# Certifying Equality With Limited Interaction 

Joshua Brody Amit Chakrabarti Ranganath Kondapally

November 9, 2012


#### Abstract

The EQUALITY problem is usually one's first encounter with communication complexity and is one of the most fundamental problems in the field. Although its deterministic and randomized communication complexity were settled decades ago, we find several new things to say about the problem by focusing on two subtle aspects. The first is to consider the expected communication cost (at a worst-case input) for a protocol that uses limited interaction-i.e., a bounded number of rounds of communication-and whose error probability is zero or close to it. The second is to consider the information cost of such protocols. We obtain asymptotically optimal rounds-versus-communication and rounds-versus-information tradeoffs for the problem. For the case of zero-error communication cost, we obtain essentially matching bounds, up to a tiny additive constant.

As an application of our information cost bounds, we obtain new bounded-round randomized lower bounds for the OR-EQUALITY problem that have a direct-sum flavor. Such lower bounds were previously known only for deterministic protocols or one-round randomized protocols. The OR-EQUALITY problem is in turn closely related to the DISJoInTNESS problem for small sets (sometimes called $k$-DISJ), and we obtain tight lower bounds for that problem as well.


## 1 Introduction

### 1.1 Context

Over the last three decades, communication complexity [33] has proved itself to be among the most useful of abstractions in computer science. A number of basic problems in communication complexity have found a wide range of applications throughout the theory of computing, with EQUALITY, INDEX, and DISJOINTNESS being notable superstars.

Revisiting these basic problems and asking more nuanced questions or studying natural variants has extended their range of application. We highlight two examples. Our first example is disjointness. The optimal $\Omega(n)$ lower bound for this problem [21, 31] was already considered one of the major results in communication complexity before DISJOINTNESS was revisited in the multi-party number-in-hand model to obtain a number of data stream lower bounds [2, 3, 10, 18] culminating in optimal space bounds for the (higher) frequency moments. More recently, DISJOINTNESS was revisited in an asymmetric communication setting [30] yielding an impressive array of lower bounds for data structures in the cell-probe model. Our second example is INDEX. The straightforward $\Omega(n)$ lower bound on its one-way communication complexity [1] is already an important starting point for numerous other lower bounds. Revisiting INDEX in an interactive communication setting and considering communication tradeoffs has led to new classes of data stream lower bounds for memory-checking problems [25, 9, 11]. Separately, lower bounding the quantum communication complexity of INDEX [29] has led, among other things, to strong lower bounds for locally decodable codes [22, 13].

### 1.2 Our Results

In this work we revisit the EQUALITY problem: Alice and Bob each hold an $n$-bit string, and their task is to decide whether these strings are equal. This is arguably the most basic communication problem that admits a nontrivial protocol: using randomization and allowing a constant error rate, the problem can be solved with just $O(1)$ communication (this becomes $O(\log n)$ if one insists on private coins only); see, e.g., Kushilevitz and Nisan [23, Example 3.13] and Freivalds [17]. This is why a student's first encounter with communication complexity is usually through the EQUALITY problem. Such a fundamental problem deserves the most thorough of studies.

At first glance, EQUALITY might appear "solved": its deterministic communication complexity is at least $n$, whereas its randomized complexity is $O(1)$ as noted above, as is its information complexity [6] (for more on this, see Section 1.3 . However, one can ask the following more nuanced question. What happens if Alice and Bob want to be certain (or nearly certain) that their inputs are indeed equal when the protocol directs them to say so? And what happens if Alice and Bob want to run a protocol with limited interaction, i.e., a bounded number of back-and-forth rounds of communication?

Formally, let $\mathrm{EQ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ denote the Boolean function that underlies this communication problem, defined by $\mathrm{EQ}_{n}(x, y)=1 \Longleftrightarrow x=y$. Consider the zero-error case: the players must always correctly output $\mathrm{EQ}_{n}(x, y)$ on every input $(x, y)$. However, the players may use a randomized protocol and their goal is to minimize the expected number of bits they exchange. If their protocol is required to use only one round-this means that Alice sends a message to Bob, who then outputs the answer-then it is easy to see that Alice's message must uniquely identify her input to Bob. From this it is easy to show that on some input, $x$, Alice must send at least $n$ bits to Bob, even in expectation.

Things improve a lot if one allows two rounds of communication-Alice sends a message to Bob, who replies to Alice, who then outputs the answer. Using standard techniques, Alice can send Bob a $\lceil\log n\rceil$-bi $\|^{1}$ fingerprint of $x$. When $x \neq y$, this fingerprint fails to demonstrate that $\mathrm{EQ}_{n}(x, y)=0$ with probability at most $1 / n$. If necessary, Bob responds to this failure by sending $y$ to Alice, which costs only 1 bit in expectation. The net result is an expected communication cost of $O(\log n)$ on unequal inputs, and $O(n)$ on equal inputs. Generalizing this idea, we obtain an $r$-round protocol where the expected cost drops to $O\left(\mathrm{ilog}^{r-1} n\right)$ on unequal inputs, where $\operatorname{ilog}^{j} n:=\log \log \cdots \log n$ (with $j \operatorname{logs}$ ).

Our main high-level message in this work is that the above tradeoff between the number of rounds and the communication cost is optimal, and that this remains the case even allowing for some error and even if we consider information cost. We shall get precise about information cost measures in Section 2, but for now we remark that an information cost lower bound is stronger than a communication cost bound, even in our expected-cost model.

Our rounds-versus-information tradeoff for EQUALITY can be immediately applied to two other problems: OR-EQUALITY and DISJOINTNESS. It is now well known that information cost has clean direct-sum properties [12, 3, 4]. This, together with our results for EQUALITY, gives us new randomized lower bounds for the OR-EQUALITY problem, whose underlying function is $\operatorname{OREQ}_{n, k}:\{0,1\}^{n k} \times\{0,1\}^{n k} \rightarrow\{0,1\}$, defined by $\operatorname{OREQ}_{n, k}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=\bigvee_{i=1}^{k} \mathrm{EQ}_{n}\left(x_{i}, y_{i}\right)$ : Alice holds each $x_{i} \in\{0,1\}^{n}$ and Bob holds each $y_{i} \in\{0,1\}^{n}$. We show that in a bounded-round setting this problem has direct-sum-like hardness, i.e., it is roughly $k$ times as hard as a single instance. Interestingly, such a direct sum property is false if one allows unlimited interaction, as shown by a protocol of Feder et al. [16], about which we shall say more soon.

The OREQ problem is closely related to DISJOINTNESS, especially the variant called small set disjointness or $k-$ DISJ $_{N}$. Here, Alice and Bob are given sets $S, T \subseteq\{1,2, \ldots, N\}$ respectively, with the promise that $|S| \leq k$ and $|T| \leq k$, where $1 \leq k \leq N$. Their goal is to output 1 iff $S \cap T=\varnothing$. It is intuitive that OREQ and $k$-DISJ are related: both problems ask the players to detect whether their inputs "agree somewhere." Using this close relation (see Lemma 6.3 for a formal treatment), we obtain obtain bounded-round lower bounds

[^0]for $k$-DISJ as well. Furthermore, these lower bounds asymptotically match a recent upper bound given by a recent nontrivial protocol [20].

For a concise summary of our results, please see Section 2 .

### 1.3 Related Work

The study of the EQUALITY problem goes back to the original communication complexity paper of Yao [33], who showed that the deterministic communication complexity of $\mathrm{EQ}_{n}$ is at least $n$, using a fooling set argument. Mehlhorn and Schmidt [26] developed the rank lower bound technique, which can recover this result. They further examined OR-EQUALITY, giving a lower bound of $n k$ bits for deterministic protocols that compute $\mathrm{OREQ}_{n, k}$ via the rank technique. They also gave $O(n+\log n)$ and $O(n \log n)$ bounds for the nondeterministic and co-nondeterministic communication complexities of $\mathrm{OREQ}_{n, n}$, respectively. Furthermore, they studied the "Las Vegas" communication complexity of $\mathrm{OREQ}_{n, n}$, which brought them close to some of the things we study here. Specifically, they gave a zero-error private-coin randomized protocol such that the expected communication cost on any inputs $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ is at most $O\left(n(\log n)^{2}\right)$.

Feder et al. [16] studied the randomized communication complexity of EQUALITY in the direct-sum setting. Here, players have $k$ strings each and must compute $\left(\mathrm{EQ}_{n}\left(x_{1}, y_{1}\right), \ldots, \mathrm{EQ}_{n}\left(x_{k}, y_{k}\right)\right)$ : thus, the output is itself a $k$-bit string. Feder et al. show that $O(k)$ communication suffices to compute EQUALITY on all $k$ instances, with error exponentially small in $k$. This shows that the "amortized" communication complexity of $\mathrm{EQ}_{n}$ is $O(1)$, even under tiny error. More recently, Braverman and Rao [7] showed that amortized communication complexity nearly equals information complexity. Furthermore, Braverman [6] gave a specific protocol for $\mathrm{EQ}_{n}$ that has zero error and achieves information $\operatorname{cost} O(1)$ regardless of the input distribution.

The problem $\mathrm{OREQ}_{n, k}$ is potentially easier than the $k$-fold direct sum of $\mathrm{EQ}_{n}$, and has itself been studied a few times before. Chakrabarti et al. [12] showed that its simultaneous-message complexity is $\Omega(k \sqrt{n})$, which is $k$ times the complexity of $\mathrm{EQ}_{n}$ in that model. More recently, Kushilevitz and Weinreb [24] studied the deterministic complexity of $\mathrm{OREQ}_{n, k}$ under the promise that $x_{i}=y_{i}$ for at most one $i \in[k]$. Computing $\mathrm{OREQ}_{n, k}$ under this " $0 / 1$ intersection" promise is closely related to the clique-vs.-independent set problem. In this problem, Alice is given a clique in a graph. Bob is given an independent set, and they must decide if their inputs intersect. Kushilevitz and Weinreb are able to show that computing $\mathrm{OREQ}_{n, k}$ under this promise still requires $\Omega(k n)$ communication whenever $k \leq n / \log n$. Extending this lower bound to the setting where $k=n$ is an important open problem, with several implications.

The OR-EQUALITY problem is also closely related to $k$-DISJ. Håstad and Wigderson [19] give an $O(k)$ bit randomized protocol for $k$-DISJ; a matching lower bound follows easily from the $\Omega(n)$ lower bound for general disjointness. The Håstad-Wigderson protocol is clever and crucially exploits both the public randomness and the interactive communication between players. It is natural to ask whether similar bounds are achievable with limited interaction. This question was partially answered in the negative by recent work of Dasgupta, Kumar, and Sivakumar [15], who give an $\Omega(k \log k)$ lower bound for the one-way randomized complexity of $k$-DISJ. A similar result was independently obtained by Buhrman et al. [8], who in fact gave the very tight bound $\Theta\left(\min \left\{k \log k, \log \binom{n}{k}\right\}\right)$. In other recent (as yet unpublished) work, Jowhari et al. [20] extended the Håstad-Wigderson protocol to interpolate between the one-round and unboundedround situations, giving an $r$-round upper bound of $O(k \log \log \cdots \log k)$, with $r \operatorname{logs}$.

The lower bound for $k$-DISJ was extensively used in the recent work of Blais, Brody, and Matulef [5], who used communication complexity to show several new property testing lower bounds. In this setting, lower bounds for $k$-DISJ imply lower bounds for testing $k$-linearity and testing $k$-juntas. The above one-way lower bounds naturally give $\Omega(k \log k)$ bounds for testing $k$-linearity and $k$-juntas nonadaptively.

## 2 Definitions and Formal Statement of Results

Throughout this paper we reserve the symbols " $n$ " for input length of EQUALITY instances, " $k$ " for list length of OR-EQUALITY instances and set size of $k$-DISJ instances, and " $N$ " for universe size of $k$-DISJ instances. Many definitions and results will be parametrized by these quantities but to keep the notation clean we shall not make this parametrization explicit. We tacitly assume that $n, k$ and $N$ are sufficiently large integers.

Unless otherwise stated, all communication protocols appearing in this paper are public-coin randomized protocols involving two players named Alice and Bob. Because our work concerns expected communication cost in a bounded-round setting, we make the following careful definition of what communication is allowed. In each round, the player whose turn it is to speak sends the other player a message from a prefix-free subse ${ }^{2}$ of $\{0,1\}^{*}$. This subset can depend on the communication history. After the final round in the protocol, the player that receives the last message announces the output (which, for us, is always a single bit): this announcement does not count as a round.

Let $\mathscr{P}$ be a communication protocol that takes inputs $(x, y) \in \mathscr{X} \times \mathscr{Y}$. The transcript of $\mathscr{P}$ on input $(x, y)$ is defined to be the concatenation of the messages sent by the players, in order, as they execute $\mathscr{P}$ on $(x, y)$. We denote this transcript by $\mathscr{P}(x, y)$ and remark that it is, in general, a random variable. We include the output as the final "message" in the transcript. We denote the output of a transcript $\mathfrak{t}$ by $\operatorname{out}(\mathfrak{t})$. We denote the length of a binary string $z$ by $|z|$. The communication cost and worst-case communication cost of $\mathscr{P}$ on input $(x, y)$ are defined to be

$$
\operatorname{cost}(\mathscr{P} ; x, y):=\mathbb{E}[|\mathscr{P}(x, y)|], \quad \text { and } \quad \operatorname{cost}^{*}(\mathscr{P} ; x, y):=\max |\mathscr{P}(x, y)|,
$$

where the expectation and the max are taken over the protocol's random coin tosses.
We now turn to defining complexity measures based on this notion of communication cost. Ordinarily we would just define the communication complexity of a function $f$ as the minimum over protocols for $f$ of the worst-case (over all inputs) cost of the protocol. When $f=\mathrm{EQ}_{n}$, such a measure turns out to be too punishing, and hides the subtleties that we seek to study. Notice that the $r$-round protocol outlined in Section 1.2 achieves its cost savings only on unequal inputs, i.e., on $f^{-1}(0)$. On inputs in $f^{-1}(1)$, the protocol ends up costing at least $n$ bits. The intuition is that it is much cheaper for Alice and Bob to refute the purported equality of their inputs than to verify it. Indeed, verification is so hard that interaction has no effect on the verification cost, whereas each additional round of communication decreases refutation cost exponentially.

In fact, this intuition can be turned into precise theorems, both in zero-error and positive-error settings, as we shall see. To formalize things, we now define a family of complexity measures.

Definition 2.1 (Cost, Error, and Complexity Measures). Let $\mathscr{P}$ be a protocol that is supposed to compute a Boolean function $f: \mathscr{X} \times \mathscr{Y} \rightarrow\{0,1\}$. We define its refutation cost, verification cost, overall cost, refutation error (or false positive rate, or soundness error), and verification error (or false negative rate, or completeness error) as follows, respectively:

$$
\begin{aligned}
\operatorname{rcost}(\mathscr{P}) & :=\max _{(x, y) \in f^{-1}(0)} \operatorname{cost}(\mathscr{P} ; x, y), \\
\operatorname{vcost}(\mathscr{P}) & :=\max _{(x, y) \in f^{-1}(1)} \operatorname{cost}(\mathscr{P} ; x, y), \\
\operatorname{cost}(\mathscr{P}) & :=\max _{(x, y) \in \mathscr{X} \times \mathscr{Y}} \operatorname{cost}(\mathscr{P} ; x, y), \\
\operatorname{rerr}(\mathscr{P}) & :=\max _{(x, y) \in f^{-1}(0)} \operatorname{Pr}[\operatorname{out}(\mathscr{P}(x, y))=1], \\
\operatorname{verr}(\mathscr{P}) & :=\max _{(x, y) \in f^{-1}(1)} \operatorname{Pr}[\operatorname{out}(\mathscr{P}(x, y))=0] .
\end{aligned}
$$

[^1]Let $\lambda$ be a probability distribution on the input space $\mathscr{X} \times \mathscr{Y}$. We then define the $\lambda$-distributional error $\operatorname{err}^{\lambda}(\mathscr{P})$ as well as the $\lambda$-distributional refutation cost, etc., as follows:

$$
\begin{aligned}
\operatorname{rcost}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{cost}(\mathscr{P} ; X, Y) \mid f(X, Y)=0], \\
\operatorname{vcost}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{cost}(\mathscr{P} ; X, Y) \mid f(X, Y)=1], \\
\operatorname{cost}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{cost}(\mathscr{P} ; X, Y)], \\
\operatorname{rerr}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{Pr}[\operatorname{out}(\mathscr{P}(X, Y))=1 \mid f(X, Y)=0]], \\
\operatorname{verr}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{Pr}[\operatorname{out}(\mathscr{P}(X, Y))=0 \mid f(X, Y)=1]], \\
\operatorname{err}^{\lambda}(\mathscr{P}) & :=\mathbb{E}_{(X, Y) \sim \lambda}[\operatorname{Pr}[\operatorname{out}(\mathscr{P}(X, Y)) \neq f(X, Y)] .
\end{aligned}
$$

We shall usually restrict $\mathscr{P}$ to be deterministic when considering these distributional measures. Although these measures depend on both $\mathscr{P}$ and $f$, we do not indicate $f$ in our notation to keep things simple.

Let $r \geq 1$ be an integer and let $\varepsilon, \delta \in[0,1]$ be reals. We define the $r$-round randomized refutation complexity and $r$-round $\lambda$-distributional refutation complexity of $f$ as follows, respectively:

$$
\begin{aligned}
\mathrm{R}_{\varepsilon, \delta}^{(r), \mathrm{ref}}(f) & :=\min \{\operatorname{rcost}(\mathscr{P}): \mathscr{P} \text { uses } r \text { rounds, } \operatorname{rerr}(\mathscr{P}) \leq \varepsilon, \operatorname{verr}(\mathscr{P}) \leq \delta\}, \\
\mathrm{D}_{\varepsilon, \delta}^{\lambda,(r), \text { ref }}(f) & :=\min \left\{\operatorname{rcost}^{\lambda}(\mathscr{P}): \mathscr{P} \text { is deterministic and uses } r \operatorname{rounds}, \operatorname{rerr}^{\lambda}(\mathscr{P}) \leq \varepsilon, \operatorname{verr}^{\lambda}(\mathscr{P}) \leq \delta\right\} .
\end{aligned}
$$

We also define measures of verification complexity and overall complexity analogously, replacing "rcost" above with "vcost" and "cost" respectively, and denote them by

$$
\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ver }}(f), \mathrm{D}_{\varepsilon, \delta}^{\lambda,(r), \text { ver }}(f), \mathrm{R}_{\varepsilon, \delta}^{(r)}(f), \text { and } \mathrm{D}_{\varepsilon, \delta}^{\lambda,(r)}(f),
$$

respectively. We define the total complexity of $f$ as follows:

$$
\begin{aligned}
\mathrm{R}_{\varepsilon, \delta}^{*,(r)}(f) & :=\min \left\{\operatorname{cost}^{*}(\mathscr{P}): \mathscr{P} \text { uses } r \text { rounds, } \operatorname{rerr}(\mathscr{P}) \leq \varepsilon, \operatorname{verr}(\mathscr{P}) \leq \delta\right\}, \text { where } \\
\operatorname{cost}^{*}(\mathscr{P}) & :=\max _{(x, y) \in \mathscr{X} \times \mathscr{Y}} \operatorname{cost}^{*}(\mathscr{P} ; x, y)
\end{aligned}
$$

Notice that refutation, verification, and overall complexities use (expected) communication cost as the underlying measure, whereas total complexity uses the (more standard) worst-case communication cost.

Definition 2.2 (Information Cost and Complexity). Let $\mathscr{P}, f$, and $\lambda$ be as above, and suppose the players in $\mathscr{P}$ are allowed to use private coins in addition to a public random string $\mathfrak{R}$. The $\lambda$-information cost of $\mathscr{P}$ is defined to be

$$
\operatorname{icost}^{\lambda}(\mathscr{P}):=\mathrm{I}(X Y: \mathscr{P}(X, Y) \mid \mathfrak{R}),
$$

where $\mathrm{I}\left(-\right.$ _ $\left.\left._{-}\right|_{-}\right)$denotes conditional mutual information. We define the $r$-round $\lambda$-information complexity of $f$ as follows:

$$
\operatorname{IC}_{\varepsilon, \delta}^{\lambda,(r)}(f):=\inf \left\{\operatorname{icost}^{\lambda}(\mathscr{P}): \mathscr{P} \text { uses } r \text { rounds, } \operatorname{rerr}(\mathscr{P}) \leq \varepsilon, \operatorname{verr}(\mathscr{P}) \leq \delta\right\}
$$

For readers familiar with recent literature on information complexity [4, 6], we note that this is technically the "external" information cost rather than the "internal" one. However, we shall study information costs mostly with respect to a uniform input distribution, and in this setting there is no difference between external and internal information cost.

It has long been known that information complexity lower bounds standard worst-case communication complexity: this was the main reason for defining the notion [12]. The simple proof boils down to the following argument:

$$
\mathrm{I}(X Y: \mathscr{P}(X, Y) \mid \mathfrak{R}) \leq \mathrm{H}(\mathscr{P}(X, Y)) \leq \max |\mathscr{P}(X, Y)| .
$$

In our setting, with communication cost defined in the expected sense, it is still the case that

$$
\begin{equation*}
\mathrm{IC}_{\varepsilon, \delta}^{\lambda,(r)}(f) \leq \mathrm{R}_{\varepsilon, \delta}^{(r)}(f) \tag{1}
\end{equation*}
$$

This time the proof boils down to the inequality $\mathrm{H}(\mathscr{P}(X, Y)) \leq \mathbb{E}[|\mathscr{P}(X, Y)|]$, which follows from Shannon's source coding theorem (see Fact 4.2 below).

### 2.1 Summary of Results: Equality

The functions $\mathrm{EQ}_{n}$ and $\mathrm{OREQ}_{n, k}$ have been defined in Section 1 already. To formalize our bounds for these problems, we introduce the iterated logarithm functions ilog ${ }^{k}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, which are defined as follows.

$$
\begin{aligned}
& \operatorname{ilog}^{0} z:=\max \{1, z\}, \quad \forall z \in \mathbb{R}_{+}, \\
& \operatorname{ilog}^{k} z:=\max \left\{1, \log \left(\operatorname{ilog}^{k-1} z\right)\right\}, \quad \forall k \in \mathbb{N}, z \in \mathbb{R}_{+} .
\end{aligned}
$$

For all practical purposes, we may pretend that ilog ${ }^{0}=\mathrm{id}$, and ilog ${ }^{k}=\log \circ \mathrm{ilog}^{k-1}$, for $k \in \mathbb{N}$.
We use $\xi$ to denote the uniform distribution on $\{0,1\}^{n}$, and put $\mu:=\xi \otimes \xi$. Thus $\mu$ is the uniform distribution on inputs to $\mathrm{EQ}_{n}$. Strictly speaking these should be denoted $\xi_{n}$ and $\mu_{n}$, but we choose to let $n$ be understood from the context. In all our complexity bounds, we tacitly assume that $n$ is sufficiently large. The various parts of the summary theorems below are proved later in the paper, and we indicate on the right where these detailed proofs can be found.

Theorem 2.3 (Zero-Error Bounds). The complexity of EQUALITY satisfies the following bounds:

1. $\mathrm{R}_{0,0}^{(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \leq \mathrm{ilog}^{r-1} n+3$.
2. $\mathrm{R}_{0,0}^{(r) \text { ver }}\left(\mathrm{EQ}_{n}\right) \leq n$.
3. $\mathrm{R}_{0,0}^{(r) \text { ref }}\left(\mathrm{EQ}_{n}\right)=\mathrm{D}_{0,0}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \geq \mathrm{ilog}^{r-1} n-1$. [Theorem 4.5]
4. $\mathrm{R}_{0,0}^{(r), \text { ver }}\left(\mathrm{EQ}_{n}\right)=\mathrm{D}_{0,0}^{\mu,(r), \text { ver }}\left(\mathrm{EQ}_{n}\right) \geq n$.
[Theorem 4.9]
Notice that these bounds are almost completely tight, differing at most by the tiny additive constant 4. Next, we allow our protocols some error. We continue to have very tight bounds for the verification cost (the case of one-sided error is especially interesting: just set $\delta=0$ in the results below), and we have asymptotically tight bounds in the other cases.

Theorem 2.4 (Two-Sided-Error Bounds). Let $\hat{n}=\min \left\{n+\log (1-\boldsymbol{\delta}), \log \left((1-\boldsymbol{\delta})^{2} / \varepsilon\right)\right\}$. The complexity of EQUALITY satisfies the following bounds:

1. $\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \leq(1-\delta) \operatorname{ilog}^{r-1}(\hat{n})+5$.
[Corollary 3.4]
2. $\mathrm{R}_{\varepsilon, \delta}^{(r) \text { ver }}\left(\mathrm{EQ}_{n}\right) \leq(1-\delta) \hat{n}+3$.
[Corollary 3.5]
3. $\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \text { ver }}\left(\mathrm{EQ}_{n}\right) \geq(1-\boldsymbol{\delta})(\hat{n}-1)$.
[Theorem 4.17$]$
4. $\mathrm{R}_{\varepsilon, \delta}^{(r) \text { ver }}\left(\mathrm{EQ}_{n}\right) \geq \frac{1}{8}(1-\delta)^{2}(\hat{n}+\log (1-\delta)-6)$.
[Theorem 4.18]
5. $\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \mathrm{ref}}\left(\mathrm{EQ}_{n}\right)=\Omega\left((1-\delta)^{2} \mathrm{i} \log ^{r-1} \hat{n}\right)$. This bound holds for all $\varepsilon, \delta$ such that $\delta \leq 1-2^{-n / 2}$ and $\varepsilon /(1-\delta)^{2}<1 / 8$.
[Theorem 4.15]]
6. $\mathrm{R}_{\varepsilon, \delta}^{(r) \text { ref }}\left(\mathrm{EQ}_{n}\right)=\Omega\left((1-\delta)^{3} \operatorname{ilog}^{r-1} \hat{n}\right)$. This bound holds for all $\varepsilon, \delta$ such that $\delta \leq 1-2^{-n / 2}$ and $\varepsilon /(1-\delta)^{3} \leq 1 / 64$.
[Theorem 4.16]
Observe that the "constant refutation error" setting $\varepsilon=O(1)$ is not very interesting, as it makes these complexities constant. But observe also that the situation is very different for the verification error, $\delta$ : we continue to obtain strong lower bounds even when $\delta$ is very close to 1 . This is in accordance with our intuition that verification (of equality) is much harder than refutation.

Finally, we turn to information complexity and arrive at the most important result of this paper.
Theorem 2.5 ("Main" Theorem: Information Complexity Bound). Let $\tilde{n}=\min \{n+\log (1-\delta), \log ((1-$ $\delta) / \varepsilon)\}$. Suppose $\delta \leq 1-8\left(\operatorname{ilog}^{r-2} \tilde{n}\right)^{-1 / 8}$. Then we have $\mathrm{IC}_{\varepsilon, \delta}^{\mu,(r)}\left(\mathrm{EQ}_{n}\right)=\Omega\left((1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}\right)$.

### 2.2 Summary of Results: Or-Equality and Disjointness

 Whenever $\delta$ appears in these results, it needs to be bounded sufficiently away from 1 . Similarly, $\varepsilon$ needs to be nonnegative, and $n$ and $N$ need to be sufficiently large. We state things more precisely in Section 6 .

Theorem 2.6 (Bounds for OREQ $_{n, k}$ ). The complexity of OR-EQUALITY satisfies the following bounds:

1. $\mathrm{R}_{0,0}^{(r) \text {,ref }}\left(\mathrm{OREQ}_{n, k}\right)=O\left(k \operatorname{ilog}^{r-1} n\right)$.
2. $\mathrm{R}_{0,0}^{(r)}\left(\mathrm{OREQ}_{n, k}\right)=\Omega\left(k \operatorname{ilog}^{r-1}(n-\log k)\right)$.
[Corollary 6.2]
3. $\mathrm{R}_{\varepsilon, 0}^{*,(r)}\left(\mathrm{OREQ}_{n, k}\right)=O\left(k \operatorname{ilog}^{r} k\right)$ for $\varepsilon=2^{-\prod_{j=1}^{r} \mathrm{ilog}^{j} k}$.
[Theorem 6.7]
4. $\mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\mathrm{OREQ}_{n, k}\right)=\Omega\left(k(1-\delta)^{3} \operatorname{ilog}^{r}\left(\frac{1-\delta}{\varepsilon+k / 2^{n}}\right)\right)$.
[Theorem 6.1]
In particular, note that when $\varepsilon=k^{-\Theta(1)}, \delta=1-\Omega(1)$, and $\log k \leq n / 2$ (say), the lower bound in item (4) becomes $\Omega\left(k \operatorname{ilog}^{r} k\right)$, matching the upper bound from item (3).

Theorem 2.7 (Bounds for $k$-DISJ). Let $k, N$ be integers such that $N \geq k^{c}$ for some $c>2$. The complexity of $k-\mathrm{DISJ}_{N}$ satisfies the following bounds:

1. $\mathrm{R}_{0,0}^{*,(r)}\left(k-\operatorname{DISJ}_{N}\right) \leq k\lceil\log (N)\rceil$.
2. $\mathbf{R}_{0,0}^{(r)}\left(k-\operatorname{DISJ}_{N}\right)=\Omega\left(k \operatorname{ilog}^{r}\left(\frac{N}{k^{2}}\right)\right)$.
[Corollary 6.6]
3. $\mathrm{R}_{0, k^{-10}}^{*,(r)}\left(k-\operatorname{DISJ}_{N}\right)=O\left(k \operatorname{ilog}^{r} k\right)$.
(By a protocol of [20])
4. $\mathrm{R}_{\delta, \varepsilon}^{(r)}\left(k-\operatorname{DISJ}_{N}\right)=\Omega\left(k(1-\delta)^{3} \operatorname{ilog}^{r}\left(\frac{1-\delta}{\varepsilon+k^{2} / N}\right)\right)$.
[Theorem 6.5]
The zero-error upper bound in item (1) is trivial. The upper bound in item (3) follows from a recent clever protocol by Jowhari et al. [20], extending the Håstad-Wigderson protocol [19]. Its false negative rate can be made superpolynomially small, i.e., $k^{-\omega(1)}$ without (asymptotically) changing the communication cost.

### 2.3 On Yao's Minimax Lemma

Distributional lower bounds imply worst-case randomized ones by an averaging argument that constitutes the "easy" direction of Yao's minimax lemma [32]. Yet, in Theorem 2.4]we claim somewhat weaker randomized bounds than the corresponding distributional ones. The reason is that in our setting, the averaging argument will need to fix the random coins of a protocol so as to preserve multiple measures (e.g., refutation error as well as cost). Though this is easily accomplished, we pay a penalty of small constant factor increase in our measures.

Ironically, the "hard" direction of Yao's minimax lemma is particularly easy in the case of $\mathrm{EQ}_{n}$, because EQUALITY is in a sense uniform self-reducible. See Theorem 3.3, where we show how to turn a protocol designed for the uniform distribution into a randomized one with worst-case guarantees. In this way, the uniform distribution is provably the hardest distribution for EQUALITY.

## 3 Upper Bounds

In this section, we provide deterministic and randomized protocols for $\mathrm{EQ}_{n}$ with low refutation cost and low verification cost. Recall that we define $\hat{n}=\min \left\{n+\log (1-\delta), \log \frac{(1-\delta)^{2}}{\varepsilon}\right\}$. One can derive one-sided-error and zero-error versions of these results by setting $\delta$ and/or $\varepsilon$ to zero as needed, and using the convention $\log (w / 0)=+\infty$. One can in fact tighten the analysis for the case $\varepsilon=\delta=0$ to obtain the bounds in Theorem 2.3 .
Theorem 3.1. Suppose $n, r \in \mathbb{N}$ and $\varepsilon, \delta \in[0,1]$ are such that $\delta<1-2^{-n / 2}$ and $\operatorname{ilog}^{r-1} \hat{n} \geq 4$. Then

$$
\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \leq(1-\delta) \operatorname{ilog}^{r-1} \hat{n}+5 .
$$

Proof. To gain intuition, we first consider $\delta=0$, in which case we have $\hat{n}=\min \{n, \log (1 / \varepsilon)\}$. The basic idea was already outlined in Section 11. Since we need only handle a random input, we do not need fingerprints. Instead, Alice and Bob take turns revealing increasingly longer prefixes of their inputs: in the $j$ th round, the player to speak sends the next $\approx \operatorname{ilog}^{r-j} \hat{n}$ bits of her input. Whenever a player witnesses a mismatch in prefixes, she aborts (and the protocol outputs 0 ). If the protocol ends without an abortion, it outputs 1. The protocol described so far clearly has no false negatives, and after filling in some details (see below), we can show that it has the desired refutation cost and refutation error.

To achieve further savings for nonzero $\delta$, we partition $\{0,1\}^{n}$ into sets $S, T \subseteq\{0,1\}^{n}$ such that $|S| \approx$ $(1-\delta) 2^{n}$. Each player aborts the protocol at her first opportunity if her input lies in $T$. Otherwise, they emulate the above protocol on the smaller input space $S \times S$.

We now make things precise. Set

$$
\begin{aligned}
n^{\prime} & :=n+\lceil\log (1-\delta)\rceil, \\
n^{\prime \prime} & :=\min \left\{n^{\prime}, 2+\left\lceil\log \left((1-\delta)^{2} / \varepsilon\right)\right\rceil\right\}, \\
t_{j} & := \begin{cases}\left\lceil\operatorname{ilog}^{r-j} \hat{n}\right\rceil, & \text { if } 1 \leq j<r, \\
n^{\prime \prime}-\sum_{j=1}^{r-1} t_{j}, & \text { if } j=r .\end{cases}
\end{aligned}
$$

Choose an arbitrary partition of $\{0,1\}^{n}$ into subsets $S$ and $T$ such that $|S|=2^{n^{\prime}}$. Fix an arbitrary bijection $g: S \rightarrow\{0,1\}^{n^{\prime}}$.

The protocol—which we call $\mathscr{P}$-works as follows on input $(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}$. We write $x\left[i_{1}: i_{2}\right]$ to denote the substring $x_{i_{1}} x_{i_{1}+1} \ldots x_{i_{2}}$ of $x$. Each nonempty message in the protocol will be either the string " 0 ", indicating abortion, or " 1 " followed by a payload string. Each player maintains a variable $\ell$ that records the length of the prefix that has been compared so far; initially they set $\ell \leftarrow 0$.

The players keep track of whether an abortion has occurred. Once an abortion occurs, all further messages in the protocol will be empty strings. Once $r$ rounds have been completed, the appropriate player will output 0 if an abortion has occurred, and 1 otherwise.

Round $j$ proceeds as follows. Let $P \in\{$ Alice, Bob $\}$ be the player who speaks in this round, and let $z \in\{x, y\}$ be their input. If necessary, $P$ aborts if $z \in T$. Now suppose that an abortion has not yet occurred. If $j=1$, then $P$ sends the substring $g(z)\left[1: t_{1}\right]$, sets $\ell \leftarrow t_{1}$, and the round ends. Otherwise, suppose $P$ receives a non-aborting message with payload $w$. If $P$ finds that $w \neq g(z)\left[\ell+1: \ell+t_{j-1}\right]$ then she aborts, else if $j<r$, she continues the protocol by sending the next $t_{j}$ bits of $g(z)$, i.e., she sends $g(z)\left[\ell+t_{j-1}+1: \ell+t_{j-1}+t_{j}\right]$, sets $\ell \leftarrow \ell+t_{j-1}+t_{j}$, and the round ends.

The protocol's logic is shown in pseudocode form below, for readers who prefer that presentation.

```
Algorithm 1: Round \(j\) of the protocol \(\mathscr{P}\). Here \(t_{0}=0\) and "Round \(r+1\) " is the output announcement.
    if \(j \leq r\) then
        if aborted then send emptystring ;
        else
            if \(z \in T\) then abort;
            \(w \leftarrow\) payload of most recently received message ;
            if \(w \neq g(z)\left[\ell+1: \ell+t_{j-1}\right]\) then abort;
            send " 1 " followed by \(g(x)\left[\ell+t_{j-1}+1: \ell+t_{j-1}+t_{j}\right]\), and set \(\ell \leftarrow \ell+t_{j-1}+t_{j}\);
    else
        if aborted then output 0 ;
        else
            \(w \leftarrow\) payload of most recently received message ;
            if \(w \neq g(z)\left[\ell+1: \ell+t_{j-1}\right]\) then output 0 else output 1 ;
```

It is easy to see that $\operatorname{verr}^{\mu}(\mathscr{P}) \leq \delta$, since players only abort an $(x, x)$ input when $x \in T$. Next, note that a false positive occurs only when $(x, y) \in S \times S$ and $g(x)\left[1: n^{\prime \prime}\right]=g(y)\left[1: n^{\prime \prime}\right]$. When $n^{\prime \prime}=n^{\prime}$ (which corresponds, roughly, to $\varepsilon<(1-\delta) 2^{-n}$, Alice and Bob end up comparing all bits of $g(x)$ and $g(y)$, and we $\operatorname{get} \operatorname{rerr}^{\mu}(\mathscr{P})=0$. In the other case, we have $n^{\prime \prime}=2+\left\lceil\log \left((1-\delta)^{2} / \varepsilon\right)\right\rceil$. Letting $(X, Y) \sim \mu$, we have

$$
\begin{aligned}
\operatorname{rerr}^{\mu}(\mathscr{P}) & =\operatorname{Pr}[(X, Y) \in S \times S \mid X \neq Y] \cdot \operatorname{Pr}\left[g(X)\left[1: n^{\prime \prime}\right]=g(Y)\left[1: n^{\prime \prime}\right] \mid g(X) \neq g(Y)\right] \\
& \leq\left(2^{n^{\prime}-n}\right)^{2} \cdot \frac{2^{n^{\prime}-n^{\prime \prime}}-1}{2^{n^{\prime}}-1} \leq 2^{2[\log (1-\delta)\rceil} \cdot 2^{-n^{\prime \prime}} \leq 2^{2(1+\log (1-\delta))} \cdot \frac{\varepsilon}{4(1-\delta)^{2}}=\varepsilon
\end{aligned}
$$

Finally, we analyze the refutation cost. Let $a_{j}$ denote the expected total communication in rounds $\geq j$, conditioned on not aborting before round $j$. For convenience, set $a_{r+1}=0$. We claim that $a_{j} \leq 3$ for all $j>2$ and prove so by induction from $r+1 \rightsquigarrow 3$. The base case $(j=r+1)$ is trivial. Conditioned on not aborting before the $j$ th round, the player whose turn it is to speak receives $t_{j-1}$ bits to compare with her own input. Estimating as above, this will fail to cause an abortion with probability at most $2^{-t_{j-1}}$. Therefore, the player to speak will send at most 1 bit in this round to indicate abortion (or not) plus, with proability at most $2^{-t_{j-1}}$, will continue the communication, which will cost $t_{j}$ bits in this round and $a_{j+1}$ bits in expectation in subsequent rounds. The net result is that

$$
\begin{aligned}
a_{j} & \leq 1+2^{-t_{j-1}}\left(t_{j}+a_{j+1}\right) \\
& \leq 1+\frac{1}{\mathrm{i}^{\log ^{r-j} d}}\left(\left\lceil\mathrm{ilog}^{r-j} d\right\rceil+3\right) \\
& \leq 2+\frac{4}{\operatorname{ilog}^{r-j} d} \\
& \leq 3 .
\end{aligned}
$$

The first two rounds are slightly different, because each player summarily aborts when her input lies in $T$. In the first round, Alice aborts with probability at most $\delta$. In the second round, conditioned on Alice not aborting, Bob aborts with probability all but $(1-\delta) 2^{-t_{1}}$. The refutation cost of $r$-round protocols is therefore bounded by

$$
\begin{aligned}
\operatorname{rcost}^{\mu}(\mathscr{P})=a_{1} & \leq 1+(1-\delta) t_{1}+(1-\delta)\left(1+(1-\delta) 2^{-t_{1}}\left(t_{2}+a_{3}\right)\right) \\
& \leq 1+(1-\delta)\left(\left\lceil\operatorname{ilog}^{r-1} \hat{n}\right\rceil+1\right)+(1-\delta)^{2} \frac{\left\lceil\operatorname{ilog}^{r-2} \hat{n}\right\rceil+3}{i \log ^{r-2} \hat{n}} \\
& \leq 1+(1-\delta) \operatorname{ilog}^{r-1} \hat{n}+2(1-\delta)+(1-\delta)^{2}\left(1+\frac{4}{\operatorname{ilog}^{r-2} \hat{n}}\right) \\
& \leq 1+(1-\delta) \operatorname{ilog}^{r-1} \hat{n}+2(1-\delta)+2(1-\delta)^{2} \\
& \leq 5+(1-\boldsymbol{\delta}) \operatorname{ilog}^{r-1} \hat{n} .
\end{aligned}
$$

Theorem 3.2. With $n, r, \varepsilon, \delta$ as above, we have $\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \mathrm{ver}}\left(\mathrm{EQ}_{n}\right) \leq(1-\boldsymbol{\delta}) \hat{n}+3$.
Proof. We construct a one-round protocol achieving the stated verification cost, using $S, T, g$ as in Theorem 3.1. On input $(x, y)$, Alice aborts if $x \in T$. Otherwise, she sends Bob a prefix of $g(x)$ of length $\min \left\{n+\lceil\log (1-\delta)\rceil, 2+\left\lceil\log \left((1-\boldsymbol{\delta})^{2} / \varepsilon\right)\right\rceil\right.$. Bob outputs 0 ("unequal") if (i) Alice aborted, (ii) $y \in T$, or (iii) Alice's prefix does not match that of $g(y)$.

As in the previous proof, this protocol-call it $\mathscr{Q}$-only produces false negatives when inputs lie in $T$, so that $\operatorname{verr}^{\mu}(\mathscr{Q}) \leq \delta$. And as before, we get $\operatorname{rerr}^{\mu}(\mathscr{Q})=0$ for small $\varepsilon$ and $\operatorname{rerr}^{\mu}(\mathscr{Q}) \leq 2^{2\lceil\log (1-\delta)\rceil} \cdot \frac{\varepsilon}{4(1-\delta)^{2}} \leq \varepsilon$ otherwise. As for verification cost, the protocol always sends a bit to indicate abortion (or not), and for all $(x, x) \in S \times S$ the protocol sends at most $\hat{n}+2$ bits. Thus, $\operatorname{vcost}^{\mu}(\mathscr{Q}) \leq 1+(1-\delta)(\hat{n}+2) \leq(1-\delta) \hat{n}+3$.

Theorem 3.3. Let $\mathscr{P}$ be an r-round deterministic protocol for $\mathrm{EQ}_{n}$. Then, there exists an r-round randomized protocol $\mathscr{Q}$ for $\mathrm{EQ}_{n}$ with $\operatorname{verr}(\mathscr{Q})=\operatorname{verr}^{\mu}(\mathscr{P}), \operatorname{rerr}(\mathscr{Q})=\operatorname{rerr}^{\mu}(\mathscr{P}), \operatorname{rcost}(\mathscr{Q})=\operatorname{rcost}^{\mu}(\mathscr{P})$, and $\operatorname{vcost}(\mathscr{Q})=\operatorname{vcost}^{\mu}(\mathscr{P})$.

Proof. Construct $\mathscr{Q}$ as follows. Alice and Bob use public randomness to generate a uniform bijection $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. On input $(x, y)$, they run $\mathscr{P}$ on $(G(x), G(y))$. Note that if $x=y$ then $(G(x), G(y))$ is uniform over $\mathrm{EQ}_{n}^{-1}(1)$, and if $x \neq y$ then $(G(x), G(y))$ is uniform over $\mathrm{EQ}_{n}^{-1}(0)$. Thus, distributional guarantees for $\mathscr{P}$ under the uniform distribution become worst-case guarantees for $\mathscr{Q}$.

Together with Theorems 3.1 and 3.2 , this gives upper bounds for randomized protocols.
Corollary 3.4. $\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \leq(1-\delta) \operatorname{ilog}^{r-1} \hat{n}+5$.
Corollary 3.5. $\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ver }}\left(\mathrm{EQ}_{n}\right) \leq(1-\delta) \hat{n}+3$.

## 4 Bounded-Round Communication Lower Bounds for Equality

In this section, we prove all of our communication cost lower bounds on $E Q_{n}$. We deal with information cost in the next section. We think of these lower bounds as "combinatorial" (as opposed to "information theoretic"). An important ingredient in some of these combinatorial lower bounds is the round elimination technique, which dates back to the work of Miltersen et al. [27].

### 4.1 Preliminaries

As in Section 3, we define $\hat{n}$ as the following quantity: $\hat{n}:=\min \left\{n+\log (1-\boldsymbol{\delta}), \log \left((1-\boldsymbol{\delta})^{2} / \varepsilon\right)\right\}$. Several of the bounds in this section will be parametrized by $\hat{n}$.

We recall two well-known results from information theory (see, e.g., Cover and Thomas [14]), and state a convenient estimation lemma. The second fact below is one direction of Shannon's source coding theorem. It states that any prefix-free code must have expected length at least the entropy of the source.

Fact 4.1 (Kraft Inequality). Let $S \subseteq\{0,1\}^{*}$ be a prefix-free set. Then

$$
\sum_{x \in S} 2^{-|x|} \leq 1
$$

Fact 4.2 (Source Coding Theorem). Let $X$ be a random variable taking values in a prefix-free set $S \subseteq$ $\{0,1\}^{*}$. Then

$$
\mathbb{E}[|X|] \geq \mathrm{H}(X) .
$$

Several proofs in this section rely on the following simple technical lemma about expectations.
Lemma 4.3. Let $X$ be uniformly distributed over a set $\mathscr{X}, \mathscr{X}^{\prime}$ uniformly distributed over a set $\mathscr{X}^{\prime} \subseteq \mathscr{X}$, and let $f: \mathscr{X} \rightarrow \mathbb{R}_{+}$be a nonnegative function. Then, we have

$$
\mathbb{E}_{X^{\prime}}\left[f\left(X^{\prime}\right)\right] \leq \frac{|\mathscr{X}|}{\left|\mathscr{X}^{\prime}\right|} \mathbb{E}_{X}[f(X)] .
$$

Proof. By the nonnegativity of $f$, we have

$$
\mathbb{E}_{X}[f(X)]=\frac{1}{|\mathscr{X}|} \sum_{x \in \mathscr{X}} f(x) \geq \frac{1}{|\mathscr{X}|} \sum_{x \in \mathscr{X}^{\prime}} f(x)=\left(\frac{\left|\mathscr{X}^{\prime}\right|}{|\mathscr{X}|}\right) \frac{1}{\left|\mathscr{X}^{\prime}\right|} \sum_{x \in \mathscr{X}^{\prime}} f(x)=\frac{\left|\mathscr{X}^{\prime}\right|}{|\mathscr{X}|} \mathbb{E}_{X^{\prime}}\left[f\left(X^{\prime}\right)\right] .
$$

Claim 4.4. For all $a \leq 2^{n / 2}$, all $t \leq \log ^{*} n-2$ and all $x \in\left[\frac{1}{a}, 1\right]$, the following inequality holds.

$$
\mathrm{i} \log ^{t-1} n \geq \mathrm{i}^{\log ^{t}}\left(x \cdot 2^{n}\right) \geq \mathrm{i} \log ^{t-1} n\left(1-\frac{\log a}{n}\right) .
$$

Proof. We focus on the lower bound since the upper bound is trivial. Let $Z:=2^{n} x$. First, note that $\log Z=n+\log x \geq n-\log a>n\left(1-\frac{\log a}{n}\right)$, and the claim holds for $t=1$. Next, suppose that $\log ^{t-1}(Z)>$ $\operatorname{ilog}^{t-2}(n)\left(1-\frac{\log a}{n}\right)$. Then, we have

$$
\begin{aligned}
\operatorname{ilog}^{t} Z & >\operatorname{ilog}^{t-1} n+\log \left(1-\frac{\log a}{n}\right) \\
& >\mathrm{i} \log ^{t-1} n-\frac{2 \log (e) \log a}{n} \\
& =\mathrm{ilog}^{t-1} n\left(1-\frac{2 \log (e) \log a}{n \operatorname{ilog}^{t-1} n}\right) \\
& >\operatorname{ilog}^{t-1} n\left(1-\frac{\log a}{n}\right),
\end{aligned}
$$

where the second inequality uses $1-x \geq e^{-2 x}$ and the final inequality holds since $\operatorname{ilog}^{t-1} n>2 \log (e)$.

### 4.2 Lower Bounds for Zero-Error Protocols

In this section, we provide nearly exact bounds for zero-error protocols.
Theorem 4.5. For all $r<\log ^{*} n$ we have $\mathrm{D}_{0,0}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{n}\right) \geq \mathrm{ilog}^{r-1} n-1$.
To prove this theorem, we must analyze EQUALITY protocols on finite sets of arbitrary size. Given a finite set $S$, define $\mathrm{EQ}_{S}$ to be the EQUALITY problem, but when $x, y \in S$. Thus, the standard $\mathrm{EQ}_{n}$ is equivalent to $\operatorname{EQ}_{\{0,1\}^{n}}$. Theorem 4.5 is then a special case of the following theorem.

Theorem 4.6. For all integers $r>0$, we have $\mathrm{D}_{0,0}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{S}\right) \geq \mathrm{ilog}^{r}|S|-1$.
Proof. Assume ilog ${ }^{r}|S|>1$ as otherwise there is nothing to prove. Define $m$ to be the unique real such that $m=\log |S|$. It might be helpful to think of $m$ as an integer, but this is not necessary.

The proof proceeds by induction. When there is only one-round of communication, Alice must send her entire input since the protocol has zero error. Thus, the protocol costs $\lceil m\rceil>\operatorname{ilog}^{1}(m)-1$ bits, and the induction hypothesis holds for $r=1$. Now, assume $\mathrm{D}_{0,0}^{\mu,(\ell), \text { ref }}\left(\mathrm{EQ}_{T}\right) \geq \operatorname{ilog}{ }^{\ell}|T|-1$ for all finite sets $T$, and let $\mathscr{P}$ be an optimal $(\ell+1)$-round deterministic protocol for $\mathrm{EQ}_{s}$. We aim to show that $\operatorname{rcost}^{\mu}(\mathscr{P}) \geq$ ilog $^{\ell+1}|S|-1$ bits. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{t}$ be the possible messages Alice sends in the first round of $\mathscr{P}$. For $1 \leq i \leq t$, Let $A_{i}$ denote the set of inputs on which Alice sends $\mathfrak{m}_{i}$, and let $\ell_{i}$ denote the length of $\mathfrak{m}_{i}$. Assume without loss of generality that $\ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{t}$. Since $\mathscr{P}$ is optimal, we must have $\left|A_{1}\right| \geq\left|A_{2}\right| \geq \cdots \geq\left|A_{t}\right|-$ otherwise, we can permute which messages are sent on which sets $A_{i}$ and reduce the overall cost of the protocol.

Next, we analyze the cost of $\mathscr{P}$ by conditioning on Alice's first message. Let $p_{i}:=\left|A_{i}\right| / 2^{m}$. Under the uniform distribution, Alice sends $\mathfrak{m}_{i}$ with probability $p_{i}$. Note also that if $y \notin A_{i}$, Bob refutes equality and the protocol aborts. Thus, taken over $x \neq y$ inputs, the probability that Bob aborts is $\left(\left|A_{i}\right|-1\right) /\left(2^{m}-\right.$ 1). Furthermore, conditioned on the events that (i) Alice's first message is $\mathfrak{m}_{i}$ and that (ii) Bob doesn't abort, Alice and Bob's inputs are each uniform over $A_{i}$. Thus, the remaining communication is at least $\mathrm{D}_{0,0}^{\mu,(\ell), \text { ref }}\left(\mathrm{EQ}_{A_{i}}\right)$.

Fix $\tau:=2 / \operatorname{ilog}^{\ell-1} m$. For reasons that will be clear shortly, call the $i$ th message small if $p_{i} \leq \tau$; otherwise, call the message large. We bound the cost of $\mathscr{P}$ from below as follows.

$$
\begin{aligned}
\operatorname{rcost}^{\mu}(\mathscr{P}) & =\sum_{1 \leq i \leq t} p_{i}\left(\ell_{i}+\frac{\left|A_{i}\right|-1}{2^{m}-1} \mathrm{D}_{0,0}^{\mu,(\ell), \text { ref }}\left(\mathrm{EQ}_{A_{i}}\right)\right) \\
& \geq \sum_{1 \leq i \leq t} p_{i}\left(-\log p_{i}+\left(p_{i}-2^{-m}\right) \mathrm{D}_{0,0}^{\mu,(\ell), \text { ref }}\left(\mathrm{EQ}_{A_{i}}\right)\right) \\
& \geq \sum_{\text {small } \mathfrak{m}_{i}} p_{i}\left(-\log p_{i}\right)+\sum_{\text {large } \mathfrak{m}_{i}} p_{i}\left(-\log p_{i}+\left(p_{i}-2^{-m}\right)\left(\operatorname{ilog}^{\ell}\left|A_{i}\right|-1\right)\right) \\
& \geq \operatorname{Pr}[\operatorname{small} \text { message }] \cdot\left(\operatorname{ilog}{ }^{\ell}(m)-1\right)+\sum_{\text {large } \mathfrak{m}_{i}} p_{i}\left(-\log p_{i}+p_{i} \operatorname{ilog}^{\ell}\left|A_{i}\right|-p_{i}-1\right) \\
& \geq \operatorname{Pr}[\operatorname{small} \text { message }] \cdot\left(\operatorname{ilog}^{\ell}(m)-1\right)+\sum_{\text {large } \mathfrak{m}_{i}} p_{i} f\left(p_{i}\right),
\end{aligned}
$$

where $f(x)=-\log (x)+x \operatorname{ilog}^{\ell}\left(x 2^{m}\right)-x-1$, the first inequality holds by the source coding theorem (Fact 4.2 , the second inequality holds because $\mathrm{D}_{0,0}^{\mu,(\ell) \text {,ef }}\left(\mathrm{EQ}_{T}\right) \geq 0$, and the third equality holds because $p_{i} \leq \tau$ for all small messages.
Lemma 4.7. We have $f^{\prime}(x)>0$ for all $x \in[\tau, 1]$.

Proof. We prove this by explicitly calculating the derivative of $f$.
If $x \geq \tau$, then $-1 /(x \ln 2) \geq-i \log ^{\ell-1}(m) /(2 \ln 2)$. By Claim 4.4, we have

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{x \ln 2}+\mathrm{i} \log ^{\ell}\left(x \cdot 2^{m}\right)-\frac{1}{(\ln 2)\left(\ln x \cdot 2^{m}\right) \prod_{j=0}^{\ell-2} \ln \left(\mathrm{i} \log ^{j} x \cdot 2^{m}\right)}-1 \\
& >-\frac{\mathrm{i} \log ^{\ell-1} m}{2 \ln 2}+\mathrm{i} \log ^{\ell-1} m-\frac{\left(\operatorname{ilog}^{\ell-1} m\right) \operatorname{ilog}^{\ell} m}{m}-o(1)-1 \\
& ={\mathrm{i} \log ^{\ell-1} m\left(1-\frac{1}{2 \ln 2}\right)-1-o(1)}=\Omega\left(\operatorname{ilog}^{\ell-1} m\right) .
\end{aligned}
$$

It follows from Lemma 4.7 that for large messages, $f\left(p_{i}\right)$ is minimized at $f(\tau)$. Note that

$$
\begin{aligned}
f(\tau) & =-\log (\tau)+\tau \operatorname{i\operatorname {log}^{\ell }(\tau \cdot 2^{m})-\tau -1} \\
& \geq \operatorname{ilog}^{\ell}(m)-1+\frac{2}{\operatorname{ilog}^{\ell-1} m} \operatorname{ilog}^{\ell-1} m\left(1-\frac{{\mathrm{i} \log ^{\ell}(m)-1}_{m}^{m}}{}\right)-\frac{2}{\operatorname{i\operatorname {log}}^{\ell-1} m}-1 \\
& >\operatorname{ilog}^{\ell}(m)-1 .
\end{aligned}
$$

Plugging this back into our inequality for the cost of $\mathscr{P}$, we get $\operatorname{rcost}^{\mu}(\mathscr{P}) \geq \operatorname{Pr}[$ small message $] \cdot\left(\operatorname{ilog}{ }^{\ell}(m)-1\right)+\operatorname{Pr}[\operatorname{large}$ message $] \cdot\left(\operatorname{ilog}{ }^{\ell}(m)-1\right)=\operatorname{ilog}^{\ell}(m)-1$.

Theorem 4.8. $\mathrm{D}_{0,0}^{\mu,(r), \text { ver }}\left(\mathrm{EQ}_{n}\right) \geq n$.
Note that the lower bound is independent of $r$.
Proof. Let $\mathscr{P}$ be a deterministic zero-error protocol for $\mathrm{EQ}_{n}$. As the protocol has no error, the communication matrix is partitioned into monochromatic rectangles. In particular, there are $2^{n} 1$-rectangles, since each $(x, x)$ input must map to a different rectangle ${ }^{3}$ Let $R_{x}, T_{x}$, and $\ell_{x}$ denote the rectangle consisting of the input pair $(x, x)$, the protocol transcript corresponding to $(x, x)$, and the length of this protocol transcript, respectively. Note that $\left\{T_{x}\right\}$ form a prefix-free coding of $\{0,1\}^{n}$. By Kraft's inequality, we have $\sum_{x} 2^{-\ell_{x}} \leq 1$. Therefore, in expectation $\mathbb{E}\left[2^{-\ell_{x}}\right] \leq 2^{-n}$, and by Jensen's inequality, we get the following.

$$
-n \geq \log \mathbb{E}\left[2^{-\ell_{x}}\right] \geq \mathbb{E}\left[\log \left(2^{-\ell_{x}}\right)\right]=-\mathbb{E}\left[\ell_{x}\right]
$$

Multiplying each side of the inequality by -1 , we have $\mathbb{E}_{x}\left[\ell_{x}\right] \geq n$. This is precisely $\operatorname{vcost}^{\mu}(\mathscr{P})$, thus the proof is complete.

Theorem 4.9. $\mathrm{R}_{0,0}^{(r) \text {,ver }}\left(\mathrm{EQ}_{n}\right) \geq n$.
Proof. Let $\mathscr{P}$ be a randomized zero-error protocol for $\mathrm{EQ}_{n}$. Given any string $s$, let $\mathscr{P}_{s}$ denote the deterministic protocol obtained by fixing the public randomness to $s$. Proceeding along the same lines as in the proof of Theorem 4.8, we have $\mathbb{E}\left[\ell_{x, s}\right] \geq n$, where $\ell_{x, s}$ is the length of the protocol transcript in $\mathscr{P}_{s}$ on input $(x, x)$. This holds for every $\mathscr{P}_{s}$, hence $\mathbb{E}_{x, s}\left[\ell_{x, s}\right] \geq n$. Therefore, there exists $x$ such that $\mathbb{E}_{s}\left[\ell_{x, s}\right] \geq n$. Recalling the definition of vcost, we have

$$
\operatorname{vcost}(\mathscr{P}) \geq \operatorname{cost}(\mathscr{P} ; x, x)=\mathbb{E}_{s}\left[\ell_{x, s}\right] \geq n
$$

completing the proof.

[^2]
### 4.3 Refutation Lower Bounds for Protocols with Two-Sided Error

In this section, we give combinatorial lower bounds on the refutation cost of EQUALITY protocols that admit error. All of the bounds in this section will be asymptotic rather than nearly exact. For this reason, we will strive for simplicity of the proofs at the possible expense of some technical accuracy. For instance, we will often drop ceilings or floors in the mathematical notation. We will also assume that players have the ability to instantly abort a protocol when equality has been refuted. This is easily implemented, as seen in Section 4.2 at negligible communication cost. We prefer to avoid the technical machinery needed to express this explicitly.

Definition 4.10. An $\langle n, r, \varepsilon, \delta, c\rangle$-EQUALITY protocol $\mathscr{P}$ is a $r$-round deterministic protocol with rerr ${ }^{\mu}(\mathscr{P}) \leq$ $\varepsilon, \operatorname{verr}^{\mu}(\mathscr{P}) \leq \delta$, and $\operatorname{rcost}^{\mu}(\mathscr{P}) \leq c$.

For the sake of brevity, we often drop the "EQUALITY" and simply refer to an $\langle n, r, \varepsilon, \delta, c\rangle$-protocol. Our first lemma demonstrates that disallowing false negatives changes the communication complexity very little.

Lemma 4.11. If there exists a $\langle n, r, \varepsilon, \delta, c\rangle$-EQUALITY protocol then there exists a $\left\langle n^{\prime}, r, \varepsilon^{\prime}, 0, c^{\prime}\right\rangle$-EQUALITY protocol, where $n^{\prime}=n+\log (1-\delta), \varepsilon^{\prime}=2 \varepsilon /(1-\delta)^{2}$, and $c^{\prime}=2 c /(1-\delta)^{2}$.

Proof. Let $S=\{x: \operatorname{out}(\mathscr{P}(x, x))=0\}$ be the set of inputs on which $\mathscr{P}$ gives a false negative, and let $T=$ $\{0,1\}^{n} \backslash S$. Since $\mathscr{P}$ has false negative rate $\delta$ under the uniform distribution, we have $|T| \geq(1-\delta) 2^{n}=2^{n^{\prime}}$.

First create a new $\mathrm{EQ}_{n}$ protocol $\mathscr{P}^{\prime}$ which works as follows. On input ( $x, y$ ), Alice aborts and outputs 0 if $x \in S$; otherwise, the players emulate $\mathscr{P}$ and output out $(\mathscr{P}(x, y))$. Note that $\mathscr{P}^{\prime}$ makes precisely the same false negatives as in $\mathscr{P}$, and aborting when $x \in S$ can only decrease the false positive rate and the expected communication on inputs in $\mathrm{EQ}_{n}^{-1}(0)$. Thus, $\mathscr{P}^{\prime}$ is also a $\langle n, r, \varepsilon, \delta, c\rangle$-protocol.

Next, fix an arbitrary bijection $g:\{0,1\}^{n^{\prime}} \rightarrow T$, and construct an $\mathrm{EQ}_{n^{\prime}}$ protocol $\mathscr{Q}$ in the following way. On input $(X, Y)$, players emulate $\mathscr{P}^{\prime}$ on input $(g(X), g(Y))$ and output out $\left(\mathscr{P}^{\prime}(g(X), g(Y))\right)$. Note that $g(X), g(Y) \in T$, so there are no false negatives. There can be as many false positives as in $\mathscr{P}^{\prime}$. However, the sample space is smaller ( $2^{2 n^{\prime}}-2^{n^{\prime}}$ vs $2^{2 n}-2^{n}$ ), so the false positive rate can increase. By Lemma 4.3, the overall error is at most $2 \varepsilon /(1-\delta)^{2}$. Similarly, the communication in $\mathscr{Q}$ on any input $(X, Y)$ is the same as the communication in $\mathscr{P}^{\prime}$ on input $\left(g(X), g(Y)\right.$ ), but since the sample space is smaller (again $2^{2 n^{\prime}}-2^{n^{\prime}}$ vs. $2^{2 n}-2^{n}$ ), the expected communication can increase. However, the overall increase in communication is at most a factor of $2 /(1-\delta)^{2}$ by Lemma 4.3

Lemma 4.12 (Combinatorial Round Elimination for EQUALITY). If there is an $\langle n, r, \varepsilon, 0, c\rangle$-EQUALITY protocol, then there is an $\left\langle n-3 c-2, r-1,12 \varepsilon 2^{3 c}, 0,12 c 2^{3 c}\right\rangle$-EQUALITY protocol.

Proof. Let $\mathscr{P}$ be a $\langle n, r, \varepsilon, 0, c\rangle$-protocol. Let $Z(x, y)=1$ if the protocol errs on input $(x, y)$, and let $Z(x, y)=0$ otherwise. Then we have

$$
\mathbb{E}_{x}\left[\mathbb{E}_{y \neq x}[|\mathscr{P}(x, y)|]\right] \leq c, \quad \text { and } \quad \mathbb{E}_{x}\left[\mathbb{E}_{y \neq x}[Z(x, y)]\right] \leq \varepsilon
$$

Call $x \operatorname{good}$ if (1) $\mathbb{E}_{y \neq x}[\mathscr{P}(x, y) \mid] \leq 3 c$, and (2) $\mathbb{E}_{y \neq x}[Z(x, y)] \leq 3 \varepsilon$. By two applications of Markov's inequality and a union bound, at least $2^{n} / 3 x$ are good. Next, fix Alice's first message $m$ so it is constant over the maximal number of good $x$. It follows that $m$ is constant over a set $A$ of good $x$ of size $|A| \geq 2^{n-3 c-2}$. This induces a $(r-1)$-round protocol $\mathscr{Q}$ for $\mathrm{EQ}_{A}$. It remains to bound the cost and error of $\mathscr{Q}$. Applying Lemma 4.3 twice, we have that the cost is bounded by

$$
\operatorname{rcost}^{\mu}(\mathscr{Q})=\mathbb{E}_{x \in A}\left[\mathbb{E}_{y \in A, y \neq x}[|\mathscr{P}(x, y)|]\right] \leq \frac{2^{n}}{2^{n-3 c-2}} \mathbb{E}_{x \in A}\left[\mathbb{E}_{y \in\{0,1\}^{n}, y \neq x}[|\mathscr{P}(x, y)|]\right] \leq 12 c 2^{3 c}
$$

and the error is bounded by

$$
\mathbb{E}_{x \in A}\left[\mathbb{E}_{y \in A, y \neq x}[Z(x, y)]\right] \leq \frac{2^{n}}{2^{n-3 c-2}} \mathbb{E}_{x \in A}\left[\mathbb{E}_{y \in\{0,1\}^{n}, y \neq x}[Z(x, y)]\right] \leq 12 \varepsilon 2^{3 c}
$$

Corollary 4.13. Let $n, j, r, d$ be integers with $n>d$, $d$ sufficiently large, and $r \geq 1$. Suppose there exists an $\langle n, r, \varepsilon \ell, 0, \ell\rangle$-protocol, where $\ell=\frac{1}{6} \operatorname{ilog}^{j} d$. Then, there exists an $\left\langle n-3 \ell-2, r-1, \varepsilon \ell^{\prime}, 0, \ell^{\prime}\right\rangle$-protocol with $\ell^{\prime}=\frac{1}{6} \mathrm{ilog}^{j-1} d$.

Proof. This boils down to the following estimations, which are valid for all sufficiently large $d$.

$$
12 \ell 2^{3 \ell}=2\left(\operatorname{ilog}^{j} d\right) 2^{\frac{1}{2} \operatorname{ilog}^{j} d}=2 \mathrm{i}^{j} \log ^{j} d \sqrt{\mathrm{i}_{\log ^{j-1} d}}<\frac{1}{6} \mathrm{i}^{\log ^{j-1} d}
$$

Theorem 4.14 (Lower Bound for Protocols with False Negatives Disallowed). Let $n$ be a sufficiently large integer, $\varepsilon<1 / 4$ a real, and $r \geq 1$. Fix $\tilde{n}:=\min \{n, \log (1 / \varepsilon)\}$. Then, $\mathrm{D}_{\varepsilon, 0}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{n}\right)=\Omega\left(\operatorname{ilog}^{r-1} \tilde{n}\right)$.

Proof. In this proof we tacitly assume ilog ${ }^{r-1} \tilde{n} \geq 100$.
Suppose for the sake of a contradiction that there exists a $\left\langle n, r, \varepsilon, 0, \frac{1}{6} \mathrm{ilog}^{r-1} \tilde{n}\right\rangle$-protocol $\mathscr{P}$. Applying Lemma 4.12 gives a $\left\langle n-\frac{3}{5} \operatorname{ilog}^{r-1} \tilde{n}, r-1, \frac{\varepsilon}{6} \operatorname{ilog}^{r-2} \tilde{n}, 0, \frac{1}{6} \operatorname{ilog}^{r-2} \tilde{n}\right\rangle$-protocol $\mathscr{P}^{\prime}$. Next, applying Corollary $4.13 r-2$ times gives a $\left\langle n-\frac{3}{5} \sum_{j=1}^{r-1} \operatorname{ilog}^{j} \tilde{n}, 1, \frac{\varepsilon}{6} \tilde{n}, 0, \frac{\tilde{n}}{6}\right\rangle$-protocol. Finally, applying Lemma 4.12 once more gives a $\left\langle n-\frac{3}{5} \sum_{j=0}^{r-1} \operatorname{ilog}{ }^{j} \tilde{n}, 0,2 \varepsilon \tilde{n} 2^{\tilde{n} / 2}, 0,2 \tilde{n} 2^{\tilde{n} / 2}\right\rangle$-protocol $\mathscr{Q}$.

Note that since $\mathscr{Q}$ has false negative rate zero, $\mathscr{Q}$ must output 1 with certainty. Thus, $\mathscr{Q}$ errs on all $X \neq Y$ inputs; i.e., $\mathscr{Q}$ has false positive rate 1 . On the other hand, $\tilde{n} \leq \log (1 / \varepsilon)$, so the false positive rate of $\mathscr{Q}$ is $2 \varepsilon \tilde{n} 2^{\tilde{n} / 6} \leq \sqrt{\varepsilon}<1 / 2$. This is a contradiction as long as the problem remains nontrivial.

Since $\operatorname{ilog}^{j} \tilde{n} \geq 100$, we have $\sum_{j=t+1}^{r-1} \operatorname{ilog}^{j} \tilde{n}<\frac{1}{5} \operatorname{ilog}^{t} \tilde{n}$. Also notice that since $\tilde{n} \leq n$, we have $n-$ $\frac{3}{5} \sum_{j=0}^{r-1} \operatorname{ilog}^{j} \tilde{n}>n / 5$. Thus, we have a zero-round protocol for $\mathrm{EQ}_{n^{\prime}}$ for some $n^{\prime}=\Omega(n)$ that has false positive rate $<1 / 2$ but must output 1 with certainty, a contradiction.

Theorem 4.15 (Lower Bound for Protocols with Two-Sided Error). Let $n$ be a sufficiently large integer, and let $\varepsilon, \delta$ be reals such that $\delta \leq 1-2^{-n / 2}$ and $\varepsilon /(1-\delta)^{2}<1 / 8$. Then, $\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \text { ref }}\left(\mathrm{EQ}_{n}\right)=\Omega((1-$ $\left.\delta)^{2} \operatorname{ilog}^{r-1} \hat{n}\right)$.

Proof. Fix $d=\min \left\{n / 2, \log \left((1-\delta)^{2} / 2 \varepsilon\right)\right\}$. Note that $\log d=\Theta(\log \hat{n})$. Suppose for the sake of a contradiction that there exists a $\left\langle n, r, \varepsilon, \delta, \frac{(1-\delta)^{2}}{12}\right.$ ilog $\left.{ }^{r-1} d\right\rangle$-protocol $\mathscr{P}$. Since $n+\log (1-\delta)>n / 2$, Lemma 4.11 gives a $\left\langle n / 2, r, 2 \varepsilon /(1-\delta)^{2}, 0, \frac{1}{6} \mathrm{ilog}^{r-1} d\right\rangle$-protocol. The rest of the proof follows from the proof of Theorem4.14.

Next, we prove a combinatorial lower bound for randomized communication complexity.
Theorem 4.16. Let $n$ be a sufficiently large integer, $\varepsilon$ and $\delta$ reals such that $\delta<1-2^{1-n / 2}$ and $64 \varepsilon<$ $(1-\delta)^{3}$. Then, $\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ref }}\left(\mathrm{EQ}_{n}\right)=\Omega\left((1-\delta)^{3} \operatorname{ilog}^{r-1} \hat{n}\right)$.

Proof. Let $\mathscr{P}$ be an $r$-round randomized protocol with $\operatorname{rerr}(\mathscr{P})=\varepsilon$, verr $(\mathscr{P})=\delta$, and with $\operatorname{rcost}^{\mu}(\mathscr{P})=c$. Define $z=1-\delta, \hat{\varepsilon}=4 \varepsilon /(1-\delta)$, and $\hat{c}=4 c /(1-\delta)$. For any setting $s$ of the random string, let $\mathscr{P}_{s}$ denote the deterministic protocol induced by fixing the randomness to $s$. Call a string $s$ good if (i) verr ${ }^{\mu}\left(\mathscr{P}_{s}\right) \leq$ $1-z / 2$, (ii) $\operatorname{rerr}^{\mu}\left(\mathscr{P}_{s}\right) \leq \hat{\varepsilon}$, and (iii) $\operatorname{rcost}^{\mu}\left(\mathscr{P}_{s}\right) \leq \hat{c}$. Applying a Markov argument to each term, we see that

$$
\operatorname{Pr}[s \text { is bad }]<\frac{1-z}{1-z / 2}+\frac{z}{4}+\frac{z}{4}<1
$$

where the final inequality uses $\frac{1-z}{1-z / 2}<1-z / 2$. Thus there exists a good string $s$. Note that $\mathscr{P}_{s}$ is a $[n, r, \hat{\varepsilon}, \hat{\delta}, \hat{c}]$-protocol, and by Theorem 4.15, $\hat{c}=\Omega\left((1-\delta)^{2} \operatorname{ilog}^{r-1} \hat{n}\right)$. Therefore, $c=\Omega\left((1-\delta)^{3} \operatorname{ilog}^{r-1} \hat{n}\right)$.

### 4.4 Verification Lower Bounds for Protocols with Two-Sided Error

Theorem 4.17. $\mathrm{D}_{\varepsilon, \delta}^{\mu,(r), \text { ver }}\left(\mathrm{EQ}_{n}\right) \geq(1-\delta)(\hat{n}-1)$.
Proof. Fix a deterministic protocol $\mathscr{P}$ achieving $\operatorname{rerr}^{\mu}(\mathscr{P})=\varepsilon$ and verr ${ }^{\mu}(\mathscr{P})=\delta$. This protocol naturally partitions the communication matrix for $\mathrm{EQ}_{n}$ into combinatorial rectangles. Let $R_{1}, \ldots, R_{c}$ be the rectangles on which $\mathscr{P}$ outputs 1 . Let $s_{i}$ denote the number of $(x, x)$ inputs in $R_{i}$. Since $\mathscr{P}$ has false negative rate $\delta$, we have $\sum_{i} s_{i}=2^{n}(1-\delta)$. Let $p_{i}=s_{i} / 2^{n}$ and $q_{i}=p_{i} /(1-\delta)$. $p_{i}$ is the probability that $(x, x) \in R_{i}$ for a uniformly chosen $x$. Similarly, $q_{i}$ is the probability that $(x, x) \in R_{i}$ conditioned on $\mathscr{P}$ verifying equality on $(x, x)$. We now analyze the false positive rate. Recall that there are $2^{2 n}-2^{n}$ total $x \neq y$ inputs. It is easy to see that $R_{i}$ contains at least $s_{i}^{2}-s_{i}$ false positives. Therefore, we have

$$
\varepsilon \geq \frac{1}{2^{2 n}-2^{n}} \sum_{i} s_{i}^{2}-s_{i}=\sum_{i} \frac{s_{i}\left(s_{i}-1\right)}{2^{n}\left(2^{n}-1\right)} \geq \sum_{i} p_{i}\left(p_{i}-2^{-n}\right)=-2^{-n}(1-\delta)+\sum_{i} p_{i}^{2} .
$$

Rearranging terms and noting that $q_{i}=p_{i} /(1-\delta)$, we have

$$
\mathbb{E}\left[q_{i}\right]=\sum_{i} q_{i}^{2}=\frac{1}{(1-\delta)^{2}} \sum_{i} p_{i}^{2} \leq \frac{1}{(1-\delta)^{2}}\left(\varepsilon+2^{-n}(1-\delta)\right)=\frac{\varepsilon}{(1-\delta)^{2}}+\frac{2^{-n}}{(1-\delta)} \leq 2 \cdot 2^{-\hat{n}}
$$

Next we analyze the verification cost of $\mathscr{P}$. Let $\ell_{i}$ denote the length of the protocol transcript for inputs in $R_{i}$. Let $R$ denote be a random variable corresponding to which 1-rectangle is selected on a uniform ( $x, x$ ) input, conditioned on $\mathscr{P}$ outputting 1 . Note that the communication of $\mathscr{P}$ gives a prefix-free coding of $R$. We have

$$
\begin{aligned}
\operatorname{vcost}^{\mu}(\mathscr{P}) & =\sum_{x} \frac{|\mathscr{P}(x, x)|}{2^{n}} \\
& \geq \sum_{i} p_{i} \ell_{i} \\
& =(1-\delta) \sum_{i} q_{i} \ell_{i} \\
& \geq(1-\delta) \sum_{i} q_{i}\left(-\log q_{i}\right) \\
& =-(1-\delta) \mathbb{E}\left[\log \left(q_{i}\right)\right] \\
& \geq-(1-\boldsymbol{\delta}) \log \mathbb{E}\left[q_{i}\right] \\
& \geq-(1-\boldsymbol{\delta})(-\hat{n}+1) \\
& =(1-\boldsymbol{\delta})(\hat{n}-1)
\end{aligned}
$$

where the second inequality is from the source coding theorem (Fact 4.2) and the third is from Jensen's inequality.

Theorem 4.18. $\mathrm{R}_{\varepsilon, \delta}^{(r), \text { ver }}\left(\mathrm{EQ}_{n}\right)>\frac{(1-\delta)^{2}}{8}(\hat{n}+\log (1-\delta)-5)$.
Proof. Suppose there exists a randomized protocol $\mathscr{P}$ with $\operatorname{rerr}(\mathscr{P})=\varepsilon$, verr $(\mathscr{P})=\delta$, and $\operatorname{vcost}(\mathscr{P})=m$. For any string $s$, let $\mathscr{P}_{s}$ denote the deterministic protocol obtained from $\mathscr{P}$ by fixing the public randomness to $s$. The verification cost of $\mathscr{P}$ gives for all $x, y$ the expectation $\mathbb{E}_{s}[\operatorname{cost}(\mathscr{P} s ; x, y) \mid x=y] \leq m$.

Similarly, the false positive and false negative rates of $\mathscr{P} \operatorname{give} \mathbb{E}_{s}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{s}(x, y)\right)=1\right] \mid x \neq y\right] \leq \varepsilon$ and $\mathbb{E}_{s}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{s}(x, y)\right)=0\right] \mid x=y\right] \leq \delta$.

Therefore, under the uniform distribution we have

$$
\begin{array}{r}
\mathbb{E}_{s, \mu}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{s}(X, Y)\right)=1 \mid X \neq Y\right]\right] \leq \varepsilon, \\
\mathbb{E}_{s, \mu}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{s}(X, Y)=0 \mid X=Y\right]\right] \leq \delta,\right. \\
\mathbb{E}_{s, \mu}\left[\operatorname{cost}\left(\mathscr{P}_{s} ; X, Y\right) \mid X=Y\right] \leq m .
\end{array}
$$

Define $z:=1-\delta, \hat{\varepsilon}=4 \varepsilon /(1-\delta), \hat{\delta}=1-z / 2$ and $\hat{m}=4 m /(1-\delta)$. Call a string $s \operatorname{good}$ if (i) verr $\left(\mathscr{P}_{s}\right) \leq$ $1-z / 2$, (ii) $\operatorname{rerr}\left(\mathscr{P}_{s}\right) \leq \hat{\varepsilon}$, and (iii) $\operatorname{vcost}^{\mu}(\mathscr{P}) \leq \hat{m}$. Applying a Markov argument to each term and using a union bound, we see that

$$
\operatorname{Pr}[s \text { is bad }]<\frac{1-z}{1-z / 2}+\frac{z}{4}+\frac{z}{4}<1
$$

where the final inequality uses $\frac{1-z}{1-z / 2}<1-z / 2$ which holds for $z \in(0,1)$. Thus, there exists a good string $s$. Note that $\mathscr{P}_{s}$ is a deterministic $(\hat{\varepsilon}, \hat{\delta})$-error $\mathrm{EQ}_{n}$ protocol, and by Theorem 4.17, we have

$$
\frac{4 m}{1-\delta} \geq \operatorname{vcost}^{\mu}\left(\mathscr{P}_{s}\right) \geq \frac{z}{2}\left(\min \left\{n+\log (z / 2), \log \left(\frac{z(z / 2)^{2}}{4 \varepsilon}\right)\right\}-1\right) \geq \frac{z}{2}(\hat{n}+\log (z)-5) .
$$

Rearranging terms and substituting $z=1-\delta$ gives $m \geq \frac{(1-\delta)^{2}}{8}(\hat{n}+\log (1-\delta)-6)$, completing the proof.

The analysis in the above proof is very loose when $\delta$ is bounded away from 1. In particular, when there are no false negatives (i.e., when $\delta=0$, we are able to show that $\mathrm{R}_{\varepsilon, 0}^{(r) \text {,ver }} \geq c \hat{n}$ for every constant $c<1$.

## 5 Bounded-Round Information Complexity of Equality

In this section we prove Theorem 2.5, which we think of as the most important result of this paper. We wish to lower bound the bounded-round information complexity of EQUALITY with respect to the uniform distribution. Recall that we are concerned chiefly with protocols that achieve very low refutation error, though they may have rather high verification error. We will prove our lower bound by proving a round elimination lemma for $\mathrm{EQ}_{n}$ that targets information cost, and then applying this lemma repeatedly.

This proof has much more technical complexity than our earlier lower bound proofs. Let us see why. There are two main technical difficulties and they arise, ultimately, from the same source: the inability to use (the easy direction of) Yao's minimax lemma. When proving a lower bound on communication cost, Yao's lemma allows us to fix the random string used by any purported protocol, which immediately moves us into the clean world of deterministic protocols. This hammer is unavailable to us when working with information cost. The most we can do is to "average away" the public randomness. We then have to deal with (private coin) randomized protocols the entire way through the round elimination argument. As a result, our intermediate protocols, obtained by eliminating some rounds of our original protocol, do not obey straightforward cost and error guarantees. This is the first technical difficulty, and our solution to it leads us to the concept of a "kernel" in Definition 5.6 below.

The second technical difficulty is that we are unable to switch to the simpler case of zero verification error like we did in the proof of Theorem 2.4. Parts 5 and 6. Therefore, all our intermediate protocols continue to have verification error. Since errors scale up with each round elimination, and the verification error starts out high, we cannot afford even a constant-factor scaling. We must play very delicately with our error parameters, which leads us to the somewhat complicated parametrization seen in Definition 5.7 below.

### 5.1 Preliminaries

Before getting to the proof proper, we define some notation and give a few useful estimation lemmas.
Definition 5.1. Let $\lambda$ be a probability distribution on a finite set $S$ and let $T \subseteq S$ be an event with $\lambda(T) \neq 0$. We write $\lambda \mid T$ to denote the distribution obtained by conditioning $\lambda$ on $T$. To be explicit, $\lambda \mid T$ is given by

$$
(\lambda \mid T)(x)= \begin{cases}0, & \text { if } x \notin T \\ \lambda(x) / \lambda(T), & \text { if } x \in T\end{cases}
$$

Also, we write $\mathrm{H}(\lambda)$ to denote the entropy of a random variable distributed according to $\lambda$, i.e., $\mathrm{H}(\lambda)=$ $\mathrm{H}(X)$, where $X \sim \lambda$.

Lemma 5.2. With $\lambda, S$ and $T$ as above, let $f: S \rightarrow \mathbb{R}_{+}$be a nonnegative function. Then $\mathbb{E}_{X \sim \lambda \mid T}[f(X)] \leq$ $\mathbb{E}_{X \sim \lambda}[f(X)] / \lambda(T)$.

Lemma 5.3. Let $Z, W$ be jointly distributed random variables. Let $\mathscr{E}$ be an event. Then,

$$
\mathrm{I}(Z: W) \geq \operatorname{Pr}[\mathscr{E}] \mathrm{I}(Z: W \mid \mathscr{E})-1
$$

Proof. Let $D$ be the indicator random variable for $\mathscr{E}$. Then we have

$$
\begin{equation*}
\mathrm{I}(Z: W \mid D)=\operatorname{Pr}[\mathscr{E}] \mathrm{I}(Z: W \mid \mathscr{E})+\operatorname{Pr}[\neg \mathscr{E}] \mathrm{I}(Z: W \mid \neg \mathscr{E}) \geq \operatorname{Pr}[\mathscr{E}] \mathrm{I}(Z: W \mid \mathscr{E}) \tag{2}
\end{equation*}
$$

Note that $\mathrm{I}(Z: D \mid W) \leq \mathrm{H}(D \mid W) \leq \mathrm{H}(D) \leq 1$. Using the chain rule for mutual information twice, we get

$$
\begin{equation*}
\mathrm{I}(Z: W \mid D) \leq \mathrm{I}(Z: W D)=\mathrm{I}(Z: W)+\mathrm{I}(Z: D \mid W) \leq \mathrm{I}(Z: W)+1 \tag{3}
\end{equation*}
$$

The lemma follows by combining inequalities (2) and (3).
To appreciate the next two lemmas, it will help to imagine that $d \ll n$.
Lemma 5.4. Let $Z, W$ be jointly distributed random variables, with $Z$ taking values in $\{0,1\}^{n}$, and let $\mathscr{E}$ be an event. Then

$$
\mathrm{H}(Z \mid W) \geq n-d \Longrightarrow \mathrm{H}(Z \mid W, \mathscr{E}) \geq n-(d+1) / \operatorname{Pr}[\mathscr{E}]
$$

In particular, taking $W$ to be a constant, we have $\mathrm{H}(Z) \geq n-d \Longrightarrow \mathrm{H}(Z \mid \mathscr{E}) \geq n-(d+1) / \operatorname{Pr}[\mathscr{E}]$.
Proof. We use the fact that the entropy of $Z$ can be at most $n$, even after arbitrary conditioning. This gives

$$
\begin{aligned}
n-d & \leq \mathrm{H}(Z \mid W) \\
& =\operatorname{Pr}[\mathscr{E}] \mathrm{H}(Z \mid W, \mathscr{E})+(1-\operatorname{Pr}[\mathscr{E}]) \mathrm{H}(Z \mid W, \neg \mathscr{E})+\mathrm{H}_{b}(\operatorname{Pr}[\mathscr{E}]) \\
& \leq \operatorname{Pr}[\mathscr{E}] \mathrm{H}(Z \mid W, \mathscr{E})+(1-\operatorname{Pr}[\mathscr{E}]) n+1
\end{aligned}
$$

The lemma follows by rearranging the above inequality.
Lemma 5.5. Let $Z$ be a random variable taking values in $\{0,1\}^{n}$ and let $z \in\{0,1\}^{n}$. Then

$$
\mathrm{H}(Z) \geq n-d \Longrightarrow \operatorname{Pr}[Z=z] \leq(d+1) / n
$$

Proof. The lemma follows by rearranging the following inequality, which is a consequence of Lemma 5.4 ,

$$
0=\mathrm{H}(Z \mid Z=z) \geq n-\frac{d+1}{\operatorname{Pr}[Z=z]}
$$

### 5.2 The Round Elimination Argument

Definition 5.6 (Kernel). Let $p$ and $q$ be probability distributions on $\{0,1\}^{n}$, let $S \subseteq\{0,1\}^{n}$, and let $\ell \geq 0$ be a real number. The triple $(p, q, S)$ is defined to be an $\ell$-kernel if the following properties hold.
[K1] $\mathrm{H}(p) \geq n-\ell$ and $\mathrm{H}(q) \geq n-\ell$.
[K2] $p(S) \geq 2^{-\ell}$ and $q(S) \geq \frac{1}{2}$.
[K3] For all $x \in S$ we have $q(x) \geq 2^{-n-\ell}$.
Definition 5.7 (Parametrized Protocols). Suppose we have an integer $r \geq 1$, and nonnegative reals $\ell, a, b$, and $c$. A protocol $\mathscr{P}$ for $\mathrm{EQ}_{n}$ is defined to be an $[r, \ell, a, b, c]$-protocol if there exists an $\ell$-kernel $(p, q, S)$ such that the following properties hold.
[P1] The protocol $\mathscr{P}$ is private-coin and uses $r$ rounds, with Alice speaking in the first round.
[P2] We have $\operatorname{err}^{p \otimes q \mid S \times S}(\mathscr{P})=\operatorname{Pr}_{(X, Y) \sim p \otimes q}\left[\operatorname{out}(\mathscr{P}(X, Y)) \neq \mathrm{EQ}_{n}(X, Y) \mid(X, Y) \in S \times S\right] \leq 2^{-a}$.
[P3] We have verr ${ }^{p \otimes \xi \mid S \times S}(\mathscr{P})=\operatorname{Pr}_{X \sim p}[\operatorname{out}(\mathscr{P}(X, X))=0 \mid X \in S] \leq 1-2^{-b}$.
[P4] We have icost ${ }^{p \otimes q}(\mathscr{P}) \leq c$.
We alert the reader to the fact that [P2] considers overall error, and not refutation error. We encourage the reader to take a careful look at [P3] and verify the equality claimed therein. It is straightforward, once one revisits Definition 2.1 and recalls that $\xi$ denotes the uniform distribution on $\{0,1\}^{n}$.

Since we have a number of parameters at play, it is worth recording the following simple observation.
Fact 5.8. Suppose that $\ell^{\prime} \geq \ell, c^{\prime} \geq c, a^{\prime} \leq a$, and $b^{\prime} \geq b$. Then every $\ell$-kernel is also an $\ell^{\prime}$-kernel, and every [ $r, \ell, a, b, c]$-protocol is also an $\left[r, \ell^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}\right]$-protocol.

Theorem 5.9 (Information-Theoretic Round Elimination for EQUALITY). If there exists an $[r, \ell, a, b, c]$ protocol with $r \geq 1$ and $c \geq 4$, then there exists an $\left[r-1, \ell^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}\right]$-protocol, where

$$
\begin{array}{ll}
\ell^{\prime}:=(c+\ell) 2^{\ell+2 b+7}, & a^{\prime}:=a-(c+\ell) 2^{\ell+2 b+8}, \\
b^{\prime}:=b+2, & c^{\prime}:=(c+2) 2^{\ell+2 b+6} .
\end{array}
$$

Proof. Let $\mathscr{P}$ be an $[r, \ell, a, b, c]$-protocol, and let $(p, q, S)$ be an $\ell$-kernel satisfying the conditions in Definition5.7. Assume WLOG that the each message in $\mathscr{P}$ is generated using a fresh random string. Let $X \sim p$ and $Y \sim q$ be independent random variables denoting an input to $\mathscr{P}$. Let $M_{1}, \ldots, M_{r}$ be random variables denoting the messages sent in $\mathscr{P}$ on input $(X, Y)$, with $M_{j}$ being the $j$ th message; note that these variables depend on $X, Y$, and the random strings used by the players. We then have

$$
\begin{equation*}
c \geq \operatorname{icost}^{p \otimes q}(\mathscr{P})=\mathrm{I}\left(X Y: M_{1} M_{2} \ldots M_{r}\right)=\mathrm{I}\left(X: M_{1}\right)+\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1}\right), \tag{4}
\end{equation*}
$$

where the final step uses the chain rule for mutual information, and the fact that $M_{1}$ and $Y$ are independent. In particular, we have $\mathrm{I}\left(X: M_{1}\right) \leq c$, and so $\mathrm{H}\left(X \mid M_{1}\right)=\mathrm{H}(X)-\mathrm{I}\left(X: M_{1}\right) \geq n-\ell-c$. By Lemma 5.4 .

$$
\begin{equation*}
\mathrm{H}\left(X \mid M_{1}, X \in S\right) \geq n-\frac{\ell+c+1}{p(S)} \geq n-(\ell+c+1) 2^{\ell} . \tag{5}
\end{equation*}
$$

Let $\mathscr{M}$ be the set of messages that Alice sends with positive probability as her first message in $\mathscr{P}$, given the random input $X$, i.e., $\mathscr{M}:=\left\{\mathfrak{m}: \operatorname{Pr}\left[M_{1}=\mathfrak{m}\right]>0\right\}$. Consider a particular message $\mathfrak{m} \in \mathscr{M}$. Let $\mathscr{P}_{\mathfrak{m}}^{\prime}$ denote the following protocol for $\mathrm{EQ}_{n}$. The players simulate $\mathscr{P}$ on their input, except that Alice is assumed
to have sent $\mathfrak{m}$ as her first message. As a result, $\mathscr{P}_{\mathfrak{m}}^{\prime}$ has $r-1$ rounds and Bob is the player to send the first message in $\mathscr{P}_{\mathfrak{m}}^{\prime}$. Let $\pi_{\mathfrak{m}}$ and $q^{\prime}$ be the distributions of $\left(X \mid M_{1}=\mathfrak{m} \wedge X \in S\right)$ and $(Y \mid Y \in S)$, respectively.

Observe that icost ${ }^{\pi_{\mathfrak{m}} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right)=\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1}=\mathfrak{m} \wedge(X, Y) \in S \times S\right)$. Letting $L$ denote a random first message distributed identically to $M_{1}$, we now get

$$
\begin{align*}
\mathbb{E}_{L}\left[\operatorname{icost}^{\pi_{L} \otimes q^{\prime}}\left(\mathscr{P}_{L}^{\prime}\right)\right] & =\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1},(X, Y) \in S \times S\right) \\
& \leq \frac{\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1}\right)+1}{p(S) q(S)} \leq(c+1) 2^{\ell+1} \tag{6}
\end{align*}
$$

where the first inequality uses Lemma 5.3 and the second inequality uses (4) and Property [K2]. Examining Properties [P2] and [P3], we obtain

$$
\begin{align*}
\mathbb{E}_{L}\left[\operatorname{err}^{\pi_{L} \otimes q^{\prime}}\left(\mathscr{P}_{L}^{\prime}\right)\right] & =\operatorname{err}^{p \otimes q \mid S \times S}(\mathscr{P}) \leq 2^{-a}  \tag{7}\\
\mathbb{E}_{L}\left[\operatorname{verr}^{\pi_{L} \otimes \xi}\left(\mathscr{P}_{L}^{\prime}\right)\right] & =\operatorname{verr}^{p \otimes \xi \mid S \times S}(\mathscr{P}) \leq 1-2^{-b} \tag{8}
\end{align*}
$$

Definition $5.10(\operatorname{Good}$ message). A message $\mathfrak{m} \in \mathscr{M}$ is said to be $\operatorname{good}$ if the following properties hold:
[G1] $\mathrm{H}\left(\pi_{\mathfrak{m}}\right)=\mathrm{H}\left(X \mid M_{1}=\mathfrak{m} \wedge X \in S\right) \geq n-(\ell+c+1) 2^{\ell+b+3}$,
[G2] $\operatorname{icost}^{\pi_{\mathfrak{m}} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq 2^{\ell+b+4}(c+1)$,
[G3] $\operatorname{err}^{\pi_{\mathfrak{m}} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq 2^{-a+b+3}$,
[G4] $\operatorname{verr}^{\pi_{\mathfrak{m}} \otimes \xi}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq 1-2^{-b-1}$.
Notice that for all $\mathfrak{m} \in \mathscr{M}$ we have $\mathrm{H}\left(X \mid M_{1}=\mathfrak{m}, X \in S\right) \leq n$. Hence, viewing (5), (6), (7) and (8) as upper bounds on the expected values of certain nonnegative functions of $L$, we may apply Markov's inequality to these four conditions and conclude that

$$
\operatorname{Pr}[L \text { is good }] \geq 1-2^{-b-3}-2^{-b-3}-2^{-b-3}-\frac{1-2^{-b}}{1-2^{-b-1}} \geq 2^{-b-1}-3 \cdot 2^{-b-3}>0
$$

Thus, there exists a good message. From now on, we fix $\mathfrak{m}$ to be such a good message.
We may rewrite the left-hand side of [G4] as $\mathbb{E}_{Z \sim \pi_{\mathfrak{m}}}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}(Z, Z)\right)=0\right]\right]$. So if we define the set $T:=\left\{x \in S: \operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}(x, x)\right)=0\right] \leq 1-2^{-b-2}\right\}$ and apply Markov's inequality again, we obtain

$$
\begin{equation*}
\pi_{\mathfrak{m}}(T) \geq 1-\frac{1-2^{-b-1}}{1-2^{-b-2}} \geq 2^{-b-2} \tag{9}
\end{equation*}
$$

Defining the distribution $p^{\prime}:=\pi_{\mathfrak{m}} \mid T$ and the set $S^{\prime}:=\left\{x \in T: p^{\prime}(x) \geq 2^{-n-\ell^{\prime}}\right\}$, we now make two claims.
Claim 1: The triple $\left(q^{\prime}, p^{\prime}, S^{\prime}\right)$ is an $\ell^{\prime}$-kernel.
Claim 2: We have $\operatorname{err}^{p^{p} \otimes q^{\prime} \mid S^{\prime} \times S^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq 2^{-a^{\prime}}, \operatorname{verr}^{q^{\prime} \otimes \xi \mid S^{\prime} \times S^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq 1-2^{-b^{\prime}}$, and icost $p^{p^{\prime} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq c^{\prime}$.
Notice that these claims essentially say that $\mathscr{P}_{\mathfrak{m}}^{\prime}$ has all the properties listed in Definition5.7, except that Bob starts $\mathscr{P}_{\mathfrak{m}}^{\prime}$. Interchanging the roles of Alice and Bob in $\mathscr{P}_{\mathfrak{m}}^{\prime}$ gives us the desired $\left[r-1, \ell^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}\right]$-protocol, which completes the proof of the theorem.

It remains to prove the above claims. We start with Claim 1. Starting with the lower bound on $\mathrm{H}\left(\pi_{\mathfrak{m}}\right)$ give by Property [G1] of the good message $\mathfrak{m}$, and using Lemma 5.4 followed by (9), we obtain

$$
\begin{equation*}
\mathrm{H}\left(p^{\prime}\right)=\mathrm{H}\left(\pi_{\mathfrak{m}} \mid T\right) \geq n-\frac{(c+\ell+1) 2^{\ell+b+3}+1}{\pi_{\mathfrak{m}}(T)} \geq n-(c+\ell+2) 2^{\ell+2 b+5} \geq n-\ell^{\prime} \tag{10}
\end{equation*}
$$

We may lower bound $\mathrm{H}\left(q^{\prime}\right)$ using Properties [K1] and [K2] for $(p, q, S)$ and applying Lemma 5.4 We have

$$
\mathrm{H}\left(q^{\prime}\right)=\mathrm{H}(Y \mid Y \in S) \geq n-\frac{\ell+1}{q(S)} \geq n-2(\ell+1) \geq n-\ell^{\prime} .
$$

Thus, $\left(q^{\prime}, p^{\prime}, S^{\prime}\right)$ satisfies Property [K1] for an $\ell^{\prime}$-kernel. It is immediate that it also satisfies Property [K3] by definition, for all $x \in S^{\prime}$, we have $p^{\prime}(x) \geq 2^{-n-\ell^{\prime}}$.

It remains to verify Property [K2], which entails showing that $p^{\prime}\left(S^{\prime}\right) \geq \frac{1}{2}$ and that $q^{\prime}\left(S^{\prime}\right) \geq 2^{-\ell^{\prime}}$. We can lower bound $p^{\prime}\left(S^{\prime}\right)$ as follows:

$$
\begin{equation*}
p^{\prime}\left(S^{\prime}\right)=1-\sum_{x \in\{0,1\}^{n} \backslash S^{\prime}} p^{\prime}(x)=1-\sum_{\substack{x \in\{0,1\}^{n} \\ p^{\prime}(x)<2^{-n-\ell^{\prime}}}} p^{\prime}(x) \geq 1-2^{-\ell^{\prime}} \geq \frac{1}{2} . \tag{11}
\end{equation*}
$$

To prove the second inequality, we first derive a lower bound on $\mathrm{H}\left(p^{\prime} \mid S^{\prime}\right)$, thence on $\left|S^{\prime}\right|$, and finally on $q^{\prime}\left(S^{\prime}\right)$. We already showed that $\mathrm{H}\left(p^{\prime}\right) \geq n-(c+\ell+2) 2^{\ell+2 b+5}$, at (10). By Lemma 5.4 and (11), we get

$$
\mathrm{H}\left(p^{\prime} \mid S^{\prime}\right) \geq n-\frac{(c+\ell+2) 2^{\ell+2 b+5}+1}{p^{\prime}\left(S^{\prime}\right)} \geq n-\left((c+\ell+2) 2^{\ell+2 b+6}+2\right) \geq n-(c+\ell+4) 2^{\ell+2 b+6},
$$



$$
q^{\prime}\left(S^{\prime}\right) \geq q\left(S^{\prime}\right) \geq\left|S^{\prime}\right| \min _{y \in S^{\prime}} q(y) \geq\left|S^{\prime}\right| \min _{y \in S} q(y) \geq 2^{n-(c+\ell+4) 2^{\ell+2 b+6}} 2^{-n-\ell}=2^{-\ell-(c+\ell+4) 2^{\ell+2 b+6}},
$$

where the final inequality uses Property [K3] Recalling the definition of $\ell^{\prime}$ and applying a crude estimate (using the bound $c \geq 4$ ), we get $q^{\prime}\left(S^{\prime}\right) \geq 2^{-\ell^{\prime}}$. This finishes the proof of Claim 1 .

We now prove Claim 2. Of the three bounds we need to prove, the verification error bound is the easiest. Recalling how $T$ was defined, and noting that $S^{\prime} \subseteq T$, we immediately obtain

$$
\operatorname{verr}^{q^{\prime} \otimes \xi \mid S^{\prime} \times S^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right)=\mathbb{E}_{Y^{\prime} \sim q^{\prime}}\left[\operatorname{Pr}\left[\operatorname{out}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\left(Y^{\prime}, Y^{\prime}\right)\right)=0 \mid Y^{\prime} \in S^{\prime}\right]\right] \leq 1-2^{-b-2} .
$$

To establish the overall error bound, we use

$$
\begin{align*}
\operatorname{err}^{p^{\prime} \otimes q^{\prime} \mid S^{\prime} \times S^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) \leq \frac{\operatorname{err}^{p^{\prime} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right)}{p^{\prime}\left(S^{\prime}\right) q^{\prime}\left(S^{\prime}\right)} \leq \frac{\operatorname{err}^{\pi_{\mathfrak{m}} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right)}{\pi_{\mathfrak{m}}(T) p^{\prime}\left(S^{\prime}\right) q^{\prime}\left(S^{\prime}\right)} \leq \frac{2^{-a+b+3}}{2^{-b-2} \cdot \frac{1}{2} \cdot 2^{-\ell^{\prime}}}  \tag{12}\\
=2^{-a+2 b+6+(c+\ell) 2^{\ell+2 b+7}} \leq 2^{-a+(c+\ell) 2^{\ell+2 b+8}} \tag{13}
\end{align*}
$$

where the final inequality in (12] follows from Property [K2] for an $\ell^{\prime}$-kernel and Property [G3], and (13) just uses a crude estimate (this time $c \geq 1$ suffices). The last thing remaining is to establish the information cost bound in Claim 2. We do this as follows.

$$
\begin{align*}
\operatorname{icost}^{p^{\prime} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right) & =\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1}=\mathfrak{m} \wedge X \in T \wedge Y \in S\right) \\
& \leq \frac{\mathrm{I}\left(X Y: M_{2} \ldots M_{r} \mid M_{1}=\mathfrak{m} \wedge(X, Y) \in S \times S\right)+1}{\operatorname{Pr}\left[X \in T \mid M_{1}=\mathfrak{m} \wedge(X, Y) \in S \times S\right]}  \tag{14}\\
& =\frac{\operatorname{icost}^{\tau_{\mathfrak{m}} \otimes q^{\prime}}\left(\mathscr{P}_{\mathfrak{m}}^{\prime}\right)+1}{\pi_{\mathfrak{m}}(T)}  \tag{15}\\
& \leq \frac{2^{b+\ell+4}(c+1)+1}{2^{-b-2}} \leq(c+2) 2^{\ell+2 b+6}, \tag{16}
\end{align*}
$$

where (14) uses Lemma 5.3, (15) uses the independence of $X$ and $Y$ and (16) uses Property [G2] and Eq. (9).
This completes the proof of Claim 2 and, with it, the proof of the theorem.

The following easy corollary of Theorem 5.9 will be useful shortly.
Corollary 5.11. Let $\tilde{n}, j, r \in \mathbb{N}$ and $a, b \in \mathbb{R}$ with $\tilde{n}$ sufficiently large, $j \geq 1, r \geq 1$, and $b \geq 0$. Suppose there exists an $[r, \ell, a-\ell, b, \ell]$-protocol, with $b \leq \ell=\frac{1}{8} \operatorname{ilog}^{j} \tilde{n}$. Then there exists an $\left[r-1, \ell^{\prime}, a-\ell^{\prime}, b+2, \ell^{\prime}\right]-$ protocol with $b+2 \leq \ell^{\prime}=\left(\operatorname{ilog}^{j-1} \tilde{n}\right)^{1 / 2} \leq \frac{1}{8} \operatorname{ilog}^{j-1} \tilde{n}$.

Proof. This simply boils down to the following estimation, which is valid for all sufficiently large $\tilde{n}$ :

$$
(\ell+\ell) 2^{\ell+2 b+8}=2^{7}\left(\operatorname{ilog}^{j} \tilde{n}\right) 2^{(3 / 8) \operatorname{ilog}^{j} \tilde{n}}=2^{7}\left(\operatorname{ilog}^{j-1} \tilde{n}\right)^{3 / 8} \log \left(\operatorname{ilog}^{j-1} \tilde{n}\right) \leq\left(\operatorname{ilog}^{j-1} \tilde{n}\right)^{1 / 2}
$$

### 5.3 Finishing the Proof

We are now ready to state and prove the main lower bound on protocols with two-sided error.
Theorem 5.12 (Restatement of "Main"' Theorem). Let $\tilde{n}=\min \{n+\log (1-\boldsymbol{\delta}), \log ((1-\boldsymbol{\delta}) / \boldsymbol{\varepsilon})\}$. Suppose $\delta \leq 1-8\left(\operatorname{ilog}^{r-2} \tilde{n}\right)^{-1 / 8}$. Then we have $\mathrm{IC}_{\varepsilon, \delta}^{\mu,(r)}\left(\mathrm{EQ}_{n}\right)=\Omega\left((1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}\right)$.

Proof. We may assume that $r \leq \log ^{*} \tilde{n}$, for otherwise there is nothing to prove.
Suppose, to the contrary, that there exists an $r$-round randomized protocol $\mathscr{P}^{*}$ for $\mathrm{EQ}_{n}$, with rerr ${ }^{\mu}\left(\mathscr{P}^{*}\right) \leq$ $\varepsilon$, $\operatorname{verr}^{\mu}\left(\mathscr{P}^{*}\right) \leq \delta$ and $\operatorname{icost}^{\mu}\left(\mathscr{P}^{*}\right) \leq 2^{-16}(1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}$. Recall that we denote the uniform distribution on $\{0,1\}^{n}$ by $\xi$ and that $\mu=\xi \otimes \xi$. We have

$$
\operatorname{err}^{\mu}\left(\mathscr{P}^{*}\right)=\left(1-2^{-n}\right) \operatorname{rerr}^{\mu}\left(\mathscr{P}^{*}\right)+2^{-n} \operatorname{verr}^{\mu}\left(\mathscr{P}^{*}\right) \leq \varepsilon+2^{-n}(\delta-\varepsilon) \leq \varepsilon+2^{-n}
$$

Let $\mathscr{P}_{s}^{*}$ be the private-coin protocol for $\mathrm{EQ}_{n}$ obtained from $\mathscr{P}^{*}$ by fixing the public random string of $\mathscr{P}^{*}$ to be $s$. We have $\mathbb{E}_{s}\left[\operatorname{err}^{\mu}\left(\mathscr{P}_{s}^{*}\right)\right] \leq \varepsilon+2^{-n}, \mathbb{E}_{s}\left[\operatorname{verr}^{\mu}\left(\mathscr{P}_{s}^{*}\right)\right] \leq \delta$, and $\mathbb{E}_{s}\left[\operatorname{icost}\left(\mathscr{P}_{s}^{*}\right)\right] \leq 2^{-16}(1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}$. By Markov's inequality, there exists $s$ such that $\mathscr{P}_{s}^{*}$ simultaneously has err ${ }^{\mu}\left(\mathscr{P}_{s}^{*}\right) \leq 4\left(\varepsilon+2^{-n}\right) /(1-\delta)$, $\operatorname{verr}^{\mu}\left(\mathscr{P}_{s}^{*}\right) \leq(1+\delta) / 2$, and $\operatorname{icost}\left(\mathscr{P}_{s}^{*}\right) \leq 2^{-14}(1-\delta)^{2} \operatorname{ilog}^{r-1} \tilde{n}$ : this is because

$$
1-\frac{1-\delta}{4}-\frac{2 \delta}{1+\delta}-\frac{1-\delta}{4}=\frac{(1-\delta)^{2}}{2(1+\delta)}>0
$$

Let $\mathscr{P}=\mathscr{P}_{s}^{*}$ for this $s$. Then $\left(\xi, \xi,\{0,1\}^{n}\right)$ is a 0 -kernel and $\mathscr{P}$ is an $\left[r, 0, \log \frac{1-\delta}{4\left(\varepsilon+2^{-n}\right)}, \log \frac{2}{1-\delta}, 2^{-14}(1-\right.$ $\left.\delta)^{2} \operatorname{ilog}^{r-1} \tilde{n}\right]$-protocol. Recalling Fact 5.8 and using $\log \frac{1-\delta}{\varepsilon+2^{-n}} \geq \tilde{n}-1$, we see that

$$
\mathscr{P} \text { is an }\left[r, 0, \tilde{n}-3, \log \frac{1}{1-\delta}+1,2^{-14}(1-\delta)^{2} \operatorname{ilog}^{r-1} \tilde{n}\right] \text {-protocol. }
$$

Put $\ell_{j}:=\frac{1}{8} \mathrm{ilog}^{j} \tilde{n}$ for $j \in \mathbb{N}$. Applying round elimination (Theorem 5.9p to $\mathscr{P}$ and weakening the resulting parameters (using Fact 5.8 ) gives us an $\left[r-1, \ell_{r-1}, \tilde{n}-\ell_{r-1}, \log \frac{1}{1-\delta}+3, \ell_{r-1}\right]$-protocol $\mathscr{P}^{\prime}$.

The upper bound on $\delta$ gives us $\log \frac{1}{1-\delta}+3 \leq \ell_{r-1}$, and so the conditions for Corollary 5.11 apply. Starting with $\mathscr{P}^{\prime}$ and applying that corollary repeatedly, each time using the looser estimate on $\ell^{\prime}$ in that corollary, we obtain a sequence of protocols with successively fewer rounds. Eventually we reach a $\left[1, \ell_{1}, \tilde{n}-\ell_{1}, \log \frac{1}{1-\delta}+2(r-1)+1, \ell_{1}\right]$-protocol. Applying Theorem 5.9 one more time, and using the tighter estimate on $\ell^{\prime}$ this time, we get a $\left[0, \tilde{n}^{1 / 2}, \tilde{n}-\tilde{n}^{1 / 2}, \log \frac{1}{1-\delta}+2 r+1, \tilde{n}^{1 / 2}\right]$-protocol $\mathscr{Q}$. Weakening parameters again, we see that $\mathscr{Q}$ is a $\left[0, \tilde{n}^{1 / 2}, \frac{1}{2} \tilde{n}, \frac{1}{3} \log \tilde{n}, \tilde{n}^{1 / 2}\right]$-protocol. Let $(p, q, S)$ be the $\tilde{n}^{1 / 2}$-kernel for Q. By Property [K1], we have $\mathrm{H}(q) \geq n-\tilde{n}^{1 / 2}$. Using Lemma 5.4 and Property [K2], we then have

$$
\begin{equation*}
\mathrm{H}(q \mid S) \geq n-\frac{\tilde{n}^{1 / 2}+1}{q(S)} \geq n-\left(2 \tilde{n}^{1 / 2}+2\right) \tag{17}
\end{equation*}
$$

Since $\mathscr{Q}$ involves no communication, it must behave identically on any two input distributions that have the same marginal on Alice's input. In particular, this gives us the following crucial equation:

$$
\begin{equation*}
\operatorname{Pr}_{X \sim p}[\operatorname{out}(\mathscr{Q}(X, X))=1 \mid X \in S]=\operatorname{Pr}_{(X, Y) \sim p \otimes q}[\operatorname{out}(\mathscr{Q}(X, Y))=1 \mid(X, Y) \in S \times S] . \tag{18}
\end{equation*}
$$

Let $\alpha$ denote the above probability. Considering the left-hand side of (18), we have

$$
\begin{equation*}
\alpha=1-\operatorname{verr}^{p \otimes \xi \mid S \times S}(\mathscr{Q}) \geq 2^{-\frac{1}{3} \log \tilde{n}}=\tilde{n}^{-1 / 3} . \tag{19}
\end{equation*}
$$

On the other hand, whenever $\mathscr{Q}$ outputs 1 on an input $(x, y)$, then either $x=y$ or $\mathscr{Q}$ errs on $(x, y)$. Therefore, considering the right-hand side of (18), we have

$$
\begin{align*}
\alpha & \leq \operatorname{Pr}_{(X, Y) \sim p \otimes q}[X=Y \mid(X, Y) \in S \times S]+\operatorname{Pr}_{(X, Y) \sim p \otimes q}\left[\operatorname{out}(\mathscr{P}(X, Y)) \neq \mathrm{EQ}_{n}(X, Y) \mid(X, Y) \in S \times S\right] \\
& \leq \max _{x \in S} \operatorname{Pr}_{Y \sim q \mid S}[Y=x]+\operatorname{err}^{p \otimes q \mid S \times S}(\mathscr{Q}) \\
& \leq \frac{2 \tilde{n}^{1 / 2}+3}{n}+2^{-\frac{1}{2} \tilde{n}}  \tag{20}\\
& \leq 2 \tilde{n}^{-1 / 2}+3 \tilde{n}^{-1}+2^{-\frac{1}{2} \tilde{n}}, \tag{21}
\end{align*}
$$

where (20) follows from (17) by applying Lemma 5.5 , and (21) uses $\tilde{n} \leq n$.
The bounds (19) and (21) are in contradiction for sufficiently large $\tilde{n}$, which completes the proof.

## 6 Applications, Including Bounded-Round Small-Set Disjointness

### 6.1 Lower Bounds

In this section we apply our new understanding of the bounded-round information complexity of EQUALITY to obtain two new lower bounds: one for OR-EQUALITY, and the other for the much-studied DISJOINTNESS problem with small-sized sets. As we shall see, both lower bounds are arguably tight.

Theorem 6.1 (Lower Bound for Or-Equality). Let $k, n, r \in \mathbb{N}$ and $\delta, \varepsilon \in[0,1]$. Put $\varepsilon^{\prime}=\varepsilon+k / 2^{n}$ and $\tilde{n}=\log \frac{1-\delta}{\varepsilon^{\prime}}$. For $\delta<1-8\left(\operatorname{ilog}^{r-2} \tilde{n}\right)^{-1 / 8}$, we have

$$
\mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\mathrm{OREQ}_{n, k}\right) \geq k \cdot \mathrm{IC}_{\varepsilon^{\prime}, \delta}^{\mu,(r)}\left(\mathrm{EQ}_{n}\right)=\Omega\left(k(1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}\right) .
$$

Proof. We just need to show the first inequality and then apply Theorem 2.5. That inequality is proved via standard direct sum arguments for information complexity [12, 3, 4]. In fact, the old simultaneous-message lower bound for $\mathrm{OREQ}_{n, k}$ from Chakrabarti et al. [12] applies more-or-less unchanged. For completeness, we now give a self-contained proof.

Let $\mathscr{P}$ be an $r$-round protocol for $\mathrm{OREQ}_{n, k}$ with $\operatorname{rerr}(\mathscr{P}) \leq \varepsilon, \operatorname{verr}(\mathscr{P}) \leq \delta$, and $\mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\mathrm{OREQ}_{n, k}\right) \geq$ $\max \{\operatorname{rcost}(\mathscr{P}), \operatorname{vcost}(\mathscr{P})\}$. Alice and Bob solve $\mathrm{EQ}_{n}$ by the following protocol $\mathscr{Q}_{j}$, where $j$ is some fixed index in $\{1,2, \ldots, k\}$. Given an input $(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}$, they generate $\mathbf{X}:=\left(X_{1}, \ldots, X_{k}\right) \sim \xi^{\otimes k}$ and $\mathbf{Y}:=\left(Y_{1}, \ldots, Y_{k}\right) \sim \xi^{\otimes k}$ respectively, using private coins. They "plug in" $x$ and $y$ into the $j$ th coordinates of $\mathbf{X}$ and $\mathbf{Y}$ respectively, thereby creating

$$
\mathbf{Z}_{j, x}:=\left(X_{1}, \ldots, X_{j-1}, x, X_{j+1}, \ldots, X_{k}\right) \text { and } \mathbf{W}_{j, y}:=\left(Y_{1}, \ldots, Y_{j-1}, y, Y_{j+1}, \ldots, Y_{k}\right),
$$

respectively. Finally, they emulate $\mathscr{P}$ on input $\left(\mathbf{Z}_{j, x}, \mathbf{W}_{j, y}\right)$. Observe that

$$
\operatorname{orEQ}_{n, k}\left(\mathbf{Z}_{j, x}, \mathbf{W}_{j, y}\right) \neq \mathrm{EQ}_{n}(x, y) \Longrightarrow(x \neq y) \wedge\left(\exists i \in[k] \backslash\{j\}: X_{i}=Y_{i}\right) .
$$

Therefore, $\operatorname{verr}\left(\mathscr{Q}_{j}\right) \leq \operatorname{verr}(\mathscr{P}) \leq \delta$ and, by a union bound,

$$
\operatorname{rerr}\left(\mathscr{Q}_{j}\right) \leq \operatorname{rerr}(\mathscr{P})+\sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}=Y_{i}\right] \leq \varepsilon+k / 2^{n}=\varepsilon^{\prime}
$$

Since $\mathscr{Q}_{j}$ solves $\mathrm{EQ}_{n}$ with these error guarantees, it follows that icost ${ }^{\mu}\left(\mathscr{Q}_{j}\right) \geq \mathrm{IC}_{\varepsilon^{\prime}, \delta}^{\mu,(r)}\left(\mathrm{EQ}_{n}\right)$.
Now, let $(X, Y) \sim \mu$ and let $\mathfrak{R}$ denote the public randomness used by $\mathscr{P}$. We can now lower bound $\mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\mathrm{OREQ}_{n, k}\right)$ as follows:

$$
\begin{align*}
\mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\mathrm{orEQ}_{n, k}\right) & \geq \max _{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in\{0,1\}^{k n} \times\{0,1\}^{k n}} \operatorname{cost}\left(\mathscr{P} ; x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right) \\
& \geq \mathbb{E}\left[\operatorname{cost}\left(\mathscr{P} ; X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right)\right] \\
& \geq \mathrm{H}\left(\mathscr{P}\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right)\right)  \tag{22}\\
& \geq \mathrm{I}\left(\mathscr{P}\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right): X_{1} Y_{1} \ldots X_{k} Y_{k} \mid \mathfrak{R}\right) \\
& \geq \sum_{j=1}^{k} \mathrm{I}\left(\mathscr{P}\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right): X_{i}, Y_{i} \mid \mathfrak{R}\right)  \tag{23}\\
& =\sum_{j=1}^{k} \mathrm{I}\left(\mathscr{Q}_{j}(X, Y): X Y \mid \mathfrak{R}\right)  \tag{24}\\
& =\sum_{j=1}^{k} \operatorname{icost}^{\mu}\left(\mathscr{Q}_{j}\right) \geq k \cdot \mathrm{IC}_{\varepsilon^{\prime}, \delta}^{\mu,(r)}\left(\mathrm{EQ}_{n}\right),
\end{align*}
$$

where (22) uses Fact 4.2 and (23) uses the independence of $\left\{X_{1} Y_{1}, \ldots, X_{k} Y_{k}\right\}$ and the resulting subadditivity of mutual information, and (24) holds because, for all $j \in[k]$, the distributions of ( $\left.\mathscr{Q}_{j}(X, Y), X, Y, \mathfrak{R}\right)$ and $\left(\mathscr{P}\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right), X_{j}, Y_{j}, \mathfrak{R}\right)$ are identical. This completes the proof.

By plugging in $\varepsilon=0, \delta=0$ in Theorem 6.1 we obtain the following corollary.
Corollary 6.2. $\mathrm{R}_{0,0}^{(r)}\left(\mathrm{OREQ}_{n, k}\right)=\Omega\left(k \operatorname{ilog}^{r-1}(n-\log k)\right)$.
Armed with the above lower bound, we now derive a lower bound for $k$-DISJ via a simple reduction, which is probably folklore. For completeness, we again give a formal proof. Note that the reduction interchanges verification and refutation errors.

Lemma 6.3 (Reduction from Oreq to $k$-DISJ). Let $k, N$ be integers such that $N \geq k^{c}$ for some constant $c>2$. Let $n=\left\lfloor\log \left(\frac{N}{k}\right)\right\rfloor$. If there exists a protocol $\mathscr{P}$ for $k$-DISJ $_{N}$ then there exists a protocol $\mathscr{Q}$ for $\mathrm{OREQ}_{n, k}$ such that $\operatorname{rerr}(\mathscr{Q}) \leq \operatorname{verr}(\mathscr{P})$ and $\operatorname{verr}(\mathscr{Q}) \leq \operatorname{rerr}(\mathscr{P})$ and $\operatorname{vcost}(\mathscr{Q}) \leq \operatorname{rcost}(\mathscr{P})$ and $\operatorname{rcost}(\mathscr{Q}) \leq \operatorname{vcost}(\mathscr{P})$.

Proof. Given an input instance $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right){\text { of } \mathrm{OREQ}_{n, k}}$, we can transform it into an instance $(A, B)$ of $k$-DISJ $_{N}$ as follows:

$$
\begin{aligned}
A & =\left\{x_{1}, x_{2}+2^{n}, x_{3}+2 \cdot 2^{n}, \ldots, x_{k}+(k-1) 2^{n}\right\} \\
B & =\left\{y_{1}, y_{2}+2^{n}, y_{3}+2 \cdot 2^{n}, \ldots, y_{k}+(k-1) 2^{n}\right\} .
\end{aligned}
$$

It is easy to observe that $A \cap B \neq \emptyset$ iff $\exists i \in[k]$ such that $x_{i}=y_{i}$ because $x_{i} \in\left\{0,1, \ldots, 2^{n}-1\right\}$. Therefore, $\operatorname{OREQ}_{n, k}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=\neg k$ - $\operatorname{DISJ}_{N}(A, B)$, which completes the proof.

Corollary 6.4. We have $\mathrm{R}_{\delta, \varepsilon}^{(r)}\left(k-\operatorname{DISJ}_{N}\right) \geq \mathrm{R}_{\varepsilon, \delta}^{(r)}\left(\operatorname{OREQ}_{\lfloor\log (N / k)\rfloor, k}\right)$.
Combining Corollary 6.4 with Theorem 6.1, we arrive at the following theorem.

Theorem 6.5 (Lower Bound for $k$-Disjointness). Let $k, N, r \in \mathbb{N}, \boldsymbol{\varepsilon}, \boldsymbol{\delta} \in[0,1]$ and $c>2$ be such that $N \geq k^{c}$ and $\delta<1-8\left(\operatorname{ilog}^{r-2} \tilde{n}\right)^{-1 / 8}$, where $\tilde{n}=\log \frac{1-\delta}{\varepsilon+k^{2} / N}$. Then

$$
\mathrm{R}_{\delta, \varepsilon}^{(r)}\left(k-\operatorname{DISJ}_{N}\right)=\Omega\left(k(1-\delta)^{3} \operatorname{ilog}^{r-1} \tilde{n}\right) .
$$

By plugging in $\varepsilon=0, \delta=0$ in Theorem 6.5 we obtain the following corollary as a special case.
Corollary 6.6. $\mathrm{R}_{0,0}^{(r)}\left(k-\right.$ DISJ $\left._{N}\right)=\Omega\left(k \operatorname{ilog}^{r}\left(\frac{N}{k^{2}}\right)\right)$.

### 6.2 Tightness

Our lower bounds in Section 6.1 have the weakness that they apply only in zero-error or small-error settings. However, they are still tight in the following sense. We can design protocols that give matching upper bounds under similarly small error settings. For OREQ, we give such a protocol below. For $k$-DISJ, a suitable analysis of a recent protocol of Jowhari et al. [20] gives similar results.

Theorem 6.7. For all $r<\log ^{*} k$, there exists a $r$-round protocol $\mathscr{P}$ for $\mathrm{OREQ}_{n, k}$ with worst-case communication cost $O\left(k \operatorname{ilog}^{r} k\right), \operatorname{rerr}(\mathscr{P})<2^{-\prod_{j=1}^{r} \operatorname{liog}^{j} k}$, and $\operatorname{verr}(\mathscr{P})=0$.

Proof. For ease of presentation, we give the details for a slightly weaker result, with refutation error $<k^{-10}$.
We begin with a high-level sketch of the proof, before giving formal proof details. Alice begins the protocol by sending, in parallel, $k$ different $t$-bit equality tests, one for each of her inputs. Note that for any $i$ where $x_{i} \neq y_{i}$, Bob witnesses nonequality with probability $1-2^{-t}$. Assuming $\operatorname{OREQ}_{n, k}(x, y)=0$, there will be roughly $k / 2^{t}$ coordinates $i$ where $x_{i} \neq y_{i}$ has not yet been witnessed. Bob now tells Alice which of his coordinates remain "alive" and sends $t^{\prime}$-bit equality tests for each of these coordinates, where $t^{\prime}=2^{t}$. Note that Bob's overall communication is roughly $k$ bits, and that after receiving this message, Alice witnesses nonequality on all but a $2^{-t^{\prime}}$-fraction of unequal pairs. In each round, players end up sending an exponentially longer equality test on an exponentially smaller number of coordinates. When communication ends, players output $\operatorname{OREQ}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)=1$ unless $x_{i} \neq y_{i}$ has been witnessed for all $i$. One potential issue with the above protocol is that too many coordinates could remain, and players wouldn't be able to communicate exponentially more bits about the remaining coordinates. This could happen both when an unusually large number of equality tests fail, or just for the simple reason that $x_{i}=y_{i}$ for many coordinates. In either case, the players simply abort and output $\mathrm{OREQ}_{n, k}=1$. This will cause an increase in error, but the increase will be small, and it will only increase the false positive rate. A formal proof lies below.

The protocol proceeds in a number of rounds. Throughout the protocol, players maintain a bit vector $w \in\{0,1\}^{k}$ (initialized to $w=1^{k}$ ), where $w_{i}=0$ if and only if $x_{i} \neq y_{i}$ has been witnessed. We refer to $i$ as a "live coordinate" if $w_{i}=1$.

In the first round of communication, Alice sends a $\left(2 \operatorname{ilog}^{r} k\right)$-bit equality test for each of the $k$ live coordinates, at a total cost of $O\left(k \operatorname{ilog}^{r} k\right)$ bits.

In the $j$ th round of communication $(1<j<r)$, the player who is to send communication considers the $(j-1)$ th message. From this, she updates her copy of $w$. Then, she evaluates each the equality tests for each live $i$, setting $w_{i}=0$ whenever $x_{i} \neq y_{i}$ is witnessed. Now, if more than $2 k / \operatorname{ilog}^{r+1-j}(k)$ coordinates remain live, she sends a 1 , signifying that the protocol should abort and players should output $\mathrm{OREQ}_{n, k}=1$. Otherwise, she sends a 0 , followed by her updated copy of $w$, followed by a $\left(2 \operatorname{ilog}^{r+1-j}(k)\right)$-bit equality test for each coordinate that remains live. The overall length of the $j$ th message is thus $O(k)$ bits.

The final round of communication is similar, except that the equality tests are $(12 \log k)$-bits long instead of the usual $2 \operatorname{ilog}^{r+1-r} k=2 \log k$ bits. The player who receives the final message updates his copy of $w$, evaluates each equality test, and outputs $\mathrm{OREQ}_{n, k}=1$ if any coordinates remain live. Otherwise, he outputs $\mathrm{OREQ}_{n, k}=0$.

The overall communication is thus $O\left(k \log ^{r} k\right)$ bits. Note also that the protocol outputs $\mathrm{OREQ}_{n, k}=0$ only when $x_{i} \neq y_{i}$ was witnessed for every $i$. Thus, the protocol produces no false negatives.

Finally, we analyze the false positive rate. This can happen for two reasons: either the protocol aborts (and players output $\mathrm{OREQ}_{n, k}=1$ ), or one or more coordinates remain live at the end of the protocol, despite having $x_{i} \neq y_{i}$ for all $i$.

In the former case, note that (conditioned on not aborting before round $j$ ) we have at most $2 k / \operatorname{ilog}^{r+1-j}(k)$ live coordinates during round $j$. Players execute a $\left(2 \operatorname{ilog}^{r+1-j}(k)\right)$-bit equality test during this round. Thus, a coordinate remains live after this test with probability at most $2^{-2 \mathrm{ilog} \mathrm{g}^{r+1-j}(k)}<1 / \mathrm{ilog}^{r-j}(k)$. Therefore, we expect at most $k / \mathrm{ilog}^{r-j} k$ coordinates to be live in the next round. By a (crude) Chernoff bound argument, the probability of aborting during round $j+1$ (again, conditioned on not previously aborting) is less than $k^{-20}$, and the overall probability of aborting before the end of the protocol is less than $k^{-12}$ (say).

In the latter case, note that the final equality test uses $12 \log k$ bits per coordinate. Therefore, players fail to witness $x_{i} \neq y_{i}$ with probability at most $2^{-12 \log k}=k^{-12}$. By a union bound, the overall false positive rate is at most $k^{-10}$.

## 7 Concluding Remarks

We have gained new insight into the complexity of EQUALITY, one of the cornerstones of the theory of communication complexity. To do so, it was important to consider the expected communication cost of a protocol on a fixed input, and to limit the amount of interaction that our players can use. It was also important to treat 1 -inputs (i.e., equal pairs) and 0 -inputs separately.

Though we believe that our results about EQUALITY are interesting intrinsically, we note that the applications to another cornerstone problem-namely, DISJOINTNESS-adds further interest in these results. We conclude by pointing out an open problem.

Our upper bounds in Section 6.1 show that our OREQ and $k$-DISJ lower bounds are not absolutely improvable: they are already tight in small-error settings. Yet, it is plausible that similar lower bounds can be shown for those problems even under constant error. For instance, the $\Omega(k \log k)$ lower bounds for $k$-DISJ by Dasgupta et al. [15] and Buhrman et al. [8] hold under constant error, though of course they are limited to one-way protocols. The issue seems to be that even though OREQ might be hard enough under constant error, we don't get to prove this hardness by direct-summing a lower bound for EQ, which is too easy under constant error.

In recent work on direct sum questions in communication complexity, there has been some exciting progress on a related matter. Molinaro et al. [28] show how to obtain constant-error direct sum theorems from small-error hardness of the underlying problem. Unfortunately, their technique depends crucially on the $k$-fold direct sum problem's output being a $k$-tuple consisting of the solutions to all of the $k$ independent instances of the underlying problem. In our setting, these $k$ bits are combined into a single bit by an OR operation, which gives out much less information, causing their technique to fail. Though this open problem is perhaps somewhat technical, it seems that resolving it might lead to even more insights about communication complexity.

## References

[1] Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and their application to space complexity. Theoretical Computer Science, 175(2):139-159, 1996.
[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999. Preliminary version in Proc. 28th Annual ACM Symposium on the Theory of Computing, pages 20-29, 1996.
[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702-732, 2004.
[4] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages 67-76, 2010.
[5] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication complexity. Computational Complexity, 21:311-358, 2012.
[6] Mark Braverman. Interactive information complexity. In Proc. 44th Annual ACM Symposium on the Theory of Computing, pages 505-524, 2012.
[7] Mark Braverman and Anup Rao. Information equals amortized communication. In Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science, pages 748-757, 2011.
[8] Harry Buhrman, David García-Soriano, Arie Matsliah, and Ronald de Wolf. The non-adaptive query complexity of testing k-parities. arXiv preprint arXiv:1209.3849, 2012.
[9] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and Andrew McGregor. Information cost tradeoffs for augmented index and streaming language recognition. In Proc. 51st Annual IEEE Symposium on Foundations of Computer Science, pages 387-396, 2010.
[10] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In Proc. 18th Annual IEEE Conference on Computational Complexity, pages 107-117, 2003.
[11] Amit Chakrabarti and Ranganath Kondapally. Everywhere-tight information cost tradeoffs for augmented index. In Proc. 15th International Workshop on Randomization and Approximation Techniques in Computer Science, pages 448-459, 2011.
[12] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew C. Yao. Informational complexity and the direct sum problem for simultaneous message complexity. In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 270-278, 2001.
[13] Amit Chakrabarti and Anna Shubina. Nearly private information retrieval. In Proc. 32nd International Symposium on Mathematical Foundations of Computer Science, volume 4708 of Lecture Notes in Computer Science, pages 383-393, 2007.
[14] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, second edition, 2006.
[15] Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and lopsided set disjointness via information theory. In 16th International workshop on Randomization, volume 7409, pages 517-528, 2012.
[16] Tomas Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication complexity. SIAM J. Comput., 24(4):736-750, 1995. Preliminary version in Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, pages 239-248, 1991.
[17] Rusins Freivalds. Probabilistic machines can use less running time. In IFIP Congress, pages 839-842, 1977.
[18] Andre Gronemeier. Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness. In Proc. 26th International Symposium on Theoretical Aspects of Computer Science, pages 505-516, 2009.
[19] Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjointness. Theory of Computing, pages 211-219, 2007.
[20] Hossein Jowhari, Mert Saglam, and Gábor Tardos. On the round complexity of sparse set disjointness. Manuscript, privately communicated, 2010.
[21] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set intersection. SIAM J. Disc. Math., 5(4):547-557, 1992.
[22] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable codes. J. Comput. Syst. Sci., 69(3):395-420, 2004. Preliminary version in Proc. 35th Annual ACM Symposium on the Theory of Computing, pages 106-115, 2003.
[23] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, Cambridge, 1997.
[24] Eyal Kushilevitz and Enav Weinreb. The communication complexity of set-disjointness with small sets and 0-1 intersection. In Proc. 50th Annual IEEE Symposium on Foundations of Computer Science, pages 63-72, 2009.
[25] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized expressions in the streaming model. In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages 261-270, 2010.
[26] Kurt Mehlhorn and Erik M. Schmidt. Las vegas is better than determinism in vlsi and distributed computing (extended abstract). In Proc. 14th Annual ACM Symposium on the Theory of Computing, pages 330-337, 1982.
[27] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37-49, 1998. Preliminary version in Proc. 27th Annual ACM Symposium on the Theory of Computing, pages 103-111, 1995.
[28] Marco Molinaro, David Woodruff, and Grigory Yaroslavtsev. Beating the direct sum theorem in communication complexity with implications for sketching. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms, page to appear, 2013.
[29] Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes. In Proc. 40th Annual IEEE Symposium on Foundations of Computer Science, pages 124-133, 1999.
[30] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput., 40(3):827-847, 2011.
[31] Alexander Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385-390, 1992. Preliminary version in Proc. 17th International Colloquium on Automata, Languages and Programming, pages 249-253, 1990.
[32] Andrew C. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, pages 222-227, 1977.
[33] Andrew C. Yao. Some complexity questions related to distributive computing. In Proc. 11th Annual ACM Symposium on the Theory of Computing, pages 209-213, 1979.


[^0]:    ${ }^{1}$ Throughout this paper we use "log" to denote the logarithm to the base 2.

[^1]:    ${ }^{2} \mathrm{~A}$ set of strings is said to be prefix-free if no string in the set is a proper prefix of any other.

[^2]:    ${ }^{3}$ If $(x, x)$ and $(y, y)$ were in the same rectangle, then so would $(x, y)$ and $(y, x)$. Thus, the protocol would err on these inputs.

