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Abstract

The EQUALITY problem is usually one’s first encounter with communication complexity and is one of
the most fundamental problems in the field. Although its deterministic and randomized communication
complexity were settled decades ago, we find several new things to say about the problem by focusing
on two subtle aspects. The first is to consider the expected communication cost (at a worst-case input)
for a protocol that uses limited interaction—i.e., a bounded number of rounds of communication—and
whose error probability is zero or close to it. The second is to consider the information cost of such pro-
tocols. We obtain asymptotically optimal rounds-versus-communication and rounds-versus-information
tradeoffs for the problem. For the case of zero-error communication cost, we obtain essentially matching
bounds, up to a tiny additive constant.

As an application of our information cost bounds, we obtain new bounded-round randomized lower
bounds for the OR-EQUALITY problem that have a direct-sum flavor. Such lower bounds were previously
known only for deterministic protocols or one-round randomized protocols. The OR-EQUALITY problem
is in turn closely related to the DISJOINTNESS problem for small sets (sometimes called k-DISJ), and we
obtain tight lower bounds for that problem as well.

1 Introduction

1.1 Context

Over the last three decades, communication complexity [33] has proved itself to be among the most useful of
abstractions in computer science. A number of basic problems in communication complexity have found a
wide range of applications throughout the theory of computing, with EQUALITY, INDEX, and DISJOINTNESS

being notable superstars.
Revisiting these basic problems and asking more nuanced questions or studying natural variants has

extended their range of application. We highlight two examples. Our first example is DISJOINTNESS. The
optimal Ω(n) lower bound for this problem [21, 31] was already considered one of the major results in
communication complexity before DISJOINTNESS was revisited in the multi-party number-in-hand model
to obtain a number of data stream lower bounds [2, 3, 10, 18] culminating in optimal space bounds for the
(higher) frequency moments. More recently, DISJOINTNESS was revisited in an asymmetric communication
setting [30] yielding an impressive array of lower bounds for data structures in the cell-probe model. Our
second example is INDEX. The straightforward Ω(n) lower bound on its one-way communication com-
plexity [1] is already an important starting point for numerous other lower bounds. Revisiting INDEX in an
interactive communication setting and considering communication tradeoffs has led to new classes of data
stream lower bounds for memory-checking problems [25, 9, 11]. Separately, lower bounding the quantum
communication complexity of INDEX [29] has led, among other things, to strong lower bounds for locally
decodable codes [22, 13].

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 153 (2012)



1.2 Our Results

In this work we revisit the EQUALITY problem: Alice and Bob each hold an n-bit string, and their task
is to decide whether these strings are equal. This is arguably the most basic communication problem that
admits a nontrivial protocol: using randomization and allowing a constant error rate, the problem can be
solved with just O(1) communication (this becomes O(logn) if one insists on private coins only); see,
e.g., Kushilevitz and Nisan [23, Example 3.13] and Freivalds [17]. This is why a student’s first encounter
with communication complexity is usually through the EQUALITY problem. Such a fundamental problem
deserves the most thorough of studies.

At first glance, EQUALITY might appear “solved”: its deterministic communication complexity is at
least n, whereas its randomized complexity is O(1) as noted above, as is its information complexity [6] (for
more on this, see Section 1.3). However, one can ask the following more nuanced question. What happens
if Alice and Bob want to be certain (or nearly certain) that their inputs are indeed equal when the protocol
directs them to say so? And what happens if Alice and Bob want to run a protocol with limited interaction,
i.e., a bounded number of back-and-forth rounds of communication?

Formally, let EQn : {0,1}n×{0,1}n→{0,1} denote the Boolean function that underlies this communi-
cation problem, defined by EQn(x,y) = 1 ⇐⇒ x = y. Consider the zero-error case: the players must always
correctly output EQn(x,y) on every input (x,y). However, the players may use a randomized protocol and
their goal is to minimize the expected number of bits they exchange. If their protocol is required to use only
one round—this means that Alice sends a message to Bob, who then outputs the answer—then it is easy to
see that Alice’s message must uniquely identify her input to Bob. From this it is easy to show that on some
input, x, Alice must send at least n bits to Bob, even in expectation.

Things improve a lot if one allows two rounds of communication—Alice sends a message to Bob, who
replies to Alice, who then outputs the answer. Using standard techniques, Alice can send Bob a dlogne-bit1

fingerprint of x. When x 6= y, this fingerprint fails to demonstrate that EQn(x,y) = 0 with probability at most
1/n. If necessary, Bob responds to this failure by sending y to Alice, which costs only 1 bit in expectation.
The net result is an expected communication cost of O(logn) on unequal inputs, and O(n) on equal inputs.
Generalizing this idea, we obtain an r-round protocol where the expected cost drops to O(ilogr−1 n) on
unequal inputs, where ilog j n := log log · · · logn (with j logs).

Our main high-level message in this work is that the above tradeoff between the number of rounds and
the communication cost is optimal, and that this remains the case even allowing for some error and even if
we consider information cost. We shall get precise about information cost measures in Section 2, but for
now we remark that an information cost lower bound is stronger than a communication cost bound, even in
our expected-cost model.

Our rounds-versus-information tradeoff for EQUALITY can be immediately applied to two other prob-
lems: OR-EQUALITY and DISJOINTNESS. It is now well known that information cost has clean direct-sum
properties [12, 3, 4]. This, together with our results for EQUALITY, gives us new randomized lower bounds
for the OR-EQUALITY problem, whose underlying function is OREQn,k : {0,1}nk×{0,1}nk → {0,1}, de-
fined by OREQn,k(x1, . . . ,xk,y1, . . . ,yk) =

∨k
i=1 EQn(xi,yi): Alice holds each xi ∈ {0,1}n and Bob holds each

yi ∈ {0,1}n. We show that in a bounded-round setting this problem has direct-sum-like hardness, i.e., it is
roughly k times as hard as a single instance. Interestingly, such a direct sum property is false if one allows
unlimited interaction, as shown by a protocol of Feder et al. [16], about which we shall say more soon.

The OREQ problem is closely related to DISJOINTNESS, especially the variant called small set disjoint-
ness or k-DISJN . Here, Alice and Bob are given sets S,T ⊆ {1,2, . . . ,N} respectively, with the promise that
|S| ≤ k and |T | ≤ k, where 1≤ k ≤ N. Their goal is to output 1 iff S∩T =∅. It is intuitive that OREQ and
k-DISJ are related: both problems ask the players to detect whether their inputs “agree somewhere.” Using
this close relation (see Lemma 6.3 for a formal treatment), we obtain obtain bounded-round lower bounds

1Throughout this paper we use “log” to denote the logarithm to the base 2.
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for k-DISJ as well. Furthermore, these lower bounds asymptotically match a recent upper bound given by a
recent nontrivial protocol [20].

For a concise summary of our results, please see Section 2.

1.3 Related Work

The study of the EQUALITY problem goes back to the original communication complexity paper of Yao [33],
who showed that the deterministic communication complexity of EQn is at least n, using a fooling set ar-
gument. Mehlhorn and Schmidt [26] developed the rank lower bound technique, which can recover this
result. They further examined OR-EQUALITY, giving a lower bound of nk bits for deterministic protocols
that compute OREQn,k via the rank technique. They also gave O(n+ logn) and O(n logn) bounds for the
nondeterministic and co-nondeterministic communication complexities of OREQn,n, respectively. Further-
more, they studied the “Las Vegas” communication complexity of OREQn,n, which brought them close to
some of the things we study here. Specifically, they gave a zero-error private-coin randomized protocol such
that the expected communication cost on any inputs (x1, . . . ,xn,y1, . . . ,yn) is at most O(n(logn)2).

Feder et al. [16] studied the randomized communication complexity of EQUALITY in the direct-sum
setting. Here, players have k strings each and must compute (EQn(x1,y1), . . . ,EQn(xk,yk)): thus, the output
is itself a k-bit string. Feder et al. show that O(k) communication suffices to compute EQUALITY on all k
instances, with error exponentially small in k. This shows that the “amortized” communication complexity
of EQn is O(1), even under tiny error. More recently, Braverman and Rao [7] showed that amortized com-
munication complexity nearly equals information complexity. Furthermore, Braverman [6] gave a specific
protocol for EQn that has zero error and achieves information cost O(1) regardless of the input distribution.

The problem OREQn,k is potentially easier than the k-fold direct sum of EQn, and has itself been studied
a few times before. Chakrabarti et al. [12] showed that its simultaneous-message complexity is Ω(k

√
n),

which is k times the complexity of EQn in that model. More recently, Kushilevitz and Weinreb [24] studied
the deterministic complexity of OREQn,k under the promise that xi = yi for at most one i ∈ [k]. Computing
OREQn,k under this “0/1 intersection” promise is closely related to the clique-vs.-independent set problem.
In this problem, Alice is given a clique in a graph. Bob is given an independent set, and they must decide if
their inputs intersect. Kushilevitz and Weinreb are able to show that computing OREQn,k under this promise
still requires Ω(kn) communication whenever k ≤ n/ logn. Extending this lower bound to the setting where
k = n is an important open problem, with several implications.

The OR-EQUALITY problem is also closely related to k-DISJ. Håstad and Wigderson [19] give an O(k)-
bit randomized protocol for k-DISJ; a matching lower bound follows easily from the Ω(n) lower bound for
general DISJOINTNESS. The Håstad–Wigderson protocol is clever and crucially exploits both the public
randomness and the interactive communication between players. It is natural to ask whether similar bounds
are achievable with limited interaction. This question was partially answered in the negative by recent work
of Dasgupta, Kumar, and Sivakumar [15], who give an Ω(k logk) lower bound for the one-way randomized
complexity of k-DISJ. A similar result was independently obtained by Buhrman et al. [8], who in fact
gave the very tight bound Θ(min{k logk, log

(n
k

)
}). In other recent (as yet unpublished) work, Jowhari et

al. [20] extended the Håstad–Wigderson protocol to interpolate between the one-round and unbounded-
round situations, giving an r-round upper bound of O(k log log · · · logk), with r logs.

The lower bound for k-DISJ was extensively used in the recent work of Blais, Brody, and Matulef [5],
who used communication complexity to show several new property testing lower bounds. In this setting,
lower bounds for k-DISJ imply lower bounds for testing k-linearity and testing k-juntas. The above one-way
lower bounds naturally give Ω(k logk) bounds for testing k-linearity and k-juntas nonadaptively.
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2 Definitions and Formal Statement of Results

Throughout this paper we reserve the symbols “n” for input length of EQUALITY instances, “k” for list length
of OR-EQUALITY instances and set size of k-DISJ instances, and “N” for universe size of k-DISJ instances.
Many definitions and results will be parametrized by these quantities but to keep the notation clean we shall
not make this parametrization explicit. We tacitly assume that n,k and N are sufficiently large integers.

Unless otherwise stated, all communication protocols appearing in this paper are public-coin randomized
protocols involving two players named Alice and Bob. Because our work concerns expected communication
cost in a bounded-round setting, we make the following careful definition of what communication is allowed.
In each round, the player whose turn it is to speak sends the other player a message from a prefix-free subset2

of {0,1}∗. This subset can depend on the communication history. After the final round in the protocol, the
player that receives the last message announces the output (which, for us, is always a single bit): this
announcement does not count as a round.

Let P be a communication protocol that takes inputs (x,y) ∈X ×Y . The transcript of P on input
(x,y) is defined to be the concatenation of the messages sent by the players, in order, as they execute P on
(x,y). We denote this transcript by P(x,y) and remark that it is, in general, a random variable. We include
the output as the final “message” in the transcript. We denote the output of a transcript t by out(t). We
denote the length of a binary string z by |z|. The communication cost and worst-case communication cost of
P on input (x,y) are defined to be

cost(P;x,y) := E
[
|P(x,y)|

]
, and cost*(P;x,y) := max |P(x,y)| ,

where the expectation and the max are taken over the protocol’s random coin tosses.
We now turn to defining complexity measures based on this notion of communication cost. Ordinarily

we would just define the communication complexity of a function f as the minimum over protocols for
f of the worst-case (over all inputs) cost of the protocol. When f = EQn, such a measure turns out to be
too punishing, and hides the subtleties that we seek to study. Notice that the r-round protocol outlined
in Section 1.2 achieves its cost savings only on unequal inputs, i.e., on f−1(0). On inputs in f−1(1), the
protocol ends up costing at least n bits. The intuition is that it is much cheaper for Alice and Bob to refute
the purported equality of their inputs than to verify it. Indeed, verification is so hard that interaction has no
effect on the verification cost, whereas each additional round of communication decreases refutation cost
exponentially.

In fact, this intuition can be turned into precise theorems, both in zero-error and positive-error settings,
as we shall see. To formalize things, we now define a family of complexity measures.

Definition 2.1 (Cost, Error, and Complexity Measures). Let P be a protocol that is supposed to compute
a Boolean function f : X ×Y → {0,1}. We define its refutation cost, verification cost, overall cost,
refutation error (or false positive rate, or soundness error), and verification error (or false negative rate, or
completeness error) as follows, respectively:

rcost(P) := max(x,y)∈ f−1(0) cost(P;x,y) ,

vcost(P) := max(x,y)∈ f−1(1) cost(P;x,y) ,

cost(P) := max(x,y)∈X ×Y cost(P;x,y) ,

rerr(P) := max(x,y)∈ f−1(0) Pr[out(P(x,y)) = 1] ,

verr(P) := max(x,y)∈ f−1(1) Pr[out(P(x,y)) = 0] .

2A set of strings is said to be prefix-free if no string in the set is a proper prefix of any other.
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Let λ be a probability distribution on the input space X ×Y . We then define the λ -distributional error
errλ (P) as well as the λ -distributional refutation cost, etc., as follows:

rcostλ (P) := E(X ,Y )∼λ [cost(P;X ,Y ) | f (X ,Y ) = 0] ,

vcostλ (P) := E(X ,Y )∼λ [cost(P;X ,Y ) | f (X ,Y ) = 1] ,

costλ (P) := E(X ,Y )∼λ [cost(P;X ,Y )] ,

rerrλ (P) := E(X ,Y )∼λ [Pr[out(P(X ,Y )) = 1 | f (X ,Y ) = 0]] ,

verrλ (P) := E(X ,Y )∼λ [Pr[out(P(X ,Y )) = 0 | f (X ,Y ) = 1]] ,

errλ (P) := E(X ,Y )∼λ [Pr[out(P(X ,Y )) 6= f (X ,Y )] .

We shall usually restrict P to be deterministic when considering these distributional measures. Although
these measures depend on both P and f , we do not indicate f in our notation to keep things simple.

Let r ≥ 1 be an integer and let ε,δ ∈ [0,1] be reals. We define the r-round randomized refutation
complexity and r-round λ -distributional refutation complexity of f as follows, respectively:

R(r),ref
ε,δ ( f ) := min{rcost(P) : P uses r rounds, rerr(P)≤ ε,verr(P)≤ δ} ,

Dλ ,(r),ref
ε,δ ( f ) := min{rcostλ (P) : P is deterministic and uses r rounds, rerrλ (P)≤ ε,verrλ (P)≤ δ} .

We also define measures of verification complexity and overall complexity analogously, replacing “rcost”
above with “vcost” and “cost” respectively, and denote them by

R(r),ver
ε,δ ( f ) , Dλ ,(r),ver

ε,δ ( f ) , R(r)
ε,δ ( f ) , and Dλ ,(r)

ε,δ ( f ) ,

respectively. We define the total complexity of f as follows:

R∗,(r)
ε,δ ( f ) := min{cost*(P) : P uses r rounds, rerr(P)≤ ε,verr(P)≤ δ} , where

cost*(P) := max(x,y)∈X ×Y cost*(P;x,y) .

Notice that refutation, verification, and overall complexities use (expected) communication cost as the un-
derlying measure, whereas total complexity uses the (more standard) worst-case communication cost.

Definition 2.2 (Information Cost and Complexity). Let P, f , and λ be as above, and suppose the players
in P are allowed to use private coins in addition to a public random string R. The λ -information cost of P
is defined to be

icostλ (P) := I(XY : P(X ,Y ) |R) ,

where I( : | ) denotes conditional mutual information. We define the r-round λ -information complexity
of f as follows:

ICλ ,(r)
ε,δ ( f ) := inf{icostλ (P) : P uses r rounds, rerr(P)≤ ε,verr(P)≤ δ} .

For readers familiar with recent literature on information complexity [4, 6], we note that this is technically
the “external” information cost rather than the “internal” one. However, we shall study information costs
mostly with respect to a uniform input distribution, and in this setting there is no difference between external
and internal information cost.
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It has long been known that information complexity lower bounds standard worst-case communication
complexity: this was the main reason for defining the notion [12]. The simple proof boils down to the
following argument:

I(XY : P(X ,Y ) |R)≤ H(P(X ,Y ))≤max |P(X ,Y )| .

In our setting, with communication cost defined in the expected sense, it is still the case that

ICλ ,(r)
ε,δ ( f )≤ R(r)

ε,δ ( f ) (1)

This time the proof boils down to the inequality H(P(X ,Y )) ≤ E[ |P(X ,Y )| ], which follows from Shan-
non’s source coding theorem (see Fact 4.2 below).

2.1 Summary of Results: Equality

The functions EQn and OREQn,k have been defined in Section 1 already. To formalize our bounds for these
problems, we introduce the iterated logarithm functions ilogk : R+→ R+, which are defined as follows.

ilog0 z := max{1,z} , ∀z ∈ R+ ,

ilogk z := max{1, log(ilogk−1 z)} , ∀k ∈ N,z ∈ R+ .

For all practical purposes, we may pretend that ilog0 = id, and ilogk = log◦ ilogk−1, for k ∈ N.
We use ξ to denote the uniform distribution on {0,1}n, and put µ := ξ ⊗ ξ . Thus µ is the uniform

distribution on inputs to EQn. Strictly speaking these should be denoted ξn and µn, but we choose to let n
be understood from the context. In all our complexity bounds, we tacitly assume that n is sufficiently large.
The various parts of the summary theorems below are proved later in the paper, and we indicate on the right
where these detailed proofs can be found.

Theorem 2.3 (Zero-Error Bounds). The complexity of EQUALITY satisfies the following bounds:

1. R(r),ref
0,0 (EQn)≤ ilogr−1 n+3.

2. R(r),ver
0,0 (EQn)≤ n.

3. R(r),ref
0,0 (EQn) = Dµ,(r),ref

0,0 (EQn)≥ ilogr−1 n−1. [Theorem 4.5]

4. R(r),ver
0,0 (EQn) = Dµ,(r),ver

0,0 (EQn)≥ n. [Theorem 4.9]

Notice that these bounds are almost completely tight, differing at most by the tiny additive constant
4. Next, we allow our protocols some error. We continue to have very tight bounds for the verification
cost (the case of one-sided error is especially interesting: just set δ = 0 in the results below), and we have
asymptotically tight bounds in the other cases.

Theorem 2.4 (Two-Sided-Error Bounds). Let n̂ = min{n+ log(1−δ ), log((1−δ )2/ε)}. The complexity
of EQUALITY satisfies the following bounds:

1. R(r),ref
ε,δ (EQn)≤ (1−δ ) ilogr−1(n̂)+5. [Corollary 3.4]

2. R(r),ver
ε,δ (EQn)≤ (1−δ )n̂+3. [Corollary 3.5]

3. Dµ,(r),ver
ε,δ (EQn)≥ (1−δ )(n̂−1) . [Theorem 4.17]
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4. R(r),ver
ε,δ (EQn)≥ 1

8(1−δ )2(n̂+ log(1−δ )−6). [Theorem 4.18]

5. Dµ,(r),ref
ε,δ (EQn) = Ω((1− δ )2 ilogr−1 n̂). This bound holds for all ε,δ such that δ ≤ 1− 2−n/2 and

ε/(1−δ )2 < 1/8. [Theorem 4.15]

6. R(r),ref
ε,δ (EQn) = Ω((1− δ )3 ilogr−1 n̂). This bound holds for all ε,δ such that δ ≤ 1− 2−n/2 and

ε/(1−δ )3 ≤ 1/64. [Theorem 4.16]

Observe that the “constant refutation error” setting ε = O(1) is not very interesting, as it makes these
complexities constant. But observe also that the situation is very different for the verification error, δ : we
continue to obtain strong lower bounds even when δ is very close to 1. This is in accordance with our
intuition that verification (of equality) is much harder than refutation.

Finally, we turn to information complexity and arrive at the most important result of this paper.

Theorem 2.5 (“Main” Theorem: Information Complexity Bound). Let ñ=min{n+ log(1−δ ), log((1−
δ )/ε)}. Suppose δ ≤ 1−8(ilogr−2 ñ)−1/8. Then we have ICµ,(r)

ε,δ (EQn) = Ω((1−δ )3 ilogr−1 ñ).

2.2 Summary of Results: Or-Equality and Disjointness

We now summarize our results for the functions OREQn,k and k-DISJN , which were defined in Section 1.
Whenever δ appears in these results, it needs to be bounded sufficiently away from 1. Similarly, ε needs to
be nonnegative, and n and N need to be sufficiently large. We state things more precisely in Section 6.

Theorem 2.6 (Bounds for OREQn,k). The complexity of OR-EQUALITY satisfies the following bounds:

1. R(r),ref
0,0 (OREQn,k) = O(k ilogr−1 n).

2. R(r)
0,0(OREQn,k) = Ω(k ilogr−1(n− logk)). [Corollary 6.2]

3. R∗,(r)
ε,0 (OREQn,k) = O(k ilogr k) for ε = 2−∏

r
j=1 ilog j k. [Theorem 6.7]

4. R(r)
ε,δ (OREQn,k) = Ω

(
k(1−δ )3 ilogr( 1−δ

ε+k/2n )
)

. [Theorem 6.1]

In particular, note that when ε = k−Θ(1), δ = 1−Ω(1), and logk≤ n/2 (say), the lower bound in item (4)
becomes Ω(k ilogr k), matching the upper bound from item (3).

Theorem 2.7 (Bounds for k-DISJ). Let k,N be integers such that N ≥ kc for some c > 2. The complexity of
k-DISJN satisfies the following bounds:

1. R∗,(r)0,0 (k-DISJN)≤ kdlog(N)e.

2. R(r)
0,0(k-DISJN) = Ω

(
k ilogr( N

k2 )
)
. [Corollary 6.6]

3. R∗,(r)0,k−10(k-DISJN) = O(k ilogr k). (By a protocol of [20])

4. R(r)
δ ,ε(k-DISJN) = Ω

(
k(1−δ )3 ilogr( 1−δ

ε+k2/N )
)

. [Theorem 6.5]

The zero-error upper bound in item (1) is trivial. The upper bound in item (3) follows from a recent
clever protocol by Jowhari et al. [20], extending the Håstad–Wigderson protocol [19]. Its false negative rate
can be made superpolynomially small, i.e., k−ω(1) without (asymptotically) changing the communication
cost.
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2.3 On Yao’s Minimax Lemma

Distributional lower bounds imply worst-case randomized ones by an averaging argument that constitutes
the “easy” direction of Yao’s minimax lemma [32]. Yet, in Theorem 2.4 we claim somewhat weaker ran-
domized bounds than the corresponding distributional ones. The reason is that in our setting, the averaging
argument will need to fix the random coins of a protocol so as to preserve multiple measures (e.g., refutation
error as well as cost). Though this is easily accomplished, we pay a penalty of small constant factor increase
in our measures.

Ironically, the “hard” direction of Yao’s minimax lemma is particularly easy in the case of EQn, because
EQUALITY is in a sense uniform self-reducible. See Theorem 3.3, where we show how to turn a protocol
designed for the uniform distribution into a randomized one with worst-case guarantees. In this way, the
uniform distribution is provably the hardest distribution for EQUALITY.

3 Upper Bounds

In this section, we provide deterministic and randomized protocols for EQn with low refutation cost and
low verification cost. Recall that we define n̂ = min

{
n + log(1− δ ), log (1−δ )2

ε

}
. One can derive one-

sided-error and zero-error versions of these results by setting δ and/or ε to zero as needed, and using the
convention log(w/0) = +∞. One can in fact tighten the analysis for the case ε = δ = 0 to obtain the bounds
in Theorem 2.3.

Theorem 3.1. Suppose n,r ∈ N and ε,δ ∈ [0,1] are such that δ < 1−2−n/2 and ilogr−1 n̂≥ 4. Then

Dµ,(r),ref
ε,δ (EQn)≤ (1−δ ) ilogr−1 n̂+5 .

Proof. To gain intuition, we first consider δ = 0, in which case we have n̂ = min{n, log(1/ε)}. The basic
idea was already outlined in Section 1. Since we need only handle a random input, we do not need fin-
gerprints. Instead, Alice and Bob take turns revealing increasingly longer prefixes of their inputs: in the
jth round, the player to speak sends the next ≈ ilogr− j n̂ bits of her input. Whenever a player witnesses a
mismatch in prefixes, she aborts (and the protocol outputs 0). If the protocol ends without an abortion, it
outputs 1. The protocol described so far clearly has no false negatives, and after filling in some details (see
below), we can show that it has the desired refutation cost and refutation error.

To achieve further savings for nonzero δ , we partition {0,1}n into sets S,T ⊆ {0,1}n such that |S| ≈
(1− δ )2n. Each player aborts the protocol at her first opportunity if her input lies in T . Otherwise, they
emulate the above protocol on the smaller input space S×S.

We now make things precise. Set

n′ := n+ dlog(1−δ )e ,
n′′ := min{n′, 2+ dlog((1−δ )2/ε)e} ,

t j :=

{
dilogr− j n̂e , if 1≤ j < r ,
n′′−∑

r−1
j=1 t j , if j = r .

Choose an arbitrary partition of {0,1}n into subsets S and T such that |S| = 2n′ . Fix an arbitrary bijection
g : S→{0,1}n′ .

The protocol—which we call P—works as follows on input (x,y)∈ {0,1}n×{0,1}n. We write x[i1 : i2]
to denote the substring xi1xi1+1 . . .xi2 of x. Each nonempty message in the protocol will be either the string
“0”, indicating abortion, or “1” followed by a payload string. Each player maintains a variable ` that records
the length of the prefix that has been compared so far; initially they set `← 0.

8



The players keep track of whether an abortion has occurred. Once an abortion occurs, all further mes-
sages in the protocol will be empty strings. Once r rounds have been completed, the appropriate player will
output 0 if an abortion has occurred, and 1 otherwise.

Round j proceeds as follows. Let P ∈ {Alice, Bob} be the player who speaks in this round, and let
z ∈ {x,y} be their input. If necessary, P aborts if z ∈ T . Now suppose that an abortion has not yet occurred.
If j = 1, then P sends the substring g(z)[1 : t1], sets `← t1, and the round ends. Otherwise, suppose P receives
a non-aborting message with payload w. If P finds that w 6= g(z)[`+1 : `+t j−1] then she aborts, else if j < r,
she continues the protocol by sending the next t j bits of g(z), i.e., she sends g(z)[`+ t j−1 +1 : `+ t j−1 + t j],
sets `← `+ t j−1 + t j, and the round ends.

The protocol’s logic is shown in pseudocode form below, for readers who prefer that presentation.

Algorithm 1: Round j of the protocol P . Here t0 = 0 and “Round r+1” is the output announcement.

if j ≤ r then
if aborted then send emptystring ;
else

if z ∈ T then abort;
w← payload of most recently received message ;
if w 6= g(z)[`+1 : `+ t j−1] then abort;
send “1” followed by g(x)[`+ t j−1 +1 : `+ t j−1 + t j], and set `← `+ t j−1 + t j ;

else
if aborted then output 0 ;
else

w← payload of most recently received message ;
if w 6= g(z)[`+1 : `+ t j−1] then output 0 else output 1 ;

It is easy to see that verrµ(P) ≤ δ , since players only abort an (x,x) input when x ∈ T . Next, note
that a false positive occurs only when (x,y) ∈ S× S and g(x)[1 : n′′] = g(y)[1 : n′′]. When n′′ = n′ (which
corresponds, roughly, to ε < (1−δ )2−n), Alice and Bob end up comparing all bits of g(x) and g(y), and we
get rerrµ(P) = 0. In the other case, we have n′′ = 2+ dlog((1−δ )2/ε)e. Letting (X ,Y )∼ µ , we have

rerrµ(P) = Pr[(X ,Y ) ∈ S×S | X 6= Y ] ·Pr
[
g(X)[1 : n′′] = g(Y )[1 : n′′] | g(X) 6= g(Y )

]
≤
(
2n′−n)2 · 2

n′−n′′−1
2n′−1

≤ 22dlog(1−δ )e ·2−n′′ ≤ 22(1+log(1−δ )) · ε

4(1−δ )2 = ε .

Finally, we analyze the refutation cost. Let a j denote the expected total communication in rounds ≥ j,
conditioned on not aborting before round j. For convenience, set ar+1 = 0. We claim that a j ≤ 3 for all
j > 2 and prove so by induction from r+ 1 3. The base case ( j = r+ 1) is trivial. Conditioned on not
aborting before the jth round, the player whose turn it is to speak receives t j−1 bits to compare with her own
input. Estimating as above, this will fail to cause an abortion with probability at most 2−t j−1 . Therefore, the
player to speak will send at most 1 bit in this round to indicate abortion (or not) plus, with proability at most
2−t j−1 , will continue the communication, which will cost t j bits in this round and a j+1 bits in expectation in
subsequent rounds. The net result is that

a j ≤ 1+2−t j−1(t j +a j+1)

≤ 1+
1

ilogr− j d

(
dilogr− j de+3

)
≤ 2+

4
ilogr− j d

≤ 3 .

9



The first two rounds are slightly different, because each player summarily aborts when her input lies in
T . In the first round, Alice aborts with probability at most δ . In the second round, conditioned on Alice
not aborting, Bob aborts with probability all but (1− δ )2−t1 . The refutation cost of r-round protocols is
therefore bounded by

rcostµ(P) = a1 ≤ 1+(1−δ )t1 +(1−δ )
(
1+(1−δ )2−t1(t2 +a3)

)
≤ 1+(1−δ )(dilogr−1 n̂e+1)+(1−δ )2 dilogr−2 n̂e+3

ilogr−2 n̂

≤ 1+(1−δ ) ilogr−1 n̂+2(1−δ )+(1−δ )2
(

1+
4

ilogr−2 n̂

)
≤ 1+(1−δ ) ilogr−1 n̂+2(1−δ )+2(1−δ )2

≤ 5+(1−δ ) ilogr−1 n̂ .

Theorem 3.2. With n,r,ε,δ as above, we have Dµ,(r),ver
ε,δ (EQn)≤ (1−δ )n̂+3.

Proof. We construct a one-round protocol achieving the stated verification cost, using S,T,g as in The-
orem 3.1. On input (x,y), Alice aborts if x ∈ T . Otherwise, she sends Bob a prefix of g(x) of length
min{n+ dlog(1−δ )e,2+ dlog((1−δ )2/ε)e. Bob outputs 0 (“unequal”) if (i) Alice aborted, (ii) y ∈ T , or
(iii) Alice’s prefix does not match that of g(y).

As in the previous proof, this protocol—call it Q—only produces false negatives when inputs lie in T , so
that verrµ(Q)≤ δ . And as before, we get rerrµ(Q) = 0 for small ε and rerrµ(Q)≤ 22dlog(1−δ )e · ε

4(1−δ )2 ≤ ε

otherwise. As for verification cost, the protocol always sends a bit to indicate abortion (or not), and for all
(x,x)∈ S×S the protocol sends at most n̂+2 bits. Thus, vcostµ(Q)≤ 1+(1−δ )(n̂+2)≤ (1−δ )n̂+3.

Theorem 3.3. Let P be an r-round deterministic protocol for EQn. Then, there exists an r-round ran-
domized protocol Q for EQn with verr(Q) = verrµ(P), rerr(Q) = rerrµ(P), rcost(Q) = rcostµ(P), and
vcost(Q) = vcostµ(P).

Proof. Construct Q as follows. Alice and Bob use public randomness to generate a uniform bijection
G : {0,1}n → {0,1}n. On input (x,y), they run P on (G(x),G(y)). Note that if x = y then (G(x),G(y))
is uniform over EQ−1

n (1), and if x 6= y then (G(x),G(y)) is uniform over EQ−1
n (0). Thus, distributional

guarantees for P under the uniform distribution become worst-case guarantees for Q.

Together with Theorems 3.1 and 3.2, this gives upper bounds for randomized protocols.

Corollary 3.4. R(r),ref
ε,δ (EQn)≤ (1−δ ) ilogr−1 n̂+5.

Corollary 3.5. R(r),ver
ε,δ (EQn)≤ (1−δ )n̂+3.

4 Bounded-Round Communication Lower Bounds for Equality

In this section, we prove all of our communication cost lower bounds on EQn. We deal with information
cost in the next section. We think of these lower bounds as “combinatorial” (as opposed to “information
theoretic”). An important ingredient in some of these combinatorial lower bounds is the round elimination
technique, which dates back to the work of Miltersen et al. [27].
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4.1 Preliminaries

As in Section 3, we define n̂ as the following quantity: n̂ := min{n+ log(1−δ ), log((1−δ )2/ε)}. Several
of the bounds in this section will be parametrized by n̂.

We recall two well-known results from information theory (see, e.g., Cover and Thomas [14]), and state
a convenient estimation lemma. The second fact below is one direction of Shannon’s source coding theorem.
It states that any prefix-free code must have expected length at least the entropy of the source.

Fact 4.1 (Kraft Inequality). Let S⊆ {0,1}∗ be a prefix-free set. Then

∑
x∈S

2−|x| ≤ 1 .

Fact 4.2 (Source Coding Theorem). Let X be a random variable taking values in a prefix-free set S ⊆
{0,1}∗. Then

E[ |X | ]≥ H(X) .

Several proofs in this section rely on the following simple technical lemma about expectations.

Lemma 4.3. Let X be uniformly distributed over a set X , X ′ uniformly distributed over a set X ′ ⊆X ,
and let f : X → R+ be a nonnegative function. Then, we have

EX ′ [ f (X ′)]≤
|X |
|X ′|

EX [ f (X)] .

Proof. By the nonnegativity of f , we have

EX [ f (X)] =
1
|X | ∑

x∈X
f (x)≥ 1

|X | ∑
x∈X ′

f (x) =
(
|X ′|
|X |

)
1
|X ′| ∑

x∈X ′
f (x) =

|X ′|
|X |

EX ′ [ f (X ′)] .

Claim 4.4. For all a≤ 2n/2, all t ≤ log∗ n−2 and all x ∈
[1

a ,1
]
, the following inequality holds.

ilogt−1 n≥ ilogt(x ·2n)≥ ilogt−1 n
(

1− loga
n

)
.

Proof. We focus on the lower bound since the upper bound is trivial. Let Z := 2nx. First, note that
logZ = n+ logx≥ n− loga > n

(
1− loga

n

)
, and the claim holds for t = 1. Next, suppose that ilogt−1(Z)>

ilogt−2(n)
(

1− loga
n

)
. Then, we have

ilogt Z > ilogt−1 n+ log
(

1− loga
n

)
> ilogt−1 n− 2log(e) loga

n

= ilogt−1 n
(

1− 2log(e) loga
n ilogt−1 n

)
> ilogt−1 n

(
1− loga

n

)
,

where the second inequality uses 1− x≥ e−2x and the final inequality holds since ilogt−1 n > 2log(e).

11



4.2 Lower Bounds for Zero-Error Protocols

In this section, we provide nearly exact bounds for zero-error protocols.

Theorem 4.5. For all r < log∗ n we have Dµ,(r),ref
0,0 (EQn)≥ ilogr−1 n−1.

To prove this theorem, we must analyze EQUALITY protocols on finite sets of arbitrary size. Given a
finite set S, define EQS to be the EQUALITY problem, but when x,y ∈ S. Thus, the standard EQn is equivalent
to EQ{0,1}n . Theorem 4.5 is then a special case of the following theorem.

Theorem 4.6. For all integers r > 0, we have Dµ,(r),ref
0,0 (EQS)≥ ilogr |S|−1.

Proof. Assume ilogr |S|> 1 as otherwise there is nothing to prove. Define m to be the unique real such that
m = log |S|. It might be helpful to think of m as an integer, but this is not necessary.

The proof proceeds by induction. When there is only one-round of communication, Alice must send
her entire input since the protocol has zero error. Thus, the protocol costs dme > ilog1(m)− 1 bits, and
the induction hypothesis holds for r = 1. Now, assume Dµ,(`),ref

0,0 (EQT ) ≥ ilog` |T | − 1 for all finite sets T ,
and let P be an optimal (`+ 1)-round deterministic protocol for EQS. We aim to show that rcostµ(P) ≥
ilog`+1 |S|−1 bits. Let m1, . . . ,mt be the possible messages Alice sends in the first round of P . For 1≤ i≤ t,
Let Ai denote the set of inputs on which Alice sends mi, and let `i denote the length of mi. Assume without
loss of generality that `1 ≤ `2 ≤ ·· · ≤ `t . Since P is optimal, we must have |A1| ≥ |A2| ≥ · · · ≥ |At |—
otherwise, we can permute which messages are sent on which sets Ai and reduce the overall cost of the
protocol.

Next, we analyze the cost of P by conditioning on Alice’s first message. Let pi := |Ai|/2m. Under
the uniform distribution, Alice sends mi with probability pi. Note also that if y 6∈ Ai, Bob refutes equality
and the protocol aborts. Thus, taken over x 6= y inputs, the probability that Bob aborts is (|Ai|− 1)/(2m−
1). Furthermore, conditioned on the events that (i) Alice’s first message is mi and that (ii) Bob doesn’t
abort, Alice and Bob’s inputs are each uniform over Ai. Thus, the remaining communication is at least
Dµ,(`),ref

0,0 (EQAi).
Fix τ := 2/ ilog`−1 m. For reasons that will be clear shortly, call the ith message small if pi ≤ τ; other-

wise, call the message large. We bound the cost of P from below as follows.

rcostµ(P) = ∑
1≤i≤t

pi

(
`i +
|Ai|−1
2m−1

Dµ,(`),ref
0,0 (EQAi)

)
≥ ∑

1≤i≤t
pi

(
− log pi +(pi−2−m)Dµ,(`),ref

0,0 (EQAi)
)

≥ ∑
small mi

pi(− log pi)+ ∑
large mi

pi

(
− log pi +(pi−2−m)(ilog` |Ai|−1)

)
≥ Pr[small message] · (ilog`(m)−1)+ ∑

large mi

pi

(
− log pi + pi ilog` |Ai|− pi−1

)
≥ Pr[small message] · (ilog`(m)−1)+ ∑

large mi

pi f (pi) ,

where f (x)=− log(x)+x ilog`(x2m)−x−1, the first inequality holds by the source coding theorem (Fact 4.2),
the second inequality holds because Dµ,(`),ref

0,0 (EQT ) ≥ 0, and the third equality holds because pi ≤ τ for all
small messages.

Lemma 4.7. We have f ′(x)> 0 for all x ∈ [τ,1].
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Proof. We prove this by explicitly calculating the derivative of f .
If x≥ τ , then −1/(x ln2)≥− ilog`−1(m)/(2ln2). By Claim 4.4, we have

f ′(x) =− 1
x ln2

+ ilog`(x ·2m)− 1
(ln2)(lnx ·2m)∏

`−2
j=0 ln(ilog j x ·2m)

−1

>− ilog`−1 m
2ln2

+ ilog`−1 m− (ilog`−1 m) ilog` m
m

−o(1)−1

= ilog`−1 m
(

1− 1
2ln2

)
−1−o(1)

= Ω(ilog`−1 m) .

It follows from Lemma 4.7 that for large messages, f (pi) is minimized at f (τ). Note that

f (τ) =− log(τ)+ τ ilog`(τ ·2m)− τ−1

≥ ilog`(m)−1+
2

ilog`−1 m
ilog`−1 m

(
1− ilog`(m)−1

m

)
− 2

ilog`−1 m
−1

> ilog`(m)−1 .

Plugging this back into our inequality for the cost of P , we get

rcostµ(P)≥ Pr[small message] · (ilog`(m)−1)+Pr[large message] · (ilog`(m)−1) = ilog`(m)−1 .

Theorem 4.8. Dµ,(r),ver
0,0 (EQn)≥ n.

Note that the lower bound is independent of r.

Proof. Let P be a deterministic zero-error protocol for EQn. As the protocol has no error, the communi-
cation matrix is partitioned into monochromatic rectangles. In particular, there are 2n 1-rectangles, since
each (x,x) input must map to a different rectangle.3 Let Rx,Tx, and `x denote the rectangle consisting of
the input pair (x,x), the protocol transcript corresponding to (x,x), and the length of this protocol transcript,
respectively. Note that {Tx} form a prefix-free coding of {0,1}n. By Kraft’s inequality, we have ∑x 2−`x ≤ 1.
Therefore, in expectation E[2−`x ]≤ 2−n, and by Jensen’s inequality, we get the following.

−n≥ logE[2−`x ]≥ E[log(2−`x)] =−E[`x] .

Multiplying each side of the inequality by −1, we have Ex[`x] ≥ n. This is precisely vcostµ(P), thus the
proof is complete.

Theorem 4.9. R(r),ver
0,0 (EQn)≥ n.

Proof. Let P be a randomized zero-error protocol for EQn. Given any string s, let Ps denote the determin-
istic protocol obtained by fixing the public randomness to s. Proceeding along the same lines as in the proof
of Theorem 4.8, we have E[`x,s]≥ n, where `x,s is the length of the protocol transcript in Ps on input (x,x).
This holds for every Ps, hence Ex,s[`x,s]≥ n. Therefore, there exists x such that Es[`x,s]≥ n. Recalling the
definition of vcost, we have

vcost(P)≥ cost(P;x,x) = Es[`x,s]≥ n ,

completing the proof.

3If (x,x) and (y,y) were in the same rectangle, then so would (x,y) and (y,x). Thus, the protocol would err on these inputs.

13



4.3 Refutation Lower Bounds for Protocols with Two-Sided Error

In this section, we give combinatorial lower bounds on the refutation cost of EQUALITY protocols that admit
error. All of the bounds in this section will be asymptotic rather than nearly exact. For this reason, we
will strive for simplicity of the proofs at the possible expense of some technical accuracy. For instance, we
will often drop ceilings or floors in the mathematical notation. We will also assume that players have the
ability to instantly abort a protocol when equality has been refuted. This is easily implemented, as seen in
Section 4.2 at negligible communication cost. We prefer to avoid the technical machinery needed to express
this explicitly.

Definition 4.10. An 〈n,r,ε,δ ,c〉-EQUALITY protocol P is a r-round deterministic protocol with rerrµ(P)≤
ε , verrµ(P)≤ δ , and rcostµ(P)≤ c.

For the sake of brevity, we often drop the “EQUALITY” and simply refer to an 〈n,r,ε,δ ,c〉-protocol. Our
first lemma demonstrates that disallowing false negatives changes the communication complexity very little.

Lemma 4.11. If there exists a 〈n,r,ε,δ ,c〉-EQUALITY protocol then there exists a 〈n′,r,ε ′,0,c′〉-EQUALITY

protocol, where n′ = n+ log(1−δ ), ε ′ = 2ε/(1−δ )2, and c′ = 2c/(1−δ )2.

Proof. Let S = {x : out(P(x,x)) = 0} be the set of inputs on which P gives a false negative, and let T =
{0,1}n \S. Since P has false negative rate δ under the uniform distribution, we have |T | ≥ (1−δ )2n = 2n′ .

First create a new EQn protocol P ′ which works as follows. On input (x,y), Alice aborts and outputs 0
if x ∈ S; otherwise, the players emulate P and output out(P(x,y)). Note that P ′ makes precisely the same
false negatives as in P , and aborting when x ∈ S can only decrease the false positive rate and the expected
communication on inputs in EQ−1

n (0). Thus, P ′ is also a 〈n,r,ε,δ ,c〉-protocol.
Next, fix an arbitrary bijection g : {0,1}n′ → T , and construct an EQn′ protocol Q in the following way.

On input (X ,Y ), players emulate P ′ on input (g(X),g(Y )) and output out(P ′(g(X),g(Y ))). Note that
g(X),g(Y ) ∈ T , so there are no false negatives. There can be as many false positives as in P ′. However, the
sample space is smaller (22n′ − 2n′ vs 22n− 2n), so the false positive rate can increase. By Lemma 4.3, the
overall error is at most 2ε/(1−δ )2. Similarly, the communication in Q on any input (X ,Y ) is the same as
the communication in P ′ on input (g(X),g(Y )), but since the sample space is smaller (again 22n′ −2n′ vs.
22n−2n), the expected communication can increase. However, the overall increase in communication is at
most a factor of 2/(1−δ )2 by Lemma 4.3.

Lemma 4.12 (Combinatorial Round Elimination for EQUALITY). If there is an 〈n,r,ε,0,c〉-EQUALITY

protocol, then there is an 〈n−3c−2,r−1,12ε23c,0,12c23c〉-EQUALITY protocol.

Proof. Let P be a 〈n,r,ε,0,c〉-protocol. Let Z(x,y)= 1 if the protocol errs on input (x,y), and let Z(x,y)= 0
otherwise. Then we have

Ex
[
Ey6=x[|P(x,y)|]

]
≤ c, and Ex

[
Ey6=x[Z(x,y)]

]
≤ ε .

Call x good if (1) Ey 6=x[P(x,y)|] ≤ 3c, and (2) Ey 6=x[Z(x,y)] ≤ 3ε . By two applications of Markov’s in-
equality and a union bound, at least 2n/3 x are good. Next, fix Alice’s first message m so it is constant over
the maximal number of good x. It follows that m is constant over a set A of good x of size |A| ≥ 2n−3c−2.
This induces a (r− 1)-round protocol Q for EQA. It remains to bound the cost and error of Q. Applying
Lemma 4.3 twice, we have that the cost is bounded by

rcostµ(Q) = Ex∈A
[
Ey∈A,y 6=x[|P(x,y)|]

]
≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n,y 6=x[|P(x,y)|]

]
≤ 12c23c ,
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and the error is bounded by

Ex∈A
[
Ey∈A,y 6=x[Z(x,y)]

]
≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n,y6=x[Z(x,y)]

]
≤ 12ε23c .

Corollary 4.13. Let n, j,r,d be integers with n > d, d sufficiently large, and r ≥ 1. Suppose there exists an
〈n,r,ε`,0, `〉-protocol, where ` = 1

6 ilog j d. Then, there exists an 〈n−3`−2,r−1,ε`′,0, `′〉-protocol with
`′ = 1

6 ilog j−1 d.

Proof. This boils down to the following estimations, which are valid for all sufficiently large d.

12`23` = 2(ilog j d)2
1
2 ilog j d = 2ilog j d

√
ilog j−1 d <

1
6

ilog j−1 d .

Theorem 4.14 (Lower Bound for Protocols with False Negatives Disallowed). Let n be a sufficiently
large integer, ε < 1/4 a real, and r ≥ 1. Fix ñ := min{n, log(1/ε)}. Then, Dµ,(r),ref

ε,0 (EQn) = Ω(ilogr−1 ñ).

Proof. In this proof we tacitly assume ilogr−1 ñ≥ 100.
Suppose for the sake of a contradiction that there exists a 〈n,r,ε,0, 1

6 ilogr−1 ñ〉-protocol P . Applying
Lemma 4.12 gives a 〈n− 3

5 ilogr−1 ñ,r−1, ε

6 ilogr−2 ñ,0, 1
6 ilogr−2 ñ〉-protocol P ′. Next, applying Corol-

lary 4.13 r− 2 times gives a 〈n− 3
5 ∑

r−1
j=1 ilog j ñ,1, ε

6 ñ,0, ñ
6〉-protocol. Finally, applying Lemma 4.12 once

more gives a 〈n− 3
5 ∑

r−1
j=0 ilog j ñ,0,2ε ñ2ñ/2,0,2ñ2ñ/2〉-protocol Q.

Note that since Q has false negative rate zero, Q must output 1 with certainty. Thus, Q errs on all X 6=Y
inputs; i.e., Q has false positive rate 1. On the other hand, ñ ≤ log(1/ε), so the false positive rate of Q is
2ε ñ2ñ/6 ≤

√
ε < 1/2. This is a contradiction as long as the problem remains nontrivial.

Since ilog j ñ ≥ 100, we have ∑
r−1
j=t+1 ilog j ñ < 1

5 ilogt ñ. Also notice that since ñ ≤ n, we have n−
3
5 ∑

r−1
j=0 ilog j ñ > n/5. Thus, we have a zero-round protocol for EQn′ for some n′ = Ω(n) that has false

positive rate < 1/2 but must output 1 with certainty, a contradiction.

Theorem 4.15 (Lower Bound for Protocols with Two-Sided Error). Let n be a sufficiently large inte-
ger, and let ε,δ be reals such that δ ≤ 1− 2−n/2 and ε/(1− δ )2 < 1/8. Then, Dµ,(r),ref

ε,δ (EQn) = Ω((1−
δ )2 ilogr−1 n̂).

Proof. Fix d = min{n/2, log((1−δ )2/2ε)}. Note that logd = Θ(log n̂). Suppose for the sake of a contra-
diction that there exists a 〈n,r,ε,δ , (1−δ )2

12 ilogr−1 d〉-protocol P . Since n+ log(1−δ )> n/2, Lemma 4.11
gives a 〈n/2,r,2ε/(1−δ )2,0, 1

6 ilogr−1 d〉-protocol. The rest of the proof follows from the proof of Theo-
rem 4.14.

Next, we prove a combinatorial lower bound for randomized communication complexity.

Theorem 4.16. Let n be a sufficiently large integer, ε and δ reals such that δ < 1− 21−n/2 and 64ε <

(1−δ )3. Then, R(r),ref
ε,δ (EQn) = Ω((1−δ )3 ilogr−1 n̂).

Proof. Let P be an r-round randomized protocol with rerr(P) = ε,verr(P) = δ , and with rcostµ(P) = c.
Define z = 1−δ , ε̂ = 4ε/(1−δ ), and ĉ = 4c/(1−δ ). For any setting s of the random string, let Ps denote
the deterministic protocol induced by fixing the randomness to s. Call a string s good if (i) verrµ(Ps) ≤
1− z/2, (ii) rerrµ(Ps) ≤ ε̂ , and (iii) rcostµ(Ps) ≤ ĉ. Applying a Markov argument to each term, we see
that

Pr[s is bad]<
1− z

1− z/2
+

z
4
+

z
4
< 1 ,
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where the final inequality uses 1−z
1−z/2 < 1− z/2. Thus there exists a good string s. Note that Ps is a

[n,r, ε̂, δ̂ , ĉ]-protocol, and by Theorem 4.15, ĉ = Ω((1−δ )2 ilogr−1 n̂). Therefore, c = Ω((1−δ )3 ilogr−1 n̂).

4.4 Verification Lower Bounds for Protocols with Two-Sided Error

Theorem 4.17. Dµ,(r),ver
ε,δ (EQn)≥ (1−δ )(n̂−1).

Proof. Fix a deterministic protocol P achieving rerrµ(P) = ε and verrµ(P) = δ . This protocol naturally
partitions the communication matrix for EQn into combinatorial rectangles. Let R1, . . . ,Rc be the rectangles
on which P outputs 1. Let si denote the number of (x,x) inputs in Ri. Since P has false negative rate δ ,
we have ∑i si = 2n(1− δ ). Let pi = si/2n and qi = pi/(1− δ ). pi is the probability that (x,x) ∈ Ri for a
uniformly chosen x. Similarly, qi is the probability that (x,x) ∈ Ri conditioned on P verifying equality on
(x,x). We now analyze the false positive rate. Recall that there are 22n−2n total x 6= y inputs. It is easy to
see that Ri contains at least s2

i − si false positives. Therefore, we have

ε ≥ 1
22n−2n ∑

i
s2

i − si = ∑
i

si(si−1)
2n(2n−1)

≥∑
i

pi(pi−2−n) =−2−n(1−δ )+∑
i

p2
i .

Rearranging terms and noting that qi = pi/(1−δ ), we have

E[qi] = ∑
i

q2
i =

1
(1−δ )2 ∑

i
p2

i ≤
1

(1−δ )2

(
ε +2−n(1−δ )

)
=

ε

(1−δ )2 +
2−n

(1−δ )
≤ 2 ·2−n̂ .

Next we analyze the verification cost of P . Let `i denote the length of the protocol transcript for inputs in
Ri. Let R denote be a random variable corresponding to which 1-rectangle is selected on a uniform (x,x)
input, conditioned on P outputting 1. Note that the communication of P gives a prefix-free coding of R.
We have

vcostµ(P) = ∑
x

|P(x,x)|
2n

≥∑
i

pi`i

= (1−δ )∑
i

qi`i

≥ (1−δ )∑
i

qi(− logqi)

=−(1−δ )E[log(qi)]

≥−(1−δ ) logE[qi]

≥−(1−δ )(−n̂+1)

= (1−δ )(n̂−1) ,

where the second inequality is from the source coding theorem (Fact 4.2) and the third is from Jensen’s
inequality.

Theorem 4.18. R(r),ver
ε,δ (EQn)>

(1−δ )2

8 (n̂+ log(1−δ )−5).

Proof. Suppose there exists a randomized protocol P with rerr(P) = ε , verr(P) = δ , and vcost(P) = m.
For any string s, let Ps denote the deterministic protocol obtained from P by fixing the public ran-
domness to s. The verification cost of P gives for all x,y the expectation Es [cost(Ps;x,y) | x = y] ≤ m.
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Similarly, the false positive and false negative rates of P give Es [Pr[out(Ps(x,y)) = 1] | x 6= y] ≤ ε and
Es [Pr[out(Ps(x,y)) = 0] | x = y]≤ δ .

Therefore, under the uniform distribution we have

Es,µ [Pr[out(Ps(X ,Y )) = 1 | X 6= Y ]]≤ ε ,

Es,µ [Pr[out(Ps(X ,Y ) = 0 | X = Y ]]≤ δ ,

Es,µ [cost(Ps;X ,Y ) | X = Y ]≤ m .

Define z := 1−δ , ε̂ = 4ε/(1−δ ), δ̂ = 1− z/2 and m̂ = 4m/(1−δ ). Call a string s good if (i) verr(Ps)≤
1− z/2, (ii) rerr(Ps)≤ ε̂ , and (iii) vcostµ(P)≤ m̂. Applying a Markov argument to each term and using a
union bound, we see that

Pr[s is bad]<
1− z

1− z/2
+

z
4
+

z
4
< 1 ,

where the final inequality uses 1−z
1−z/2 < 1− z/2 which holds for z ∈ (0,1). Thus, there exists a good string s.

Note that Ps is a deterministic (ε̂, δ̂ )-error EQn protocol, and by Theorem 4.17, we have

4m
1−δ

≥ vcostµ(Ps)≥
z
2

(
min

{
n+ log(z/2), log

(
z(z/2)2

4ε

)}
−1
)
≥ z

2
(n̂+ log(z)−5).

Rearranging terms and substituting z = 1− δ gives m ≥ (1−δ )2

8 (n̂+ log(1−δ )−6), completing the proof.

The analysis in the above proof is very loose when δ is bounded away from 1. In particular, when there
are no false negatives (i.e., when δ = 0, we are able to show that R(r),ver

ε,0 ≥ cn̂ for every constant c < 1.

5 Bounded-Round Information Complexity of Equality

In this section we prove Theorem 2.5, which we think of as the most important result of this paper. We
wish to lower bound the bounded-round information complexity of EQUALITY with respect to the uniform
distribution. Recall that we are concerned chiefly with protocols that achieve very low refutation error,
though they may have rather high verification error. We will prove our lower bound by proving a round
elimination lemma for EQn that targets information cost, and then applying this lemma repeatedly.

This proof has much more technical complexity than our earlier lower bound proofs. Let us see why.
There are two main technical difficulties and they arise, ultimately, from the same source: the inability to
use (the easy direction of) Yao’s minimax lemma. When proving a lower bound on communication cost,
Yao’s lemma allows us to fix the random string used by any purported protocol, which immediately moves
us into the clean world of deterministic protocols. This hammer is unavailable to us when working with
information cost. The most we can do is to “average away” the public randomness. We then have to deal
with (private coin) randomized protocols the entire way through the round elimination argument. As a
result, our intermediate protocols, obtained by eliminating some rounds of our original protocol, do not
obey straightforward cost and error guarantees. This is the first technical difficulty, and our solution to it
leads us to the concept of a “kernel” in Definition 5.6 below.

The second technical difficulty is that we are unable to switch to the simpler case of zero verification
error like we did in the proof of Theorem 2.4, Parts 5 and 6. Therefore, all our intermediate protocols
continue to have verification error. Since errors scale up with each round elimination, and the verification
error starts out high, we cannot afford even a constant-factor scaling. We must play very delicately with our
error parameters, which leads us to the somewhat complicated parametrization seen in Definition 5.7 below.
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5.1 Preliminaries

Before getting to the proof proper, we define some notation and give a few useful estimation lemmas.

Definition 5.1. Let λ be a probability distribution on a finite set S and let T ⊆ S be an event with λ (T ) 6= 0.
We write λ | T to denote the distribution obtained by conditioning λ on T . To be explicit, λ | T is given by

(λ | T )(x) =

{
0 , if x /∈ T ,

λ (x)/λ (T ) , if x ∈ T .

Also, we write H(λ ) to denote the entropy of a random variable distributed according to λ , i.e., H(λ ) =
H(X), where X ∼ λ .

Lemma 5.2. With λ ,S and T as above, let f : S→ R+ be a nonnegative function. Then EX∼λ |T [ f (X)] ≤
EX∼λ [ f (X)]/λ (T ).

Lemma 5.3. Let Z,W be jointly distributed random variables. Let E be an event. Then,

I(Z : W )≥ Pr[E ] I(Z : W | E )−1 .

Proof. Let D be the indicator random variable for E . Then we have

I(Z : W | D) = Pr[E ] I(Z : W | E )+Pr[¬E ] I(Z : W | ¬E )≥ Pr[E ] I(Z : W | E ) . (2)

Note that I(Z : D |W )≤ H(D |W )≤ H(D)≤ 1. Using the chain rule for mutual information twice, we get

I(Z : W | D)≤ I(Z : WD) = I(Z : W )+ I(Z : D |W )≤ I(Z : W )+1 . (3)

The lemma follows by combining inequalities (2) and (3).

To appreciate the next two lemmas, it will help to imagine that d� n.

Lemma 5.4. Let Z,W be jointly distributed random variables, with Z taking values in {0,1}n, and let E be
an event. Then

H(Z |W )≥ n−d =⇒ H(Z |W,E )≥ n− (d +1)/Pr[E ] .

In particular, taking W to be a constant, we have H(Z)≥ n−d =⇒ H(Z | E )≥ n− (d +1)/Pr[E ].

Proof. We use the fact that the entropy of Z can be at most n, even after arbitrary conditioning. This gives

n−d ≤ H(Z |W )

= Pr[E ] H(Z |W,E )+(1−Pr[E ])H(Z |W,¬E )+Hb(Pr[E ])

≤ Pr[E ] H(Z |W,E )+(1−Pr[E ])n+1 .

The lemma follows by rearranging the above inequality.

Lemma 5.5. Let Z be a random variable taking values in {0,1}n and let z ∈ {0,1}n. Then

H(Z)≥ n−d =⇒ Pr[Z = z]≤ (d +1)/n .

Proof. The lemma follows by rearranging the following inequality, which is a consequence of Lemma 5.4:

0 = H(Z | Z = z)≥ n− d +1
Pr[Z = z]

.
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5.2 The Round Elimination Argument

Definition 5.6 (Kernel). Let p and q be probability distributions on {0,1}n, let S⊆ {0,1}n, and let `≥ 0 be
a real number. The triple (p,q,S) is defined to be an `-kernel if the following properties hold.

[K1] H(p)≥ n− ` and H(q)≥ n− `.

[K2] p(S)≥ 2−` and q(S)≥ 1
2 .

[K3] For all x ∈ S we have q(x)≥ 2−n−`.

Definition 5.7 (Parametrized Protocols). Suppose we have an integer r ≥ 1, and nonnegative reals `,a,b,
and c. A protocol P for EQn is defined to be an [r, `,a,b,c]-protocol if there exists an `-kernel (p,q,S) such
that the following properties hold.

[P1] The protocol P is private-coin and uses r rounds, with Alice speaking in the first round.

[P2] We have errp⊗q|S×S(P) = Pr(X ,Y )∼p⊗q[out(P(X ,Y )) 6= EQn(X ,Y ) | (X ,Y ) ∈ S×S]≤ 2−a.

[P3] We have verrp⊗ξ |S×S(P) = PrX∼p[out(P(X ,X)) = 0 | X ∈ S]≤ 1−2−b.

[P4] We have icostp⊗q(P)≤ c.

We alert the reader to the fact that [P2] considers overall error, and not refutation error. We encourage
the reader to take a careful look at [P3] and verify the equality claimed therein. It is straightforward, once
one revisits Definition 2.1 and recalls that ξ denotes the uniform distribution on {0,1}n.

Since we have a number of parameters at play, it is worth recording the following simple observation.

Fact 5.8. Suppose that `′ ≥ `,c′ ≥ c,a′ ≤ a, and b′ ≥ b. Then every `-kernel is also an `′-kernel, and every
[r, `,a,b,c]-protocol is also an [r, `′,a′,b′,c′]-protocol.

Theorem 5.9 (Information-Theoretic Round Elimination for EQUALITY). If there exists an [r, `,a,b,c]-
protocol with r ≥ 1 and c≥ 4, then there exists an [r−1, `′,a′,b′,c′]-protocol, where

`′ := (c+ `)2`+2b+7 , a′ := a− (c+ `)2`+2b+8 ,

b′ := b+2 , c′ := (c+2)2`+2b+6 .

Proof. Let P be an [r, `,a,b,c]-protocol, and let (p,q,S) be an `-kernel satisfying the conditions in Defini-
tion 5.7. Assume WLOG that the each message in P is generated using a fresh random string. Let X ∼ p
and Y ∼ q be independent random variables denoting an input to P . Let M1, . . . ,Mr be random variables
denoting the messages sent in P on input (X ,Y ), with M j being the jth message; note that these variables
depend on X ,Y , and the random strings used by the players. We then have

c≥ icostp⊗q(P) = I(XY : M1M2 . . .Mr) = I(X : M1)+ I(XY : M2 . . .Mr |M1) , (4)

where the final step uses the chain rule for mutual information, and the fact that M1 and Y are independent.
In particular, we have I(X : M1)≤ c, and so H(X |M1) = H(X)− I(X : M1)≥ n− `− c. By Lemma 5.4,

H(X |M1,X ∈ S)≥ n− `+ c+1
p(S)

≥ n− (`+ c+1)2` . (5)

Let M be the set of messages that Alice sends with positive probability as her first message in P , given
the random input X , i.e., M := {m : Pr[M1 = m] > 0}. Consider a particular message m ∈M . Let P ′

m

denote the following protocol for EQn. The players simulate P on their input, except that Alice is assumed
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to have sent m as her first message. As a result, P ′
m has r−1 rounds and Bob is the player to send the first

message in P ′
m. Let πm and q′ be the distributions of (X |M1 =m∧X ∈ S) and (Y | Y ∈ S), respectively.

Observe that icostπm⊗q′(P ′
m) = I(XY : M2 . . .Mr |M1 =m∧ (X ,Y ) ∈ S×S). Letting L denote a random

first message distributed identically to M1, we now get

EL
[

icostπL⊗q′(P ′
L)
]
= I(XY : M2 . . .Mr |M1,(X ,Y ) ∈ S×S)

≤ I(XY : M2 . . .Mr |M1)+1
p(S)q(S)

≤ (c+1)2`+1 , (6)

where the first inequality uses Lemma 5.3 and the second inequality uses (4) and Property [K2]. Examining
Properties [P2] and [P3], we obtain

EL
[

errπL⊗q′(P ′
L)
]
= errp⊗q|S×S(P)≤ 2−a , (7)

EL
[

verrπL⊗ξ (P ′
L)
]
= verrp⊗ξ |S×S(P)≤ 1−2−b . (8)

Definition 5.10 (Good message). A message m ∈M is said to be good if the following properties hold:

[G1] H(πm) = H(X |M1 =m∧X ∈ S)≥ n− (`+ c+1)2`+b+3,

[G2] icostπm⊗q′(P ′
m)≤ 2`+b+4(c+1),

[G3] errπm⊗q′(P ′
m)≤ 2−a+b+3,

[G4] verrπm⊗ξ (P ′
m)≤ 1−2−b−1.

Notice that for all m ∈M we have H(X | M1 = m,X ∈ S) ≤ n. Hence, viewing (5), (6), (7) and (8)
as upper bounds on the expected values of certain nonnegative functions of L, we may apply Markov’s
inequality to these four conditions and conclude that

Pr[L is good]≥ 1−2−b−3−2−b−3−2−b−3− 1−2−b

1−2−b−1 ≥ 2−b−1−3 ·2−b−3 > 0 .

Thus, there exists a good message. From now on, we fix m to be such a good message.
We may rewrite the left-hand side of [G4] as EZ∼πm [Pr[out(P ′

m(Z,Z)) = 0]]. So if we define the set
T :=

{
x ∈ S : Pr[out(P ′

m(x,x)) = 0]≤ 1−2−b−2
}

and apply Markov’s inequality again, we obtain

πm(T )≥ 1− 1−2−b−1

1−2−b−2 ≥ 2−b−2 . (9)

Defining the distribution p′ := πm | T and the set S′ := {x ∈ T : p′(x)≥ 2−n−`′}, we now make two claims.

Claim 1: The triple (q′, p′,S′) is an `′-kernel.

Claim 2: We have errp′⊗q′|S′×S′(P ′
m)≤ 2−a′ , verrq′⊗ξ |S′×S′(P ′

m)≤ 1−2−b′ , and icostp′⊗q′(P ′
m)≤ c′.

Notice that these claims essentially say that P ′
m has all the properties listed in Definition 5.7, except that Bob

starts P ′
m. Interchanging the roles of Alice and Bob in P ′

m gives us the desired [r−1, `′,a′,b′,c′]-protocol,
which completes the proof of the theorem.

It remains to prove the above claims. We start with Claim 1. Starting with the lower bound on H(πm)
give by Property [G1] of the good message m, and using Lemma 5.4 followed by (9), we obtain

H(p′) = H(πm | T )≥ n− (c+ `+1)2`+b+3 +1
πm(T )

≥ n− (c+ `+2)2`+2b+5 ≥ n− `′ . (10)
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We may lower bound H(q′) using Properties [K1] and [K2] for (p,q,S) and applying Lemma 5.4. We have

H(q′) = H(Y | Y ∈ S)≥ n− `+1
q(S)

≥ n−2(`+1)≥ n− `′ .

Thus, (q′, p′,S′) satisfies Property [K1] for an `′-kernel. It is immediate that it also satisfies Property [K3]:
by definition, for all x ∈ S′, we have p′(x)≥ 2−n−`′ .

It remains to verify Property [K2], which entails showing that p′(S′)≥ 1
2 and that q′(S′)≥ 2−`

′
. We can

lower bound p′(S′) as follows:

p′(S′) = 1− ∑
x∈{0,1}n\S′

p′(x) = 1− ∑
x∈{0,1}n

p′(x)<2−n−`′

p′(x)≥ 1−2−`
′ ≥ 1

2
. (11)

To prove the second inequality, we first derive a lower bound on H(p′ | S′), thence on |S′|, and finally on
q′(S′). We already showed that H(p′)≥ n− (c+ `+2)2`+2b+5, at (10). By Lemma 5.4 and (11), we get

H(p′ | S′)≥ n− (c+ `+2)2`+2b+5 +1
p′(S′)

≥ n−
(
(c+ `+2)2`+2b+6 +2

)
≥ n− (c+ `+4)2`+2b+6 ,

and so |S′| ≥ 2n−(c+`+4)2`+2b+6
. Since q′ = q | S and S′ ⊆ S, we have

q′(S′)≥ q(S′)≥ |S′|min
y∈S′

q(y)≥ |S′|min
y∈S

q(y)≥ 2n−(c+`+4)2`+2b+6
2−n−` = 2−`−(c+`+4)2`+2b+6

,

where the final inequality uses Property [K3]. Recalling the definition of `′ and applying a crude estimate
(using the bound c≥ 4), we get q′(S′)≥ 2−`

′
. This finishes the proof of Claim 1.

We now prove Claim 2. Of the three bounds we need to prove, the verification error bound is the easiest.
Recalling how T was defined, and noting that S′ ⊆ T , we immediately obtain

verrq′⊗ξ |S′×S′(P ′
m) = EY ′∼q′ [Pr[out(P ′

m(Y
′,Y ′)) = 0 | Y ′ ∈ S′]]≤ 1−2−b−2 .

To establish the overall error bound, we use

errp′⊗q′|S′×S′(P ′
m)≤

errp′⊗q′(P ′
m)

p′(S′)q′(S′)
≤ errπm⊗q′(P ′

m)

πm(T )p′(S′)q′(S′)
≤ 2−a+b+3

2−b−2 · 1
2 ·2−`

′ (12)

= 2−a+2b+6+(c+`)2`+2b+7 ≤ 2−a+(c+`)2`+2b+8
, (13)

where the final inequality in (12) follows from Property [K2] for an `′-kernel and Property [G3], and (13)
just uses a crude estimate (this time c≥ 1 suffices). The last thing remaining is to establish the information
cost bound in Claim 2. We do this as follows.

icostp′⊗q′(P ′
m) = I(XY : M2 . . .Mr |M1 =m∧X ∈ T ∧Y ∈ S)

≤ I(XY : M2 . . .Mr |M1 =m∧ (X ,Y ) ∈ S×S)+1
Pr[X ∈ T |M1 =m∧ (X ,Y ) ∈ S×S]

(14)

=
icostπm⊗q′(P ′

m)+1
πm(T )

(15)

≤ 2b+`+4(c+1)+1
2−b−2 ≤ (c+2)2`+2b+6 , (16)

where (14) uses Lemma 5.3, (15) uses the independence of X and Y and (16) uses Property [G2] and Eq. (9).
This completes the proof of Claim 2 and, with it, the proof of the theorem.
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The following easy corollary of Theorem 5.9 will be useful shortly.

Corollary 5.11. Let ñ, j,r ∈ N and a,b ∈ R with ñ sufficiently large, j ≥ 1, r ≥ 1, and b ≥ 0. Suppose
there exists an [r, `,a−`,b, `]-protocol, with b≤ `= 1

8 ilog j ñ. Then there exists an [r−1, `′,a−`′,b+2, `′]-
protocol with b+2≤ `′ = (ilog j−1 ñ)1/2 ≤ 1

8 ilog j−1 ñ.

Proof. This simply boils down to the following estimation, which is valid for all sufficiently large ñ:

(`+ `)2`+2b+8 = 27(ilog j ñ)2(3/8) ilog j ñ = 27(ilog j−1 ñ)3/8 log(ilog j−1 ñ)≤ (ilog j−1 ñ)1/2 .

5.3 Finishing the Proof

We are now ready to state and prove the main lower bound on protocols with two-sided error.

Theorem 5.12 (Restatement of “Main” Theorem). Let ñ = min{n+ log(1−δ ), log((1−δ )/ε)}. Suppose
δ ≤ 1−8(ilogr−2 ñ)−1/8. Then we have ICµ,(r)

ε,δ (EQn) = Ω((1−δ )3 ilogr−1 ñ).

Proof. We may assume that r ≤ log∗ ñ, for otherwise there is nothing to prove.
Suppose, to the contrary, that there exists an r-round randomized protocol P∗ for EQn, with rerrµ(P∗)≤

ε , verrµ(P∗)≤ δ and icostµ(P∗)≤ 2−16(1−δ )3 ilogr−1 ñ. Recall that we denote the uniform distribution
on {0,1}n by ξ and that µ = ξ ⊗ξ . We have

errµ(P∗) = (1−2−n) rerrµ(P∗)+2−n verrµ(P∗)≤ ε +2−n(δ − ε)≤ ε +2−n .

Let P∗
s be the private-coin protocol for EQn obtained from P∗ by fixing the public random string of P∗

to be s. We have Es[errµ(P∗
s )]≤ ε +2−n, Es[verrµ(P∗

s )]≤ δ , and Es[icost(P∗
s )]≤ 2−16(1−δ )3 ilogr−1 ñ.

By Markov’s inequality, there exists s such that P∗
s simultaneously has errµ(P∗

s ) ≤ 4(ε + 2−n)/(1− δ ),
verrµ(P∗

s )≤ (1+δ )/2, and icost(P∗
s )≤ 2−14(1−δ )2 ilogr−1 ñ: this is because

1− 1−δ

4
− 2δ

1+δ
− 1−δ

4
=

(1−δ )2

2(1+δ )
> 0 .

Let P = P∗
s for this s. Then (ξ ,ξ ,{0,1}n) is a 0-kernel and P is an [r, 0, log 1−δ

4(ε+2−n) , log 2
1−δ

, 2−14(1−
δ )2 ilogr−1 ñ]-protocol. Recalling Fact 5.8 and using log 1−δ

ε+2−n ≥ ñ−1, we see that

P is an
[
r, 0, ñ−3, log 1

1−δ
+1, 2−14(1−δ )2 ilogr−1 ñ

]
-protocol.

Put ` j := 1
8 ilog j ñ for j ∈ N. Applying round elimination (Theorem 5.9) to P and weakening the resulting

parameters (using Fact 5.8) gives us an [r−1, `r−1, ñ− `r−1, log 1
1−δ

+3, `r−1]-protocol P ′.
The upper bound on δ gives us log 1

1−δ
+ 3 ≤ `r−1, and so the conditions for Corollary 5.11 apply.

Starting with P ′ and applying that corollary repeatedly, each time using the looser estimate on `′ in
that corollary, we obtain a sequence of protocols with successively fewer rounds. Eventually we reach
a [1, `1, ñ− `1, log 1

1−δ
+ 2(r− 1)+ 1, `1]-protocol. Applying Theorem 5.9 one more time, and using the

tighter estimate on `′ this time, we get a [0, ñ1/2, ñ− ñ1/2, log 1
1−δ

+ 2r+ 1, ñ1/2]-protocol Q. Weakening
parameters again, we see that Q is a [0, ñ1/2, 1

2 ñ, 1
3 log ñ, ñ1/2]-protocol. Let (p,q,S) be the ñ1/2-kernel for

Q. By Property [K1], we have H(q)≥ n− ñ1/2. Using Lemma 5.4 and Property [K2], we then have

H(q | S)≥ n− ñ1/2 +1
q(S)

≥ n− (2ñ1/2 +2) . (17)

22



Since Q involves no communication, it must behave identically on any two input distributions that have
the same marginal on Alice’s input. In particular, this gives us the following crucial equation:

Pr
X∼p

[out(Q(X ,X)) = 1 | X ∈ S] = Pr
(X ,Y )∼p⊗q

[out(Q(X ,Y )) = 1 | (X ,Y ) ∈ S×S] . (18)

Let α denote the above probability. Considering the left-hand side of (18), we have

α = 1−verrp⊗ξ |S×S(Q)≥ 2−
1
3 log ñ = ñ−1/3 . (19)

On the other hand, whenever Q outputs 1 on an input (x,y), then either x = y or Q errs on (x,y). Therefore,
considering the right-hand side of (18), we have

α ≤ Pr
(X ,Y )∼p⊗q

[X = Y | (X ,Y ) ∈ S×S]+ Pr
(X ,Y )∼p⊗q

[out(P(X ,Y )) 6= EQn(X ,Y ) | (X ,Y ) ∈ S×S]

≤max
x∈S

Pr
Y∼q|S

[Y = x]+ errp⊗q|S×S(Q)

≤ 2ñ1/2 +3
n

+2−
1
2 ñ (20)

≤ 2ñ−1/2 +3ñ−1 +2−
1
2 ñ , (21)

where (20) follows from (17) by applying Lemma 5.5, and (21) uses ñ≤ n.
The bounds (19) and (21) are in contradiction for sufficiently large ñ, which completes the proof.

6 Applications, Including Bounded-Round Small-Set Disjointness

6.1 Lower Bounds

In this section we apply our new understanding of the bounded-round information complexity of EQUALITY

to obtain two new lower bounds: one for OR-EQUALITY, and the other for the much-studied DISJOINTNESS

problem with small-sized sets. As we shall see, both lower bounds are arguably tight.

Theorem 6.1 (Lower Bound for Or-Equality). Let k,n,r ∈ N and δ ,ε ∈ [0,1]. Put ε ′ = ε + k/2n and
ñ = log 1−δ

ε ′ . For δ < 1−8(ilogr−2 ñ)−1/8, we have

R(r)
ε,δ (OREQn,k)≥ k · ICµ,(r)

ε ′,δ (EQn) = Ω(k(1−δ )3 ilogr−1 ñ) .

Proof. We just need to show the first inequality and then apply Theorem 2.5. That inequality is proved via
standard direct sum arguments for information complexity [12, 3, 4]. In fact, the old simultaneous-message
lower bound for OREQn,k from Chakrabarti et al. [12] applies more-or-less unchanged. For completeness,
we now give a self-contained proof.

Let P be an r-round protocol for OREQn,k with rerr(P) ≤ ε , verr(P) ≤ δ , and R(r)
ε,δ (OREQn,k) ≥

max{rcost(P),vcost(P)}. Alice and Bob solve EQn by the following protocol Q j, where j is some fixed
index in {1,2, . . . ,k}. Given an input (x,y) ∈ {0,1}n×{0,1}n, they generate X := (X1, . . . ,Xk) ∼ ξ⊗k and
Y := (Y1, . . . ,Yk)∼ ξ⊗k respectively, using private coins. They “plug in” x and y into the jth coordinates of
X and Y respectively, thereby creating

Z j,x := (X1, . . . ,X j−1,x,X j+1, . . . ,Xk) and W j,y := (Y1, . . . ,Yj−1,y,Yj+1, . . . ,Yk) ,

respectively. Finally, they emulate P on input (Z j,x,W j,y). Observe that

OREQn,k(Z j,x,W j,y) 6= EQn(x,y) =⇒ (x 6= y) ∧
(
∃ i ∈ [k]\{ j} : Xi = Yi

)
.
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Therefore, verr(Q j)≤ verr(P)≤ δ and, by a union bound,

rerr(Q j)≤ rerr(P)+
n

∑
i=1

Pr[Xi = Yi]≤ ε + k/2n = ε
′ .

Since Q j solves EQn with these error guarantees, it follows that icostµ(Q j)≥ ICµ,(r)
ε ′,δ (EQn).

Now, let (X ,Y ) ∼ µ and let R denote the public randomness used by P . We can now lower bound
R(r)

ε,δ (OREQn,k) as follows:

R(r)
ε,δ (OREQn,k)≥maxx1,...,xk,y1,...,yk∈{0,1}kn×{0,1}kn cost(P;x1, . . . ,xk,y1, . . . ,yk)

≥ E[cost(P;X1, . . . ,Xk,Y1, . . . ,Yk)]

≥ H(P(X1, . . . ,Xk,Y1, . . . ,Yk)) (22)

≥ I(P(X1, . . . ,Xk,Y1, . . . ,Yk) : X1Y1 . . .XkYk |R)

≥
k

∑
j=1

I(P(X1, . . . ,Xk,Y1, . . . ,Yk) : Xi,Yi |R) (23)

=
k

∑
j=1

I(Q j(X ,Y ) : XY |R) (24)

=
k

∑
j=1

icostµ(Q j)≥ k · ICµ,(r)
ε ′,δ (EQn) ,

where (22) uses Fact 4.2 and (23) uses the independence of {X1Y1, . . . ,XkYk} and the resulting subadditivity
of mutual information, and (24) holds because, for all j ∈ [k], the distributions of (Q j(X ,Y ),X ,Y,R) and
(P(X1, . . . ,Xk,Y1, . . . ,Yk),X j,Yj,R) are identical. This completes the proof.

By plugging in ε = 0, δ = 0 in Theorem 6.1 we obtain the following corollary.

Corollary 6.2. R(r)
0,0(OREQn,k) = Ω(k ilogr−1(n− logk)).

Armed with the above lower bound, we now derive a lower bound for k-DISJ via a simple reduction,
which is probably folklore. For completeness, we again give a formal proof. Note that the reduction inter-
changes verification and refutation errors.

Lemma 6.3 (Reduction from OREQ to k-DISJ). Let k,N be integers such that N ≥ kc for some constant
c > 2. Let n =

⌊
log
(N

k

)⌋
. If there exists a protocol P for k-DISJN then there exists a protocol Q for OREQn,k

such that rerr(Q)≤ verr(P) and verr(Q)≤ rerr(P) and vcost(Q)≤ rcost(P) and rcost(Q)≤ vcost(P).

Proof. Given an input instance (x1, . . . ,xk,y1, . . . ,yk) of OREQn,k, we can transform it into an instance (A,B)
of k-DISJN as follows:

A = {x1, x2 +2n, x3 +2 ·2n, . . . , xk +(k−1)2n}
B = {y1, y2 +2n, y3 +2 ·2n, . . . , yk +(k−1)2n} .

It is easy to observe that A∩B 6= /0 iff ∃ i ∈ [k] such that xi = yi because xi ∈ {0,1, . . . ,2n− 1}. Therefore,
OREQn,k(x1, . . . ,xk,y1, . . . ,yk) = ¬k-DISJN(A,B), which completes the proof.

Corollary 6.4. We have R(r)
δ ,ε(k-DISJN)≥ R(r)

ε,δ (OREQblog(N/k)c,k).

Combining Corollary 6.4 with Theorem 6.1, we arrive at the following theorem.
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Theorem 6.5 (Lower Bound for k-Disjointness). Let k,N,r ∈N, ε,δ ∈ [0,1] and c > 2 be such that N ≥ kc

and δ < 1−8(ilogr−2 ñ)−1/8, where ñ = log 1−δ

ε+k2/N . Then

R(r)
δ ,ε(k-DISJN) = Ω(k(1−δ )3 ilogr−1 ñ) .

By plugging in ε = 0, δ = 0 in Theorem 6.5 we obtain the following corollary as a special case.

Corollary 6.6. R(r)
0,0(k-DISJN) = Ω

(
k ilogr ( N

k2

))
.

6.2 Tightness

Our lower bounds in Section 6.1 have the weakness that they apply only in zero-error or small-error settings.
However, they are still tight in the following sense. We can design protocols that give matching upper bounds
under similarly small error settings. For OREQ, we give such a protocol below. For k-DISJ, a suitable analysis
of a recent protocol of Jowhari et al. [20] gives similar results.

Theorem 6.7. For all r < log∗ k, there exists a r-round protocol P for OREQn,k with worst-case communi-
cation cost O(k ilogr k), rerr(P)< 2−∏

r
j=1 ilog j k, and verr(P) = 0.

Proof. For ease of presentation, we give the details for a slightly weaker result, with refutation error < k−10.
We begin with a high-level sketch of the proof, before giving formal proof details. Alice begins the

protocol by sending, in parallel, k different t-bit equality tests, one for each of her inputs. Note that for
any i where xi 6= yi, Bob witnesses nonequality with probability 1− 2−t . Assuming OREQn,k(x,y) = 0,
there will be roughly k/2t coordinates i where xi 6= yi has not yet been witnessed. Bob now tells Alice
which of his coordinates remain “alive” and sends t ′-bit equality tests for each of these coordinates, where
t ′ = 2t . Note that Bob’s overall communication is roughly k bits, and that after receiving this message, Alice
witnesses nonequality on all but a 2−t ′-fraction of unequal pairs. In each round, players end up sending an
exponentially longer equality test on an exponentially smaller number of coordinates. When communication
ends, players output OREQ(x1, . . . ,xk,y1, . . . ,yk) = 1 unless xi 6= yi has been witnessed for all i. One potential
issue with the above protocol is that too many coordinates could remain, and players wouldn’t be able to
communicate exponentially more bits about the remaining coordinates. This could happen both when an
unusually large number of equality tests fail, or just for the simple reason that xi = yi for many coordinates.
In either case, the players simply abort and output OREQn,k = 1. This will cause an increase in error, but the
increase will be small, and it will only increase the false positive rate. A formal proof lies below.

The protocol proceeds in a number of rounds. Throughout the protocol, players maintain a bit vector
w ∈ {0,1}k (initialized to w = 1k), where wi = 0 if and only if xi 6= yi has been witnessed. We refer to i as a
“live coordinate” if wi = 1.

In the first round of communication, Alice sends a (2ilogr k)-bit equality test for each of the k live
coordinates, at a total cost of O(k ilogr k) bits.

In the jth round of communication (1 < j < r), the player who is to send communication considers the
( j− 1)th message. From this, she updates her copy of w. Then, she evaluates each the equality tests for
each live i, setting wi = 0 whenever xi 6= yi is witnessed. Now, if more than 2k/ ilogr+1− j(k) coordinates
remain live, she sends a 1, signifying that the protocol should abort and players should output OREQn,k = 1.
Otherwise, she sends a 0, followed by her updated copy of w, followed by a (2ilogr+1− j(k))-bit equality test
for each coordinate that remains live. The overall length of the jth message is thus O(k) bits.

The final round of communication is similar, except that the equality tests are (12logk)-bits long instead
of the usual 2 ilogr+1−r k = 2logk bits. The player who receives the final message updates his copy of w,
evaluates each equality test, and outputs OREQn,k = 1 if any coordinates remain live. Otherwise, he outputs
OREQn,k = 0.
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The overall communication is thus O(k ilogr k) bits. Note also that the protocol outputs OREQn,k = 0
only when xi 6= yi was witnessed for every i. Thus, the protocol produces no false negatives.

Finally, we analyze the false positive rate. This can happen for two reasons: either the protocol aborts
(and players output OREQn,k = 1), or one or more coordinates remain live at the end of the protocol, despite
having xi 6= yi for all i.

In the former case, note that (conditioned on not aborting before round j) we have at most 2k/ ilogr+1− j(k)
live coordinates during round j. Players execute a (2ilogr+1− j(k))-bit equality test during this round. Thus,
a coordinate remains live after this test with probability at most 2−2ilogr+1− j(k) < 1/ ilogr− j(k). Therefore, we
expect at most k/ ilogr− j k coordinates to be live in the next round. By a (crude) Chernoff bound argument,
the probability of aborting during round j+ 1 (again, conditioned on not previously aborting) is less than
k−20, and the overall probability of aborting before the end of the protocol is less than k−12 (say).

In the latter case, note that the final equality test uses 12logk bits per coordinate. Therefore, players fail
to witness xi 6= yi with probability at most 2−12logk = k−12. By a union bound, the overall false positive rate
is at most k−10.

7 Concluding Remarks

We have gained new insight into the complexity of EQUALITY, one of the cornerstones of the theory of
communication complexity. To do so, it was important to consider the expected communication cost of a
protocol on a fixed input, and to limit the amount of interaction that our players can use. It was also important
to treat 1-inputs (i.e., equal pairs) and 0-inputs separately.

Though we believe that our results about EQUALITY are interesting intrinsically, we note that the appli-
cations to another cornerstone problem—namely, DISJOINTNESS—adds further interest in these results. We
conclude by pointing out an open problem.

Our upper bounds in Section 6.1 show that our OREQ and k-DISJ lower bounds are not absolutely im-
provable: they are already tight in small-error settings. Yet, it is plausible that similar lower bounds can be
shown for those problems even under constant error. For instance, the Ω(k logk) lower bounds for k-DISJ

by Dasgupta et al. [15] and Buhrman et al. [8] hold under constant error, though of course they are limited
to one-way protocols. The issue seems to be that even though OREQ might be hard enough under constant
error, we don’t get to prove this hardness by direct-summing a lower bound for EQ, which is too easy under
constant error.

In recent work on direct sum questions in communication complexity, there has been some exciting
progress on a related matter. Molinaro et al. [28] show how to obtain constant-error direct sum theorems
from small-error hardness of the underlying problem. Unfortunately, their technique depends crucially on
the k-fold direct sum problem’s output being a k-tuple consisting of the solutions to all of the k indepen-
dent instances of the underlying problem. In our setting, these k bits are combined into a single bit by an
OR operation, which gives out much less information, causing their technique to fail. Though this open
problem is perhaps somewhat technical, it seems that resolving it might lead to even more insights about
communication complexity.
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