guarantee: If p
def
=

Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)p, then with probability at least 1 − δ, the function g(x)
def
= ∨i∈[|S|]Ci

satisfies the following:

1. Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε;

2. Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, s, 1/ε, 1/δ).

3. There is a DNF f ′ = Ci1∨· · ·∨Cis′ , which is a disjunction of s′ ≤ s of the conjunctionsC1, . . . , C|S|,
such that Prx∼Ug−1(1)

[f ′(x) 6= f(x)] ≤ `(ε/s), where `(·) is the polynomial from Theorem 51.

The size of S and the running time of ADNFn,s
den (Uf−1(1), ε, δ, p̂) is poly(nlog(s/ε), log(1/δ)).

With a slight abuse of terminology we may rephrase the above theorem as saying that ADNFn,s
den is a

(ε, γ, δ)-densifier for function class C = DNFn,s using class C′ = DNFn,t where t = nO(log(s/ε)). We
defer the description of Algorithm ADNFn,s

den and the proof of Theorem 52 to the next subsection.

Proof of Theorem 48. The proof is essentially just an application of Theorem 21. The only twist is the use
of a SQ disjunction learning algorithm rather than a DNF learning algorithm, but the special properties of
Algorithm ADISJ

SQ let this go through without a problem.
In more detail, in Step 2(e) of AlgorithmA′Cinv (see Section 3.3), in the execution of AlgorithmASQ−SIM,

the SQ algorithm that is simulated is the algorithm ADISJ
SQ run over the feature space S of all conjunctions

that are output by Algorithm ADNFn,s
den in Step 1 of Algorithm A′Cinv (i.e., these conjunctions play the role

of variables x1, . . . , xN for the SQ learning algorithm). Property (3) of Theorem 52 and Theorem 51
together imply that the algorithmADISJ

SQ , run on a STAT(f,Ug−1(1)) oracle with parameters ε, δ, would with
probability 1− δ output a hypothesis h′ satisfying Prx∼Ug−1(1)

[h′(x) 6= f(x)] ≤ ε. Hence the hypothesis h
that is output by ASQ−SIM in Step 2(e) of Algorithm A′Cinv fulfills the necessary accuracy (with respect to f
under D = Ug−1(1)) and confidence requirements, and the overall algorithm ACinv succeeds as described in
Theorem 21.

34

Finally, combining the running time bounds of ADNFn,s
den and ADISJ

SQ with the time bounds of the other
procedures described earlier, one can straightforwardly verify that the running time of the overall algorithm
ACinv is poly(nlog(s/ε), log(1/δ)).

5.3 Construction of a densifier for DNFn,s and proof of Theorem 52. Let f = T1 ∨ · · · ∨ Ts be
the target s-term DNF formula, where T1, . . . , Ts are the terms (conjunctions). The high-level idea of our
densifier is quite simple: If Ti is a term which is “reasonably likely” to be satisfied by a uniform draw of x
from f−1(1), then Ti is at least “mildly likely” to be satisfied by r = 2 log n consecutive independent draws
of x from f−1(1). Such a sequence of draws x1, . . . , xr will with high probability uniquely identify Ti. By
repeating this process sufficiently many times, with high probability we will obtain a pool C1, . . . , C|S| of
conjunctions which contains all of the terms Ti that are reasonably likely to be satisfied by a uniform draw
of x from f−1(1). Theorem 52 follows straightforwardly from this.

We give detailed pseudocode for our densifier algorithm below:

Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n < p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1 + ε)p, with probability 1 − δ outputs a set S of conjunctions C1, . . . , C|S| as
described in Theorem 52

1. Initialize set S to ∅. Let `(·) be the polynomial from Theorem 51.

2. For i = 1 to M = 2n2 log(2s/`(ε/s)) log(s/δ), repeat the following:

(a) Draw r = 2 log n satisfying assignments x1, . . . , xr from Uf−1(1).

(b) Let Ci be the AND of all literals that take the same value in all r strings x1, . . . , xr (note Ci
may be the empty conjunction). We say Ci is a candidate term.

(c) If the candidate term Ci satisfies Prx∼Un [Ci(x) = 1] ≤ p̂ then add Ci to the set S.

3. Output S.

The following crucial claim makes the intuition presented at the start of this subsection precise:

Claim 53. Suppose Tj is a term in f such that Prx∼Uf−1(1)
[Tj(x) = 1] ≥ `(ε/s)/(2s). Then with probabil-

ity at least 1−δ/s, term Tj is a candidate term at some iteration of Step 2 of AlgorithmADNFn,s
den (Uf−1(1), ε, δ, p̂).

Proof. Fix a given iteration i of the loop in Step 2. With probability at least

(`(ε/s)/(2s))2 logn = (1/n)2 log(2s/`(ε/s)),

all 2 log n points x1, . . . , x2 logn satisfy Tj ; let us call this event E, and condition on E taking place.
We claim that conditioned on E, the points x1, . . . , x2 logn are independent uniform samples drawn from
T−1
j (1). (To see this, observe that each xi is an independent sample chosen uniformly at random from
f−1(1) ∩ T−1

j ; but f−1(1) ∩ T−1
j (1) is identical to T−1

j (1).) Given that x1, . . . , x2 logn are independent
uniform samples drawn from T−1

j (1), the probability that any literal which is not present in Tj is contained
in Ci (i.e., is satisfied by all 2 log n points) is at most 2n/n2 ≤ 1/2. So with overall probability at least

1
2n2 log(2s/`(ε/s)) , the term Tj is a candidate term at iteration i. Consequently Tj is a candidate term at some
iteration with probability at least 1− δ/s, by the choice of M = 2n2 log(2s/`(ε/s)) log(s/δ).

35

Now we are ready to prove Theorem 52:

Proof of Theorem 52. The claimed running time bound of ADNFn,s
den is easily verified, so it remains only to

establish (1)-(3). Fix p̂ such that p ≤ p̂ < (1 + ε)p where p = Prx∼Un [f(x) = 1].
Consider any fixed term Tj of f such that Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). By Claim 53 we
have that with probability at least 1 − δ/s, term Tj is a candidate term at some iteration of Step 2 of the
algorithm. We claim that in step (c) of this iteration the term Tj will in fact be added to S. This is because
by assumption we have

Prx∼Un [Tj(x) = 1] ≤ Prx∼Un [f(x) = 1] = p ≤ p̂.

So by a union bound, with probability at least 1− δ every term Tj in f such that Prx∼Uf−1(1)
[Tj(x) = 1] ≥

`(ε/s)/(2s) is added to S.
Let L be the set of those terms Tj in f that have Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). Let f ′ be the
DNF obtained by taking the OR of all terms in L. By a union bound over the (at most s) terms that are in
f but not in f ′, we have Prx∼Uf−1(1)

[f ′(x) = 1] ≥ 1 − `(ε/s)/2. Since g (as defined in Theorem 52 has
g(x) = 1 whenever f ′(x) = 1, it follows that Prx∼Uf−1(1)

[g(x) = 1] ≥ 1− `(ε/s)/2 ≥ 1− ε, giving item
(1) of the theorem.

For item (2), since f(x) = 1 whenever f ′(x) = 1, we have Prx∼Ug−1(1)
[f(x) = 1] ≥ Prx∼Ug−1(1)

[f ′(x) =

1]. Every x such that f ′(x) = 1 also has g(x) = 1 so to lower bound Prx∼Ug−1(1)
[f ′(x) = 1] it is enough to

upper bound the number of points in g−1(1) and lower bound the number of points in f ′−1(1). Since each
Ci that is added to S is satisfied by at most p̂2n ≤ (1+ ε)p2n points, we have that |g−1(1)| ≤ (1+ ε)pM2n.
Since at least 1− ε of the points that satisfy f also satisfy f ′, we have that |f ′−1(1)| ≥ p(1− ε)2n. Thus we
have Prx∼Ug−1(1)

[f ′(x) = 1] ≥ p(1− ε)/((1 + ε)pM) = 1−ε
1+ε ·

1
M > 1

2M , giving (2).
Finally, for (3) we have that f(x) 6= f ′(x) only on those inputs that have f(x) = 1 but f ′(x) = 0

(because some term outside of L is satisfied by x and no term in L is satisfied by x). Even if all such
inputs x lie in g−1(1) (the worst case), there can be at most (`(ε/s)/2)p2n such inputs, and we know that
|g−1(1)| ≥ |f−1(1)| ≥ p(1 − ε)2n. So we have Prx∼Ug−1(1)

[f(x) 6= f ′(x)] ≤ `(ε/s)/2
1−ε ≤ `(ε/s), and we

have (3) as desired.

5.4 Inverse approximate uniform generation for k-DNFs. We briefly note that our general approach
immediately yields an efficient inverse approximate uniform generation algorithm for the class of k-DNFs
for any constant k. Let k-DNF denote the class of all k-DNFs over n Boolean variables, i.e., DNF formulas
in which each term (conjunction) has at most k literals.

Theorem 54. There is an algorithmAk-DNF
inv which is an inverse approximate uniform generation algorithm

for the class k-DNF. Given input parameters ε, δ the algorithm runs in time poly
(
nk, 1/ε, log(1/δ)

)
.

For any k-DNF f it is easy to see that Prx∼Un [f(x) = 1] ≥ 1/2k, and consequently the constant 1 func-
tion is a γ-densifier for k-DNF with γ = 1/2k. Theorem 54 then follows immediately from Theorem 21,
using the algorithms for approximate uniform generation and counting of DNF formulas mentioned above
[KLM89] together with well-known algorithms for SQ learning k-DNF formulas in poly(nk, 1/ε, log(1/δ))
time [Kea98].

36

6 Negative results for inverse approximate uniform generation

In this section, we will prove hardness results for inverse approximate uniform generation problems for
specific classes C of Boolean functions. As is standard in computational learning theory, our hardness
results are based on cryptographic hardness assumptions. The hardness assumptions we use are well studied
assumptions in cryptography such as the strong RSA assumption, Decisional Diffie Hellman problem, and
hardness of learning parity with noise.

As was alluded to in the introduction, in light of the standard approach, there are two potential barriers
to obtaining inverse approximate uniform generation algorithms for a class C of functions. The first is
that “reconstructing” the object from class C may be hard, and the second is that sampling approximately
uniform random satisfying assignments from the reconstructed object may be hard. While any hard inverse
approximate uniform generation problem must be hard because of one of these two potential barriers, we
emphasize here that even if one of the two steps in the standard approach is shown to be hard, this does
not constitute a proof of hardness of the overall inverse approximate uniform generation problem, as there is
may exist some efficient algorithm for the class C which departs from the standard approach. Indeed, we will
give such an example in Section 7, where we give an efficient algorithm for a specific inverse approximate
uniform generation problem that does not follow the standard approach. (In fact, for that problem, the second
step of the standard approach is provably no easier than the well-known graph automorphism problem, which
has withstood several decades of effort towards even getting a sub-exponential time algorithm.)

Our hardness results come in two flavors. Our first hardness results, based on signature schemes, are
for problems where it is provably hard (of course under a computational hardness assumption) to sample
approximately uniform satisfying assignments. In contrast, our hardness results of the second flavor are
based on Message Authentication Codes (MACs). We give such a result for a specific class C which has the
property that it is actually easy to sample uniform satisfying assignments for functions in C; hence, in an
informal sense, it is the first step in the standard approach that is algorithmically hard for this problem. The
following subsections describe all of our hardness results in detail.

6.1 Hardness results based on signature schemes. In this subsection we prove a general theorem, The-
orem 60, which relates the hardness of inverse approximate uniform generation to the existence of certain
secure signature schemes in cryptography. Roughly speaking, Theorem 60 says that if secure signature
schemes exist, then the inverse approximate uniform generation problem is computationally hard for any
class C which is Levin-reducible from CIRCUIT-SAT. We will use this general result to establish hard-
ness of inverse approximate uniform generation for several natural classes of functions, including 3-CNF
formulas, intersections of two halfspaces, and degree-2 polynomial threshold functions (PTFs).

We begin by recalling the definition of public key signature schemes. For an extensive treatment of
signature schemes, see [Gol04]. For simplicity, and since it suffices for our purposes, we only consider
schemes with deterministic verification algorithms.

Definition 55. A signature scheme is a triple (G,S, V) of polynomial-time algorithms with the following
properties :

• (Key generation algorithm)G is a randomized algorithm which on input 1n produces a pair (pk, sk)
(note that the sizes of both pk and sk are polynomial in n).

• (Signing algorithm) S is a randomized algorithm which takes as input a messagem from the message
spaceM, a secret key sk and randomness r∈ {0, 1}n, and outputs a signature σ = S(m, sk, r).

• (Verification algorithm) V is a deterministic algorithm such that V (m, pk, σ) = 1 for every σ =
S(m, sk, r).

37

We will require signature schemes with some special properties which we now define, first fixing some
notation. Let (G,S, V) be a signature scheme. For a message space M and pair (pk, sk) of public and
secret keys, we define the set R1,sk of “valid” signed messages as the set of all possible signed messages
(m,σ = S(m, sk, r)) as m ranges over all of M and r ranges over all of {0, 1}n. Similarly, we define
the set R2,pk of “potential” signed messages as R2,pk = {(m,σ) : V (m, pk, σ) = 1}. Likewise, we
define the set of valid signatures for message m, denoted R1,sk(m), as the set of all possible pairs (m,σ =
S(m, sk, r)) as r ranges over all of {0, 1}n, and we define the set of potential signatures for message m as
R2,pk(m) = {(m,σ) : V (m, pk, σ) = 1}.
Definition 56. Let (G,S, V) be a signature scheme andM be a message space. A pair (pk, sk) of public
and secret keys is said to be (δ, η)-special if the following properties hold :

• LetR1,sk be the set of valid signed messages andR2,pk be the set of potential signed messages. Then
|R1,sk|
|R2,pk| ≥ 1− η.

• For any fixed pair (m,σ) ∈ R1,sk(m), we have Prr∈{0,1}n [σ = S(m, sk, r)] = 1
|R1,sk(m)| .

• Define two distributionsD andD′ over pairs (m,σ) as follows : D is obtained by choosingm ∈U M
and choosing σ ∈U R1,sk(m). D′ is the distribution defined to be uniform over the set R1,sk. Then
dTV (D,D′) ≤ δ.

From now on, in the interest of brevity,M will denote the “obvious” message spaceM associated with
a signature scheme unless mentioned otherwise. Similarly, the randomness r for the signing algorithm S
will always assumed to be r ∈U {0, 1}n.

We next recall the standard notion of existential unforgeability under RMA (Random Message Attack):

Definition 57. A signature scheme (G,S, V) is said to be (t, ε)-RMA secure if the following holds: Let
(pk, sk) ← G(1n). Let (m1, . . . ,mt) be chosen uniformly at random from M. Let σi ← S(mi, sk, r).
Then, for any probabilistic algorithm A running in time t,

Pr
(pk,sk),(m1,...,mt),(σ1,...,σt)

[A(pk,m1, . . . ,mt, σ1, . . . , σt) = (m′, σ′)] ≤ ε

where V (m′, pk, σ′) = 1 and m′ 6= mi for all i = 1, . . . , t.

Next we need to formally define the notion of hardness of inverse approximate uniform generation:

Definition 58. Let C be a class of n-variable Boolean functions. C is said to be (t(n), ε, δ)-hard for inverse
approximate uniform generation if there is no algorithm A running in time t(n) which is an (ε, δ)-inverse
approximate uniform generation algorithm for C.

Finally, we will also need the definition of an invertible Levin reduction:

Definition 59. A binary relation R is said to reduce to another binary relation R′ by a time-t invertible
Levin reduction if there are three algorithms α, β and γ, each running in time t(n) on instances of length
n, with the following property:

• For every (x, y) ∈ R, it holds that (α(x), β(x, y)) ∈ R′;

• For every (α(x), z) ∈ R′, it holds that (x, γ(α(x), z)) ∈ R.

Furthermore, the functions β and γ are injective maps with the property that γ(α(x), β(x, y)) = y.

Note that for any class of functions C, we can define the binary relation RC as follows : (f, x) ∈ RC if
and only if f(x) = 1 and f ∈ C. In this section, whenever we say that there is an invertible Levin reduction
from class C1 to class C2, we mean that there is an invertible Levin reduction between the corresponding
binary relations RC1 and RC2 .

38

6.1.1 A general hardness result based on signature schemes. We now state and prove our main theorem
relating signature schemes to hardness of inverse approximate uniform generation:

Theorem 60. Let (G,S, V) be a (t, ε)-RMA secure signature scheme. Suppose that with probability at least
99/100 a random pair (pk, sk)← G(1n) is (δ, η)-special. Let C be a class of n-variable Boolean functions
such that there is a Levin reduction from CIRCUIT-SAT to C running in time t′(n). Let κ1 and κ2 be such
that κ1 ≤ 1− 2 · (2η + δ + t′(n)/|M|), κ2 ≤ 1− 2t′(n) · (η + δ) and ε ≤ (1− κ1)(1− κ2)/4. If t1(·) is
a time function such that 2t1(t′(n)) ≤ t(n), then C is (t1(n), κ1, κ2)-hard for inverse approximate uniform
generation.

The high-level idea of the proof is simple: Suppose there were an efficient algorithm for the inverse ap-
proximate uniform generation problem for C. Because of the invertible Levin reduction from CIRCUIT-SAT
to C, there is a signature scheme for which the verification algorithm (using any given public key) corre-
sponds to a function in C. The signed messages (m1, σ1), . . . , (mt, σt) correspond to points from Uf−1(1)

where f ∈ C. Now the existence of an efficient algorithm for the inverse approximate uniform generation
problem for C (i.e. an algorithm which, given points from Uf−1(1), can generate more such points) translates
into an algorithm which, given a sample of signed messages, can generate a new signed message. But this
violates the existential unforgeability under RMA of the signature scheme.

We now proceed to the formal proof.

Proof. Assume towards a contradiction that there is an algorithm A for inverse approximate uniform gen-
eration Ainv which runs in time t1 such that with probability 1 − κ2, the output distribution is κ1-close to
the target distribution. If we can show that for any (δ, η)-special key pair (pk, sk) the resulting signature
scheme is not (t, ε) secure, then this will result in a contradiction. We will now use algorithm A to construct
an adversary which breaks the signature scheme for (δ, η)-special key pairs (pk, sk).

Towards this, fix a (δ, η)-special key pair (pk, sk) and consider the function Vpk :M×{0, 1}∗ → {0, 1}
defined as Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an instance of CIRCUIT-SAT (i.e. Vpk is computed by
a satisfiable polynomial-size Boolean circuit). Since there is an invertible Levin reduction from CIRCUIT-
SAT to C, given pk, the adversary in time t′(n) can compute Φpk ∈ C with the following properties (let β
and γ be the corresponding algorithms in the definition of the Levin reduction):

• For every (m,σ) such that Vpk(m,σ) = 1, Φpk(β(Vpk, (m,σ))) = 1.

• For every x such that Φpk(x) = 1, Vpk(γ(Φpk, x)) = 1.

Recall that the adversary receives signatures (m1, σ1), . . . , (mt′(n), σt′(n)). Let xi = β(Vpk, (mi, σi)).
Let Dx be the distribution of (x1, . . . , xt′(n)). We next make the following claim.

Claim 61. Let y1, . . . , yt′ be drawn uniformly at random from Φ−1
pk (1) and let Dy be the corresponding

distribution of (y1, . . . , yt). Then, Dy and Dx are t′(n)·(2η + δ)-close in statistical distance.

Proof. Note that Dy and Dx are t′(n)-way product distributions. If D(1)
x and D(1)

y are the corresponding
marginals on the first coordinate, then t′(n) · dTV (D

(1)
x , D

(1)
y) ≤ dTV (Dx, Dy). Thus, it suffices to upper

bound dTV (D
(1)
x , D

(1)
y), which we now do.

dTV (D(1)
x , D(1)

y) ≤
∑

z∈supp(D(1)
y)\supp(D(1)

x)

∣∣∣D(1)
x (z)−D(1)

y (z)
∣∣∣+

∑
z∈supp(D(1)

x)

∣∣∣D(1)
x (z)−D(1)

y (z)
∣∣∣ .

39

By definition of (pk, sk) being (δ, η)-special, we get that∑
z∈supp(D(1)

y)\supp(D(1)
x)

|D(1)
x (z)−D(1)

y (z)| ≤ η.

To bound the next sum, let τ = Pr[D
(1)
y ∈ supp(D(1)

x)]. Note that τ ≥ 1− η. We have

∑
z∈supp(D(1)

x)

∣∣∣D(1)
x (z)−D(1)

y (z)
∣∣∣ ≤ ∑

z∈supp(D(1)
x)

∣∣∣τD(1)
x (z)−D(1)

y (z)
∣∣∣+ (1− τ)

∑
z∈supp(D(1)

x)

D(1)
x (z)

≤ η + τ ·
∑

z∈supp(D(1)
x)

∣∣∣∣∣D(1)
x (z)− D

(1)
y (z)

τ

∣∣∣∣∣ .
We observe that D

(1)
y (z)
τ restricted to supp(D(1)

x) is simply the uniform distribution over the image of the

set R1,sk and hence is the same as applying the map β on the distribution D′. Likewise D(1)
x is the same as

applying the map β on D (mentioned in Definition 56). Hence, we have that

dTV (D(1)
x , D(1)

y) ≤ 2η + dTV (D,D′) ≤ 2η + δ.

Now, observe that the instances xi are each of length at most t′(n). Since the distributions Dx and
Dy are t′(n)·(2η + δ) close, hence our adversary can run Ainv in time t(n) on the examples x1, . . . , xt′(n)

and succeed with probability 1 − κ2 − t′(n)·(2η + δ) ≥ (1 − κ2)/2 in producing a sampler whose output
distribution is κ1-close to UΦ−1

pk (1). Call this output distribution Z. Let β(D) denote the distribution obtained

by applying the map β on D. The proof of Claim 61 shows that β(D) is (2η + δ)-close to the distribution
UΦ−1

pk (1). Thus, with probability (1−κ2)/2, Z is (κ1+(2η+δ))-close to the distribution β(D). By definition
of D, we have

Pr(m,σ)∈D[∀i ∈ [t′],mi 6= m] ≥ 1− t′

|M|
.

Thus, with probability 1−κ2
2 ,

Prz∈Z [z = g(m,σ) and ∀i ∈ [t′],mi 6= m] ≥ 1− κ1 − (2η + δ)− t′

|M|
≥ 1− κ1

2

Thus, with overall probability (1−κ1)(1−κ2)/4 ≥ ε, the adversary succeeds in producing z = g(m,σ)
such that ∀i ∈ [t′],mi 6= m. Applying the map γ on (Φpk, z), the adversary gets the pair (m,σ). Also, note
that the total running time of the adversary is t1(t′(n)) + t′(n) ≤ 2t1(t′(n)) ≤ t(n) which contradicts the
(t, ε)-RMA security of the signature scheme.

6.1.2 A specific hardness assumption. At this point, at the cost of sacrificing some generality, we con-
sider a particular instantiation of a signature scheme from the literature which meets our requirements.
While similar signature schemes can be constructed under many different cryptographic assumptions in the
literature, we forsake such generality to keep the discussion from getting too cumbersome.

To state our cryptographic assumption, we need the following notation:

• PRIMESk is the set of k-bit prime numbers.

40

• RSAk is the set of all products of two primes of length b(k − 1)/2c.

The following cryptographic assumption (a slight variant of the standard RSA assumption) appears in
[MRV99].

Assumption 1. The RSA′ s(k) assumption: Fix any m ∈ RSAk and let x ∈U Z∗m and p ∈U PRIMESk+1.
Let A be any probabilistic algorithm running in time s(k). Then,

Pr(x,p)[A(m,x, p) = y and yp = x (mod m)] ≤ 1

s(k)
.

As mentioned in [MRV99], given the present state of computational number theory, it is plausible to
conjecture the RSA′ s(k) assumption for s(k) = 2k

δ
for some absolute constant δ > 0. For the sake of

conciseness, for the rest of this section we write “Assumption 1 holds true” to mean that Assumption 1
holds true with s(k) = 2n

δ
for some fixed constant δ > 0. (We note, though, that all our hardness results go

through giving superpolynomial hardness using only s(k) = kω(1).)
Micali et al. [MRV99] give a construction of a “unique signature scheme” using Assumption 1:

Theorem 62. If Assumption 1 holds true, then there is a (t = 2n
δ
, ε = 1/t)-RMA secure signature scheme

(G,S, V) with the following property : For any message m ∈ M, there do not exist σ1 6= σ2 such that
V (m,σ1) = V (m,σ2) = 1. In this scheme the signing algorithm S is deterministic and the message space
M is of size 2n

δ
.

The above theorem says that under the RSA′ s(k) assumption, there is a deterministic signature scheme
such that there is only one signature σm for every message m, and for every message m the only accepting
input for V is (m,σm). As a consequence, the signature scheme in Theorem 62 has the property that every
(pk, sk) pair that can be generated by G is (0, 0)-special.

Remark 63. It is important to note here that constructions of (0, 0) special signature schemes are abundant
in the literature. A partial list follows : Lysyanskaya [Lys02] constructed a deterministic (0, 0) special sig-
nature scheme using a strong version of the Diffie–Hellman assumption. Hohenberger and Waters [HW10]
constructed a scheme with a similar guarantee using a variant of the Diffie–Hellman assumption on bilinear
groups. In fact, going back much further, Cramer and Shoup [CS00, Fis03] show that using the Strong RSA
assumption, one can get a (0, 0) special signature scheme (which however is not deterministic). We remark
that the scheme as stated in [CS00] is not (0, 0) special in any obvious sense, but the more efficient version
in [Fis03] can be easily verified to be (0, 0) special. Throughout this section, for the sake of simplicity, we
use the signature scheme in Theorem 62.

Instantiating Theorem 60 with the signature scheme from Theorem 62, we obtain the following corol-
lary:

Corollary 64. Suppose that Assumption 1 holds true. Then the following holds : Let C be a function class
such that there is a polynomial time (nk-time) invertible Levin reduction from CIRCUIT-SAT to C. Then
C is (2n

c
, 1 − 2−n

c
, 1 − 2−n

c
)-hard for inverse approximate uniform generation for some constant c > 0

(depending only on the “δ” in Assumption 1 and on k).

6.1.3 Inverse approximate uniform generation hardness results for specific function classes whose
satisfiability problem is NP-complete. In this subsection we use Corollary 64 to prove hardness results for
inverse approximate uniform generation for specific function classes C for which there are invertible Levin
reductions from CIRCUIT-SAT to C.

Recall that a 3-CNF formula is a conjunction of clauses (disjunctions) of length 3. The following fact
can be easily verified by inspecting the standard reduction from CIRCUIT-SAT to 3-CNF-SAT.

41

Fact 65. There is a polynomial time invertible Levin reduction from CIRCUIT-SAT to 3-CNF-SAT.

As a corollary, we have the following result.

Corollary 66. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that the class
3-CNF is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for inverse approximate uniform generation.

Corollary 66 is interesting in light of the well known fact that the class of all 3-CNF formulas is effi-
ciently PAC learnable from uniform random examples (in fact under any distribution).

We next observe that the problem of inverse approximate uniform generation remains hard even for
3-CNF formulas in which each variable occurs a bounded number of times. To prove this we will use the
fact that polynomial time invertible Levin reductions compose:

Fact 67. If there is a polynomial time invertible Levin reduction from CIRCUIT-SAT to C and a polynomial
time Levin reduction from C to C1, then there is a polynomial time invertible Levin reduction from CIRCUIT-
SAT to C1.

The following theorem says that the inverse approximate uniform generation problem remains hard for
the class of all 3-CNF formulas in which each variable occurs at most 4 times (hereafter denoted 3,4-CNF).

Theorem 68. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that 3,4-CNF-
SAT is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for inverse approximate uniform generation.

Proof. Tovey [Tov84] shows that there is a polynomial time invertible Levin reduction from 3-CNF-SAT
to 3,4-CNF-SAT. Using Fact 67, we have a polynomial time Levin reduction from CIRCUIT-SAT to 3,4-
CNF-SAT. Now the result follows from Corollary 64

The next theorem shows that the class of all intersections of two halfspaces over n Boolean variables is
hard for inverse approximate uniform generation.

Theorem 69. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that C = {all
intersections of two halfspaces over n Boolean variables} is (2n

c
, 1 − 2−n

c
, 1 − 2−n

c
)-hard for inverse

approximate uniform generation.

Proof. We recall that the SUBSET-SUM problem is defined as follows : An instance Φ is defined by
positive integers w1, . . . , wn, s > 0. A satisfying assignment for this instance is given by x ∈ {0, 1}n such
that

∑n
i=1wixi = s. It is well known that the SUBSET-SUM problem is NP-complete and it is folklore that

there is a invertible Levin reduction from 3-SAT to SUBSET-SUM. However, since it is somewhat difficult
to find this reduction explicitly in the literature, we outline such a reduction.

To describe the reduction, we first define 1-in-3-SAT. An instance Ψ of 1-in-3-SAT is defined over
Boolean variables x1, . . . , xn with the following constraints : The ith constraint is defined by a subset of at
most three literals over x1, . . . , xn. An assignment to x1, . . . , xn satisfies Ψ if and only if for every constraint
there is exactly one literal which is set to true. Schaefer [Sch78] showed that 3-SAT reduces to 1-in-3-SAT
in polynomial time, and the reduction can be easily verified to be an invertible Levin reduction. Now the
standard textbook reduction from 3-SAT to SUBSET-SUM (which can be found e.g. in [Pap94]) applied to
instances of 1-in-3-SAT, can be easily seen to be a polynomial time invertible Levin reduction. By Fact 67,
we thus have a polynomial time invertible Levin reduction from 3-CNF-SAT to SUBSET-SUM.

With this reduction in hand, it remains only to observe that that any instance of SUBSET-SUM is
also an instance of “intersection of two halfspaces,” simply because

∑n
i=1wixi = s if and only if s ≤∑n

i=1wi ·xi ≤ s. Thus, there is a polynomial time invertible Levin reduction from 3-CNF-SAT to the class
of all intersections of two halfspaces. This finishes the proof.

42

6.1.4 A hardness result where the satisfiability problem is in P . So far all of our hardness results have
been for classes C of NP-complete languages. As Theorem 60 requires a reduction from CIRCUIT-SAT to
C, this theorem cannot be directly used to prove hardness for classes C which are not NP-hard. We next
give an extension of Theorem 60 which can apply to classes C for which the satisfiability problem is in P .
Using this result we will show hardness of inverse approximate uniform generation for MONOTONE-2-
CNF-SAT. (Recall that a monotone 2-CNF formula is a conjunction of clauses of the form xi ∨ xj , with no
negations; such a formula is trivially satisfiable by the all-true assignment.)

We begin by defining by a notion of invertible one-many reductions that we will need.

Definition 70. CIRCUIT-SAT is said to have an η-almost invertible one-many reduction to a function class
C if the following conditions hold:

• There is a polynomial time computable function f such that given an instance Φ of CIRCUIT-SAT
(i.e. Φ is a satisfiable circuit), Ψ = f(Φ) is an instance of C (i.e. Ψ ∈ C and Ψ is satisfiable).

• Fix any instance Φ of CIRCUIT-SAT and let A = Ψ−1(1) denote the set of satisfying assignments of
Ψ. Then A can be partitioned into sets A1 and A2 such that |A2|/|A| ≤ η and there is an efficiently
computable function g : A1 → Φ−1(1) such that g(x) is a satisfying assignment of Φ for every
x ∈ A1.

• For every y which is a satisfying assignment of Φ, the number of pre-images of y under g is exactly
the same, and the uniform distribution over g−1(y) is polynomial time samplable.

We next state the following simple claim which will be helpful later.

Claim 71. Suppose there is an η-almost invertible one-many reduction from CIRCUIT-SAT to C. Let f and
g be the functions from Definition 70. Let Φ be an instance of CIRCUIT-SAT and let Ψ = f(Φ) be the
corresponding instance of C. Define distributions D1 and D2 as follows :

• A draw from D1 is obtained by choosing y uniformly at random from Φ−1(1) and then outputting z
uniformly at random from g−1(y).

• A draw from D2 is obtained by choosing z′ uniformly at random from Ψ−1(1).

Then we have dTV (D1, D2) ≤ η.

Proof. This is an immediate consequence of the fact that D1 is uniform over the setA1 while D2 is uniform
over the set A (from Definition 70).

We next have the following extension of Corollary 64.

Theorem 72. Suppose that Assumption 1 holds true. Then if C is a function class such that there is an
η-almost invertible one-many reduction (for η = 2−Ω(n)) from CIRCUIT-SAT to C, then C is (2n

c
, 1 −

2−n
c
, 1− 2−n

c
)-hard for inverse approximate uniform generation for some absolute constant c > 0.

Proof. The proof is similar to the proof of Corollary 64. Assume towards a contradiction that there is an
algorithm for inverse approximation uniform generation Ainv for C which runs in time t1 such that with
probability 1 − κ2, the output distribution is κ1-close to the target distribution. (We will set t1, κ1 and κ2

later to 2n
c
, 1− 2−n

c
and 1− 2−n

c
respectively.)

Let (G,S, V) be the RMA-secure signature scheme constructed in Theorem 62. Note that (G,S, V) is
a (T, ε)-RMA secure signature scheme where T = 2n

δ
, ε = 1/T and |M| = 2n

µ
for constant δ, µ > 0.

Let (pk, sk) be a choice of key pair. We will us Ainv to contradict the security of (G,S, V). Towards this,

43

consider the function Vpk :M× {0, 1}∗ → {0, 1} defined as Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an
instance of CIRCUIT-SAT. Consider the η-invertible one-many reduction from CIRCUIT-SAT to C. Let α
and β have the same meaning as in Definition 70. Let Ψ = α(Vpk) and let A, A1 and A2 have the same
meaning as in Definition 70. The adversary receives message-signature pairs (m1, σ1) . . . (mt1 , σt1) where
m1, . . . ,mt1 are chosen independently at random fromM. For any i, (mi, σi) is a satisfying assignment of
Vpk. By definition, in time t2 = t1 · poly(n), the adversary can sample (z1, . . . , zt1) such that z1, . . . , zt1
are independent and zi ∼ Uβ−1(mi,σi). Note that this means that each zi is an independent sample from
A1 and |zi| = poly(n). Note that (z1, . . . , zt1) is a t1-fold product distribution such that if D′ denotes the
distribution of zi, then by Claim 71, dTV (D′,UΨ−1(1)) ≤ η. Hence, if D is the distribution of (z1, . . . , zt1),
then dTV (D,U tΨ−1(1)) ≤ t1η.

Hence, the adversary can now run Arec on the samples z1, . . . , zt1 and as long as 1 − κ2 − t1η ≥
(1 − κ2)/2, succeeds in producing a sampler with probability (1 − κ2)/2 whose output distribution (call
it Z) is κ1 close to the distribution UΨ−1(1). Note that as η = 2−Ω(n), for any c > 0, t1 = 2n

c
and

κ2 = 1− 2−n
c

satisfies this condition. Hence, we get that dTV (Z,D′) ≤ κ1 + η. Now, observe that

Prρ∈D′ [β(ρ) = (m,σ) and m 6= mi] = 1− t1
|M|

.

The above uses the fact that every element in the range of β has the same number of pre-images. This of
course implies that

Prρ∈Z [β(ρ) = (m,σ) and m 6= mi] ≥ 1− t1
|M|

− (κ1 + η).

Again as long as κ1 ≤ 1− 2(η + t1/|M|), the adversary succeeds in getting a valid message signature
pair (m,σ) with m 6= mi for any 1 ≤ i ≤ t1 with probability (1 − κ1)/2. Again, we can ensure κ1 ≤
1 − 2(η + t1/|M|) by choosing c sufficiently small compared to µ. The total probability of success is
(1 − κ1)(1 − κ2)/4 and the total running time is t1(poly(n)) + poly(n). Again if c is sufficiently small
compared to µ and δ, then the total running time is at most t1(poly(n)) + poly(n) < T and the success
probability is at least (1− κ1)(1− κ2)/4 > ε, resulting in a contradiction.

We now demonstrate a polynomial time η-invertible one-many reduction from CIRCUIT-SAT to MONOTONE-
2-CNF-SAT for η = 2−Ω(n). The reduction uses the “blow-up” idea used to prove hardness of approximate
counting for MONOTONE-2-CNF-SAT in [JVV86]. We will closely follow the instantiation of this tech-
nique in [Wat12].

Lemma 73. There is a polynomial time η-almost invertible one-many reduction from CIRCUIT-SAT to
MONOTONE-2-CNF-SAT where η = 2−Ω(n).

Proof. We begin by noting the following simple fact.

Fact 74. If there is a polynomial time invertible Levin reduction from CIRCUIT-SAT to a class C1 and an
η-almost invertible one-many reduction from C1 to C2, then there is a polynomial time η-almost invertible
one-many reduction from CIRCUIT-SAT to C2.

Since there is an invertible Levin reduction from CIRCUIT-SAT to 3-CNF-SAT, by virtue of Fact 74,
it suffices to demonstrate a polynomial time η-almost invertible one-many reduction from 3-CNF-SAT to
MONOTONE-2-CNF-SAT. To do this, we first construct an instance of VERTEX-COVER from the 3-
CNF-SAT instance. Let Φ =

∧
m
i=1Φi be the instance of 3-CNF-SAT. Construct an instance of VERTEX-

COVER by introducing seven vertices for each clause Φi (one corresponding to every satisfying assignment
of Φi). Now, put an edge between any two vertices of this graph if the corresponding assignments to the
variables of Φ conflict on some variable. We call this graph G. We observe the following properties of this
graph :

44

• G has exactly 7m vertices.

• Every vertex cover of G has size at least 6m.

• There is an efficiently computable and invertible injection ` between the satisfying assignments of
Φ and the vertex covers of G of size 6m. To get the vertex cover corresponding to a satisfying
assignment, for every clause Φi, include the six vertices in the vertex cover which conflict with the
satisfying assignment.

We next do the blow-up construction. We create a new graph G′ by replacing every vertex of G with a
cloud of 10m vertices, and for every edge inGwe create a complete bipartite graph between the correspond-
ing clouds in G′. Clearly, the size of the graph G′ is polynomial in the size of the 3-CNF-SAT formula. We
define a map g1 between vertex covers of G′ and vertex covers of G as follows : Let S′ be a vertex cover of
G′. We define the set S = g1(S′) in the following way. For every vertex v in the graph G, if all the vertices
in the corresponding cloud in G′ are in S′, then include v ∈ S, else do not include v in S. It is easy to
observe that g1 maps vertex covers of G′ to vertex covers of G. It is also easy to observe that a vertex cover
of G of size s has (210m − 1)7m−s pre-images under g1.

Now, observe that we can construct a MONOTONE-2-CNF-SAT formula Ψ which has a variable cor-
responding to every vertex in G′ and every subset S′ of G′ corresponds to a truth assignment yS′ to Ψ such
that Ψ(yS′) = 1 if and only if S′ is a vertex cover of G′. Because of this correspondence, we can construct
a map g′1 which maps satisfying assignments of Ψ to vertex covers of G. Further, a vertex cover of size s in
graph G has (210m − 1)7m−s pre-images under g′1. Since the total number of vertex covers of G of size s is
at most

(
7m
s

)
, the total number of satisfying assignments of Ψ which map to vertex covers of G of size more

than 6m can be bounded by :

7m∑
s=6m+1

(
7m

s

)
· (210m − 1)7m−s ≤ m ·

(
7m

6m+ 1

)
· (210m − 1)m−1 ≤ (210m − 1)m · 27m

210m − 1

On the other hand, since Φ has at least one satisfying assignment, hence G has at least one vertex cover
of size 6m and hence the total number of satisfying assignments of Ψ which map to vertex covers of G
of size 6m is at least (210m − 1)m. Thus, if we let A denote the set of satisfying assignments of Ψ and
A1 be the set of satisfying assignment of Ψ which map to vertex covers of G of size exactly 6m (under
g1), then |A1|/|A| ≥ 1 − 2−Ω(n). Next, notice that we can define the map g mapping A1 to the satisfying
assignments of Φ in the following manner : g(x) = `−1(g1(x)). It is easy to see that this map satisfies all
the requirements of the map g from Definition 70 which concludes the proof.

Combining Lemma 73 with Theorem 72, we have the following corollary.

Corollary 75. If Assumption 1 holds true, then MONOTONE-2-CNF-SAT is (2n
c
, 1 − 2−n

c
, 1 − 2−n

c
)

hard for inverse approximate uniform generation for some absolute constant c > 0.

As a consequence of the above result, we also get hardness for inverse approximate uniform generation
of degree-2 polynomial threshold functions (PTFs); these are functions of the form sign(q(x)) where q(x)
is a degree-2 multilinear polynomial over {0, 1}n.

Corollary 76. If Assumption 1 holds true, then the class of all n-variable degree-2 polynomial threshold
functions is (2n

c
, 1 − 2−n

c
, 1 − 2−n

c
) hard for inverse approximate uniform generation for some absolute

constant c > 0.

Proof. This follows immediately from the fact that every monotone 2-CNF formula can be expressed as a
degree-2 PTF. To see this, note that if Φ =

∧m
i=1(xi1 ∨ xi2) where each xij is a 0/1 variable, then Φ(x) is

true if and only if
∑m

i=1 xi1 + xi2 − xi1 · xi2 ≥ m. This finishes the proof.

45

6.2 Hardness results based on Message Authentication Codes. All of the previous hardness results
intuitively correspond to the case when the second step of our “standard approach” is algorithmically hard.
Indeed, consider a class C of functions that has an efficient approximate uniform generation algorithm.
Unless P 6= NP there cannot be any Karp reduction from CIRCUIT-SAT to C (this would contradict the
NP-completeness of CIRCUIT-SAT) and hence Theorem 60 is not applicable in this setting. In fact, even
for η = 1− 1/poly(n) there cannot be any η-almost invertible one-many reduction from CIRCUIT-SAT to
C unless P 6= NP . This makes Theorem 72 inapplicable in this setting. Thus, to prove hardness results for
classes that have efficient approximate uniform generation algorithms, we need some other approach.

In this section we show that Message Authentication Codes (MAC) can be used to establish hardness of
inverse approximate uniform generation for such classes. We begin by defining MACs. (We remark that we
use a restricted definition which is sufficient for us; for the most general definition, see [Gol04].)

Definition 77. A Message Authentication Code (MAC) is a triple (G,T, V) of polynomial-time algorithms
with the following properties :

• (Key generation algorithm) G(·) is a randomized algorithm which on input 1n produces a secret key
sk;

• (Tagging algorithm) T is a randomized algorithm which takes as input messagem, secret key sk and
randomness r and outputs σ ← T (m, sk, r);

• (Verification algorithm) V is a deterministic algorithm which takes as input message m, secret key
sk and σ. If σ = T (m, sk, r) for some r then V (m, sk, σ) = 1.

For the purposes of our hardness results we require MACs with some special properties. While our
hardness results can be derived from slightly more general MACs than those we specify below, we forsake
some generality for the sake of clarity. For a MAC (G,T, V) and a choice of secret key sk, we say σ is a
valid tag for message m if there exists r such that σ = T (m, sk, r). Likewise, we say that σ is a potential
tag for message m if V (m, sk, σ) = 1.

Definition 78. A Message Authentication Code (G,T, V) over a message spaceM is said to be special if
the following conditions hold : For any secret key sk,

• For every message m ∈M, the set of valid tags is identical to the set of potential tags..

• For every two messages m1 6= m2 and every σ1, σ2 such that σi is a valid tag for mi, we have
Prr[T (m1, sk, r) = σ1] = Prr[T (m2, sk, r) = σ2].. In particular, the cardinality of the set of valid
tags for m is the same for all m.

We next define the standard notion of security under Random Message attacks for MACs. As before,
from now onwards, we will assume implicitly thatM is the message space.

Definition 79. A special MAC (G,T, V) is said to be (t, ε)-RMA secure if the following holds : Let sk ←
G(1n). Let (m1, . . . ,mt) be chosen uniformly at random fromM. Let σi ← T (mi, sk, r). Then for any
probabilistic algorithm A running in time t,

Pr
sk,(m1,...,mt),(σ1,...,σt)

[A(m1, . . . ,mt, σ1, . . . , σt) = (m′, σ′)] ≤ ε

where V (m′, sk, σ′) = 1 and m′ 6= mi for all i = 1, . . . , t.

It is known how to construct MACs meeting the requirements in Definition 79 under standard crypto-
graphic assumptions (see [Gol04]).

46

6.2.1 A general hardness result based on Message Authentication Codes. The next theorem shows that
special MACs yield hardness results for inverse approximate uniform generation.

Theorem 80. Let c > 0 and (G,T, V) be a (t, ε)-RMA secure special MAC for some t = 2n
c

and ε = 1/t
with a message spaceM of size 2Ω(n). Let Vsk denote the function Vsk : (m,σ) 7→ V (m, sk, σ). If Vsk ∈ C
for every sk, then there exists δ > 0 such that C is (t1, κ, η)-hard for inverse approximate uniform generation
for t1 = 2n

δ
and κ = η = 1− 2−n

δ
.

Proof. Towards a contradiction, let us assume that there is an algorithm Ainv for inverse approximate uni-
form generation of C which runs in time t1 and with probability 1 − η outputs a sampler whose statistical
distance is at most κ from the target distribution. (We will set t1, κ and η later in the proof.) We will use
Ainv to contradict the security of the MAC. Let sk be a secret key chosen according to G(1n). Now, the ad-
versary receives message-tag pairs (m1, σ1), . . . , (mt1 , σt1) where m1, . . . ,mt1 are chosen independently
at random fromM. Because the MAC is special, for each i we have that σi is a uniformly random valid tag
for the message mi. Hence each (mi, σi) is an independent and uniformly random satisfying assignment of
Vsk.

We can thus run Ainv on the samples (m1, σ1), . . . , (mt1 , σt1) with its accuracy parameter set to κ and
its confidence parameter set to 1− η. Taking κ = η = 1− 2−n

δ
, we can choose δ small enough compared

to c, and with t1 = 2n
δ

we get that the total running time of Ainv is at most 2n
c
/2. By the definition of

inverse approximate uniform generation, with probability at least 1− η = 2−n
δ

the algorithm Ainv outputs
a sampler for a distribution Z that is κ = (1 − 2−n

δ
)-close to the uniform distribution over the satisfying

assignments of Vsk. Now, observe that

Pr(m,σ)∼U
V−1
sk

(1)
[mi 6= m for all i ∈ [t1]] ≥ 1− t1

|M|
.

Thus,

Prz∼Z [z = (m,σ) and mi 6= m for all i ∈ [t1]] ≥ (1− κ)− t1
|M|

.

This means that with probability (1−η) · ((1−κ)− t1
|M|), the adversary can output a forgery. It is clear

that for a suitable choice of δ relative to c, recalling that κ = η = 1− 2−n
δ
, the probability of outputting a

forgery is greater than 2−n
c
, which contradicts the security of the MAC.

Unlike signature schemes, which permitted intricate reductions (cf. Theorem 60), in the case of MACs
we get a hardness result for complexity class C only if Vsk itself belongs to C. While special MACs are
known to exist assuming the existence of one-way functions [Gol04], the constructions are rather involved
and rely on constructions of pseudorandom functions (PRFs) as an intermediate step. As a result, the
verification algorithm V also involves computing PRFs; this means that using these standard constructions,
one can only get hardness results for a class C if PRFs can be computed in C. As a result, the class C tends
to be fairly complex, making the corresponding hardness result for inverse approximate uniform generation
for C somewhat uninteresting.

One way to bypass this is to use construction of MACs which do not involve use of PRFs as an interme-
diate step. In recent years there has been significant progress in this area [KPC+11, DKPW12]. While both
these papers describe several MACs which do not require PRFs, the one most relevant for us is the MAC
construction of [KPC+11] based on the hardness of the “Learning Parity with Noise” (LPN) problem.

6.2.2 Some specific hardness assumptions, and a corresponding specific hardness result. We first
state a “decision” version of LPN. To do this, we need the following notation:

• Let Berτ denote the following distribution over GF (2) : If x← Berτ , then Pr[x = 1] = τ .

47

• For x ∈ GF (2)n, we use Λ(x, τ, ·) to denote the distribution (r, x · r ⊕ e) over GF (2)n × GF (2)
where r ∼ GF (2)n and e ∼ Berτ and x · r = ⊕ixiri (mod 2).

Assumption 2. Let τ ∈ (0, 1/2) and let Ox,τ be an oracle which, each time it is invoked, returns an
independent uniformly random sample from Λ(x, τ, ·). The LPN assumption states that for any poly(n)-
time algorithm A, ∣∣[Prx∈GF (2)n [AOx,τ = 1

]
−
[
Prx∈GF (2)n [AOx,1/2 = 1

]∣∣ ≤ ε
for some ε which is negligible in n.

LPN is a well-studied problem; despite intensive research effort, the fastest known algorithm for this
problem takes time 2O(n/ logn) [BKW03]. For our applications, we will need a variant of the above LPN
assumption. To define the assumption, let Λ(x, `, τ, ·) denote the distribution over (A,A · x ⊕ e) where A
is uniformly random in GF (2)`×n and e is uniformly random over the set {z ∈ GF (2)` : wt(z) ≤ dτ`e}.
The vector e is usually referred to as the noise vector.

Assumption 3. Let τ ∈ (0, 1/2), ` = c · n for some 0 < c < 1/2 and let Ox,`,τ be an oracle which
returns a uniformly random sample from Λ(x, `, τ, ·). Then the (t, ε) exact LPN assumption states that for
any algorithm A running in time t,∣∣Prx∈GF (2)n

[
AOx,`,τ = 1

]
−Prx∈GF (2)n

[
AOx,`,1/2 = 1

]∣∣ ≤ ε
For the sake of brevity, we henceforth refer to this assumption by saying “the exact (n, `, τ) LPN problem

is (t, ε)-hard.”

The above conjecture seems to be very closely related to Assumption 2, but it is not known whether
Assumption 2 formally reduces to Assumption 3. Assumption 3 has previously been suggested in the cryp-
tographic literature [KSS10] in the context of getting perfect completeness in LPN-based protocols. We note
that Arora and Ge [AG11] have investigated the complexity of this problem and gave an algorithm which
runs in time nO(`). We believe that the proximity of Assumption 3 to the well-studied Assumption 2, as well
as the failure to find algorithms for Assumption 3, make it a plausible conjecture. For the rest of this section
we use Assumption 3 with t = 2n

β
and ε = 2−n

β
for some fixed β > 0.

We next define a seemingly stronger variant of Assumption 3 which we call subset exact LPN. This
requires the following definitions: For x, v ∈ GF (2)n, `, d ≤ n and τ ∈ (0, 1/2), we define the distribution
Λa(x, v, `, τ, ·) as follows :

Λa(x, v, `, τ, ·) =

{
Λ(x · v, `, 1/2, ·) if wt(v) < d
Λ(x · v, `, τ, ·) if wt(v) ≥ d

where x · v ∈ GF (2)n is defined by (x · v)i = xi · vi. In other words, if wt(v) ≥ d, then the distribution
Λa(x, v, `, τ) projects x into the non-zero coordinates of v and then outputs samples corresponding to exact
LPN for the projected vector. We define the oracleOax,`,d,τ (·) which takes an input v ∈ GF (2)n and outputs
a random sample from Λa(x, v, `, τ, ·). The subset exact LPN assumption states the following:

Assumption 4. Let τ ∈ (0, 1/2), ` = c · n and d = c′ · n for some 0 < c, c′ < 1/2. The (t, ε)-subset exact
LPN assumption says that for any algorithm A running in time t,∣∣∣Prx∈GF (2)n

[
AO

a
x,`,d,τ = 1

]
−Prx∈GF (2)n

[
AO

a
x,`,d,1/2 = 1

]∣∣∣ ≤ ε.
For the sake of brevity, we henceforth refer to this assumption by saying “the subset exact (n, `, d, τ) LPN
problem is (t, ε)-hard.”

48

Assumption 4 is very similar to the subset LPN assumption used in [KPC+11] and previously considered
in [Pie12]. The subset LPN assumption is the same as Assumption 4 but with ` = 1 and the coordinates
of the noise vector e being drawn independently from Berτ . Pietrzak [Pie12] showed that the subset LPN
assumption is implied by the standard LPN assumption (Assumption 2) with a minor change in the security
parameters. Along the same lines, the next lemma shows that Assumption 3 implies Assumption 4 with a
minor change in parameters. The proof is identical to the proof of Theorem 1 in [Pie12] and hence we do
not repeat it here.

Lemma 81. If the exact (n, `, τ) LPN problem is (t, ε) hard, then for any g ∈ N, the subset exact (n′, `, n+
g, τ) LPN problem is (t′, ε′) hard for n′ ≥ n+ g, t′ = t/2 and ε′ = ε+ 2t

2g+1 .

Proof. The proof of this lemma follows verbatim from the proof of Theorem 1 in [Pie12]. The key obser-
vation is that the reduction from subset LPN to LPN in Theorem 1 in [Pie12] is independent of the noise
distribution.

From Lemma 81, we get that Assumption 3 implies Assumption 4. In particular, we can set ` = n/5

and g = n/10, n′ ≥ 11n/10. Then we get that if the exact (n, `, τ) problem is (2n
β
, 2−n

β
) hard for some

β > 0, then the subset exact (n′, `, 11n/10, τ) is also (2n
β′
, 2−n

β′
) hard for some other β′ > 0. For the rest

of this section, we set the value of ` and g as above and we assume that the subset exact (n′, `, 11n/10, τ)

is (2n
β′
, 2−n

β′
) hard for some β′ > 0.

Now we are ready to define the following Message Authentication Code (MAC) (G,S, V), which we
refer to as LPN-MAC:

• The key generation algorithmG chooses a random matrixX ∈ GF (2)λ×n and a string x′ ∈ GF (2)λ,
where λ = 2n.

• The tagging algorithm samples R ∈ GF (2)`×λ and e ∈ GF (2)` where e is a randomly chosen vector
in GF (2)` with at most dτ`e ones. The algorithm outputs (R,RT · (X ·m+ x′) + e).

• The verification algorithm, given tag (R,Z) for message m, computes y = Z + RT · (X ·m + x′)
and accepts if and only if the total number of ones in y is at most dτ`e.

Note that all arithmetic operations in the description of the above MAC are done over GF (2). The
following theorem shows that under suitable assumptions the above MAC is special and secure as desired:

Theorem 82. Assuming that the exact (n, `, τ) problem is (t, ε) hard for t = 2n
β

and ε = 2−n
β

for β > 0,

LPN-MAC described above is a (t′, ε′)-RMA-secure special MAC for t′ = 2n
β′

and ε′ = 2−n
β′

for some
β′ > 0.

Proof. First, it is trivial to observe that the MAC described above is a special MAC. Thus, we are only
left with the task of proving the security of this construction. In [KPC+11] (Theorem 5), the authors show
that the above MAC is secure with the above parameters under Assumption 2 provided the vector e in the
description of LPN-MAC is drawn from a distribution where every coordinate of e is an independent draw
from Berτ . (We note that the MAC of Theorem 5 in [KPC+11] is described in a slightly different way, but
Dodis et al. [DKPW12] show that the above MAC and the MAC of Theorem 5 in [KPC+11] are exactly the
same). Follow the same proof verbatim except whenever [KPC+11] use the subset LPN assumption, we use
the subset exact LPN assumption (i.e. Assumption 4), we obtain a proof of Theorem 82.

49

6.2.3 A problem for which inverse approximate uniform generation is hard but approximate uni-
form generation is easy. Given Theorem 80, in order to come up with a problem where inverse approxi-
mate uniform generation is hard but approximate uniform generation is easy, it remains only to show that
the verification algorithm for LPN-MAC can be implemented in a class of functions for which approximate
uniform generation is easy. Towards this, we have the following definition.

Definition 83. BILINEAR-MAJORITY`,n,λ,τ is a class of Boolean functions such that every f ∈BILINEAR-
MAJORITY`,n,λ,τ , f : GF (2)`×λ×GF (2)`×GF (2)n → {0, 1} is parameterized by subsets S1, . . . , Sλ ⊆
[n] and x0 ∈ GF (2)λ and is defined as follows : On input (R,Z,m) ∈ GF (2)`×λ × GF (2)` × GF (2)n,
define

yi = Zi +
λ∑
j=1

Rij · (
∑
`∈Sj

m` + x0
j)

where all the additions and multiplications are in GF (2). Then f(R,Z,m) = 1 if and only if at most
dτ`e coordinates y1, . . . , y` are 1.

Claim 84. For the LPN-MAC with parameters `, n, λ and τ described earlier, the verification algorithm V
can be implemented in the class BILINEAR-MAJORITY`,n,λ,τ .

Proof. Consider the LPN-MAC with parameters `, n, λ and τ and secret key X and x′. Now define a
function f in BILINEAR-MAJORITY`,n,λ,τ where x0 = x′ and the subset Sj = {i : Xji = 1}. It is easy to
check that the corresponding f(R,Z,m) = 1 if and only if (R,Z) is a valid tag for message m.

The next and final claim says that there is an efficient approximate uniform generation algorithm for
BILINEAR-MAJORITY`,n,λ,τ :

Claim 85. There is an algorithm which given any f ∈BILINEAR-MAJORITY`,n,λ,τ (with parameters
S1, . . . , Sλ ⊆ [n] and x0 ∈ GF (2)λ) and an input parameter δ > 0, runs in time poly(n, `, λ, log(1/δ))
and outputs a distribution which is δ-close to being uniform on f−1(1).

Proof. The crucial observation is that for any (R,m), the setAR,m = {z : f(R,Z,m) = 1} has cardinality
independent of R and m. This is because after we fix R and m, if we define bi =

∑λ
j=1Rij · (

∑
`∈Sj m` +

x0
j), then yi = Zi + bi. Thus, for every fixing of R and m, since bi is fixed, the set of those Z such that the

number of yi’s which are 1 is bounded by τ` is independent of R and m. This implies that the following
sampling algorithm returns a uniformly random element of f−1(1):

• Randomly sample R and m. Compute bi as defined earlier.

• Let a = dτ`e and consider the halfspace g(y) = sign(a −
∑`

i=1 yi). Now, we use Theorem 41
to sample uniformly at random from g−1(1) and hence draw a uniformly random y from the set
{y ∈ {0, 1}` :

∑`
i=1 yi ≤ a}.

• We set Zi = yi + bi. Output (R,Z,m).

The guarantee on the running time of the procedure follows simply by using the running time of Theorem 41.
Similarly, the statistical distance of the output from the uniform distribution on f−1(1) is at most δ.

50

7 Efficient inverse approximate uniform generation when approximate uni-
form generation is infeasible

In Section 4 we gave an efficient algorithm for the inverse approximate uniform generation problem for half-
spaces, and in Section 5 we gave a quasi-polynomial time algorithm for the inverse approximate uniform
generation problem for DNFs. Since both these algorithms follow the standard approach, both crucially
use efficient algorithms for the corresponding uniform generation problems [KLM89, MS04]. In this con-
text, it is natural to ask the following question: Is inverse approximate uniform generation easy only if the
corresponding approximate uniform generation problem is easy?

In this section we show that the answer to this question is “no” (for at least two reasons). First, we point
out that a negative answer follows easily from the well-known fact that it is computationally hard to “detect
unique solutions.” In more detail, we recall the definition of the UNIQUE-SAT problem. UNIQUE-SAT is
a promise problem where given a CNF Φ, the task is to distinguish between the following two cases:

• Φ has no satisfying assignment; versus

• Φ has exactly one satisfying assignment.

In a famous result, Valiant and Vazirani [VV86] showed the following.

Theorem 86. [VV86] There is a randomized polynomial time reduction from CNF-SAT to UNIQUE-SAT.

Let C denote the class of all n-variable CNF formulas that have exactly one satisfying assignment. As
an immediate corollary of Theorem [VV86] we have the following:

Corollary 87. There is a constant c > 0 such that unless SAT ∈ BPTIME(t(n)), there is no approximate
uniform generation algorithm for C which runs in time BPTIME(t(nc)) even for variation distance ε = 1/2.

On the other hand, it is clear that there is a linear time algorithm for the inverse approximate uniform
generation problem for the class C: simply draw a single example x and output the trivial distribution
supported on that one example.

The above simple argument shows that there indeed exist classes C where inverse uniform generation
is “easy” but approximate uniform generation is “hard”, but this example is somewhat unsatisfying, as the
algorithm for inverse approximate uniform generation is trivial. It is natural to ask the following meta-
question: is there a class of functions C such that approximation uniform generation is hard, but inverse
approximate generation is easy because of a polynomial-time algorithm that “uses its samples in a non-
trivial way?” In the rest of this section we give an example of such a problem.

Efficient inverse approximate uniform generation for graph automorphism. The following problem is
more naturally defined in terms of a relation over combinatorial objects rather than in terms of a function
and its satisfying assignments. Let us define Gn to be the set of all (simple undirected) graphs over vertex set
[n] and Sn to be the symmetric group over [n]. We define the relation Raut(G, σ) over Gn × Sn as follows:
Raut(G, σ) holds if and only if σ is an automorphism for the graph G. (Recall that “σ is an automorphism
for graph G” means that (x, y) is an edge in G if and only if (σ(x), σ(y)) is also an edge in G.) The inverse
approximate uniform generation problem for the relation Raut is then as follows: There is an unknown
n-vertex graph G. The algorithm receives uniformly random samples from the set Aut(G) := {σ ∈ Sn :
Raut(G, σ) holds }. On input ε, δ, with probability 1− δ the algorithm must output a sampler whose output
distribution is ε-close to the uniform distribution over Aut(G).

It is easy to see that Aut(G) is a subgroup of Sn, and hence the identity permutation en must belong to
Aut(G). To understand the complexity of this problem we recall the graph isomorphism problem:

51

Definition 88. GRAPH-ISOMORPHISM is defined as follows : The input is a pair of graphsG1, G2 ∈ Gn
and the goal is to determine whether they are isomorphic.

While it is known that GRAPH-ISOMORPHISM is unlikely to be NP-complete [Sch88, BHZ87], even
after several decades of effort the fastest known algorithm for GRAPH-ISOMORPHISM has a running
time of 2Õ(

√
n) [Bab81]. This gives strong empirical evidence that GRAPH-ISOMORPHISM is a compu-

tationally hard problem. The following claim establishes that approximate uniform generation for Raut is
as hard as GRAPH-ISOMORPHISM:

Claim 89. If there is a t(n)-time algorithm for approximate uniform generation for the relation Raut (with
error 1/2), then for some absolute constant c > 0 there is a poly(t(nc))-time randomized algorithm for
GRAPH-ISOMORPHISM.

Proof. Let A be the hypothesized t(n)-time algorithm, so A, run on input (G, 1/2) where G is an n-node
graph, returns an element σ ∈ Aut(G) drawn from a distribution D that has dTV(D,UAut(G)) ≤ 1/2.
Given such an algorithm A, it is easy in O(t(n)) time to determine (with high constant probability of
correctness) whether or not |Aut(G)| > 1. Now the claim follows from the known fact [Hof82] that there
is a polynomial-time reduction from GRAPH-ISOMORPHISM to the problem of determining whether an
input graph has |Aut(G)| > 1.

While approximate uniform generation forRaut is hard, the next theorem shows that the inverse approx-
imate uniform generation problem for Raut is in fact easy:

Theorem 90. There is a randomized algorithm Aaut
inv with the following property: The algorithm takes as

input ε, δ > 0. Given access to uniform random samples from Aut(G) (where G is an unknown n-node
graph), Aaut

inv runs in time poly(n, log(1/ε), log(1/δ)) and with probability 1 − δ outputs a sampler Caut

with the following property : The running time of Caut is O(n log n+ log(1/ε)) and the output distribution
of Caut is ε-close to the uniform distribution over Aut(G).

Proof. The central tool in the proof is the following theorem of Alon and Roichman [AR94]:

Theorem 91. [AR94] Let H be any group and let h1, . . . , hk be chosen uniformly at random from H .
Consider the set S = ∪ki=1{hi, h

−1
i }. Then, for k = O(log |H|+ log(1/δ)), with probability at least 1− δ

the Cayley graph (H,S) has its second largest eigenvalue at most 1/2.

We now describe our algorithm Aaut
inv . On input ε, δ it draws k = O(n log n + log(1/δ)) permutations

g1, . . . , gk from Aut(G). It computes g−1
1 , . . . , g−1

k and sets S = ∪ki=1{gi, g
−1
i }. The sampler Caut is

defined as follows: It uses its input random bits to perform a random walk on the Cayley graph (Aut(G), S),
starting at en, for T = O(n log n+ log(1/ε)) steps; it outputs the element of H which it reaches at the end
of the walk. (Note that in order to perform this random walk it is not necessary to have Aut(G) explicitly –
it suffices to explicitly have the set S.)

The analysis is simple: we first observe that every graphG has an automorphism group of size |Aut(G)| ≤
n!. Theorem 91 then guarantees that with probability at least 1 − δ the Cayley graph (Aut(G), S) has its
second eigenvalue bounded by 1/2. Assuming that the second eigenvalue is indeed at most 1/2, standard
results in the theory of random walks on graphs imply that the distribution of the location reached at the end
of the walk has variation distance at most ε from the uniform distribution over Aut(G). This concludes the
proof.

52

8 Conclusion and future work

We have considered inverse problems in approximate uniform generation for a range of interesting and well-
studied classes of functions including LTFs, DNFs, CNFs, polynomial threshold functions, and more. While
our findings have determined the computational complexity of inverse approximate uniform generation for
these classes, several interesting questions and directions remain to be pursued. We outline some of these
directions below.

One natural goal is to extend our results (both positive and negative) to a wider range of function classes;
we list several specific classes that seem particularly worthy of investigation. The first of these is the class of
intersections of two monotone LTFs. We note that Morris and Sinclair [MS04] gave efficient approximate
uniform generation / counting algorithms for intersections of two monotone LTFs, but on the other hand,
no distribution independent PAC or SQ learning algorithm is known for this class (although quasipoly(n)-
time algorithms are known if both LTFs have integer weights that are at most poly(n) [KOS04]). The
second class is that of poly(n)-size decision trees. Our DNF result gives a quasipoly(n/ε)-time inverse
approximate uniform generation algorithm for this class; can this be improved to poly(n, 1/ε)? We note that
in order to obtain such a result one would presumably have to bypass the “standard approach,” since decision
trees are not known to be PAC learnable faster than quasipoly(n/ε)-time under the uniform distribution on
{−1, 1}n. (We further note that while [FOS08] gives a reduction from learning the uniform distribution over
satisfying assignments of a decision tree to the problem of PAC learning decision trees under the uniform
distribution, this reduction relies crucially on the assumption — implicit in the [FOS08] framework —
that the probability mass function of the hypothesis distribution can be efficiently evaluated on any input
x ∈ {−1, 1}n. In our framework this assumption need not hold so the [FOS08] reduction does not apply.)
Still other natural classes to investigate are context free languages (for which quasi-polynomial time uniform
generation algorithms are known [GJK+97]) and various classes of branching programs. It may also be of
interest to consider similar problems when the underlying measure is (say) Gaussian or log-concave.

Another interesting direction to pursue is to study inverse approximate uniform generation for combina-
torial problems like matching and coloring as opposed to the “boolean function satisfying assignment”–type
problems that have been the main focus of this paper. We note that preliminary arguments suggest that there
is a simple efficient algorithm for inverse approximate uniform generation of perfect matchings in bipartite
graphs. Similarly, preliminary arguments suggest that for the range of parameters for which the “forward”
approximate uniform generation problem for colorings is known to be easy (namely, the number q of allow-
able colors satisfies q > 11∆/6 where ∆ is the degree [Vig99]), the inverse approximate uniform generation
problem also admits an efficient algorithm. These preliminary results give rise to the question of whether
there are similar combinatorial problems for which the complexity of the “forward” approximate uniform
generation problem is not known and yet we can determine the complexity of inverse approximate uniform
generation (like the group theoretic setting of Section 7).

Finally, for many combinatorial problems, the approximate uniform generation algorithm is to run a
Markov chain on the state space. In the regimes where the uniform generation problem is hard, the Markov
chain does not mix rapidly which is in turn equivalent to the existence of sparse cuts in the state space.
However, an intriguing possibility arises here: If one can show that the state space can be partitioned into
a small number of components such that each component has no sparse cuts, then given access to a small
number of random samples from the state space (with at least one such example belonging to each compo-
nent), one may be able to easily perform approximate uniform generation. Since the inverse approximate
uniform generation algorithms that we consider have access to random samples, this opens the possibility
of efficient approximate uniform generation algorithms in such cases. To conclude, we give an example of
a natural combinatorial problem (from statistical physics) where it seems that this is essentially the situa-
tion (although we do not have a formal proof). This is the 2-D Ising model, for which the natural Glauber
dynamics is known to have exponential mixing time beyond the critical temperature [Mar98]. On the other

53

hand, it was recently shown that even beyond the critical temperature, if one fixes the boundary to have the
same spin (all positive or all negative) then the mixing time comes down from exponential to quasipolyno-
mial [LMST]. While we do not know of a formal reduction, the fact that fixing the boundary to the same
spin brings down the mixing time of the Glauber dynamics from exponential to quasipolynomial is “morally
equivalent” to the existence of only a single sparse cut in the state space of the graph [Sin12]. Finding other
such natural examples is an intriguing goal.

Acknowledgements. We thank Alistair Sinclair for helpful conversations about approximate counting and
approximate uniform generation. We thank Luca Trevisan for suggesting the use of “blow-up” constructions
for hardness results. We thank Jonathan Katz, Tal Malkin, Krzysztof Pietrzak and Salil Vadhan for answering
several questions about MACs and signature schemes. We are thankful to Kousha Etessami, Elchanan
Mossel, Li-Yang Tan and Thomas Watson for helpful conversations about this work.

References

[AD98] J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for effi-
ciency and noise tolerance. Journal of Computer and System Sciences, 56:191–208, 1998.

[AG11] Sanjeev Arora and Rong Ge. New Algorithms for Learning in Presence of Errors. In ICALP
2011, pages 403–415, 2011.

[AR94] N. Alon and Y. Roichman. Random Cayley Graphs and Expanders. Random Structures and
Algorithms, 5:271–284, 1994.

[Bab81] László Babai. Moderately exponential bound for graph isomorphism. In Proceedings of the
1981 International FCT-Conference on Fundamentals of Computation Theory, pages 34–50,
1981.

[BFKV97] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning
noisy linear threshold functions. Algorithmica, 22(1/2):35–52, 1997.

[BHZ87] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-np have short interactive proofs?
Information Processing Letters, 25(2):127 – 132, 1987.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM, 50(4):506–519, July 2003.

[BMS08] G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov Random Fields from Samples:
Some Observations and Algorithms. In APPROX-RANDOM, pages 343–356, 2008.

[CS00] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM Trans.
Inf. Syst. Secur., 3(3):161–185, 2000.

[DDS12a] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via testing.
In SODA, pages 1371–1385, 2012.

[DDS12b] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning poisson binomial distributions. In
STOC, pages 709–728, 2012.

[Dec93] S. Decatur. Statistical queries and faulty PAC oracles. In Proceedings of the Sixth Workshop on
Computational Learning Theory, pages 262–268, 1993.

54

[DGL05] F. Denis, R. Gilleron, and F. Letouzey. Learning from positive and unlabeled examples. Theo-
retical Computer Science, 348:70–83, 2005.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message Authentication,
Revisited. In ECRYPT12, pages 355–374, 2012.

[DL01] L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Series in
Statistics, Springer, 2001.

[DMR06] C. Daskalakis, E. Mossel, and S. Roch. Optimal phylogenetic reconstruction. In STOC, pages
159–168, 2006.

[Dye03] M. Dyer. Approximate counting by dynamic programming. In STOC, pages 693–699, 2003.

[Fis03] M. Fischlin. The Cramer-Shoup Strong-RSASignature Scheme Revisited. In Public Key Cryp-
tography - PKC 2003, pages 116–129, 2003.

[FOS08] Jon Feldman, Ryan O’Donnell, and Rocco A. Servedio. Learning mixtures of product distribu-
tions over discrete domains. SIAM J. Comput., 37(5):1536–1564, 2008.

[GJK+97] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. Mahaney. A quasi-polynomial-time algo-
rithm for sampling words from a context-free language. Inf. Comput., 134(1):59–74, 1997.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms and Combi-
natorial Optimization, volume 2. Springer, 1988.

[Gol04] Oded Goldreich. Foundations of Cryptography-volume 2. Cambridge University Press, Cam-
bridge, 2004.

[Hof82] Christoph M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, volume 136 of
Lecture Notes in Computer Science. Springer, 1982.

[HV03] Thomas P. Hayes and Eric Vigoda. A non-markovian coupling for randomly sampling color-
ings. In FOCS, pages 618–627, 2003.

[HW10] S. Hohenberger and B. Waters. Constructing Verifiable Random Functions with Large Input
Spaces. In EUROCRYPT, pages 656–672, 2010.

[Jer95] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree
graph. Random Struct. Algorithms, 7(2):157–166, 1995.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.

[JVV86] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures
from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathe-
matics and Mathematical Physics, 20(1):53 – 72, 1980.

55

[KL83] R.M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability problems. In
FOCS, pages 56–64, 1983.

[KLM89] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo Approximation Algorithms for Enumera-
tion Problems. Journal of Algorithms, 10(3):429–448, 1989.

[KOS04] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces.
Journal of Computer & System Sciences, 68(4):808–840, 2004.

[KPC+11] Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient
Authentication from Hard Learning Problems. In ECRYPT11, pages 7–26, 2011.

[KS04] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Computer & System
Sciences, 68(2):303–318, 2004.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and Concurrent Security of the HB and
HB+ Protocols. Journal of Cryptology, 23(3):402–421, 2010.

[LMST] E. Lubetzky, F. Martinelli, A. Sly, and F. L. Toninelli. Quasi-polynomial mixing of the 2D
stochastic Ising model with plus boundary up to criticality. To appear in Journal of the European
Mathematical Society.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Moti Yung, editor, Advances in Cryptology — (CRYPTO 2002), volume 2442 of
Lecture Notes in Computer Science, pages 597–612. Springer-Verlag, 2002.

[Mar98] F. Martinelli. Lectures on Glauber dynamics for discrete spin models. In , volume 1717 of
Lecture Notes in Mathematics, pages 93–191. Springer, 1998.

[Mos07] E. Mossel. Distorted Metrics on Trees and Phylogenetic Forests. IEEE/ACM Trans. Comput.
Biology Bioinform., 4(1), 2007.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable Random Functions. In Proc.
40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 120–130, 1999.

[MS04] Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1 knapsack
solutions. SIAM J. Comput., 34(1):195–226, 2004.

[MT94] W. Maass and G. Turan. How fast can a threshold gate learn? In S. Hanson, G. Drastal,
and R. Rivest, editors, Computational Learning Theory and Natural Learning Systems, pages
381–414. MIT Press, 1994.

[Mur71] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York, 1971.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pie12] Krzysztof Pietrzak. Subspace LWE. In Theory of Cryptography Conference, pages 548–563,
2012.

[Sch78] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In STOC, pages 216–226,
1978.

[Sch88] Uwe Schöning. Graph Isomorphism is in the Low Hierarchy. J. Comp. Sys. Sci., 37(3):312–
323, 1988.

56

[Sin12] A. Sinclair. Personal communication. 2012.

[Sip83] M. Sipser. A complexity-theoretic approach to randomness. In STOC, pages 330–335, 1983.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Inf. Comput., 82(1):93–133, 1989.

[Sto83] L. Stockmeyer. The complexity of approximate counting. In STOC, pages 118–126, 1983.

[Tov84] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathemat-
ics, 8(1):85–89, 1984.

[Vai89] P. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proceedings
of the Thirtheth Symposium on Foundations of Computer Science, pages 338–343, 1989.

[Vai96] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Math. Prog.,
73(3):291–341, 1996.

[Val12] G. Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning Parities
and Juntas. In FOCS, 2012.

[Ver90] Karsten A. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time.
In Mark A. Fulk, editor, Conference on Learning Theory, pages 314–326. Morgan Kaufmann,
1990.

[Vig99] Eric Vigoda. Improved bounds for sampling colorings. In FOCS, pages 51–59, 1999.

[VV86] Leslie G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

[Wat12] Thomas Watson. The complexity of estimating Min-entropy. Technical Report 70, Electronic
Colloquium in Computational Complexity, 2012.

57

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

