
On the Power of Conditional Samples in Distribution Testing

Sourav Chakraborty
Chennai Mathematical Institute,

India
sourav@cmi.ac.in

Eldar Fischer
Technion – Israel Institute of Technology,

Haifa, Israel
eldar@cs.technion.ac.il

Yonatan Goldhirsh
Technion – Israel Institute of Technology,

Haifa, Israel
jongold@cs.technion.ac.il

Arie Matsliah
Technion and IBM Research,

Haifa, Israel
arie.matsliah@gmail.com

August 13, 2012

Abstract

In this paper we define and examine the power of the conditional-sampling oracle in
the context of distribution-property testing. The conditional-sampling oracle for a discrete
distribution µ takes as input a subset S ⊂ [n] of the domain, and outputs a random sample
i ∈ S drawn according to µ, conditioned on S (and independently of all prior samples). The
conditional-sampling oracle is a natural generalization of the ordinary sampling oracle in
which S always equals [n].

We show that with the conditional-sampling oracle, testing uniformity, testing identity
to a known distribution, and testing any label-invariant property of distributions is easier
than with the ordinary sampling oracle. On the other hand, we also show that for some
distribution properties the sample-complexity remains near-maximal even with conditional
sampling.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2012)

1 Introduction

In the last decade several works have investigated the problem of testing various properties of
huge data sets, that can be represented as an unknown distribution from which independent
samples can be taken. In distribution-property testing, the goal is to distinguish the case where
the samples come from a distribution that has a certain property P from the case where the
samples come from a distribution that is far, in the variation distance, from any distribution that
has the property P (the variation distance between two distributions µ and µ′ over a common set
B is 1

2

∑
i∈B |Prµ[i]−Prµ′ [i]|, which is equal to the maximum difference in probability between

the distributions for any possible event). In the traditional setting no access is provided to the
distribution apart from the ability to take samples, and the two cases should be distinguished
using as few of them as possible.

There are several natural distribution properties that were studied in this context: testing
whether a distribution is uniform [7], testing identity between distributions (taking samples from
both) [4, 10], testing whether a joint distribution is independent (a product of two distributions)
[3] and more. Some useful general techniques have also been designed to obtain nearly tight
lower bounds on various distribution-property testing problems [12]. Other tightly related works
study the problems of estimating various measures of distributions, such as entropy [2, 8] or
support size [11].

Most attention has been given to testing properties of distributions over very large (discrete)
domains, where the need for sublinear time and sample complexities is vital. Distribution-
property testers with a sublinear sample complexity are motivated by problems from various
areas, such as physics, cryptography, statistics, computational learning theory, property testing
of graphs and sequences and streaming algorithms (see the overview in [10] for a comprehensive
list of references). Indeed, in many of the aforementioned works testers have been designed with
sublinear sample (and time) complexity, that is often of the form nα, where n is the size of the
domain, and α is a positive constant smaller than 1.

While most previous works are focused on the ordinary sampling oracle, other stronger
oracles were considered too. A major reason is that the number of required samples, while
sublinear, is still very large in the original model. The most notable example is the oracle from
[2], that also allows querying the exact probability weight of any element from the domain.
Another research direction involved restricting the problem further, for example by adding the
promise of the distribution being monotone [5].

In this work we study the problem of testing several distribution properties in an unrestricted
setting while providing for a stronger oracle, that can be thought of as more natural than
the one of [2] in some situations. Namely, we allow the samples obtained from the unknown
distribution to be conditioned over specified subsets of the domain. In our setting, we assume
that a sampling oracle to the unknown distribution µ over the discrete domain [n] = {1, . . . , n}
is provided, that allows us to sample random (according to µ) elements conditioned on any
specified subset S ⊆ [n]. If the original distribution is described by the probabilities p1, . . . , pn
(where the probability for obtaining i ∈ [n] is pi), then when restricting to S the probability of
sampling i ∈ [n] is pi/(

∑
j∈S pj) if i ∈ S and 0 otherwise (see the formal definition of the model

and corresponding testers in Section 2).
In various scenarios, conditional samples can be obtained naturally, or come at a low cost

relative to that of extracting any sample – see some illustrating examples in Section 1.1. This
leads to the following natural question: can we reduce the sample complexity of distribution-
property testers using conditional samples?

Indeed, conditional sampling is more powerful than the traditional model: We show that with
conditional samples several natural distribution properties, such as uniformity, can be tested

1

in constant time (compared to Θ̃(
√
n) unconditional samples even for uniformity [7, 3]). The

most general result of this paper (Section 4) is that any label-invariant property of distributions
(a symmetric property in the terminology of [12]) can be tested using poly(log n) conditional
samples.1

On the other hand, there are properties for which testing remains almost as hard as possible
even with conditional samples: We show a property of distributions that requires at least Ω(n)
conditional samples to test (Section 7).

Another feature that makes conditional-samples interesting is that in contrast to the testers
using ordinary samples, which are non-adaptive by definition, adaptivity (and the algorithmic
aspect of testing) in conditional-sampling model plays an important role. For instance, the
aforementioned task of testing uniformity, while still possible with a much better sampling
complexity than in the traditional model, cannot be done non-adaptively with a constant number
of samples (see Section 6.2).

Before we move to some motivating examples, let us address the concern whether arbitrary
conditioning is realistic: While the examples below do relate to arbitrary conditioning, some-
times one would like the conditioning to be more restricted, in some sense describable by fewer
than the n bits required to describe the conditioning set S. In fact, many of our algorithms
require less than that. For example, the adaptive uniformity test takes only unconditional sam-
ples and samples conditioned on a constant size set, so the description size per sample is in fact
O(log n), as there are nO(1) possibilities. The adaptive general label invariant property tester
takes only samples conditioned to dyadic intervals of [n], so here the description size is also
O(log n) as well. The non-adaptive tests do require general conditioning, as they pick uniformly
random sets of prescribed sizes.

1.1 Some motivating examples

Lottery machines

The gravity pick lottery machine is the most common lottery machine used worldwide to pick
random numbers. A set B of balls, each marked with a unique number i ∈ N, are dropped into
the machine while it is spinning, and after certain amount of time the machine allows a single
ball to drop out. Ensuring that such a machine is fair is an important real-life problem.2

Suppose that, given a machine and set of balls, we wish to test them for being fair. Specifi-
cally, we would like to distinguish between the following cases:

• The machine picks the balls uniformly at random, that is, for any subset B′ ⊆ B of balls
dropped into the machine, and for each i ∈ B′, the probability that the machine picks i
is 1/|B′|;

• The distribution according to which the balls are picked is ε-far from uniform (where ε > 0
is some fixed constant, and the distance we consider is the standard variation distance
defined above).

Suppose furthermore that we wish to distinguish between those cases as quickly as possible,
and in particular, within few activations of the machine. Compare the following solutions.

We can use the uniformity tester [7] for this task. Obtaining each sample from the underlying
distribution (with pi’s) requires one activation of the machine (with the entire set B), and we
can complete the test using Θ̃(

√
|B|) activations.

1We say that f(α1, . . . , αl) = poly(g1(α1, . . . , αl), . . . , gk(α1, . . . , αl)) if there exists a polynomial p(x1, . . . , xk)
such that f ≤ p(g1, . . . , gk) for all values of α1, . . . , αl in their respective domains.

2As was demonstrated in the the Pennsylvania Lottery scandal, see e.g.
http://en.wikipedia.org/w/index.php?title=1980 Pennsylvania Lottery scandal&oldid=496671681

2

Alternatively, using the algorithm we present in Section 3.1, using conditional samples we can
complete the test using O(1) activations only (the number of activations only has a polynomial
dependency on ε and is logarithmic in the confidence parameter). Assuming that the drawing
probabilities depend only on the physical characteristics of every ball separately, a conditional
sample here corresponds to activating the machine with a specific subset of the balls rather
than the entire set B.

This is for testing uniformity. Using the algorithm from Section 4, we could also test for
any label-invariant property with poly(log |B|) activations, which would allow us for example
to give an estimation of the actual distance of the distribution from being uniform.

Asymmetric communication scenarios

Suppose that two computers A and B are linked with an asymmetric communication link, in
which transmitting information in one of the directions (say from A to B) is much easier than
in the other direction (consider e.g. a spacecraft traveling in remote space, with limited energy,
computational power and transmitting capability; actually numerous examples of asymmetric
communications also exist here on earth). Now assume that B has access to some large data
that can be modeled as collection of samples coming from an unknown distribution µ, while A
wants to learn or test some properties of µ. We could simulate the standard testing algorithms
by sending a request to B whenever a random sample from µ is needed. Assuming that the
most important measure of efficiency is how much information is sent by B, it would translate
to the sample complexity of the simulated algorithm.

However, if B can also produce conditional samples (for example if it has nearly unlimited
cost-free access to samples from the distribution), then any property that is significantly easier
to test with conditional samples can be tested with fewer resources here.

Political polls

We mention these here because the modern-day practice of polling actually uses conditional
sampling. Rather than taking a random sample of all willing potential participants, the polling
population is usually first divided to groups according to common traits, and then each such
group is polled separately before the results are re-integrated into the final prediction.

1.2 Informal description of results

In all sample-complexity upper bounds listed below there is a hidden factor of log(δ−1), where
δ is the maximal failure probability of the tester. Also, all lower bounds are for a fixed (and
not so small) ε. The results are summarized in Table 1.

Upper bounds Adaptive Non-adaptive

Uniformity poly(ε−1) poly(log n, ε−1)

Identity to known dist. poly(log? n, ε−1) poly(log n, ε−1)

Any label-invariant prop. poly(log n, ε−1) —

Lower bounds Adaptive Non-adaptive

Uniformity and identity — Ω(log log n)

Any label-invariant prop. Ω(
√

log log n) (follows uniformity)

General properties Ω(n) (follows adaptive)

Table 1: Summary of results.

3

Adaptive testing

The first result we prove is that uniformity, and more generally identity to any distribution that
is very close to uniform in the `∞ norm, can be tested (adaptively) with poly(ε−1) conditional
samples (Theorem 3.1.1 and Theorem 3.1.2, respectively). This is done by capturing (for far
distributions) both “light” and “heavy” elements in the same small set and then conditioning
over it. Our next result is that identity to any known distribution can be tested adaptively
with poly(log? n, ε−1) conditional samples, where n is the size of the domain (Theorem 3.2.1).
This uses the uniformity result with the bucketing technique of [3] together with a recursive
argument.

Our most general result is that any label-invariant (i.e. invariant under permutation of
the domain) property of distributions can be tested adaptively with poly(logn, ε−1) conditional
samples (Theorem 4.0.1). In fact, we go further to prove the following stronger result: with
poly(log n, ε−1, log(δ−1)) conditional samples taken from µ, it is possible to compute a distri-
bution µ′ that is ε-close to µ up to some permutation of the domain [n] (Theorem 4.0.2). For
showing this we construct an explicit persistent sampler that could be interesting in itself. Es-
sentially we construct a way to simulate (unconditional) samples from a distribution µ̃ that is
close to µ, and for which we can also provide exact probability queries like the oracle of [2].

Non-adaptive testing

We prove that uniformity can be tested non-adaptively with poly(log n, ε−1) conditional samples.
Here too, the tester enjoys a certain degree of tolerance, in the sense that it is possible to test
identity with any distribution that is close enough to uniform (see Theorems 5.1.1 and 5.1.2).
This is by first proving (through bucketing) that a portion of the “total difference” of µ from
being uniform is in relatively equal-probability members of [n], and then trying to capture just
a few of them in a random set of an appropriate size. We also prove (from the uniformity test
through standard bucketing arguments) that identity to any known distribution can be tested
non-adaptively with poly(log n, ε−1) conditional samples (Theorem 5.2.1).

Lower bounds

As already mentioned in the introduction, adaptivity is useful when we have access to conditional
sampling. We demonstrate this by proving that testing uniformity non-adaptively requires
Ω(log logn) conditional samples, for some fixed ε > 0 (Theorem 6.2.1). We also prove that
the tester for any label-invariant property (from our main result) cannot be improved to work
with a constant number of conditional samples: There is a label invariant property which
requires Ω(

√
log log n) samples to test, whether adaptively or not (Theorem 6.3.1). Our third

lower bound shows that for some properties conditional samples do not help much: There
are distribution properties that cannot be tested (adaptively) with o(n) conditional samples
(Theorem 7.0.1). The first two lower bounds are through a special adaptation of Yao’s method,
while the last one is through a reduction to general properties of Boolean strings, of which
maximally untestable examples are known.

About the gaps in the bounds

We believe that for non-adaptive uniformity testing the upper bound is closer in the truth, in
that the actual complexity should be close to logarithmic in n. A more careful analysis of the
lower bound construction would be a good starting point towards narrowing the gap. We also
believe that the correct lower bound for adaptive testing of general label-invariant properties is
higher than our achieved one. Additionally we believe that an examination of the methods of

4

[12] should allow us to construct label-invariant properties for which testing in the traditional
(unconditioned) sampling model is nearly useless.

2 Preliminaries

2.1 The conditional distribution testing model

Let µ be a distribution over {1, . . . , n}, its probabilities denoted by p1, . . . , pn, where pi = Prµ[i].
We will also write µ(i) for Prµ[i] where we deal with more then one distribution. The distribution
µ is not known to the algorithm explicitly, and may only be accessed by drawing samples. A
conditional distribution testing algorithm may submit any set A ⊆ {1, . . . , n} and receive a
sample i ∈ A that is drawn according to µ conditioned on A (and independent of any previous
samples).

Thus when a sample is drawn according to µ conditioned on A, the probability of getting j
is Pr[j|A] = pj/(

∑
i∈A pi) for j ∈ A and 0 for j 6∈ A. If

∑
i∈A pi = 0 then we assume (somewhat

arbitrarily) that the algorithm obtains a uniformly drawn member of A.
We measure farness using the variation distance: We say that µ is ε-far from a property P

of distributions over {1, . . . , n}, if for every µ′ that satisfies P and is described by p′1, . . . , p
′
n we

have d(µ, µ′) = 1
2

∑n
i=1 |pi − p′i| ≥ ε.

We will consider two types of conditional distribution testing algorithms. Non-adaptive
testers, which must decide the sets to sample from before getting any samples, and adaptive
testers, which have no such restriction.

Definition 2.1.1 (Non-adaptive tester). A non-adaptive distribution tester for a property P
with conditional sample complexity t : R× R× N→ N is a randomized algorithm that receives
ε, δ > 0, n ∈ N and a conditional sampling oracle to a distribution µ over [n] and operates as
follows.

1. The algorithm generates a sequence of t ≤ t(ε, δ, n) sets A1, . . . , At ⊆ [n] (possibly with
repetitions).

2. Then it calls the conditional oracle t times with A1, . . . , At respectively, and receives
j1, . . . , jt, where every ji is drawn according to the distribution µ conditioned on Ai,
independently of j1, . . . , ji−1 and any other history.

3. Based on the received elements j1, . . . , jt and its internal coin tosses, the algorithm accepts
or rejects the distribution µ.

If µ satisfies P then the algorithm must accept with probability at least 1− δ, and if µ is ε-far
from P then the algorithm must reject with probability at least 1− δ.

Definition 2.1.2 (Adaptive tester). An adaptive distribution tester for a property P with
conditional sample complexity t : R × R × N → N is a randomized algorithm that receives
ε, δ > 0, n ∈ N and a conditional sampling oracle to a distribution µ over [n] and operates as
follows.

1. For i ∈ {1, . . . , t}, at the ith phase the algorithm generates a set Ai ⊆ [n] (based on
j1, . . . , ji−1 and its internal coin tosses), and calls the conditional oracle with Ai to receive
an element ji, drawn according to the distribution µ conditioned on Ai, independently of
j1, . . . , ji−1 and any other history.

2. Based on the received elements j1, . . . , jt and its internal coin tosses, the algorithm accepts
or rejects the distribution µ.

5

If µ satisfies P the algorithm must accept with probability at least 1− δ, and if µ is ε-far from
P the algorithm must reject with probability at least 1− δ.

As is standard in the field of property testing, the primary measure of efficiency of these
testers is their sample complexity.

2.2 Tools from previous works

Our algorithms will make use of the Identity Tester of Batu et. al. [3] (though it is important
to note that this result is used mainly as a “primitive” and can be replaced in the sequel with
making enough samples to fully approximate the distribution).

Theorem 2.2.1 (Identity Tester). There is an algorithm T for testing identity between an
unknown distribution µ′ and a known distribution µ, both over [n], with (ordinary) sample
complexity Õ(

√
npoly(ε−1) log(δ−1)). Namely, T accepts with probability 1 − δ if µ′ = µ and

rejects with probability 1− δ if µ′ is ε-far from µ.

We will also use the following inequality, which appears as Theorem A.1.11 and Theorem
A.1.13 in [1]:

Lemma 2.2.2. Let p1, . . . , pn ∈ [0, 1], X1, . . . , Xn be fully independent random variables with
Pr[Xi = 1−pi] = pi and Pr[Xi = −pi] = 1−pi, and let p = 1

n

∑n
i=1 pi and X =

∑n
i=1Xi. Then

Pr[|X| > a] < 2 exp(−a2/2pn).

When using this lemma we interpret X + pn =
∑n

i=1(Xi + pi) as the number of successes in
n independent trials where the probability of success in the ith trial is pi.

Bucketing

Bucketing is a general tool, introduced in [4, 3], that decomposes any explicitly given distribution
into a collection of distributions that are almost uniform. In this section we recall the bucketing
technique and the lemmas (from [4, 3]) that we will need for our proofs.

Definition 2.2.3. Given a distribution µ over [n], and M ⊆ [n] such that µ(M) > 0, the
restriction µ �M is the distribution over M with µ �M (i) = µ(i)/µ(M) (this is the the same as
the conditioning of µ on B, only here we also change the domain).

Given a partition M = {M0,M1, . . . ,Mk} of [n], we denote by µ〈M〉 the distribution over
{0} ∪ [k] in which µ〈M〉(i) = µ(Mi). This is the coarsening of µ according to M.

Definition 2.2.4. Given an explicit distribution µ over [n], Bucket(µ, [n], ε) is a procedure
that generates a partition {M0,M1, . . . ,Mk} of the domain [n], where k = logn

log(1+ε) <
2
ε log(n).

This partition satisfies the following conditions:

• M0 = {j ∈ [n] | µ(j) < 1
n};

• for all i ∈ [k], Mi =
{
j ∈ [n] | (1+ε)

i−1

n ≤ µ(j) < (1+ε)i

n

}
.

Lemma 2.2.5 (Lemma 8 in [3]). Let µ be a distribution over [n] and let {M0,M1, . . . ,Mk} ←
Bucket(µ, [n], ε). Then for all i ∈ [k], ‖µ �Mi −U �Mi‖∞ ≤ ε/n.

Lemma 2.2.6 (Lemma 6 in [3]). Let µ, µ′ be two distributions over [n] and let the sequence
of sets M = {M0,M1, . . . ,Mk} be a partition of [n]. If ‖µ �Mi −µ′ �Mi‖1 ≤ ε1 for every
i ∈ [k] and ‖µ〈M〉 − µ〈M〉‖1 ≤ ε2, then ‖µ− µ′‖1 ≤ ε1 + ε2. Furthermore, ‖µ− µ′‖1 ≤∑

0≤i≤k µ(Mi)‖µ �Mi −µ′ �Mi‖+ ε2.

6

We reproduce the proof to obtain the “furthermore” claim:

Proof. This results from the following.

‖µ− µ′‖1 =
∑

0≤i≤k

∑
j∈Mi

|µ(j)− µ′(j)| =
∑

0≤i≤k

∑
j∈Mi

|µ(Mi)µ �Mi (j)− µ′(Mi)µ
′ �Mi (j)|

≤
∑

0≤i≤k

∑
j∈Mi

|µ(Mi)µ �Mi (j)− µ(Mi)µ
′ �Mi (j)|

+
∑

0≤i≤k

∑
j∈Mi

|µ(Mi)µ
′ �Mi (j)− µ′(Mi)µ

′ �Mi (j)|

=
∑

0≤i≤k

∑
j∈Mi

µ(Mi)|µ �Mi (j)− µ′ �Mi (j)|+
∑

0≤i≤k

∑
j∈Mi

µ′ �Mi (j)|µ(Mi)− µ′(Mi)|

=
∑

0≤i≤k
µ(Mi)

∑
j∈Mi

‖µ �Mi (j)− µ′ �Mi (j)‖1 +
∑

0≤i≤k
|µ(Mi)− µ′(Mi)|

≤
∑

0≤i≤k
µ(Mi)

∑
j∈Mi

‖µ �Mi (j)− µ′ �Mi (j)‖1 + ε2

This provides the “furthermore” claim. To obtain from the above the original claim note that∑
0≤i≤k µ(Mi)

∑
j∈Mi
‖µ �Mi (j)− µ′ �Mi (j)‖1 ≤

∑
0≤i≤k µ(Mi)ε1 = ε1.

3 Adaptive testing for uniformity and identity

In the following we formulate our testing algorithms to have a polynomial dependence on
log(δ−1). To make it linear we can first run the algorithm 100 log(δ−1) times with a fixed
1
3 error bound and then take the majority vote.

3.1 Testing for uniformity

Theorem 3.1.1. There is an (adaptive) algorithm testing uniformity using poly(ε−1, log(δ−1))
conditional samples independently of n.

In fact we will prove something slightly stronger, which will prove useful in next sections:

Theorem 3.1.2 (Near Uniformity Tester). Let µ be a known distribution over [n] such that
‖µ− Un‖∞ < ε

100n . Identity with µ can be tested using only poly(ε−1, log(δ−1)) conditional
samples by an adaptive algorithm.

Let µ′ be the unknown distribution that is to be sampled from.

Algorithm 3.1.3. (Near Uniformity Tester) The algorithm receives µ, ε, δ and n and operates
as follows.

1. Take S to be k = (6/ε) log(δ−1) independent samples according to µ′ (unconditioned).

2. Take U to be k members of {1, . . . , n} chosen uniformly at random.

3. Invoke the Identity Tester of Theorem 2.2.1 to check whether µ′ �U∪S is ε2

600 log(δ−1)
-close

to µ �U∪S over U ∪ S with bounded error probability δ/3, and answer as the tester did.

Lemma 3.1.4. The sample complexity of Algorithm 3.1.3 is poly(ε−1, log(δ−1)).

7

Proof. The algorithm draws k samples, and then invokes the closeness tester on a set of size 2k
and an error parameter polynomial in ε−1. Since the sample complexity of the closeness tester
is polynomial in the support size and error parameter, and k = (6/ε) log(δ−1), the total sample
complexity of Algorithm 3.1.3 is poly(ε−1, log(δ−1)).

Lemma 3.1.5. If d(µ, µ′) = 0 then Algorithm 3.1.3 accepts with probability at least 1− δ.

Proof. If ‖µ− µ′‖1 = 0 then ‖µ �U∪S −µ′ �U∪S‖1 = 0 and then the algorithm will accept if the
closeness tester does, which will happen with probability at least 1− δ

3 .

Let the individual probabilities for the distribution µ be denoted by p1, . . . , pn and the
probabilities for the distribution µ′ denoted by p′1, . . . , p

′
n. We first note that

2d(µ, µ′) = ‖µ− µ′‖1 =
n∑
i=1

|pi − p′i| = 2
∑
p′i<pi

(pi − p′i) = 2
∑
p′i>pi

(p′i − pi)

Assume from now on that this distance is at least 2ε (which corresponds to variation distance
at least ε).

Lemma 3.1.6. With probability at least 1− δ/3 we have an i ∈ S for which (p′i − pi) ≥ ε
2n .

Proof. Clearly
∑

pi<p′i<pi+ε/2n
(p′i − pi) < 1

2ε. Therefore:

∑
p′i≥pi+ε/2n

p′i >
∑

p′i≥pi+ε/2n

(p′i − pi) =
∑
p′i>pi

(p′i − pi)−
∑

pi<p′i<pi+ε/2n

(p′i − pi) >
1

2
ε

This means that after (6/ε) log(δ−1) samples, with probability at least 1 − δ/3 we will get
an i with such a p′i into S.

Lemma 3.1.7. With probability at least 1− δ/3 we have an i ∈ U for which p′i < pi.

Proof. Note that
∑

p′i<pi
(pi − p′i) ≤ |{i : p′i < pi}| ·max{pi}. Now since maxi{pi} < (1 + ε

100) 1
n

there are at least (ε/2)n such i. A uniformly random choice of (6/ε) log(δ−1) indexes will get
one with probability at least 1− δ/3.

Lemma 3.1.8. When both events above occur, µ′ �U∪S is at least ε2

600 log(δ−1)
-far from µ �U∪S

over U ∪ S.

Proof. Note that |S ∪ U | = 2k = 2 · (6/ε) log(δ−1), and that the two events above mean that

there are i and j in this set such that p′i ≥
1+ε/2

1+ε/100p
′
j . Denoting the conditional probabilities

qi = pi/µ(S ∪ U) and q′i = p′i/µ
′(S ∪ U), we note that we obtain q′i ≥

1+ε/2
1+ε/100q

′
j , while both

qi and qj are bounded between 1−ε/100
1+ε/100

1
2k and 1+ε/100

1−ε/100
1
2k . Therefore, either q′i > qi + ε

40k or

q′j < qj − ε
40k . Either way, d(µ �U∪S , µ′ �U∪S) > ε

100k , which concludes the proof.

This concludes the soundness proof, as the last step of the algorithm checks the closeness of
µ′ �U∪S to µ �U∪S with this approximation parameter. Thus we obtain:

Lemma 3.1.9. Let µ be a known distribution over [n]. Then if ‖µ− Un‖∞ < ε
100n and

d(µ, µ′) > ε then Algorithm 3.1.3 rejects with probability at least 1− δ.

Proof. Follows from a union bound for the events of Lemma 3.1.6 and Lemma 3.1.7, and the
failure probability of the test invoked in the last step of the algorithm.

8

3.2 Testing identity to a known distribution

Recall that if we define log(0)(n) = n and by induction log(k+1)(n) = log(log(k)(n)), then the
log? function is defined by log?(n) = min{k : log(k)(n) ≤ 1}.
Theorem 3.2.1. Testing identity with a known distribution can be done by an adaptive algo-
rithm using poly(log? n, ε−1, log(δ−1)) conditional samples.

Let µ be the known distribution and µ′ be the unknown distribution that is accessed by
sampling. The following is an algorithm for testing identity to the known distribution µ over
[n]. In the initial run we feed it m = n, but in the recursive runs it keeps track of m as the
“original n”.

Algorithm 3.2.2. (Identity Test) The algorithm receives ε, δ, n, m and µ, operating as follows.

0. If n ≤
(
400 log(1/ε)

ε log?m
)3

then perform a brute-force test: Take 100 log(1/δ)ε−2n2 log n

samples to write a distribution µ̃ that is ε
2 -close to µ′ (with probability 1−δ); if d(µ̃, µ) ≤ ε

2
then ACCEPT and otherwise REJECT.

1. Let M = {M0,M1, . . . ,Mk} ← Bucket(µ, [n], ε
200 log?m).

2. Sample r = 4ε−1 log?(m) log(δ−1) elements from µ′. Let Mi1 , . . . ,Mir be the buckets
where these elements lie.

3. For every bucket Mi1 , . . . ,Mir test using the Near Uniformity Test (Theorem 3.1.2)
whether ‖µ �Mij

−µ′ �Mij
‖1 ≥ ε

2 log?m with error bound δε
12 log?(m) log(δ−1)

.

4. If for any ij we have ‖µ �Mij
−µ′ �Mij

‖1 ≥ ε
2 log?m then REJECT.

5. Else recursively test if ‖µ〈M〉 − µ′〈M〉‖1 ≤ ε
(

1− 1
log?m

)
with error bound δ

3 . If not then

REJECT else ACCEPT.

First, we bounds the number of recursion levels that can occur.

Lemma 3.2.3. Algorithm 3.2.2 never enters more than 2 log?(n) recursion levels from the
initial n = m call.

Proof. Note that in the first 2 log?(n) recursion levels distance parameter that is passed is still

at least ε
(

1− 1
log? n

)2 log?(n)
> ε

e2
, so we will prove the bound on the number of levels even if this

is the distance parameter that is used in all but the first level. If log(n) ≤
(
400 log(1/ε)

ε log?m
)

then after at most one recursion level the test goes to the brute force procedure in Step 0 and

ends. Otherwise, note that the recursive call now receives n′ ≤ 400e2 log(n) log?(m)
ε ≤ log3(n),

and that call itself will make a recursive call with n′′ ≤ 1200e2 log log(n) log?(m)
ε ≤ log n (unless it

already terminated for some other reason). This is sufficient for the bound.

Lemma 3.2.4. If d(µ, µ′) = 0 then Algorithm 3.2.2 accepts with probability at least 1− δ.

Proof. The base case where n ≤
(
400 log(1/ε)

ε log?m
)3

is clear. Otherwise, if ‖µ− µ′‖1 = 0 then

for all buckets Mi we have ‖µ �Mi −µ′ �Mi‖1 = 0 and ‖µ〈M〉 − µ′〈M〉‖1 = 0. From Lemma

2.2.5 we know that ‖µ �Mi −U �Mi‖∞ ≤ ε
200 log?m ·

1
n ≤

ε′

100n , where ε′ is the distance parameter
fed to the Near Uniformity Tester, and hence the Near Uniformity tester (Theorem 3.1.2) is
applicable and will accept with probability 1 − δε

12 log?(m) log(δ−1)
. Taking the union bound over

the number of samples taken and the probability of failure for the recursive call gives us the
desired bound.

9

For soundness we need the following lemma.

Lemma 3.2.5. If ‖µ− µ′‖1 ≥ ε then for any t at least one of the following two will happen:

1.
∑
{i:‖µ�Mi

−µ′�Mi
‖1≥ε/2t} µ(Mi) ≥ ε/2t

2. ‖µ〈M〉 − µ′〈M〉‖1 ≥ ε(1− 1/t)

Proof. Recall Lemma 2.2.6:

‖µ− µ′‖1 ≤
∑

0≤i≤k
µ(Mi)

∑
j∈Mi

‖µ �Mi (j)− µ′ �Mi (j)‖1 + ‖µ〈M〉 − µ′〈M〉‖1

Thus if ‖µ〈M〉 − µ′〈M〉‖1 < ε(1−1/t) and
∑
{i:‖µ�Mi

−µ′�Mi
‖1≥ε/2t} µ(Mi) < ε/2t then we have

‖µ− µ′‖1 < ε, a contradiction.

Lemma 3.2.6. If d(µ, µ′) > ε then Algorithm 3.1.3 rejects with probability at least 1− δ.

Proof. The base case of n ≤
(
400 log(1/ε)

ε log?m
)3

is clear. Refer now to Lemma 3.2.5, taking t =

log?m. Assume that we are in the first case of the lemma, that is
∑
{i:‖µ�Mi

−µ′�Mi
‖1≥ε/2t} µ(Mi) ≥

ε/2t. therefore, the probability of sampling an index for which the test in Line 3 should reject
is at least ε

2 log?m . This implies that the probability that one of the sampled elements is such is
at least δ/3, and since the probability that all calls to the Near Uniformity Test fail is at most
δ/3 as well, we accept with probability at most 2δ/3.

Now assuming that we are in the second case of Lemma 3.2.5, by the induction hypothesis
we reject with probability at least δ/3. Thus the overall error probability is at most δ.

Lemma 3.2.7. The sample complexity of Algorithm 3.2.2 is poly(log? n, ε−1, log(δ−1)).

Proof. If n ≤
(
400 log(1/ε)

ε log?m
)3

then it is polynomial in ε and log?m, and so is the result

of substituting it in the number of queries of the brute force check of Step 0, qb(ε, δ, n) =
100 log(1/δ)ε−2n2 log n. For analyzing the sample complexity when the above does not hold for
m = n, let q(ε, δ, n) denote the sample complexity of the algorithm. By the algorithm’s defini-
tion, we have the following formula, where qu is the sample complexity of the Near Uniformity
Tester:

q(ε, δ, n,m) ≤ 4ε−1 log?(m) log(δ−1)

(
1 + qu

(
ε

2 log?m
,

δε

12 log?(m) log(δ−1)
, n

))

+q

(
ε

(
1− 1

log?m

)
,
δ

3
,
400 log(n) log?(m)

ε
,m

)
According to Lemma 3.2.3, after at most 2 log? n recursion levels from the initial n = m,

the right hand side is now within the realm of the brute force check, and we get a summand

bounded by qb(ε/e
2, δ · 3−2 log? n,

(
400 log(1/ε)

ε log? n
)3

) = poly(log? n, ε−1, log(δ−1)). Therefore:

q(ε, δ, n, n) ≤ 8ε−1(log? n)2 log(δ−1)

(
1 + qu

(
ε

2e2 log? n
,

ε · δ · 3−2 log? n

40e2(log? n)2 log(δ−1)
, n

))
+poly(log? n, ε−1, log(δ−1))

Since by Lemma 3.1.4, the Near Uniformity Tester has sample complexity polynomial in
the distance parameter and polylogarithmic in the error bound, we obtain the statement of the
lemma.

10

4 Testing any label-invariant property

We show here the following “universal testing” theorem for label-invariant properties.

Theorem 4.0.1. Every label-invariant property of distributions can be tested adaptively using
at most poly(log n, ε−1, log(δ−1)) conditional samples.

It is in fact a direct corollary of the following learning result.

Theorem 4.0.2. There exist an algorithm that uses poly(log n, ε−1, log(δ−1)) adaptive condi-
tional samples to output a distribution µ̃ over [n], so that with probability at least 1 − δ some
permutation of µ̃ will be ε-close to µ.

To derive Theorem 4.0.1, use Theorem 4.0.2 to obtain a distribution µ̃ that is ε/2-close to
a permutation of µ, and then accept µ if and only if µ̃ is ε/2-close to the tested property.

The main idea of the proof of Theorem 4.0.2 is to use a bucketing, and try to approximate the
number of members of every bucket, which allows us to construct an approximate distribution.
However, there are some roadblocks, and in the foremost the fact that we cannot really query
the value µ(i). Instead we will construct a way to approximate the distribution, and then go
further to simulate the approximated distribution instead of the original.

In all the following we assume that n is a power of 2, as otherwise we can “pad” the
probability space with additional zero-probability members.

4.1 Bucketing and approximations

We need a bucketing that also goes into smaller probabilities than those needed for the other
sections.

Definition 4.1.1. Given an explicit distribution µ over [n], Bucket′(µ, [n], ε) is a procedure

that generates a partition {M0,M1, . . . ,Mk} of the domain [n], where k = logn log(ε−1)

log2(1+ε)
. This

partition satisfies the following conditions:

• M0 = {j ∈ [n] | µ(j) < ε
n};

• for all i ∈ [k], Mi =
{
j ∈ [n] | (1+ε)

i−1

n ε ≤ µ(j) < (1+ε)i

n ε
}

.

In the rest of this section, bucketing will always refer to this version. Also, from here on we

fix ε and k = logn log(ε−1)

log2(1+ε)
as above (as well as mostly ignore floor and ceiling signs). We also

assume that ε is small enough, say smaller than 1
100 .

Suppose that we have m0, . . . ,mk, where mi = |Mi| is the size of the i’th set in the bucketing
of a distribution µ. Then we can use these to construct a distribution that is guaranteed to be
close to some permutation of µ.

Definition 4.1.2. Given m0, . . . ,mk for which
∑k

j=0mj = n and ε, the tentative distribution
over [n] is the one constructed according to the following.

• Set r1, . . . , rn so that |{i : ri = 0}| = m0 and |{i : ri = (1+ε)j−1

n ε}| = mj for every 1 ≤ j ≤ k
(the order of r1, . . . , rn is arbitrary).

• Set a distribution µ̃ over [n] by setting µ(i) equal to ri/
∑n

j=1 ri.

To gain some intuition, note the following.

11

Observation 4.1.3. If M0, . . . ,Mk is the bucketing of µ and µ̃ is the tentative distribution
according to m0 = |M0|, . . . ,mk = |Mk|, then µ̃ is 2ε-close to some permutation of µ.

Proof. We assume that we have already permuted µ̃ so that each µ̃(i) refers to an ri set according
to the bucket Mj satisfying i ∈ Mj (such a permutation is possible because here we used the
actual sizes of the buckets).

We recall that the distance is in particular equal to
∑
{i:µ̃(i)<µ(i)}(µ(i)− µ̃(i)). Referring to

the ri of the definition above, we note that in this case
∑n

i=0 ri ≤
∑n

i=0 µ(i) = 1 and hence
µ̃(i) ≥ ri. For i 6∈ M0, this means that µ̃(i) ≥ (1 − ε)µ(i). For the rest we just note that∑

i∈M0
µ(i) ≤ ε. Together we get the required bound.

The above observation essentially states that it is enough to find the numbers m0, . . . ,mk

associated with µ. However, the best we can hope for is to somehow estimate the size, or total
probability, of every bucket. The following shows that this is in fact sufficient.

Definition 4.1.4. Given α0, . . . , αk for which
∑k

j=0 αj = 1, the bucketization thereof is the
sequence of integers m̂0, . . . , m̂k defined by the following.

• For any 1 ≤ j ≤ k let m̂j be the integer closest to nαk (where an “exact half” is arbitrarily
rounded down).

• If
∑k

j=1 m̂j > n, then decrease the m̂j until they sum up to n, each time picking j to be
the smallest index for which m̂j > 0 and decreasing that quantity by 1.

• Finally set m̂0 = n−
∑k

j=1 m̂j .

We say that the bucketization has failed if in the second step we had to decrease any m̂j for

which (1+ε)j−1

n ε ≥ ε
k .

Lemma 4.1.5. Suppose that m0, . . . ,mk, α0, . . . , αk are such that :

•
∑k

j=0mj = n

•
∑k

j=1mj
(1+ε)j−1

n ε ≤ 1

•
∑k

j=0 αj = 1

• |mj − αj | (1+ε)
j−1

n ε < ε
2k for all 1 ≤ j ≤ k

and let m̂0, . . . , m̂k be the bucketization of α0, . . . , αk. Then m̂0, . . . , m̂k are all well defined (the
bucketization process did not fail), and additionally if µ̃ is the tentative distribution according
to m0, . . . ,mk and µ̂ is the tentative distribution according to m̂0, . . . , m̂k, then the distance
between µ̂ and µ̃ (after some permutation) is at most 4ε.

Proof. First thing to note is that mj = m̂j for all j for which (1+ε)j−1

n ε ≥ ε
k , before the decreasing

step, so there will be no need to decrease these values and the bucketization will not fail.

For all other j ≥ 1, before decreasing some of the m̂j we have that |mj − m̂j | (1+ε)
j−1

n ε < ε
k

(if (1+ε)j−1

n ε ≤ ε
k then the distance is not more than doubled by the rounding, and otherwise

it follows from |αj − m̂j | ≤ 1). Since the bucketization did not fail, the decreasing step only

affects values m̂j for which (1+ε)j−1

n ε < ε
k , and the total required decrease in them was by not

more than k (as the rounding in the first step of the bucketization added no more than 1 to

each value), we obtain the total bound
∑k

j=1 |mj − m̂j | (1+ε)
j−1

n ε ≤ 3ε.

12

Let ri denote the corresponding values in the definition of µ̃ being the tentative distribution
according to m0, . . . ,mk, and r̂i be the analog values in the definition of µ̂ being the tentative

distribution according to m̂0, . . . , m̂k. By what we already know about
∑k

j=1 |mj − m̂j | (1+ε)
j−1

n
we have in particular

∑n
i=1 r̂i =

∑n
i=1 ri ± 3ε. Combined with the known bounds on

∑n
i=1 ri,

we can conclude by finding a permutation for which we can bound
∑n

i=1 |ri − r̂i| by 3ε, which
will give the 4ε bound on the distribution distance 1

2

∑n
i=1 |µ̃(i)− µ̂(i)|.

The permutation we take is the one that maximizes the number of i’s for which ri = r̂i; for

the value (1+ε)j−1

n ε we can find min{mi, m̂i} such i’s (for every 1 ≤ j ≤ k), and the hypothetical
worst case is that whenever ri 6= r̂i one of them is zero (sometimes the realizable worst case is

in fact not as bad as the hypothetical one). Thus we obtain the
∑k

j=1 |mj − m̂j | (1+ε)
j−1

n ε ≤ 3ε
bound leading to the 4ε bound on the distribution distance.

A problem still remains, in that sampling from µ will not obtain a value αj close enough to

the required mj
(1+ε)j−1

n ε. The variations in the µ(i) inside the bucket Mj itself could be higher
than the ε

2k that we need here. In the next subsection we will construct not only a “bucket
identifying” oracle, but tie it with a sampler that will simulate the approximate distribution
rather than the original µ.

4.2 Ratio trees and reconstituted distributions

The main driving force in our algorithm is a way to estimate the ratio between the distribution
weight of two disjoint sets. To make it into a weight oracle for a value i ∈ [n], we will use
successive partitions of [n], through a fixed binary tree. Remember that here n is assumed to
be a power of 2.

We first define how to “reconstruct” a distribution from a tree with ratios, and afterward
show how to put the ratios there.

Definition 4.2.1. Let T be a (full) balanced binary tree with n leaves labeled by [n]. Let U
be the set of non-leaf nodes of the tree, and assume that we have a function α : U → [0, 1]. For
u ∈ U denote by L(u) the set of leaves that are descendants of the left child of u, and by R(u)
the leaves that are descendants of the right child of u.

The reconstituted distribution according to α is the distribution µ̃ that is calculated for every
i ∈ [n] as follows:

• Let u1, . . . , ulog(n)+1 be the root to leaf path for i (so in particular ulog(n)+1 = i).

• For ever 1 ≤ j ≤ log n, set pj = α(uj) if i is a descendant of the left child of uj (that is if
i ∈ L(uj)), and otherwise set pj = 1− α(uj).

• Set µ̃(i) =
∏logn
j=1 pj .

For intuition, note the following trivial observation.

Observation 4.2.2. If for a distribution µ we set α(u) = µ(L(u))
µ(L(u))+µ(R(u)) , using an arbitrary

value (say 1
2) for the case where µ(L(u)) + µ(R(u)) = 0, then the reconstituted distribution µ̃ is

identical to µ.

However, we cannot know the values µ(L(u))
µ(L(u))+µ(R(u)) . The best we can do the the following.

Definition 4.2.3. An (ε, δ)-ratio estimator for T and a distribution µ is an algorithm A that
given a non-leaf vertex u ∈ U outputs a number r, such that with probability 1 − δ we have
that µ(L(v))

µ(L(v))+µ(R(v)) − ε ≤ r ≤
µ(L(v))

µ(L(v))+µ(R(v)) + ε.

13

Algorithm 4.2.4. (Ratio Estimator) The algorithm is given a balanced binary tree T with n
leaves, a non-leaf vertex u ∈ U and parameters ε, δ. It also has conditional sample access to a
distribution µ.

1. Sample t = 2ε−2 log(δ−1) elements according to µ �L(u)∪R(u), and let s be the number of
samples that are in L(u).

2. Return the ratio s
t of the samples that are in L(u) to the total number of samples.

Lemma 4.2.5. For any ε, δ Algorithm 4.2.4 is an (ε, δ)-ratio estimator for T and µ which uses
t = 2ε−2 log(δ−1) non-adaptive conditional samples from µ.

Proof. The number of samples used is immediate. Let us now proceed to show that this is
indeed an (ε, δ)-ratio estimator. The expected value of s

t is µ(L(u))
µ(L(u))+µ(R(u)) .

By Chernoff’s inequality, the probability that s
t deviates from its expected value by an

additive term of more than ε is at most 2 exp(−2ε2 · t). By our choice of t we obtain the
statement.

If we could “populate” the entire tree T (through the function α) by values that do not
deviate by much from the corresponding ratios, then we would be able to create an estimate
for µ that is good for most values.

Definition 4.2.6. The function α : U → [0, 1] is called ε-fine if |α(u) − µ(L(u))
µ(L(u))+µ(R(u)) | ≤

(ε
2 log(n))

2 for every u ∈ U .

We call a distribution µ̃ ε-fine if there exists a set B such that µ(B) ≤ ε, and additionally
µ̃(i) = (1± ε)µ(i) for every i ∈ [n] \B.

Lemma 4.2.7. If α is ε-fine then the reconstituted distribution µ̃ is ε-fine.

Proof. To define the set B, for every i consider the p1, . . . , plogn that are set as per Definition
4.2.1, and set i ∈ B if and only if there exist some pj that is smaller than ε

2 log(n) . Next,

denote by q1, . . . , qk the “intended” values, that is qj =
µ(L(uj))

µ(L(uj))+µ(R(uj))
if i ∈ L(uj) and qj =

µ(R(uj))
µ(L(uj))+µ(R(uj))

otherwise. Noting that pj does not deviates from qj by more than (ε
2 log(n))

2,

an induction over log n (the height of T) gives that 1− µ(B) is at least (1− ε
logn)logn > 1− ε.

For i ∈ [n] \ B, we note that in this case pj = (1 ± ε
2 logn)qj , and hence µ̃(i) =

∏logn
j=1 pj =

(1± ε
2 logn)logn

∏logn
j=1 qj = (1± ε)µ(i).

We should note here that it is not hard to prove that an ε-fine distribution µ̃ is of distance
not more than 4ε from the original µ. However, we will in fact refer to yet another distribution
which will be easier to estimate, so we will show closeness to it instead.

Definition 4.2.8. Given an ε-fine distribution µ̃ and its respective set B, its ε-trimmed distri-
bution µ is a distribution over [n] ∪ {0} defined by the following.

• For i ∈ B ∪ {i : µ̃(i) < ε
n} we set µ(i) = 0. For such i we also set ji = 0.

• For all other i ∈ [n] we set ji to be the largest integer for which (1+ε)ji−1

n ε ≤ µ̃(i), and set

µ(i) = (1+ε)ji−1

n ε.

• Finally set µ(0) = 1 −
∑n

i=1 µ(i); note that µ(i) ≤ µ̃(i) for all 1 ≤ i ≤ n and hence
µ(0) ≥ 0.

14

The ε-renormalized distribution µ̂ over [n] is just the conditioning µ �[n].

It is important to know that the renormalized distribution is in fact (a permutation of) the
tentative distribution according to m0, . . . ,mk, where for 0 ≤ j ≤ k we set mj = |{i : ji = j}|.

Lemma 4.2.9. The renormalized distribution µ̂ corresponding to an ε-fine distribution µ̃ is
4ε-close to µ.

Proof. First we consider the trimmed distribution µ, and its distance from µ (when we extend it
by setting µ(0) = 0). Recalling that this variation distance is equal to

∑
{i:µ(i)<µ(i)}(µ(i)−µ(i)),

we partition the set of relevant i’s into two subsets.

• For those i that are in B (for which µ(i) = 0), the total difference is µ(B) ≤ ε.

• For any other i for which µ(i) < µ(i), note that µ(i) ≥ 1
1+ε µ̃(i) ≥ 1−ε

1+εµ(i) > (1− 3ε)µ(i).
This means that the sum over differences for all such i is bounded by 3ε.

• We never have µ(0) < µ(0).

Thus the distance between µ and µ is not more than 4ε. As for µ̂, the sum of differences over i
for which µ̂(i) < µ(i) is only made smaller (the conditioning only increases the probability for
every i > 0), and so the 4ε bound remains.

4.3 Distribution samplers and learning

For our learning algorithm we need to not only sample from the distribution µ, but to be able to
“report” µ(i) for every i thus sampled. This we cannot do, but it turns out that we can sample
from a close distribution µ̃ while reporting µ̃(i). In fact we will sample from a distribution that
in itself will be drawn from the following distribution over distributions.

Definition 4.3.1. The (ε, δ)-condensation of µ is the distribution over ε-fine distributions (with
respect to µ) that is defined by the following process.

• Let T be a (full) balanced binary tree whose leaves are labeled by [n], and U be its set of
internal nodes.

• For every u ∈ U , let α(u) be the (randomized) result of running the corresponding
((ε

2 log(n))
2, δ)-Ratio Estimator (Algorithm 4.2.4), when conditioned on this result indeed

being of distance not more than (ε
2 log(n))

2 from
µ(L(uj))

µ(L(uj))+µ(R(uj))
. This is done indepen-

dently for every u.

• The drawn distribution µ̃ is the reconstituted distribution according to T and α

The algorithm that we define next is an explicit persistent sampler: It is explicit in that
it relays information about µ̃(i) along with i, and persistent in that it simulates (with high
probability) a sequence of s independent samples from the same µ̃.

Definition 4.3.2. Given a distribution over distributions, a (δ, s)-explicit persistent sampler
is an algorithm that can be run up to s times (and during each run may store information to
be used in subsequent runs), that in every run returns a pair (i, η). It must satisfy that with
probability at least 1− δ, the i’s for all s runs are independent samples of a single distribution
µ̃ that in itself was drawn according to the distribution over distributions, and every output
pair (i, η) satisfies η = µ̃(i).

15

Algorithm 4.3.3. (Persistent Sampler) The algorithm is given parameters ε, δ and s, and has
conditional sample access to a distribution µ.

1. On the initial run, set T to be a full balanced binary tree with n leaves labeled by [n]. Let
w denote the root vertex and U denote the set of non-leaf vertices. α is initially unset.

2. On all runs, set u1 = w, and repeat the following for l = 1, . . . , log n.

(a) If α(ul) is not set yet, set it to the result of the ((ε
2 log(n))

2, δ
s logn)-Ratio Estimator

(Algorithm 4.2.4); run it independently of prior runs.

(b) Independently of any prior choices, and without sampling from µ, with probability
α(ul) set ul+1 to be the left child of ul and pl = α(ul), and with probability 1−α(ul)
set ul+1 to be the right child of ul and pl = 1− α(ul).

(c) Set i to be the label of the leaf ulogn and η =
∏k
l=1 pl. Return i and η.

Lemma 4.3.4. For any ε, δ and s, Algorithm 4.3.3 is a (δ, s)-explicit persistent sampler for
the (ε, δ

s logn)-condensation of µ. It uses a total of 25 · ε−4 log5 n · log(sδ−1 log n) many adaptive
conditional samples from µ to output a sample.

Proof. The calculation of the number of samples is straightforward (but note that these are
adaptive now). During s runs, by the union bound with probability at least 1− δ all of the calls
to the ((ε

2 log(n))
2, δ
s logn)-Ratio Estimator produced results that are not more than ((ε

2 log(n))
2-

away from the actual rations.
Conditioned on the above event, the algorithm acts the same as the algorithm that first

chooses for every u ∈ U the value α(u) according to a run of the ((ε
2 log(n))

2, δ
s logn)-Ratio

Estimator conditioned on it being successful, and only then traverses the tree T for every
required sample. The latter algorithm is identical to picking a distribution µ̃ according to the
(ε, δ

s logn)-condensation of µ, and then (explicitly) sampling from it.

This is almost sufficient to learn the distribution. The next step would be to estimate the
size of a bucket of the ε-fine distribution µ̃ by explicit sampling (i.e. getting the samples along
with their probabilities). However, Lemma 4.1.5 requires an approximation not of µ̃(Mj) (where

Mj is a bucket of µ̃) but rather of |Mj | (1+ε)
j−1

n ε. In other words, we really need to approximate
µ(Mj), where µ is the corresponding trimmed distribution.

Therefore we define the following explicit sampler for an ε-trimmed distribution. We “bend”
the definition a little, as this sampler will not be able to provide the corresponding probability
for i = 0.

Algorithm 4.3.5. (Trimming Sampler) The algorithm is given parameters ε, δ and s, and has
conditional sample access to a distribution µ.

1. Run the Persistent Sampler (Algorithm 4.3.3) with parameters ε, δ and s to obtain i and
η; additionally retain p1, . . . , plogn as calculated during the run of the Persistent Sampler.

2. If there exists l for which pl <
ε

2 log(n) then return “0”.

3. If η < ε
n then return “0”.

4. Otherwise, let j be the largest integer for which (1+ε)j−1

n ε ≤ η, and set η′ = (1+ε)j−1

n ε.

5. With probability 1 − η′/η return “0”, and with probability η′/η return (i, j) (where j
corresponds to µ(i) = η′).

16

The following observation is now easy.

Observation 4.3.6. The trimming sampler (Algorithm 4.3.5) is a (δ, s)-persistent sampler,
and explicit whenever the returned sample is not 0, for the distribution over distributions that
results from taking the ε-trimming of an ε-fine distribution µ̃ and its corresponding B that was
drawn according to the (ε, δ

s logn)-condensation of µ. The algorithm uses in total 25 · ε−4 log5 n ·
log(sδ−1 log n) many adaptive conditional samples from µ to output a sample.

Proof. The number of samples is inherited from Algorithm 4.3.3 as no other samples are taken.
The algorithm switches the return value to “0” whenever i ∈ B (as defined in the proof of
Lemma 4.2.7), and otherwise returns “0” exactly according to the corresponding conditional
probability difference for i between µ̃ (as in the definition of a reconstituted distribution) and µ
(as in the definition of the corresponding trimmed distribution). Finally, whenever the returned
sample is i > 0 the algorithm clearly returns the corresponding ji (see Definition 4.2.8).

We are now ready to present the algorithm providing Theorem 4.0.2.

Algorithm 4.3.7. (Distribution Approximation) The algorithm is given parameters ε, δ, and
has conditional sample access to a distribution µ.

1. Set s = 212ε−4 log2(n) log(δ−1), and k = logn log(8ε−1)

log2(1+ε/8)
(the number of buckets in an ε/8-

bucketing of a distribution over [n]).

2. Take s samples through the (ε/8, δ/2, s)-Trimming Sampler.

3. Denote by s0 the number of times that the sampler returned “0”, and for 1 ≤ j ≤ k
denote by sj the number of times that the sampler returned (i, j) for any i.

4. Let m′0, . . . ,m
′
k be the bucketization of α0 = s0

s , . . . , αk = sk
s .

5. Return the tentative distribution according to m′0, . . . ,m
′
k.

Lemma 4.3.8. The Distribution Approximation algorithm (Algorithm 4.3.7) will with proba-
bility at least 1− δ return a distribution that is ε-close to a permutation of µ. This is performed
using at most Õ(ε−8 log7 n log2(δ−1)) conditional samples.

Proof. The number of samples is immediate from the algorithm statement and Observation
4.3.6.

By Observation 4.3.6, with probability at least 1− δ/2 all samples of the Trimming Sampler
will be from one ε/8-trimming of some ε/8-fine distribution µ. Set m0 = |{1 ≤ i ≤ n : µ(i) = i}|
and for 1 ≤ j ≤ k set mj = |{i : µ(i) = (1+ε)j−1

n ε}|. Recall that the ε/8-renormalized distribution
corresponding to µ is in fact the tentative distribution according to m0, . . . ,mk. By Lemma
4.2.9, this distribution is ε/2-close to µ.

Note now that for every 1 ≤ j ≤ k the expectation of αj is exactly mj
(1+ε/8)j−1

n ε/8. By virtue
of a Chernoff bound and the union bound, our choice of s implies that with probability 1− δ/2
(conditioned on the previous event) we in fact get values that satisfy |mj−αj | (1+ε/8)

j−1

n ε/8 < ε/8
2k

for every 1 ≤ j ≤ k. This satisfies the assertions of Lemma 4.1.5, and thus the tentative
distribution according to m′0, . . . ,m

′
k will be ε/2-close to the tentative distribution according to

m0, . . . ,mk, and hence will be ε-close to µ.

Note that if we were to use this algorithm for testing purposes, the dependence on δ−1 can
be made logarithmic by setting it to 1/3 and repeating the algorithm log(δ−1) times, taking
majority.

17

5 Non-adaptive testing for uniformity and identity

In this section we return to the definition of bucketing introduced in the preliminaries (Definition
2.2.4).

5.1 Testing uniformity

Theorem 5.1.1. Testing uniformity can be done using poly(log n, ε−1, log(δ−1)) non-adaptive
conditional samples.

Again, we will actually prove the following stronger statement:

Theorem 5.1.2 (Nonadaptive Near Uniformity Tester). Let µ be a known distribution over
[n]. If ‖µ− Un‖∞ < ε/8n then identity with µ can be tested using poly(log n, ε−1, log(δ−1))
conditional samples by a non-adaptive algorithm.

To simplify analysis and presentation, the algorithm will succeed with probability 2/3. This
can be amplified to 1 − δ by the standard technique of repeating it for log(δ−1) times and
taking the majority vote. This obviously incurs a multiplicative factor of log(δ−1) in the sample
complexity.

Algorithm 5.1.3. The algorithm is given n, ε and µ, and has nonadaptive conditional sample
access to µ′.

1. For dlog(28800ε−6 log5(n))e ≤ j ≤ dlog(n)e, set Uj to be a uniformly random set of
min{n, 2j} indices.

2. For every Uj , perform 16ε−2 log2(n) conditional samples, and if the same index was drawn
twice, REJECT.

3. Uniformly pick a random set U of 1980ε−6 log5(n) elements, and invoke the Identity Tester
of Theorem 2.2.1 to test whether µ′ �U= µ �U or d(µ′ �U , µ �U) > ε

24|U | with success

probability 19
20 .

4. ACCEPT unless any of the above testers rejected.

Lemma 5.1.4. If d(µ, µ′) = 0 then Algorithm 3.1.3 accepts with probability at least 2/3.

Proof. Since ‖µ− Un‖∞ < ε/8n, the probability that an element will be drawn twice in the jth

iteration of Line 2 is at most
(
16ε−2 log2(n)

2

)
·
(
1+ε/8
1−ε/8

)2
·2−2j . Summation over all values of j gives

us less than 1/9.
Since µ = µ′, µ′ �U= µ �U for any U ⊆ [n], and the probability that Line 3 rejects is at most

1/9. This obtains the error bound in the lemma.

The following is immediate from the algorithm statement and Theorem 2.2.1:

Lemma 5.1.5. The sample complexity of Algorithm 3.2.2 is poly(log n, ε−1).

Proof. This follows from the number of samples used in Lines 2 and 3 and the fact that Line 2
is iterated at most log n times.

In the following we assume that d(µ, µ′) > ε.
Let M1,M2, . . . ,Mk be the bucketing of µ and M ′1,M

′
2, . . . ,M

′
k the bucketing of µ′ with ε/3.

Denote the individual probabilities by p1, . . . , pn and p′1, . . . , p
′
n respectively.

18

Lemma 5.1.6. |M ′0 ∪M ′1| ≥ εn and there exists 2 < j ≤ k such that |M ′j | ≥ ε2n
24(1+ε/3)j logn

Proof. Note that [n] = M0 ∪ M1 by our requirement from µ. Now following Lemma 3.1.7,∑
p′i<pi

(pi − p′i) ≤ |{i : p′i < pi}| ·max{pi}. Now since maxi{pi} < (1 + ε/8) 1
n there are at least

(ε/2)n such i.
For the second part we will adapt the proof of Lemma 3.1.6. Clearly

∑
pi<p′i<pi+11ε/12n(p′i−

pi) <
11
12ε. Therefore:∑

p′i≥pi+11ε/12n

p′i >
∑

p′i≥pi+11ε/12n

(p′i − pi) =
∑
p′i>pi

(p′i − pi)−
∑

pi<p′i<pi+11ε/12n

(p′i − pi) >
1

12
ε

Since pi ≥ 1−ε/8
n , we know that the p′i in the left hand side have (assuming ε < 1/10)

p′i ≥
1− ε/8
n

+
11ε

12n
=

1 + 19ε/24

n
≥ (1 + ε/3)2

n

and therefore all these p′is are in buckets M ′j for 2 < j ≤ k.

Since k = logn
log(1+ε/3) , there exists some 2 < j ≤ k such that µ′(M ′j) = ε log(1+ε/3)

4 logn . By the

definition of the buckets this gives |M ′j | ≥
ε log(1+ε/3)

4 logn · n
(1+ε/3)j

> ε2n
24(1+ε/3)j logn

.

Lemma 5.1.7. Given a set B of size l, a set U of min{n, 3nl } indices chosen uniformly at
random will with probability more than 19

20 contain a member of B.

Proof. The probability is lower bounded by the probability for 3n/l indexes chosen uniformly

and independently with repetitions from [n] to intersect B, which is 1− (1− l/n)
3n
l ≥ 19

20 .

Lemma 5.1.8. Let µ be a known distribution over [n]. If ‖µ− Un‖∞ < ε/8n and d(µ, µ′) > ε
then Algorithm 3.1.3 rejects with probability at least 2/3.

Proof. We partition into cases according to the j guaranteed by Lemma 5.1.6.
If (1 + ε

3)j ≤ 40ε−4 log4 n, then |M ′j | ≥ ε6

960 log5 n
n, so by Lemma 5.1.7 with probability 19

20

the set U in Line 3 will contain a member h of M ′j . Note that j > 2 and therefore µ′(h) ≥
(1+ε/3)2

n . By the first part of Lemma 5.1.6 with probability 19
20 (actually much more than that)

we will also sample an element l ∈ M ′0 ∪M ′1. Thus we have µ′(h) ≥ (1 + ε/3)µ′(l), and also

µ′ �U (h) ≥ (1 + ε/3)µ′ �U (l), while both µ �U (h) and µ �U (l) are restricted between 1−ε/8
1+ε/8

1
|U |

and 1+ε/8
1−ε/8

1
|U | . Therefore, either µ′ �U (h) > µ �U (h) + ε

12|U | or µ′ �U (l) < µ �U (l) − ε
12|U | .

Either way d(µ′ �U , µ �U) > ε
24|U | , which will be identified by the tester of Theorem 2.2.1 with

probability 19
20 . Thus in total we get a rejection probability greater than 7

9 .
Otherwise, let i be such that the value 2i is between min{n, 720ε−2 log n(1 + ε

3)j} and
2 min{n, 720ε−2 log n(1 + ε

3)j} (recall the lower bound on (1 + ε
3)j). In that case the Ui in

Line 2 will with probability at least 19
20 contain a member a of M ′j . Additionally, the expected

value of µ′(Ui) is min{1, 2in } ≤ min{1, 1440n ε−2(1 + ε
3)j log n}, thus by Markov’s inequality, with

probability at least 8
9 we will have µ′(Ui) ≤ min{1, 14400n ε−2(1 + ε

3)j log n}. Therefore, µ′ �Ui

(a) ≥ ε2

14400(1+ε/3) logn . Thus the expected number of times a is sampled is at least logn
125 and

therefore by Lemma 2.2.2 with probability 1 − 2 exp(− logn
250) we will sample a at least twice.

Thus in total we get a rejection probability greater than 7
9 for n > 2253 (this lower bound can

be traded for a higher degree polynomial dependence on log n).

19

5.2 Testing identity to a known distribution

Theorem 5.2.1. Identity to a known distribution can be tested using poly(log n, ε−1, log(δ−1))
non-adaptive conditional samples.

Let µ be the known distribution and µ′ be the unknown distribution that is accessed by
sampling. The following is an algorithm for testing identity with the known distribution µ over
[n]:

Algorithm 5.2.2. (Identity Test) The algorithm receives ε, δ, n and µ and operates as follows.

1. Let M = {M0,M1, . . . ,Mk} ← Bucket(µ, [n], ε8).

2. For each bucket M1, . . . ,Mk test using the Nonadaptive Near Uniformity Test (Theorem

5.1.2) to check whether ‖µ �Mj −µ′ �Mj‖1 ≥ ε/2 with error bound δ log(1+ε/8)
2 logn , rejecting

immediatly if any test rejects.

3. Invoke the Identity Tester of Theorem 2.2.1 to test if ‖µ〈M〉 − µ′〈M〉‖1 ≤ ε/2 with error
bound δ/2, answering as the test does.

Lemma 5.2.3. If d(µ, µ′) = 0 then Algorithm 5.2.2 accepts with probability at least 1− δ.

Proof. In this case, for all buckets ‖µ �Mj −µ′ �Mj‖1 = 0 and ‖µ〈M〉 − µ′〈M〉‖1 = 0, and thus
by the union bound we obtain the statement.

Lemma 5.2.4. The sample complexity of Algorithm 3.2.2 is poly(log n, ε−1, log(δ−1)).

Proof. We invoke the Nonadaptive Near Uniformity Test logn
log(1+ε/8) times, and invoke the Close-

ness Tester with a distribution of support size logn
log(1+ε/8) . Therefore by Lemma 5.1.5 and Theorem

2.2.1 we obtain the bound in the statement.

Lemma 5.2.5. If d(µ, µ′) > ε, then Algorithm 5.2.2 rejects with probability at least 1− δ.

Proof. Assume that the test accepted. If no error was made, then by Lemma 2.2.6 we have that
d(µ, µ′) ≤ ε. By the union bound the probability of error is at most δ.

6 Lower bounds for label invariant properties

In this section we prove two sample complexity lower bounds for testing label-invariant distri-
bution properties in our model. The first is for testing uniformity, and applies to non-adaptive
algorithms. The second bound is for testing whether a distribution is uniform over some subset
U ⊆ {1, . . . , n} of size exatcly 22k for some k, and applies to general (adaptive) algorithms.

The analysis as it is written relies on the particular behavior of our model when conditioning
on a set of probability zero, but this can be done away with: Instead of a distribution µ
with probabilities p1, . . . , pn over [n], we can replace it with the o(1)-close distribution µ̂ with
probabilities p̂1, . . . , p̂i where p̂i = 1

n2 + (1− 1
n)pi. The same analysis of why an algorithm will

fail to correctly respond to µ will pass on to µ̂, which has no zero probability sets.

20

6.1 Preliminary definitions

We start with some definitions that are common to both lower bounds.
First, an informal reminder of Yao’s method for proving impossibility results for general

randomized algorithms: Suppose that there is a fixed distribution over “positive” inputs (inputs
that should be accepted) and a distribution over “negative” inputs, so that no deterministic
algorithm of the prescribed type can distinguish between the two distributions. That is, suppose
that for every such algorithm, the difference in the acceptance probability over both input
distributions is o(1). This will mean that no randomized algorithm can distinguish between
these distributions as well, and hence for every possible randomized algorithm there is a positive
instance and a negative instance so that it cannot be correct for both of them.

In our case an “input” is a distribution µ over {1, . . . , n}, and so a “distribution over inputs”
is in fact a distribution over distributions. To see why a distribution over distributions cannot
be replaced with just a single “averaged distribution”, consider the following example. Assume
that an algorithm takes two independent samples from a distribution µ over {1, 2}. If µ is with
probability 1

2 the distribution always giving 1, and with probability 1
2 the distribution always

giving 2, then the two samples will be either (1, 1) or (2, 2), each with probability 1
2 . This

can never be the case if we had used a fixed distribution for µ, rather than a distribution over
distributions.

What it means to be a deterministic version of our testers will be defined below; as with
other settings, these result from fixing in advance the results of the coin tosses of the randomized
testers. The following are the two distributions over distributions that we will use to prove lower
bounds (and a third which will simply be “pick the uniform distribution over {1, . . . , n} with
probability 1”).

Definition 6.1.1. Given a set U ⊆ {1, . . . , n}, we define the U -distribution to be the uniform
distribution over U , that is we set pi = 1/|U | if i ∈ U and pi = 0 otherwise.

The even uniblock distribution over distributions is defined by the following:

1. Uniformly choose an integer k such that 1
8 log n ≤ k ≤ 3

8 log n.

2. Uniformly (from all possible such sets) pick a set U ⊆ {1, . . . , n} of size exactly 22k.

3. The output distribution µ over {1, . . . , n} is the U -distribution (as defined above).

The odd uniblock distribution over distributions is defined by the following:

1. Uniformly choose an integer k such that 1
8 log n ≤ k ≤ 3

8 log n.

2. Uniformly (from all possible such sets) pick a set U ′ ⊆ {1, . . . , n} of size exactly 22k+1.

3. The output distribution µ over {1, . . . , n} is the U ′-distribution.

Finally, we also identify the uniform distribution as a distribution over distributions that
picks with probability 1 the uniform distribution over {1, . . . , n}.

For these to be useful for Yao arguments, we first note their farness properties.

Observation 6.1.2. Any distribution over {1, . . . , n} that may result from the even uniblock
distribution over distributions is 1

2 -far from the uniform distribution over {1, . . . , n}, as well as
1
2 -far from any distribution that may result from the odd uniblock distribution over distributions.

Proof. This follows directly from a variation distance calculation. Specifically, the variation
distance between a uniform distribution over U and (a permutation of) a uniform distribution
over V with |V | ≥ |U | (which is minimized when we make the permutation such that U ⊆ V)
is (|V | − |U |)/|V |. In our case we always have |V | ≥ 2|U |, and hence the lower bound.

21

All throughout this section we consider properties that are label-invariant (such as the
properties of being in the support of the distributions defined above). This allows us to simplify
the analysis of our algorithms.

First, some technical definitions.

Definition 6.1.3. Given A1, . . . , Ar ⊆ {1, . . . , n}, the atoms generated by A1, . . . , Ar are all
sets of the type

⋂r
j=1Cj where every Cj is one of Aj or {1, . . . , n} \ Aj . In other words, these

are the minimal (by containment) non-empty sets that can be created by boolean operations
over A1, . . . , Ar. The family of all such atoms is called the partition generated by A1, . . . , Ar;
when r = 0 that partition includes the one set {1, . . . , n}.

Given A1, . . . , Ar and j1, . . . , jr where ji ∈ Ai for all i, the r-configuration of j1, . . . , jr is
the information for any 1 ≤ l, k ≤ r of whether jk ∈ Al (or equivalently, which is the atom that
contains jk) and whether jk = jl.

The label-invariance of all properties discussed in this section will allow us to “simplify” our
algorithms prior to proving lower bounds. We next define a simplified version of a non-adaptive
algorithm.

Definition 6.1.4. A core non-adaptive distribution tester is a non-adaptive distribution tester,
that in its last phase bases its decision to accept or reject only on the t(ε)-configuration of its
received samples and on its internal coin tosses.

For a core non-adaptive tester, fixing the values of the internal “coins” in advance gives a
very simple deterministic counterpart (for use in Yao arguments): The algorithm now consists
of a sequence of fixed sets A1, . . . , At(ε), followed by a function assigning to every possible
t(ε)-configuration a decision to accept or reject.

We note that indeed in the non-adaptive setting we only need to analyze core algorithms:

Observation 6.1.5. A non-adaptive testing algorithm for a label-invariant property can be
converted to a corresponding core algorithm with the same sample complexity.

Proof. We start with the original algorithm, but choose a uniformly random permutation σ
of {1, . . . , n} and have the algorithm act on the correspondingly permuted input distribution,
rather than the original one. That is, every set Ai that the algorithm conditions on is converted
to {σ(k) : k ∈ Ai}, while instead of ji the algorithm receives σ−1(ji). This clearly preserves the
guaranteed bounds on the error probability if the property is label-invariant.

To conclude, note that due to the random permutation, all outcomes for j1, . . . , jt that
satisfy a given configuration are equally likely, and hence can be simulated using internal coin
tosses once the configuration itself is made known to the algorithm.

For an adaptive algorithm, the definition will be more complex. In fact we will need to
set aside some “external” coin tosses, so that also the “deterministic” counterpart will have a
probabilistic element. But it will be a manageable one.

Definition 6.1.6. A core adaptive distribution tester is an adaptive distribution tester, that
acts as follows.

• In the i’th phase, based only on the internal coin tosses and the configuration of the sets
A1, . . . , Ai−1 and j1, . . . , ji−1, the algorithm assigns a number kA for every atom A that is
generated by A1, . . . , Ai−1, between 0 and |A \ {j1, . . . , ji−1}|, where not all such numbers
are 0. Additionally the algorithm provides Ki ⊆ {1, . . . , i− 1}.

22

• A set Bi ⊆ {1, . . . , n} \ {j1, . . . , ji−1} is drawn uniformly among all such sets whose
intersection with every atom A as above is of size kA, and Ai is set to Bi ∪ {jk : k ∈ Ki}.
The random draw is done independently of prior draws and the algorithm’s own internal
coins, and Ai is not revealed to the algorithm (however, the algorithm will be able to
calculate the sizes of the atoms in the partition generated by A1 . . . , Ai using the i − 1-
configuration, and the numbers provided based on it and the internal coin tosses).

• A sample ji is drawn according to µ conditioned over Ai, independently of all other draws.
ji is not revealed to the algorithm, but the new i-configuration is revealed (in other words,
the new information that the algorithm receives is whether ji ∈ Ak and whether ji = jk
for each k < i).

• After t(ε) such phases, the algorithm bases its decision to accept or reject only on the
t-configuration of its received samples and on its internal coin tosses.

Note that also a “deterministic” version of the above algorithm acts randomly, but only in
a somewhat “oblivious” manner. The sets Ai will still be drawn at random, but the decisions
that the algorithm is allowed to make about them (through the kA numbers and the Ki sets)
as well as the final decision whether to accept or reject will all be deterministic. This is since a
deterministic version fixes the algorithm’s internal coins and only them.

Also for adaptive algorithms we need to analyze only the respective core algorithms.

Observation 6.1.7. An adaptive testing algorithm for a label-invariant property can be con-
verted to a corresponding core algorithm with the same sample complexity.

Proof. Again we use a uniformly random permutation σ of {1, . . . , n}. Regardless of how the
original set Ai was chosen, now it will be chosen uniformly at random among all sets satisfying
the same intersection sizes with the atoms of the partition generated by A1, . . . , Ai−1 and the
same membership relations with j1, . . . , ji−1. Hence the use of a uniformly drawn set based on
the kA numbers and Ki is justified, and since σ is not revealed to the algorithm, the particular
resulting set Ai is not revealed.

Also, the probability for a particular value of ji now can depend only on the resulting i-
configuration, and hence it is sufficient to reveal only the configuration to the algorithm – the
algorithm can then use internal coin tosses to simulate the actual value of ji (uniformly drawing
it from all values satisfying the same configuration). The same goes for the decision whether to
accept or reject in the end.

To further illustrate the last point, note that the analysis does not change even if we assume
that at every phase, after choosing Ai we also draw a new random permutation, chosen uniformly
at random among all those that preserve j1, . . . , ji−1 and the atoms of A1, . . . , Ai (but can
“reshuffle” each atom internally). Then the “position inside its atom” of ji will be completely
uniform among those of the same configuration (if the configuration makes it equal to a previous
jk then there is only one choice for ji anyway).

6.2 Uniformity has no constant sample non-adaptive test

Theorem 6.2.1. Testing uniformity requires at least Ω(log log n) non-adaptive conditional sam-
ples (for some fixed ε).

To prove this lower bound, we show that for any fixed t and large enough n, no deterministic
non-adaptive algorithm can distinguish with probability 1

3 between the case where the input
distribution is the uniform one (with probability 1), and the case where the input distribution
is drawn according to the even uniblock distribution over distributions. Recall that such a

23

deterministic algorithm is in fact given by fixed sets A1, . . . , At ⊆ {1, . . . , n} and a fixed ac-
ceptance criteria based on the t-configuration of the obtained samples (to see this, take a core
non-adaptive testing algorithm and arbitrarily fix its internal coins).

We now analyze the performance of a deterministic non-adaptive tester against the even
uniblock distribution. Asymptotic expressions are for a fixed t and an increasing n.

Definition 6.2.2. We call a set A ⊆ {1, . . . , n} large if |A| > n2
√
logn/|U |, where U is the

set chosen in the construction of the even uniblock distribution. We call A small if |A| <
n2−

√
logn/|U |.

Lemma 6.2.3. With probability at least 1− 2t+2
√
logn

over the choice of U , all atoms in the partition

generated by A1, . . . , At are either large or small.

Proof. There is a fixed number of at most 2t atoms. An atom A is neither large nor small if
n2−

√
logn ≤ |A||U | ≤ n2

√
logn. |U | = 22k where 1

8 log n ≤ k ≤ 3
8 log n uniformly. Therefore, for

a fixed A, there are at most
√

log n values of k which will make it neither large nor small. Since
the range of k is of size 1

4 log n, we get that with probability at most 4√
logn

A is neither large

nor small. Taking the union bound over all atoms gives the statement of the lemma.

Lemma 6.2.4. With probability at least 1− 2t−
√
logn, no small atom intersects U .

Proof. Given a fixed k, for any small set A the probability of it intersecting U is clearly bounded
by 2−

√
logn. We can now conclude the proof by union-bounding over all small atoms, whose

number is bounded by 2t.

Lemma 6.2.5. With probability 1 − exp(t − t2), for every large atom A, we have |A ∩ U | =(
1± t

2
√
logn/4

)
|A| · |U |/n.

Proof. This is by a large deviations inequality followed by a union bound over all atoms. Note
first that if instead of U we had a uniformly random sequence u1, . . . , u22k (chosen with possible
repetitions), then this would have been covered by Lemma 2.2.2. However, U is a random set
of fixed size instead. For this we appeal to Section 6 of [9], where it is proved that moving from
a Binomial to a Hypergeometric distribution (which corresponds to choosing the set U with the
fixed size) only makes the distribution more concentrated. The rest follows by the fact that A
is large enough.

Now we can take t ≤ 1
4 log log n and put forth the following lemma, which implies that

the uniblock distribution over distributions is indeed indistinguishable by a deterministic non-
adaptive core algorithm from the uniform distribution using only t samples.

Lemma 6.2.6. For t ≤ 1
4 log log n, with probability 1 − o(1), the distribution over {1, . . . , n}

obtained from the uniblock distribution over distributions, is such that the resulting distribution
over the configurations of j1, . . . , jt is o(1)-close in the variation distance to the distribution
over configurations resulting from the uniform distribution over {1, . . . , n}.

Proof. With probability 1 − o(1) all of the events in Lemmas 6.2.3, 6.2.4 and 6.2.5 occur. We
prove that in this case the two distributions over configurations are o(1)-close. Recall that
the uniform distribution over the set U (resulting from the uniblock distribution) is called the
U -distribution. The lemma follows from the following:

• A sample taken from a set Ai that contains only small atoms will be uniform from this set
(and independent of all others), both for the uniform distribution and the U -distribution.
For the U -distribution it follows from U not intersecting Ai at all (recall that in our model,
a conditional sample with a set of empty weight returns a uniformly random element from
that set).

24

• A sample taken from a set Ai that contains some large atom will not be identical to
any other sample with probability 1 − o(1) for both distributions. This follows from the
birthday paradox: Setting A to be the large atom contained in Ai, recall that |A ∩ U | =(

1± log logn/4

2
√
logn/4

)
|A|·|U |/n. This quantity is ω(log2 log n). Thus for a fixed i the probability

for a collision with any other j is o(1/ log logn) (regardless of whether Aj contains a large
atom), and hence with probability 1 − o(1) there will be no collision for any i for which
Ai contains a large atom.

• For a set Ai containing a large atom, the distribution over the algebra of the events
ji ∈ Ak (which corresponds to the distribution over the atom in the partition generated
by A1, . . . , At containing ji) are o(1) close for both distributions. To show this we analyze
every atom A generated by A1, . . . , At that is contained in Ai separately. If A is small, then
for the uniform distribution, ji will not be in it with probability 1−o(1) (a small atom is in
particular of size o(|Ai|) sinceAi contains a large atom as well), while for the U -distribution
this is with probability 1 (recall that we conditioned on the event of U not intersecting any

small atom). If A is large, then we have |A ∩ U | =
(

1± log log(n)/4

2
√
logn/4

)
|A| · |U |/n, implying

that the probabilities for ji ∈ A for the U -distribution and the uniform one are only o(1)
apart.

The items above allow us to conclude the proof. They mean that for both the |U |-distribution
(conditioned on the events in Lemmas 6.2.3, 6.2.4 and 6.2.5) and the uniform distribution,
the resulting distributions over configurations are o(1)-close to the one resulting by setting the
following:

1. For every i for which Ai is small, uniformly pick ji ∈ Ai independently of all other random
choices; write down the equalities between these samples and the atoms to which these
samples belong.

2. For every i for which Ai is large, write ji as having no collisions with any other sample;
then pick the atom containing ji from all atoms contained in Ai according to their relative
sizes, in a manner independent of all other random choices.

Lemma 6.2.6 allows us to conclude the argument by Yao’s method.

Lemma 6.2.7. All non-adaptive algorithms taking t ≤ 1
4 log logn conditional samples will fail

to distinguish the uniform distribution from the even uniblock distribution over distributions
(which are all 1

2 -far from uniform) with any probability more than o(1).

Proof. By Observation 6.1.5 it is enough to consider core non-adaptive algorithms, and by Yao’s
argument it is enough to consider deterministic ones.

For any deterministic non-adaptive core algorithm (characterized by A1, . . . , At and a func-
tion assigning a decision to every possible configuration), the even uniblock distribution with
probability 1 − o(1) will choose a U -distribution, which in turn will induce a distribution over
configurations that is o(1)-close to that induced by the uniform distribution over {1, . . . , n}.
This means that if we look at the distribution over configurations caused by the even uniblock
distribution over distributions itself, it will also be o(1)-close to the one induced by the uniform
distribution. Therefore the acceptance probabilities of the algorithm for both distributions over
distributions are o(1)-close.

It would be interesting to make the bound on the number of samples into a power of log n,
possibly by trying to analyze the sets Ai in themselves rather than through their generated
partition.

25

6.3 A label-invariant property with no constant sample adaptive test

Theorem 6.3.1. There exists a label invariant property such that any adaptive testing algorithm
for it must use at least Ω(

√
log log n) conditional samples (for some ε).

The property will be that of the distribution being the possible result of the even uniblock
distribution over distributions. In other words, it is the property of being equal to the U -
distribution over some set U of size 22k for some 1

8 log n ≤ k ≤ 3
8 log n.

We show that no “deterministic” adaptive core algorithm can distinguish between the even
and odd uniblock distributions using o(

√
log logn) samples, while by Observation 6.1.2 a proper

1
2 -test must distinguish between these. Considering such algorithms, we first note that they can
be represented by decision trees, where each node of height i corresponds to an i−1-configuration
of the samples made so far. An internal node describes a new sample, through the numbers kA
provided for every atom A of A1, . . . , Ai (where the atoms are labeled by their operations, as
the Ai themselves are not revealed to the algorithm), and the set Ki (all these parameters could
be different for different nodes of height i). A leaf is labeled with an accept or reject decision.

The basic ideas of the analysis are similar to those of the previous subsection, but the
analysis itself is more complex because we have to consider the “partition generated by the
samples so far” in every step of the algorithm.

First thing to note is that there are not too many nodes in the decision tree.

Observation 6.3.2. The number of nodes in a decision tree corresponding to a t-sample algo-
rithm is less than t22t

2
.

Proof. A configuration can be described by assigning each of the i samples with a vector of
length 2i indicating which sets do they belong to and which of the other samples are they
equal to. This gives an i× 2i binary matrix, where every possible i-configuration for i samples
corresponds to some such matrix. That gives us at most 22i

2
possible i-configurations. Summing

for all i ≤ t gives the bound in the statement.

From now on we will always assume that n is larger than an appropriate fixed constant.
For the analysis, we consider two input distributions as being drawn at once, one according to
the even uniblock distribution and the other according to the odd uniblock distribution. We
first choose 1

8 log n ≤ k ≤ 3
8 log n uniformly at random, and then uniformly choose a set U of

size 22k and a set U ′ of size 22k+1. We then set µ to be the U -distribution and µ′ to be the
U ′-distribution.

We will now show that the fixed decision tree accepts with almost the same probability when
given either µ or µ′, which will allow us to conclude the proof using Yao’s argument. We start
with a notion of “large” and “small” similar to the one used for non-adaptive algorithms, only
here we need it for the numbers themselves.

Definition 6.3.3. We call a number b large with respect to U if b > n2
√
logn/|U |. We call b

small with respect to U if b < n2−
√
logn/|U |. We make the analogous definitions with respect

to U ′.

Lemma 6.3.4. With probability at least 1− t23t
2+2

√
logn

, all “kA” numbers appearing in the decision

tree are either small with respect to both U and U ′, or large with respect to both U and U ′.

Proof. By Observation 6.3.2 the total of different “kA” numbers is no more than t23t
2

(the
number of nodes times 2t – the bound on the size of the partition generated by A1, . . . , Ai in
every node). We can conclude similarly to the proof of Lemma 6.2.3 that since |U | and |U ′|
differ by a factor of 2, there are at most

√
log n values of k for which some fixed number kA

will not be either large with respect to both or small with respect to both. The bound in the
statement then follows by union bound.

26

From now on we assume that the event of Lemma 6.3.4 has occurred, and fix k (that is, the
following will hold not only for the entire distributions, but also for the conditioning on every
specific k for which the event of Lemma 6.3.4 is satisfied). The following lemma is analogous
to the non-adaptive counterparts Lemma 6.2.4 and Lemma 6.2.5, but here it is proved by
induction for every node that is reached while running the decision tree over the distribution
drawn according to either µ or µ′, where the inductive argument requires both statements to
hold. This lemma will essentially be used as a warm-up, since the final proof will refer to the
proof and not just the statement of the lemma.

Lemma 6.3.5. Assuming t ≤
√

1
32 log log n and conditioned on that the events of Lemma 6.3.4

have occurred, for every 1 ≤ i ≤ t, with probability at least 1− 2t+1
√
logn

, the following occur.

• All small atoms in the partition generated by A1, . . . , Ai contain no members of either U
or U ′ outside (possibly) {j1, . . . , ji−1}.

• For every large atom B in the partition generated by A1, . . . , Ai, we have both |B ∩ U | =(
1± i

2
√
logn/4

)
|B| · |U |/n and |B ∩ U ′| =

(
1± i

2
√
logn/4

)
|B| · |U ′|/n.

Proof. We shall prove the lemma not only conditioned on the event of Lemma 6.3.4, but also
conditioned on any fixed |U | (and |U ′| = 2|U |) for which Lemma 6.3.4 is satisfied. We assume
by induction that this occurs for the atoms in the partition generated by A1, . . . , Ai−1 with
probability at least 1 − 2i√

logn
, and prove it for A1, . . . , Ai with probability at least 1 − 2i+1

√
logn

.

Recall that the way Ai is generated, the algorithm in fact specifies how many members of it
will appear in A \ {j1, . . . , ji−1} for every atom A of the partition generated by A1, . . . , Ai−1
(while specifying exactly which of j1, . . . , ji−1 will appear in it), and then the actual set is drawn
uniformly at random from those that satisfy it.

We show the conclusion of the lemma to hold even if U and U ′ are held fixed (as long as
they satisfy the induction hypothesis and their sizes satisfy the assertion of Lemma 6.3.4). Let
B be an atom of A1, . . . , Ai and let A be the atom of A1, . . . , Ai−1 so that B ⊆ A. We have
several cases to consider, conditioned on the fact that the event in the statement does occur for
i− 1.

• If A is small, then so is B. By the induction hypothesis A\{j1, . . . , ji−1} has no members
of U or U ′, and hence so does B. This happens with (conditional) probability 1.

• If A is large but B is small, by the induction hypothesis both |A∩U | =
(

1± (i−1)
2
√
logn/4

)
|A| ·

|U |/n and |A∩U ′| =
(

1± (i−1)
2
√
logn/4

)
|A| · |U ′|/n. When this happens, as B \ {j1, . . . , ji−1}

is in fact chosen uniformly from all subsets of A\{j1, . . . , ji−1} of the same size (either kA
or |A \ {j1, . . . , ji−1}| − kA), and since B is small, we can use a union bound to see that
no member of either U or U ′ is taken into B with probability 1− 21−

√
logn.

• If B is large (and hence so is A), then again by the induction hypothesis both |A ∩ U | =(
1± (i−1)

2
√
logn/4

)
|A| · |U |/n and |A ∩ U ′| =

(
1± (i−1)

2
√
logn/4

)
|A| · |U ′|/n. We also note that

since B is large we have in particular t ≤ 1/2

2
√
logn/4

|B|. We can now use a large deviation

inequality (as in Lemma 6.2.5) to conclude the bounds for |B ∩ U | and |B ∩ U ′| with
probability 1− 2 exp(−2

√
logn/2−2).

Thus in all cases the statement will not hold with probability at most 1√
logn

for n large enough.

By taking the union bound over all possibilities for B (up to 2i events in total) we get that

27

with probability 1− 2i√
logn

the statement of the lemma holds for A1, . . . , Ai, conditioned on the

event occurring for A1, . . . , Ai−1. A union bound with the event of the induction hypothesis
happening for A1, . . . , Ai−1 gives the required bound.

We now prove the lemma showing the indistinguishability of µ from µ′ whenever t ≤√
1
32 log log n, conditioned on the event of Lemma 6.3.4. We assume without loss of generality

that the decision tree of the algorithm is full and balanced, which means that the algorithm
will always take t samples even if its output was already determined before they were taken.

Lemma 6.3.6. Assuming that t ≤
√

1
32 log log n and that the event of Lemma 6.3.4 has oc-

curred, consider the resulting distributions of which of the leaves of the algorithm was reached.
These two distributions, under µ compared to under µ′, are at most 23t+1

√
logn

apart from each other.

Proof. The proof is reminiscent of the proof of Lemma 6.2.6 above, but requires more cases to
be considered, as well as induction over the height of the node. Denoting this height by i, we
shall prove by induction that the distributions over which of the height i nodes was reached,
under µ compared to µ′, are only are at most 1− 23i+1

√
logn

apart from each other.

We shall use the induction hypothesis that the corresponding distributions over the node of
height i−1 (the parent of the node that we consider now) are at most 1− 23i−2

√
logn

apart, and then

show that the variation distance between the distributions determining the transition from a
particular parent to the child node is no more than 23i√

logn
, which when added to the difference

in the distributions over the parent nodes gives required bound.
The full induction hypothesis will include not only the bound on the distributions of the

parent nodes, but also a host of other assumptions, that we prove along to occur with probability
at least 1− 23i+1

√
logn

. In particular, instead of using the statement of Lemma 6.3.5, we essentially

re-prove it here. So the induction hypothesis also includes that all of the events proved during
the inductive proof of Lemma 6.3.5 hold here with respect to A1, . . . , Ai−1. Also, as in the
proof of Lemma 6.3.5, the conditional probability of them not holding for A1, . . . , Ai is at most

2i√
logn

(by the union bound done there for every atom generated by A1, . . . , Ai of the event

of the hypothesis failing for any single atom A). Therefore, we assume that additionally the
inductive hypothesis used in the proof of Lemma 6.3.5 has occurred for A1, . . . , Ai, and prove
that with probability at least 1− 22i√

logn
all other assertions of the inductive hypothesis occur as

well as that the variation distance between the distributions over the choice of the child node
is at most 22i√

logn
. By a union bound argument (and for the variation distance, a “common

large probability event” argument), this will give us the 1− 23i√
logn

bound that we need for the

induction. Recall that the choice of child node depends deterministically on the question of
which atom of A1, . . . , Ai contains the obtained sample ji, so in fact we will bound the distance
between the distributions of the atom in which ji has landed.

Additionally, we define by induction over i the following notion: An index i is called smallish
if all the “kA” numbers relating to it are small, and additionally Ki contains only smallish
indexes (recall that Ki ⊆ {1, . . . , i − 1}). A final addition to our induction hypothesis is that

with probability at least 1 − 23i−2
√
logn

, in addition to all our other assertions, the following occur

for every i′ < i.

• The sample ji′ is in U or respectively U ′ if and only if i′ is not smallish (note that the
assignment of smallish indexes depends on the parent node).

• If i′ is not smallish but all its corresponding “kA” numbers are small, then ji′ is equal to
some jl where l is a non-smallish index smaller than i′.

28

• If there exists a large “kA” number for i′, then ji′ is not equal to jl for any l < i′, and
additionally ji′ lies in some atom A′ for which the corresponding kA′ is not small (it is
allowed that A′ = A).

We now work for every possible parent node of height i − 1 separately. Note that we
restrict our attention to nodes whose corresponding (i− 1)-configurations satisfy the induction
hypothesis. Recall that we assume that the induction hypothesis in the proof of Lemma 6.3.5
has occurred for A1, . . . , Ai, and aim for a 22i√

logn
“failure probability” bound. We separate to

cases according to the nature of A1, . . . , Ai.

• A sample taken from a set Ai, where i is smallish, will be uniform and independent of
other samples, for both the U -distribution and the U ′-distribution. Moreover, this ji in
itself will not be a member of U or respectively U ′. This is since Ai \ {jk : k ∈ Ki} does
not intersect U or U ′, while using the induction hypothesis for {jk : k ∈ Ki} (so also Ai
does not intersect U or U ′). So conditioned on the entire induction hypothesis for i − 1
and the hypothesis in the proof of Lemma 6.3.5 for A1, . . . , Ai, all assertions for i will
occur with probability 1, and the distributions for selecting the height i node given this
particular parent node are identical under either µ or µ′.

• A sample taken from a set Ai, where the kA numbers are all small but i is not smallish,
will be a member of U or respectively U ′, chosen uniformly (and independently) from
{jk : k ∈ K ′i}, where K ′i denotes the (non-empty) set of all non-smallish indexes in Ki.
This is since {jk : k ∈ K ′i} is exactly the set of members of U or respectively of U ′ in Ai
(by the hypothesis for A1, . . . , Ai there will be no member of U or U ′ in Ai \{jk : k ∈ Ki},
and the rest follows from the induction hypothesis concerning smallish indexes). Again
the assertions for i follow with probability 1 (conditioned on the above hypotheses), and
the distributions for selecting the height i node are identical.

• If a sample is taken from Ai where at least one of the kA numbers is not small, then the
following occur.

– Since Ai in particular contains the atom A, and both |A ∩ U | =
(

1± i
2
√
logn/4

)
|A| ·

|U |/n and |A ∩ U ′| =
(

1± i
2
√
logn/4

)
|A| · |U ′|/n by the assertion over A1, . . . , Ai

relating to Lemma 6.3.5, we note that in particular i = o(1√
logn
|Ai ∩ U |) and i =

o(1√
logn
|Ai∩U ′|), so with probability less than 1√

logn
(for n larger than some constant)

we will get under either µ or µ′ a sample that is identical to a prior one.

– By the assertion over A1, . . . , Ai, an atom B inside Ai for which the corresponding
kB is small will not contain a member of U or U ′, and so ji will not be in such an
atom (in the preceding item we have already established that there are members of
U and respectively U ′ in Ai).

– By the assertion over A1, . . . , Ai, for every large atom B inside Ai we have both

|B∩U | =
(

1± i
2
√

logn/4

)
|B|·|U |/n and |B∩U ′| =

(
1± i

2
√
logn/4

)
|B|·|U ′|/n, implying

that |B∩U ||U | =
(

1± i
2
√
logn/5

)
|B∩U ′|
|U ′| (for large enough n). Also, every small atom C

inside Ai contains no members of U or U ′, so summing over all atoms of Ai we obtain
|Ai∩U |
|U | =

(
1± i

2
√
logn/5

)
|Ai∩U ′|
|U ′| , and thus for every atom B of Ai (large or small) we

finally have |B∩U ||Ai∩U | =
(

1± i
2
√
logn/6

)
|B∩U ′|
|Ai∩U ′| (for small atoms both sides are zero).

29

Te final thing to note is that |B∩U ||Ai∩U | and respectively |B∩U ′|
|Ai∩U ′| equal the probabilities of

obtaining a sample from B under µ and respectively µ′. Summing over all atoms con-
tained in Ai (of which there are 2i−1) we obtain a difference over these distributions

that is bounded by 2i√
logn

, which satisfies the requirements (also after conditioning

on that the events related to the rest of the induction hypothesis have occurred).

Having covered all cases, this completes the proof that the inductive hypothesis follows to i,
and thus the proof of the lemma.

Now we can conclude the argument by Yao’s method to prove the following lemma that
implies the theorem.

Lemma 6.3.7. All adaptive algorithms taking t ≤
√

1
32 log log n conditional samples will fail to

distinguish the even uniblock distribution over distributions from the odd one (whose outcomes
are always 1

2 -far from those of the even distribution) with any probability more than o(1).

Proof. By Observation 6.1.7 it is enough to consider only core adaptive algorithms, and then
by Yao’s argument it is enough to consider “deterministic” ones (the quote marks are because
the external coin tosses are retained as per the definitions above). We now consider the decision
tree of such an algorithm, and feed to it either µ or µ′ that are drawn as per the definition

above. With probability at least 1− t23t
2+2

√
logn

= 1− o(1) the event of Lemma 6.3.4 has occurred,

and conditioned on this event (or even if we condition on particular U and U ′), Lemma 6.3.6
provides that the variation distance between the resulting distributions over the leafs is at most
23t+1
√
logn

= o(1). In particular this bounds the difference between the (conditional) probabilities

of the event of reaching an accepting leaf of the algorithm.
Since we have an o(1) difference when conditioned on a 1 − o(1) probability event, we

also have an o(1) difference on the unconditioned probability of reaching an accepting leaf
under µ compared to µ′. This means that the algorithm cannot distinguish between the two
corresponding distributions over distributions.

7 A lower bound for testing general properties of distributions

For properties that are not required to be label-invariant, near-maximal non-testability could
happen also when conditional samples are allowed.

Theorem 7.0.1. Some properties of distributions on [n] require Ω(n) conditional samples to
test (adaptive or not).

We assume n is even. To prove Theorem 7.0.1 we reduce the problem of testing general n/2-
bit binary string properties P ⊆ {0, 1}n/2 to the problem of testing properties of distributions
over [n] with conditional samples. The reduction is probabilistic, succeeding with probability
1 − o(1), and only incurs an additional O(1) factor in the query complexity, that is, each
conditional sample made by the distribution tester is translated into (expected) O(1) queries
to the input binary string x ∈ {0, 1}n/2. Then the lower bound follows by the existence of
hard-to-test properties P ⊆ {0, 1}n/2 that require Ω(n) queries to test (see e.g. [6]).

7.1 The Reduction

We start with a few definitions. A string y ∈ {0, 1}n is balanced if it has the same number of
0s and 1s (in particular we assume here that n is even). For x ∈ {0, 1}n/2, let b(x) ∈ {0, 1}n be

30

the string obtained by concatenating x with its bitwise complement (in which each original bit
of x is flipped). Clearly b(x) is balanced for all x.

For a property P ⊆ {0, 1}n/2, define b(P) ⊆ {0, 1}n as b(P) , {b(x) : x ∈ P}.

Observation 7.1.1. For all x, y ∈ {0, 1}n/2, d(x, y) = d(b(x), b(y)).

Proof. Follows from the fact that if x and y differ in d(x, y) · n2 entries, then b(x) and b(y) differ
in d(x, y) · n entries.

Observation 7.1.2. For all P and ε > 0, ε-testing b(P) requires at least as many queries as
ε-testing P .

Proof. This is since we can simulate the tester for b(P) also for a non balanced string x ∈
{0, 1}n/2, where a query for an index i ≤ n/2 would return xi and for i > n/2 the query would
return 1− xi−n/2.

Next, for every balanced string x ∈ {0, 1}n we define a distribution µx on [n] as follows:

• If xi = 0 then µx(i) = 1
2n ;

• if xi = 1 then µx(i) = 3
2n .

Note that since x is balanced µx is indeed a distribution as
∑n

i=1 µx(i) = 1.
Extending this definition further, for every property P ⊆ {0, 1}n/2 we define a property PP

of distributions over [n] as follows:

PP , {µx : x ∈ b(P)}.

Observation 7.1.3. For all x, y ∈ {0, 1}n/2, d(b(x), b(y)) = 2 · d(µb(x), µb(y)), where the first
distance refers to the normalized Hamming distance between binary strings, and the second is
the variation distance between distributions.

Proof. This follows by direct calculation.

Theorem 7.0.1 follows by the following extension of Observation 7.1.2:

Lemma 7.1.4. For all P and ε > 0, if ε-testing P with success probability 3/5 requires at least
q queries, then ε/2-testing PP with success probability 2/3 requires at least q/100 conditional
samples.

Proof. By Observation 7.1.3, for all x ∈ {0, 1}n/2, if x ∈ P then µb(x) ∈ PP , and if d(x, P) > ε
then d(µb(x),PP) > ε/2. Now we show how to reduce the task of testing P to testing PP . Let
T be a tester for PP making at most q/100 conditional samples. Given an oracle access to
the input string x ∈ {0, 1}n/2, which is to be tested for membership in P , we simulate each
conditional sample ∅ 6= Q ⊆ [n] to µb(x) made by T as follows:

Sampler

1. Pick i ∈ Q uniformly at random. If i ≤ n/2 query xi and set vi ← xi. Else, query xi−n/2
and set vi ← 1− xi−n/2.

2. If vi = 1, output i.

3. Else, with probability 1/3 output i, and with the remaining probability go to Step 1.

31

It is clear that whenever Sampler outputs i with vi = 1, then i is distributed uniformly among
all indices {j ∈ Q : vj = 1}. Same is true for i such that vi = 0. So, to convince ourselves that
Sampler simulates conditional samples correctly, we only need to prove that the ratio between
the probability of outputting i with vi = 1 and the probability of outputting i with vi = 0 is
correct.

Let q1 , |{i ∈ Q : vi = 1}| and q0 , |{i ∈ Q : vi = 0}|. According to our distribution µb(x),
the distribution of indices in Q corresponding to the conditional sample is as follows:

• Pr[i] = 3
3q1+q0

if vi = 1.

• Pr[i] = 1
3q1+q0

if vi = 0.

In particular, the probability of selecting i such that vi = 1 is 3q1/q0 times the probability of
selecting i with vi = 0.

Let us now analyze what is the probability with which Sampler outputs (eventually) an index
i ∈ Q with vi = 1, and with vi = 0, respectively. At every round, an index i with vi = 1 is output
with probability q1

q1+q0
, and an index i with vi = 0 is output with probability q0

3(q1+q0)
. With the

remaining probability (of 2q0
3(q1+q0)

) no index is output, and the process repeats independently
of all previous rounds. Hence the ratio of the probability of outputting i such that vi = 1 to
the probability of outputting i with vi = 0 is 3q1/q0, as required. Note also that the expected
number of rounds (and so queries to x) per one execution of Sampler is (1− 2q0

3(q1+q0)
)−1 ≤ 3.

The last ingredient in the reduction is a total-query counter, that makes sure that the
number of queries to x does not exceed q (the lower bound). If so, the reduction fails. Since
Sampler is called at most q/100 times (the query complexity of T), a 3/100 < 1/15 bound
on the failure probability follows by Markov’s inequality, and we are done (the bound on the
success probability follows even if we assume that the distribution tester “magically” guesses
the correct answer whenever the reduction to the string property fails).

References

[1] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third
edition, 2008.

[2] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of
approximating the entropy. SIAM J. Comput., 35(1):132–150, 2005.

[3] Tugkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Bob Werner, editor,
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS-
01), pages 442–451, Los Alamitos, CA, October 14–17 2001.

[4] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. CoRR, abs/1009.5397, 2010. Extended abstract
appeared in the proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS-00), pages 259–269.

[5] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing mono-
tone and unimodal distributions. In Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, pages 381–390, New York, 2004.

32

[6] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[7] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. In Oded
Goldreich, editor, Studies in Complexity and Cryptography, volume 6650 of Lecture Notes
in Computer Science, pages 68–75. Springer, 2011.

[8] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Sublinear estimation
of entropy and information distances. ACM Transactions on Algorithms, 5(4), 2009.

[9] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc., 58:13–30, 1963.

[10] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing properties of collections of distribu-
tions. In Bernard Chazelle, editor, Proceedings of the 1st Symposium on Innovations in
Computer Science (ICS-10), pages 179–194, Beijing, China, January 5–7 2010.

[11] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds
for approximating distribution support size and the distinct elements problem. SIAM J.
Comput., 39(3):813–842, 2009.

[12] Paul Valiant. Testing symmetric properties of distributions. SIAM J. Comput., 40(6):1927–
1968, 2011.

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

