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Abstract

We study a new framework for property testing of probability distributions, by considering
distribution testing algorithms that have access to a conditional sampling oracle.1 This is an
oracle that takes as input a subset S ⊆ [N ] of the domain [N ] of the unknown probability
distribution D and returns a draw from the conditional probability distribution D restricted to
S. This new model allows considerable flexibility in the design of distribution testing algorithms;
in particular, testing algorithms in this model can be adaptive.

We study a wide range of natural distribution testing problems in this new framework
and some of its variants, giving both upper and lower bounds on query complexity. These
problems include testing whether D is the uniform distribution U ; testing whether D = D∗ for
an explicitly provided D∗; testing whether two unknown distributions D1 and D2 are equivalent;
and estimating the variation distance between D and the uniform distribution. At a high level
our main finding is that the new “conditional sampling” framework we consider is a powerful
one: while all the problems mentioned above have Ω(

√
N) sample complexity in the standard

model (and in some cases the complexity must be almost linear in N), we give poly(logN, 1/ε)-
query algorithms (and in some cases poly(1/ε)-query algorithms independent of N) for all these
problems in our conditional sampling setting.
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1 Introduction

1.1 Background: Distribution testing in the standard model

One of the most fundamental problem paradigms in statistics is that of inferring some information
about an unknown probability distribution D given access to independent samples drawn from it.
More than a decade ago, Batu et al. [BFR+00]2 initiated the study of problems of this type from
within the framework of property testing [RS96, GGR98]. In a property testing problem there is an
unknown “massive object” that an algorithm can access only by making a small number of “local
inspections” of the object, and the goal is to determine whether the algorithm has a particular
property. The algorithm must output ACCEPT if the object has the desired property and output
REJECT if the object is far from every object with the property. (See [Fis01, Ron08, Ron10, Gol10]
for detailed surveys and overviews of the broad field of property testing; we give precise definitions
tailored to our setting in Section 2.)

In distribution property testing the “massive object” is an unknown probability distribution D
over an N -element set, and the algorithm accesses the distribution by drawing independent samples
from it. A wide range of different properties of probability distributions have been investigated in
this setting, and upper and lower bounds on the number of samples required have by now been
obtained for many problems. These include testing whether D is uniform [GR00, BFR+10, Pan08],
testing whether D is identical to a given known distribution D∗ [BFF+01], testing whether two
distributions D1, D2 (both available via sample access) are identical [BFR+00, Val11], and testing
whether D has a monotonically increasing probability mass function [BFRV11], as well as related
problems such as estimating the entropy of D [BDKR05, VV11], and estimating its support
size [RRSS09, Val11, VV11]. Similar problems have also been studied by researchers in other
communities, see e.g., [Ma81, Pan04, Pan08].

One broad insight that has emerged from this past decade of work is that while sublinear-sample
algorithms do exist for many distribution testing problems, the number of samples required is in
general quite large. Even the basic problem of testing whether D is the uniform distribution U over
[N ] = {1, . . . , N} versus ε-far from uniform requires Ω(

√
N) samples3 for constant ε, and the other

problems mentioned above have sample complexities at least this high, and in some cases almost
linear in N [RRSS09, Val11, VV11]. Since such sample complexities could be prohibitively high in
real-world settings where N can be extremely large, it is natural to explore problem variants where
it may be possible for algorithms to succeed using fewer samples. Indeed, researchers have studied
distribution testing in settings where the unknown distribution is guaranteed to have some special
structure, such as being monotone, k-modal or a “k-histogram” over [N ] [BKR04, DDS+13, ILR12],
or being monotone over {0, 1}n [RS09] or over other posets [BFRV11], and have obtained significantly
more sample-efficient algorithms using these additional assumptions.

2There is a more recent full version of this work [BFR+10] and we henceforth reference this recent version.
3To verify this, consider the family of all distributions that are uniform over half of the domain, and 0 elsewhere.

Each distribution in this family is Θ(1)-far from the uniform distribution. However, it is not possible to distinguish
with sufficiently high probability between the uniform distribution and a distribution selected randomly from this
family, given a sample of size

√
N/c (for a sufficiently large constant c > 1). This is the case because for the uniform

distribution as well as each distribution in this family, the probability of observing the same element more than once
is very small. Conditioned on such a collision event not occurring, the samples are distributed identically.
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1.2 Our model: Conditional sampling

In this work we pursue a different line of investigation: rather than restricting the class of probability
distributions under consideration, we consider testing algorithms that may use a more powerful
form of access to the unknown distribution D. This is a conditional sampling oracle, which allows
the algorithm to obtain a draw from DS , the conditional distribution of D restricted to a subset S
of the domain, (where S is specified by the algorithm). More precisely, we have:

Definition 1 Fix a distribution D over [N ]. A COND oracle for D, denoted CONDD, is defined as
follows: The oracle is given as input a query set S ⊆ [N ] that has D(S) > 0. The oracle returns an
element i ∈ S, where the probability that element i is returned is DS(i) = D(i)/D(S), independently
of all previous calls to the oracle.4

For compatibility with our CONDD notation we will write SAMPD to denote an oracle that
takes no input and, each time it is invoked, returns an element from [N ] drawn according to D
independently from all previous draws. This is the sample access to D that is used in the standard
model of testing distributions, and this is of course the same as a call to CONDD([N ]).

Motivation and Discussion. The first motivation for studying the COND model is to capture
scenarios that arise in application areas (e.g., in biology or chemistry) where the parameters of
some experiment can be adjusted so as to restrict the range of possible outcomes. For example,
a scientist growing bacteria or yeast cells in a controlled environment may be able to deliberately
introduce environmental factors that allow only cells with certain desired characteristics to survive,
corresponding to restricting the distribution of all experimental outcomes to a pre-specified subset.

A second, purely theoretical motivation, is that the study of the COND model may further our
understanding regarding what forms of information (beyond standard sampling) can be helpful for
testing properties of distributions. In both learning and property testing it is generally interesting
to understand how much power algorithms can gain by making queries, and COND queries are a
natural type of query to investigate in the context of distributions. As we discuss in more detail
below, in several of our results we actually consider restricted versions of COND queries that do not
require the full power of obtaining conditional samples from arbitrary sets.

A third attractive feature of the COND model is that it enables a new level of “richness” for
algorithms that deal with probability distributions. In the standard model where only access to
SAMPD is provided, all algorithms must necessarily be non-adaptive, with the same initial step of
simply drawing a sample of points from SAMPD, and the difference between two algorithms comes
only from how they process their samples. In contrast, the essence of the COND model is to allow
algorithms to adaptively determine later query sets S based on the outcomes of earlier queries.

4Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i.e., the set S has zero
probability under D. While various definitional choices could be made to deal with this, we shall assume that in
such a case, the oracle (and hence the algorithm) outputs “failure” and terminates. This will never be a problem for
us throughout this paper, as (a) all of our lower bounds will deal only with distributions that have D(i) > 0 for all
i ∈ [N ], and (b) in all of our algorithms CONDD(S) will only ever be called on sets S which are “guaranteed” to have
D(S) > 0. (More precisely, each time an algorithm calls CONDD(S) it will either be on the set S = [N ], or will be on
a set S which contains an element i which has been returned as the output of an earlier call to CONDD.)
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Given the above motivations, the central question is whether the COND model enables significantly
more efficient algorithms than are possible in the weaker SAMP model. Our results (see Section 1.3)
show that this is indeed the case.

Before detailing our results, we note that many of our results will in fact deal with a weaker
variant of the COND model, which we now describe. In designing COND-model algorithms it is
obviously desirable to have algorithms that only invoke the COND oracle on query sets S which are
“simple” in some sense. Of course there are many possible notions of “simplicity”; in this work we
consider two such notions, corresponding to two restrictions of the general COND model, as follows:

• PCOND oracle: We define a PCOND (short for “pair-cond”) oracle for D as a restricted
version of CONDD that only accepts input sets S which are either S = [N ] (thus providing
the power of a SAMPD oracle) or S = {i, j} for some i, j ∈ [N ], i.e. sets of size two. The
PCOND oracle may be viewed as a “minimalist” variant of COND that essentially permits an
algorithm to compare the relative weights of two items under D (and to draw random samples
from D, by setting S = [N ]).

• ICOND oracle: We define an ICOND (short for “interval-cond”) oracle for D as a restricted
version of CONDD that only accepts input sets S which are intervals S = [a, b] = {a, a+1, . . . , b}
for some a ≤ b ∈ [N ] (note that taking a = 1, b = N this provides the power of a SAMPD
oracle). This is a natural restriction on COND queries in settings where the N points are
endowed with a total order.

1.3 Our results

We give a detailed study of a range of natural distribution testing problems in the COND model and
its variants described above, establishing both upper and lower bounds on their query complexity.
Our results show that the ability to do conditional sampling provides a significant amount of power
to property testers, enabling polylog(N)-query, or even constant-query, algorithms for problems
whose sample complexities in the standard model are NΩ(1); see Table 1. While we have considered a
variety of distribution testing problems in the COND model, our results are certainly not exhaustive,
and many directions remain to be explored; we discuss some of these in Section 9.

1.3.1 Testing distributions over unstructured domains

In this initial work on the COND model our main focus has been on the simplest (and, we think,
most fundamental) problems in distribution testing, such as testing whether D is the uniform
distribution U ; testing whether D = D∗ for an explicitly provided D∗; testing whether D1 = D2

given CONDD1 and CONDD2 oracles; and estimating the variation distance between D and the
uniform distribution. In what follows dTV denotes the variation distance.

Testing uniformity. We give a PCONDD algorithm that tests whetherD = U versus dTV(D,U) ≥ ε
using Õ(1/ε2) calls to PCONDD, independent of N . We show that this PCONDD algorithm is nearly
optimal by proving that any CONDD tester (which may use arbitrary subsets S ⊆ [N ] as its query
sets) requires Ω(1/ε2) queries for this testing problem.

3



Problem Our results Standard model

Is D uniform?

CONDD Ω
(

1
ε2

)
PCONDD Õ

(
1
ε2

)
ICONDD

Õ
(

log3N
ε3

)
Θ
(√

N
ε2

)
[GR00, BFR+10, Pan08]

Ω
(

logN
log logN

)

Is D = D∗ for a known D∗?

CONDD Õ
(

1
ε4

)
PCONDD

Õ
(

log4N
ε4

)
Θ̃
(√

N
ε2

)
[BFF+01, Pan08]

Ω
(√

logN
log logN

)
Are D1, D2 (both unknown)
equivalent?

CONDD1,D2 Õ
(

log5N
ε4

)
Õ
(
N2/3

ε8/3

)
[BFR+10]

PCONDD1,D2 Õ
(

log6N
ε21

)
Ω
(
N2/3

)
[BFR+10, Val11]

How far is D from uniform? PCONDD Õ
(

1
ε20

) O
(

1
ε2

N
logN

)
[VV11, VV10b]

Ω
(

N
logN

)
[VV11, VV10a]

Table 1: Comparison between the COND model and the standard model on a variety of distribution
testing problems over [N ]. The upper bounds for the first three problems are for testing whether
the property holds (i.e. dTV = 0) versus dTV ≥ ε, and for the last problem the upper bound is for
estimating the distance to uniformity to within an additive ±ε.

Testing equivalence to a known distribution. As described above, for the simple problem
of testing uniformity we have an essentially optimal PCOND testing algorithm and a matching
lower bound. Given these results it is natural to turn to the more challenging question of testing
whether D (accessible via a PCOND or COND oracle) is equivalent to D∗, where D∗ is an arbitrary
“known” distribution over [N ] that is explicitly provided to the testing algorithm at no cost (say
as a vector (D∗(1), . . . , D∗(N)) of probability values). For this “known D∗” problem, we give a
PCONDD algorithm testing whether D = D∗ versus dTV(D,D∗) ≥ ε using Õ((logN)4/ε4) queries.
We further show that the (logN)Ω(1) query complexity of our PCONDD algorithm is inherent in the
problem, by proving that any PCONDD algorithm for this problem must use

√
log(N)/ log log(N)

queries for constant ε.

Given these (logN)Θ(1) upper and lower bounds on the query complexity of PCONDD-testing
equivalence to a known distribution, it is natural to ask whether the full CONDD oracle provides
more power for this problem. We show that this is indeed the case, by giving a Õ(1/ε4)-query
algorithm (independent of N) that uses unrestricted CONDD queries.

Testing equivalence between two unknown distributions. We next consider the more
challenging problem of testing whether two unknown distributions D1, D2 over [N ] (available via
CONDD1 and CONDD2 oracles) are identical versus ε-far. We give two very different algorithms for
this problem. The first uses PCOND oracles and has query complexity Õ((logN)6/ε21), while the
second uses COND oracles and has query complexity Õ((logN)5/ε4). We believe that the proof
technique of the second algorithm is of independent interest, since it shows how a CONDD oracle
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can efficiently simulate an “approximate EVALD oracle.” (An EVALD oracle takes as input a point
i ∈ [N ] and outputs the probability mass D(i) that D puts on i; we briefly explain our notion of
approximating such an oracle in Subsection 1.3.3.)

Estimating the distance to uniformity. We also consider the problem of estimating the variation
distance between D and the uniform distribution U over [N ], to within an additive error of ±ε. In
the standard SAMPD model this is known to be a very difficult problem, with an Ω(N/ logN) lower
bound established in [VV11, VV10a]. In contrast, we give a PCONDD algorithm that makes only
Õ(1/ε20) queries, independent of N .

1.3.2 Testing distributions over structured domains

In the final portion of the paper we view the domain [N ] as an ordered set 1 ≤ · · · ≤ N . (Note that
in all the testing problems and results described previously, the domain could just as well have been
viewed as an unstructured set of abstract points x1, . . . , xN .) With this perspective it is natural to
consider ICOND algorithms.

We give an Õ((logN)3/ε3)-query ICONDD algorithm for testing whether D is uniform versus
ε-far from uniform. We show that a (logN)Ω(1) query complexity is inherent for uniformity testing
using ICONDD, by proving an Ω (logN/ log logN)-query ICONDD lower bound.

1.3.3 A high-level discussion of our algorithms

To maintain focus here we describe only the ideas behind our algorithms; intuition for each of our
lower bounds can be found in an informal discussion preceding the formal proof, see the beginnings
of Sections 4.2, 5.2, and 8.2. As can be seen in the following discussion, our algorithms share some
common themes, though each has its own unique idea/technique, which we emphasize below.

Our simplest testing algorithm is the algorithm for testing whether D is uniform over [N ]
(using PCONDD queries). The algorithm is based on the observation that if a distribution is ε-far
from uniform, then the total weight (according to D) of points y ∈ [N ] for which D(y) ≥ (1+Ω(ε))/N
is Ω(ε), and the fraction of points x ∈ [N ] for which D(x) ≤ (1−Ω(ε))/N is Ω(ε). If we obtain such
a pair of points (x, y), then we can detect this deviation from uniformity by performing Θ(1/ε2)
PCONDD queries on the pair. Such a pair can be obtained with high probability by making Θ(1/ε)
SAMPD queries (so as to obtain y) as well as selecting Θ(1/ε) points uniformly (so as to obtain x).
This approach yields an algorithm whose complexity grows like 1/ε4. To actually get an algorithm
with query complexity Õ(1/ε2) (which, as our lower bound shows, is tight), a slightly more refined
approach is applied.

When we take the next step to testing equality to an arbitrary (but fully specified)
distribution D∗, the abovementioned observation generalizes so as to imply that if we sample
Θ(1/ε) points from D and Θ(1/ε) from D∗, then with high probability we shall obtain a pair of
points (x, y) such that D(x)/D(y) differs by at least (1± Ω(ε)) from D∗(x)/D∗(y). Unfortunately,
this cannot necessarily be detected by a small number of PCONDD queries since (as opposed to the
uniform case), D∗(x)/D∗(y) may be very large or very small. However, we show that by sampling
from both D and D∗ and allowing the number of samples to grow with logN , with high probability
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we either obtain a pair of points as described above for which D∗(x)/D∗(y) is a constant, or we
detect that for some set of points B we have that |D(B)−D∗(B)| is relatively large.5

As noted previously, we prove a lower bound showing that a polynomial dependence on logN is
unavoidable if only PCONDD queries (in addition to standard sampling) are allowed. To obtain
our more efficient poly(1/ε)-queries algorithm, which uses more general CONDD queries, we extend
the observation from the uniform case in a different way. Specifically, rather than comparing the
relative weight of pairs of points, we compare the relative weight of pairs in which one element is a a
point and the other is a subset of points. Roughly speaking, we show how points can be paired with
subsets of points of comparable weight (according to D∗) such that the following holds. If D is far
from D∗, then by taking Õ(1/ε) samples from D and selecting subsets of points in an appropriate
manner (depending on D∗), we can obtain (with high probability) a point x and a subset Y such
that D(x)/D(Y ) differs significantly from D∗(X)/D∗(y) and D∗(x)/D∗(Y ) is a constant.

In our next step, to testing equality between two unknown distributions D1 and D2,
we need to cope with the fact that we no longer “have a hold” on a known distribution. Our PCOND
algorithm can be viewed as creating such a hold in the following sense. By sampling from D1 we
obtain (with high probability) a (relatively small) set of points R that cover the distribution D1.
By “covering” we mean that except for a subset having small weight according to D1, all points y
in [N ] have a representative r ∈ R, i.e. a point r such that D1(y) is close to D1(r). We then show
that if D2 is far from D1, then one of the following must hold: (1) There is relatively large weight,
either according to D1 or according to D2, on points y such that for some r ∈ R we have that D1(y)
is close to D1(r) but D2(y) is not sufficiently close to D2(r); (2) There exists a point r ∈ R such
that the set of points y for which D1(y) is close to D1(r) has significantly different weight according
to D2 as compared to D1. We note that this algorithm can be viewed as a variant of the PCOND
algorithm for the case when one of the distributions is known (where the “buckets” B, which were
defined by D∗ in that algorithm (and were disjoint), are now defined by the points in R (and are
not necessarily disjoint)).

As noted previously, our (general) COND algorithm for testing the equality of two (unknown)
distributions is based on a subroutine that estimates D(x) (to within (1±O(ε))) for a given point x
given access to CONDD. Obtaining such an estimate for every x ∈ [N ] cannot be done efficiently for
some distributions.6 However, we show that if we allow the algorithm to output UNKNOWN on some
subset of points with total weight O(ε), then the relaxed task can be performed using poly(logN, 1/ε)
queries, by performing a kind of randomized binary search “with exceptions”. This relaxed version,
which we refer to as an approximate EVAL oracle, suffices for our needs in distinguishing between
the case that D1 and D2 are the same distribution and the case in which they are far from each
other. It is possible that this procedure will be useful for other tasks as well.

The algorithm for estimating the distance to uniformity (which uses poly(1/ε) PCONDD

queries) is based on a subroutine for finding a reference point x together with an estimate D̂(x)
of D(x). A reference point should be such that D(x) is relatively close to 1/N (if such a point

5Here we use B for “Bucket”, as we consider a bucketing of the points in [N ] based on their weight according
to D∗. We note that bucketing has been used extensively in the context of testing properties of distributions, see
e.g. [BFR+10, BFF+01].

6As an extreme case consider a distribution D for which D(1) = 1 − φ and D(2) = · · · = D(n) = φ/(n − 1) for
some very small φ (which in particular may depend on n), and for which we are interested in estimating D(2). This
requires Ω(1/φ) queries.
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cannot be found then it is evidence that D is very far from uniform). Given a reference point
x (together with D̂(x)) it is possible to estimate the distance to uniformity by obtaining (using
PCOND queries) estimates of the ratio between D(x) and D(y) for poly(1/ε) uniformly selected
points y. The procedure for finding a reference point x together with D̂(x) is based on estimating
both the weight and the size of a subset of points y such that D(y) is close to D(x). The procedure
shares a common subroutine, Estimate-Neighborhood, with the PCOND algorithm for testing
equivalence between two unknown distributions.

Finally, the ICONDD algorithm for testing uniformity is based on a version of the approximate
EVAL oracle mentioned previously, which on one hand uses only ICONDD (rather than general
CONDD) queries, and on the other hand exploits the fact that we are dealing with the uniform
distribution rather than an arbitrary distribution.

1.4 The independent work [CFGM13]

In what follows we discuss the work of Chakraborty et al. [CFGM13], which was done independently
from our work, and was recently accepted to the ITCS conference (so that we learned about its
existence only a few days before the STOC submission deadline). Chakraborty et al. [CFGM13]
propose essentially the same COND model that we propose, differing only in what happens on query
sets S such that D(S) = 0. In our model such a query causes the COND oracle and algorithm to
return FAIL, while in their model such a query returns a uniform random i ∈ S. They present the
following results.

• An (adaptive) algorithm for testing uniformity that performs poly(1/ε) queries.7 The sets
on which the algorithms performs COND queries are of size linear in 1/ε. Recall that our
algorithm for this problem performs Õ(1/ε2) PCOND queries and that we show that every
algorithm must perform Ω(1/ε2) queries (when there is no restriction on the types of queries).
We note that their analysis uses the same observation that ours does regarding distributions
that are far from uniform (see the discussion in Subsection 1.3.3), but exploits it in a different
manner.

They also give a non-adaptive algorithm for this problem that performs poly(logN, 1/ε) COND
queries and show that Ω(log logN) is a lower bound on the necessary number of queries for
non-adaptive algorithms.

• An (adaptive) algorithm for testing whether D is equivalent to a specified distribution D∗

using poly(log∗N, 1/ε) COND queries. Recall that we give an algorithm for this problem that
performs Õ(1/ε4) COND queries.

They also give a non-adaptive algorithm for this problem that performs poly(logN, 1/ε) COND
queries.

• An (adaptive) algorithm for testing any label-invariant (i.e., invariant under permutations of
the domain) property that performs poly(logN, 1/ε) COND queries. As noted in [CFGM13],
this in particular implies an algorithm with this complexity for estimating the distance to

7The precise polynomial is not specified – we believe it is roughly 1/ε4 as it follows from an application of the
identity tester of [BFF+01] with distance Θ(ε2) on a domain of size O(1/ε).
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uniformity. Recall that we give an algorithm for this estimation problem that performs
poly(1/ε) PCOND queries.

The algorithm for testing any label-invariant property is based on learning a certain approx-
imation of the distribution D and in this process defining some sort of approximate EVAL
oracle. To the best of our understanding, our notion of an approximate EVAL oracle (which is
used to obtain one or our results for testing equivalence between two unknown distributions)
is quite different.

They also show that there exists a label-invariant property for which any adaptive algorithm
must perform Ω(

√
log logN) COND queries.

• Finally they show that there exist general properties that require Ω(n) COND queries.

2 Preliminaries

2.1 Definitions

Throughout the paper we shall work with discrete distributions over an N -element set whose
elements are denoted {1, . . . , N}; we write [N ] to denote {1, . . . , N} and [a, b] to denote {a, . . . , b}.
For a distribution D over [N ] we write D(i) to denote the probability of i under D, and for S ⊆ [N ]
we write D(S) to denote

∑
i∈S D(i). For S ⊆ [N ] such that D(S) > 0 we write DS to denote the

conditional distribution of D restricted to S, so DS(i) = D(i)
D(S) for i ∈ S and DS(i) = 0 for i /∈ S.

As is standard in property testing of distributions, throughout this work we measure the distance
between two distributions D1 and D2 using the total variation distance:

dTV (D1, D2) def=
1
2
‖D1 −D2‖1 =

1
2

∑
i∈[N ]

|D1(i)−D2(i)| = max
S⊆[N ]

|D1(S)−D2(S)|.

We may view a property P of distributions over [N ] as a subset of all distributions over [N ]
(consisting of all distributions that have the property). The distance from D to a property P,
denoted dTV(D,P), is defined as infD′∈P{dTV(D,D′)}.

We define testing algorithms for properties of distributions over [N ] as follows:

Definition 2 Let P be a property of distributions over [N ]. Let ORACLED be some type of oracle
which provides access to D. A q(ε,N)-query ORACLE testing algorithm for P is an algorithm
T which is given ε,N as input parameters and oracle access to an ORACLED oracle. For any
distribution D over [N ] algorithm T makes at most q(ε,N) calls to ORACLED, and:

• if D ∈ P then with probability at least 2/3 algorithm T outputs ACCEPT;

• if dTV(D,P) ≥ ε then with probability at least 2/3 algorithm T outputs REJECT.
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This definition can easily be extended to cover situations in which there are two “unknown”
distributions D1, D2 that are accessible via ORACLED1 and ORACLED2 oracles. In particular we
shall consider algorithms for testing whether D1 = D2 versus dTV(D1, D2) in such a setting. We
sometimes write TORACLED to indicate that T has access to ORACLED.

2.2 Useful tools

On several occasions we will use the data processing inequality for variation distance. This fun-
damental result says that for any two distributions D, D′, applying any (possibly randomized)
function to D and D′ can never increase their statistical distance; see e.g. part (iv) of Lemma 2 of
[Rey11] for a proof of this lemma.

Lemma 1 (Data Processing Inequality for Total Variation Distance) Let D, D′ be two
distributions over a domain Ω. Fix any randomized function8 F on Ω, and let F (D) be the
distribution such that a draw from F (D) is obtained by drawing independently x from D and f from
F and then outputting f(x) (likewise for F (D′)). Then we have

dTV(F (D), F (D′)) ≤ dTV(D,D′).

We next give several variants of Chernoff bounds (see e.g. Chapter 4 of [MR95]).

Theorem 1 Let Y1, . . . , Ym be m independent random variables that take on values in [0, 1], where
E[Yi] = pi, and

∑m
i=1 pi = P . For any γ ∈ (0, 1] we have

(additive bound) Pr

[
m∑
i=1

Yi > P + γm

]
, Pr

[
m∑
i=1

Yi < P − γm

]
≤ exp(−2γ2m) (1)

(multiplicative bound) Pr

[
m∑
i=1

Yi > (1 + γ)P

]
< exp(−γ2P/3) (2)

and

(multiplicative bound) Pr

[
m∑
i=1

Yi < (1− γ)P

]
< exp(−γ2P/2). (3)

The bound in Equation (2) is derived from the following more general bound, which holds from any
γ > 0:

Pr

[
m∑
i=1

Yi > (1 + γ)P

]
≤
(

eγ

(1 + γ)1+γ

)P
, (4)

and which also implies that for any B > 2eP ,

Pr

[
m∑
i=1

Yi > B

]
≤ 2−B . (5)

8Which can be seen as a distribution over functions over Ω.
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The following extension of the multiplicative bound is useful when we only have upper and/or
lower bounds on P (see Exercise 1.1 of [DP09]):

Corollary 2 In the setting of Theorem 1 suppose that PL ≤ P ≤ PH . Then for any γ ∈ (0, 1], we
have

Pr

[
m∑
i=1

Yi > (1 + γ)PH

]
< exp(−γ2PH/3) (6)

Pr

[
m∑
i=1

Yi < (1− γ)PL

]
< exp(−γ2PL/2) (7)

We will also use the following corollary of Theorem 1:

Corollary 3 Let 0 ≤ w1, . . . , wm ∈ R be such that wi ≤ κ for all i ∈ [m] where κ ∈ (0, 1].
Let X1, . . . , Xm be i.i.d. Bernoulli random variables with Pr[Xi = 1] = 1/2 for all i, and let
X =

∑m
i=1wiXi and W =

∑m
i=1wi. For any γ ∈ (0, 1],

Pr
[
X > (1 + γ)

W

2

]
< exp

(
−γ2W

6κ

)
and Pr

[
X < (1− γ)

W

2

]
< exp

(
−γ2W

4κ

)
,

and for any B > e ·W ,
Pr[X > B] < 2−B/κ .

Proof: Let w′i = wi/κ (so that w′i ∈ [0, 1]), let W ′ =
∑m

i=1w
′
i = W/κ, and for each i ∈ [m] let

Yi = w′iXi, so that Yi takes on values in [0, 1] and E[Yi] = w′i/2. Let X ′ =
∑m

i=1w
′
iXi =

∑m
i=1 Yi, so

that E[X ′] = W ′/2. By the definitions of W ′ and X ′ and by Equation (2), for any γ ∈ (0, 1],

Pr
[
X > (1 + γ)

W

2

]
= Pr

[
X ′ > (1 + γ)

W ′

2

]
< exp

(
−γ2W

′

6

)
= exp

(
−γ2W

6κ

)
, (8)

and similarly by Equation (3)

Pr
[
X < (1− γ)

W

2

]
< exp

(
−γ2W

4κ

)
. (9)

For B > e ·W = 2e ·W/2 we apply Equation (5) and get

Pr [X > B] = Pr
[
X ′ > B/κ

]
< 2−B/κ, (10)

as claimed.

3 Some useful procedures

In this section we describe some procedures that will be used by our algorithms.

10



3.1 The procedure Compare

We start by describing a procedure that estimates the ratio between the weights of two disjoint sets
of points by performing COND queries on the union of the sets. In the special case when each set is
of size one, the queries performed are PCOND queries.

Algorithm 1: Compare

Input: COND query access to a distribution D over [N ], disjoint subsets X,Y ⊂ [N ],
parameters η ∈ (0, 1], K ≥ 1, and δ ∈ (0, 1/2].

1. Perform Θ
(
K log(1/δ)

η2

)
CONDD queries on the set S = X ∪ Y , and let µ̂ be the fraction of

times that a point y ∈ Y is returned.

2. If µ̂ < 2
3 ·

1
K+1 , then return Low.

3. Else, if 1− µ̂ < 2
3 ·

1
K+1 , then return High.

4. Else return ρ = µ̂
1−µ̂ .

Lemma 2 Given as input two disjoint subsets of points X,Y together with parameters η ∈ (0, 1],
K ≥ 1, and δ ∈ (0, 1/2], as well as COND query access to a distribution D, the procedure Compare
(Algorithm 1) either outputs a value ρ > 0 or outputs High or Low, and satisfies the following:

1. If D(X)/K ≤ D(Y ) ≤ K ·D(X) then with probability at least 1− δ the procedure outputs a
value ρ ∈ [1− η, 1 + η]D(Y )/D(X);

2. If D(Y ) > K ·D(X) then with probability at least 1− δ the procedure outputs either High or a
value ρ ∈ [1− η, 1 + η]D(Y )/D(X);

3. If D(Y ) < D(X)/K then with probability at least 1− δ the procedure outputs either Low or a
value ρ ∈ [1− η, 1 + η]D(Y )/D(X).

The procedure performs O
(
K log(1/δ)

η2

)
COND queries on the set X ∪ Y .

Proof: The bound on the number of queries performed by the algorithm follows directly from the
description of the algorithm, and hence we turn to establish its correctness.

Let w(X) = D(X)
D(X)+D(Y ) and let w(Y ) = D(Y )

D(X)+D(Y ) . Observe that w(Y )
w(X) = D(Y )

D(X) and that for µ̂
as defined in Line 1 of the algorithm, E[µ̂] = w(Y ) and E[1− µ̂] = w(X). Also observe that for any
B ≥ 1, if D(Y ) ≥ D(X)/B, then w(Y ) ≥ 1

B+1 and if D(Y ) ≤ B ·D(X), then w(X) ≥ 1
B+1 .

Let E1 be the event that µ̂ ∈ [1 − η/3, 1 + η/3]w(Y ) and let E2 be the event that (1 − µ̂) ∈
[1−η/3, 1+η/3]w(X). Given the number of COND queries performed on the set X ∪Y , by applying
a multiplicative Chernoff bound (see Theorem 1), if w(Y ) ≥ 1

4K then with probability at least
1− δ/2 the event E1 holds, and if w(X) ≥ 1

4K , then with probability at least 1− δ/2 the event E2

holds. We next consider the three cases in the lemma statement.
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1. If D(X)/K ≤ D(Y ) ≤ KD(X), then by the discussion above, w(Y ) ≥ 1
K+1 , w(X) ≥ 1

K+1 ,
and with probability at least 1 − δ we have that µ̂ ∈ [1 − η/3, 1 + η/3]w(Y ) and (1 − µ̂) ∈
[1− η/3, 1 + η/3]w(X). Conditioned on these bounds holding,

µ̂ ≥ 1− η/3
K + 1

≥ 2
3
· 1
K + 1

and 1− µ̂ ≥ 2
3
· 1
K + 1

.

It follows that the procedure outputs a value ρ = µ̂
1−µ̂ ∈ [1 − η, 1 + η]w(Y )

w(X) as required by
Item 1.

2. If D(Y ) > K ·D(X), then we consider two subcases.

(a) If D(Y ) > 3K ·D(X), then w(X) < 1
3K+1 , so that by a multiplicative Chernoff bound

(stated in Corollary 2), with probability at least 1− δ we have that

1− µ̂ < 1 + η/3
3K + 1

≤ 4
3
· 1

3K + 1
≤ 2

3
· 1
K + 1

,

causing the algorithm to output High. Thus Item 2 is established for this subcase.
(b) If K ·D(X) < D(Y ) ≤ 3K ·D(X), then w(X) ≥ 1

3K+1 and w(Y ) ≥ 1
2 , so that the events

E1 and E2 both hold with probability at least 1− δ. Assume that these events in fact
hold. This implies that µ̂ ≥ 1−η/3

2 ≥ 2
3 ·

1
K+1 , and the algorithm either outputs High or

outputs ρ = µ̂
1−µ̂ ∈ [1− η, 1 + η]w(Y )

w(X) , so Item 2 is established for this subcase as well.

3. If D(Y ) < D(X)/K, so that D(X) > K ·D(Y ), then the exact same arguments are applied
as in the previous case, just switching the roles of Y and X and the roles of µ̂ and 1− µ̂ so as
to establish Item 3.

We have thus established all items in the lemma.

3.2 The procedure Estimate-Neighborhood

In this subsection we describe a procedure that, given a point x, provides an estimate of the weight
of a set of points y such that D(y) is similar to D(x). In order to specify the behavior of the
procedure more precisely, we introduce the following notation. For a distribution D over [N ], a
point x ∈ [N ] and a parameter γ ∈ [0, 1], let

UDγ (x) def=
{
y ∈ [N ] :

1
1 + γ

D(x) ≤ D(y) ≤ (1 + γ)D(x)
}

(11)

denote the set of points whose weight is “γ-close” to the weight of x. If we take a sample of points
distributed according to D, then the expected fraction of these points that belong to UDγ (x) is
D(UDγ (x)). If this value is not too small, then the actual fraction in the sample is close to the
expected value. Hence, if we could efficiently determine for any given point y whether or not it
belongs to UDγ (x), then we could obtain a good estimate of D(UDγ (x)). The difficulty is that it is
not possible to perform this task efficiently for “boundary” points y such that D(y) is very close
to (1 + γ)D(x) or to 1

1+γD(x). However, for our purposes, it is not important that we obtain the
weight and size of UDγ (x) for a specific γ, but rather it suffices to do so for γ in a given range, as
stated in the next lemma.
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Lemma 3 Given as input a point x together with parameters κ, β, η, δ ∈ (0, 1/2] as well as PCOND
query access to a distribution D, the procedure Estimate-Neighborhood (Algorithm 2) outputs a
pair (ŵ, α) ∈ [0, 1]× (κ, 2κ) such that α is uniformly distributed in {κ+ iθ}κ/θ−1

i=0 for θ = κηβδ
64 , and

such that the following holds:

1. If D(UDα (x)) ≥ β, then with probability at least 1− δ we have ŵ ∈ [1− η, 1 + η] ·D(UDα (x)),
and D(UDα+θ(x) \ UDα (x)) ≤ ηβ/16;

2. If D(UDα (x)) < β, then with probability at least 1− δ we have ŵ ≤ (1 +η) ·β, and D(UDα+θ(x)\
UDα (x)) ≤ ηβ/16.

The number of PCOND queries performed by the procedure is O
(

log(1/δ)·log(log(1/δ)/(βη2))
κ2η4β3δ2

)
.

Algorithm 2: Estimate-Neighborhood

Input: PCOND query access to a distribution D over [N ], a point x ∈ [N ] and parameters
κ, β, η, δ ∈ (0, 1/2]

1: Set θ = κηβδ
64 and r = κ

θ = 64
ηβδ .

2: Select a value α ∈ {κ+ iθ}r−1
i=0 uniformly at random.

3: Call the SAMPD oracle Θ(log(1/δ)/(βη2)) times and let S be the set of points obtained.
4: For each point y in S call CompareD({x}, {y}, θ/4, 4, δ/(4|S|)) (if a point y appears more

than once in S, then Compare is called only once on y).
5: Let ŵ be the fraction of occurrences of points y in S for which Compare returned a value
ρ(y) ∈ [1/(1 + α+ θ/2), (1 + α+ θ/2)]. (That is, S is viewed as a multiset.)

6: Return (ŵ, α).

Proof of Lemma 3: The number of PCOND queries performed by Estimate-Neighborhood
is the size of S times the number of PCOND queries performed in each call to Compare. By
the setting of the parameters in the calls to Compare, the total number of PCOND queries is
O
(

(|S|)·log |S|/δ)
θ2

)
= O

(
log(1/δ)·log(log(1/δ)//(βη2))

κ2η4β3δ2

)
. We now turn to establishing the correctness of the

procedure.

Since D and x are fixed, in what follows we shall use the shorthand Uγ for UDγ (x). For

α ∈ {κ+ iθ}r−1
i=0 , let ∆α

def= Uα+θ \Uα. We next define several “desirable” events. In all that follows
we view S as a multiset.

1. Let E1 be the event that D(∆α) ≤ 4/(δr)). Since there are r disjoint sets ∆α for
α ∈ {κ+ iθ}r−1

i=0 , the probability that E1 occurs (taken over the uniform choice of α) is
at least 1− δ/4. From this point on we fix α and assume E1 holds.

2. The event E2 is that |S ∩ ∆α|/|S| ≤ 8/(δr) (that is, at most twice the upper bound on
the expected value). By applying the multiplicative Chernoff bound using the fact that
|S| = Θ(log(1/δ)/(βη2)) = Ω(log(1/δ) · (δr)), we have that PrS [E2] ≥ 1− δ/4.
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3. The event E3 is defined as follows: If D(Uα) ≥ β, then |S∩Uα|/|S| ∈ [1−η/2, 1+η/2] ·D(Uα),
and if D(Uα) < β, then |S ∩ Uα|/|S| < (1 + η/2) · β. Once again applying the multiplicative
Chernoff bound (for both cases) and using that fact that |S| = Θ(log(1/δ)/(βη2)), we have
that PrS [E3] ≥ 1− δ/4.

4. Let E4 be the event that all calls to Compare return an output as specified in Lemma 2. Given
the setting of the confidence parameter in the calls to Compare we have that Pr[E4] ≥ 1−δ/4
as well.

Assume from this point on that events E1 through E4 all hold where this occurs with probability
at least 1 − δ. By the definition of ∆α and E1 we have that D(Uα+θ \ Uα) ≤ 4/(δr) = ηβ/16,
as required (in both items of the lemma). Let T be the (multi-)subset of points y in S for
which Compare returned a value ρ(y) ∈ [1/(1 + α + θ/2), (1 + α + θ/2)] (so that ŵ, as defined
in the algorithm, equals |T |/|S|). Note first that conditioned on E4 we have that for every
y ∈ U2κ it holds that the output of Compare when called on {x} and {y}, denoted ρ(y), satisfies
ρ(y) ∈ [1 − θ/4, 1 + θ/4](D(y)/D(x)), while for y /∈ U2κ either Compare outputs High or Low
or it outputs a value ρ(y) ∈ [1 − θ/4, 1 + θ/4](D(y)/D(x)). This implies that if y ∈ Uα, then
ρ(y) ≤ (1 + α) · (1 + θ/4) ≤ 1 + α+ θ/2 and ρ(y) ≥ (1 + α)−1 · (1− θ/4) ≥ (1 + α+ θ/2)−1, so that
S ∩Uα) ⊆ T . On the other hand, if y /∈ Uα+θ then either ρ(y) > (1 +α+ θ) · (1− θ/4) ≥ 1 +α+ θ/2
or ρ(y) < (1 + α+ θ)−1 · (1 + θ/4) ≤ (1 + α+ θ/2)−1 so that T ⊆ S ∩ Uα+θ. Combining the two we
have:

S ∩ Uα ⊆ T ⊆ S ∩ Uα+θ . (12)

Recalling that ŵ = |T |
|S| , the left-hand side of Equation (12) implies that

ŵ ≥ |S ∩ Uα|
|S|

, (13)

and by E1 and E2, the right-hand-side of Equation (12) implies that

ŵ ≤
|S ∩ Uα)|
|S|

+
8
δr
≤ |S ∩ Uα|

|S|
+
βη

8
. (14)

We consider the two cases stated in the lemma:

1. If D(Uα) ≥ β, then by Equation (13), Equation (14) and (the first part of) E3, we have that
ŵ ∈ [1− η, 1 + η] ·D(Uα).

2. If D(Uα) < β, then by Equation (14) and (the second part of) E3, we have that ŵ ≤ (1 + η)β.

The lemma is thus established.

4 Algorithms and lower bounds for testing uniformity

4.1 A Õ(1/ε2)-query PCOND algorithm for testing uniformity

In this subsection we present an algorithm PCONDD-Test-Uniform and prove the following
theorem:
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Theorem 4 PCONDD-Test-Uniform is a Õ(1/ε2)-query PCONDD testing algorithm for unifor-
mity, i.e. it outputs ACCEPT with probability at least 2/3 if D = U and outputs REJECT with
probability at least 2/3 if dTV(D,U) ≥ ε.

Intuition. For the sake of intuition we first describe a simpler approach that yields a Õ(1/ε4)-query
algorithm, and then build on those ideas to obtain our real algorithm with its improved Õ(1/ε2)
bound. Fix D to be a distribution over [N ] that is ε-far from uniform. Let

H =
{
h ∈ [N ]

∣∣∣∣ D(h) ≥ 1
N

}
and L =

{
` ∈ [N ]

∣∣∣∣ D(`) <
1
N

}
.

It is easy to see that since D is ε-far from uniform, we have∑
h∈H

(
D(h)− 1

N

)
=
∑
`∈L

(
1
N
−D(`)

)
≥ ε

2
. (15)

From this it is not hard to show that

(i) many elements of [N ] must be “significantly light” in the following sense: Define L′ ⊆ L to be
L′ =

{
` ∈ [N ]

∣∣ D(`) < 1
N −

ε
4N

}
. Then it must be the case that |L′| ≥ (ε/4)N.

(ii) D places significant weight on elements that are “significantly heavy” in the following sense:
Define H ′ ⊆ H to be H ′ =

{
h ∈ [N ]

∣∣ D(h) ≥ 1
N + ε

4N

}
. Then it must be the case that

D(H ′) ≥ (ε/4).

Using (i) and (ii) it is fairly straightforward to give a O(1/ε4)-query PCONDD testing algorithm
as follows: we can get a point in L′ with high probability by randomly sampling O(1/ε) points
uniformly at random from [N ], and we can get a point in H ′ with high probability by drawing
O(1/ε) points from SAMPD. Then at least one of the O(1/ε2) pairs that have one point from the
first sample and one point from the second will have a multiplicative factor difference of 1 + Ω(ε)
between the weight under D of the two points, and this can be detected by calling the procedure
Compare (see Subsection 3.1). Since there are O(1/ε2) pairs and for each one the invocation of
Compare uses Õ(1/ε2) queries, the overall sample complexity of this simple approach is Õ(1/ε4).

Our actual algorithm PCONDD-Test-Uniform for testing uniformity extends the above ideas
to get a Õ(1/ε2)-query algorithm. More precisely, the algorithm works as follows: it first draws a
“reference sample” of O(1) points uniformly from [N ]. Next, repeatedly for O

(
log 1

ε

)
iterations, the

algorithm draws two other samples, one uniformly from [N ] and the other from SAMPD. (These
samples have different sizes at different iterations; intuitively, each iteration is meant to deal with
a different “scale” of probability mass that points could have under D.) At each iteration it then
uses Compare to do comparisons between pairs of elements, one from the reference sample and the
other from one of the two other samples. If D is ε-far from uniform, then with high probability at
some iteration the algorithm will either draw a point from SAMPD that has “very big” mass under
D, or draw a point from the uniform distribution over [N ] that has “very small” mass under D,
and this will be detected by the comparisons to the reference points. Choosing the sample sizes and
parameters for the Compare calls carefully at each iteration yields the improved query bound.
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Algorithm 3: PCONDD-Test-Uniform

Input: error parameter ε > 0; query access to PCONDD oracle
1: Set t = log(4

ε ) + 1.
2: Select q = Θ(1) points i1, . . . , iq independently and uniformly from [N ].
3: for j = 1 to t do
4: Call the SAMPD oracle sj = Θ

(
2j · t

)
times to obtain points h1, . . . , hsj distributed

according to D.
5: Select sj points `1, . . . , `sj independently and uniformly from [N ].
6: for all pairs (x, y) = (ir, hr′) and (x, y) = (ir, `r′) (where 1 ≤ r ≤ q, 1 ≤ r′ ≤ sj) do
7: Call CompareD({x}, {y},Θ(ε2j), 2, exp−Θ(t)).
8: if the Compare call does not return a value in [1

2 − 2j−5 ε
4 ,

1
2 + 2j−5 ε

4 ] then
9: output REJECT (and exit).

10: end if
11: end for
12: end for
13: Output ACCEPT

Let mj denote the number of PCONDD queries used to run CompareD in a given execution of
Line 7 during the j-th iteration of the outer loop. By the setting of the parameters in each such call
and Lemma 2, mj = O

(
t

ε222j

)
. It is easy to see that the algorithm only performs PCONDD queries

and that the total number of queries that the algorithm performs is

O

 t∑
j=1

q · sj ·mj

 = O

 t∑
j=1

2j log
(

1
ε

)
·

log(1
ε )

ε222j

 = O

(
(log(1

ε ))
2

ε2

)
.

We prove Theorem 4 by arguing completeness and soundness below.

Completeness: Suppose that D is the uniform distribution. Then for any fixed pair of points
(x, y), Lemma 2 implies that the call to Compare on {x}, {y} in Line 7 causes the algorithm to
output REJECT in Line 9 with probability at most e−Θ(t) = poly(ε). By taking a union bound over
all poly(1/ε) pairs of points considered by the algorithm, the algorithm will accept with probability
at least 2/3, as required.

Soundness: Now suppose that D is ε-far from uniform (we assume throughout the analysis that
ε = 1/2k for some integer k, which is clearly without loss of generality). We define H,L as above
and further partition H and L into “buckets” as follows: for j = 1, . . . , t− 1 = log(4

ε ), let

Hj
def=
{
h

∣∣∣∣ (1 + 2j−1 · ε
4

)
· 1
N
≤ D(h) <

(
1 + 2j · ε

4

)
· 1
N

}
,

and

Lj
def=
{
`

∣∣∣∣ (1− 2j · ε
4

)
· 1
N
< D(`) ≤

(
1− 2j−1 · ε

4

)
· 1
N

}
.

Also define

H0
def=
{
h

∣∣∣∣ 1
N
≤ D(h) <

(
1 +

ε

4

)
· 1
N

}
, L0

def=
{
`

∣∣∣∣ (1− ε

4

)
· 1
N
< D(`) <

1
N

}
,
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and

Ht
def=
{
h

∣∣∣∣ D(h) ≥ 2
N

}
, Lt

def=
{
`

∣∣∣∣ D(`) ≤ 1
2N

}
.

First observe that by the definition of H0 and L0, we have∑
h∈H0

(
D(h)− 1

N

)
≤ ε

4
and

∑
`∈L0

(
1
N
−D(`)

)
≤ ε

4
.

Therefore (by Equation (15)) we have

t∑
j=1

∑
h∈Hj

(
D(h)− 1

N

)
≥ ε

4
and

t∑
j=1

∑
`∈Lj

(
1
N
−D(`)

)
≥ ε

4
.

This implies that for some 1 ≤ j(H) ≤ t, and some 1 ≤ j(L) ≤ t we have∑
h∈Hj(H)

(
D(h)− 1

N

)
≥ ε

4t
and

∑
`∈Lj(L)

(
1
N
−D(`)

)
≥ ε

4t
. (16)

The rest of the analysis is divided into two cases depending on whether |L| ≥ N
2 or |H| > N

2 .

Case 1: |L| ≥ N
2 . In this case, with probability at least 99/100, in Line 2 the algorithm will select

at least one point ir ∈ L. We consider two subcases: j(H) = t, and j(H) ≤ t− 1.

• j(H) = t: In this subcase, by Equation (16) we have that
∑

h∈Hj(H)
D(h) ≥ ε

4t . This implies

that when j = j(H) = t = log(4
ε ) + 1, so that sj = st = Θ

(
t
ε

)
, with probability at least

99/100 the algorithm selects a point hr′ ∈ Ht in Line 4. Assume that indeed such a point hr′
is selected. Since D(hr′) ≥ 2

N , while D(ir) < 1
N , Lemma 2 implies that with probability at

least 1− poly(ε) the Compare call in Line 7 outputs either High or a value that is at least
7
12 = 1

2 + 1
12 . Since 7

12 >
1
2 + 2j−5 ε

4 for j = t, the algorithm will output REJECT in Line 9.

• j(H) < t: By Equation (16) and the definition of the buckets, we have∑
h∈Hj(H)

((
1 + 2j(H) ε

4

) 1
N
− 1
N

)
≥ ε

4t
,

implying that
∣∣Hj(H)

∣∣ ≥ N
2j(H)t

so that D(Hj(H)) ≥ 1
2j(H)t

. Therefore, when j = j(H) so that
sj = Θ

(
2j(H)t

)
, with probability at least 99/100 the algorithm will get a point hr′ ∈ Hj(H) in

Line 4. Assume that indeed such a point hr′ is selected. Since D(hr′) ≥
(
1 + 2j(H)−1 ε

4

)
1
N ,

while D(ir) ≤ 1
N , for αj(H) = 2j(H)−1 ε

4 , we have

D(hr′)
D(ir)

≥ 1 + αj(H) .

Since Compare is called in Line 7 on the pair {ir}, {hr′} with the “δ” parameter set to Θ(ε2j),
with probability 1− poly(ε) the algorithm outputs REJECT as a result of this Compare call.
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Case 2: |H| > N
2 . This proceeds similarly to Case 1. In this case we have that with high constant

probability the algorithm selects a point ir ∈ H in Line 2. Here we consider the subcases j(L) = t
and j(L) ≤ t− 1. In the first subcase we have that

∑
`∈Lt

1
N ≥

ε
4t , so that |Lt| ≥ ( ε4t)n, and in the

second case we have that
∑

`∈Lj(L)
(2j(L) ε

4) 1
N ≥

ε
4t , so that

∣∣Lj(L)

∣∣ ≥ N
2j(L)t

. The analysis of each
subcase is similar to Case 1.This concludes the proof of Theorem 4.

4.2 An Ω(1/ε2) lower bound for CONDD algorithms that test uniformity

In this subsection we give a lower bound showing that the query complexity of the PCONDD

algorithm of the previous subsection is essentially optimal, even for algorithms that may make
general CONDD queries:

Theorem 5 Any CONDD algorithm for testing whether D = U versus dTV(D,U) ≥ ε must make
Ω(1/ε2) queries.

The high-level idea behind Theorem 5 is to reduce it to the well-known fact that distinguishing a
fair coin from a (1

2 + 4ε)-biased coin requires Ω
(

1
ε2

)
coin tosses. We show that any q-query algorithm

CONDD testing algorithm A can be transformed into an algorithm A′ that successfully distinguishes
q tosses of a fair coin from q tosses of a (1

2 + 4ε)-biased coin.

Proof of Theorem 5: First note that we may assume without loss of generality that 0 < ε ≤ 1/8.
Let A be any q-query algorithm that makes CONDD queries and tests whether D = U versus
dTV(D,U) ≥ ε. We may assume without loss of generality that in every possible execution algorithm
A makes precisely q queries (this will be convenient later).

Let DNo be the distribution that has DNo(i) = 1+2ε
N for each i ∈

[
1, N2

]
and has DNo(i) = 1−2ε

N

for each i ∈
[
N
2 + 1, N

]
. (This is the “no”-distribution for our lower bound; it is ε-far in variation

distance from the uniform distribution U .) By Definition 2, it must be the case that

Z :=
∣∣∣Pr
[
ACONDDNo outputs ACCEPT

]
− Pr

[
ACONDU outputs ACCEPT

]∣∣∣ ≥ 1/3.

The proof works by showing that given A as described above, there must exist an algorithm A′

with the following properties: A′ is given as input a q-bit string (b1, . . . , bq) ∈ {0, 1}q. Let D0 denote
the uniform distribution over {0, 1}q and let D4ε denote the distribution over {0, 1}q in which each
coordinate is independently set to 1 with probability 1/2 + 4ε. Then algorithm A′ has∣∣Prb∼D0 [A′(b) outputs ACCEPT]− |Prb∼D4ε [A

′(b) outputs ACCEPT]
∣∣ = Z. (17)

Given (17), by the data processing inequality for total variation distance (Lemma 1) we have that
Z ≤ dTV(D0, D4ε). It is easy to see that dTV(D0, D4ε) is precisely equal to the variation distance
dTV(Bin(q, 1/2),Bin(q, 1/2 + 4ε)). However, in order for the variation distance between these two
binomial distributions to be as large as 1/3 it must be the case that q ≥ Ω(1/ε2):
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Fact 4 (Distinguishing Fair from Biased Coin) Suppose m ≤ c
ε2

, with c a sufficiently small
constant and ε ≤ 1/8. Then,

dTV

(
Bin
(
m,

1
2

)
,Bin

(
m,

1
2

+ 4ε
))
≤ 1

3
.

(Fact 4 is well known; it follows, for example, as an immediate consequence of Equations (2.15)
and (2.16) of [AJ06].) Thus to prove Theorem 5 it remains only to describe algorithm A′ and prove
Equation (17).

As suggested above, algorithm A′ uses algorithm A; in order to do this, it must perfectly simulate
the CONDD oracle that A requires, both in the case when D = U and in the case when D = DNo.
We show below that when its input b is drawn from D0 then A′ can perfectly simulate the execution
of A when it is run on the CONDU oracle, and when b is drawn from D4ε then A′ can perfectly
simulate the execution of A when it is run on the CONDDNo

oracle.

Fix any step 1 ≤ t ≤ q. We now describe how A′ perfectly simulates the t-th step of the execution
of A (i.e. the t-th call to CONDD that A makes, and the response of CONDD). We may inductively
assume that A′ has perfectly simulated the first t− 1 steps of the execution of A.

For each possible prefix of t− 1 query-response pairs to CONDD

PREFIX = ((S1, s1), ..., (St−1, st−1))

(where each Si ⊆ [N ] and each si ∈ Si), there is some distribution PA,PREFIX over possible t-th
query sets St that A would make given that its first t− 1 query-response pairs were PREFIX . So
for a set S ⊆ [n] and a possible prefix PREFIX , the value PA,PREFIX (S) is the probability that
algorithm A, having had the transcript of its execution thus far be PREFIX , generates set St as its
t-th query set. For any query set S ⊆ [n], let us write S as a disjoint union S = S0 q S1, where
S0 = S ∩

[
1, N2

]
and S1 = S ∩ [N2 + 1, N ]. We may assume that every query S ever used by A

has |S0| , |S1| ≥ 1 (for otherwise A could perfectly simulate the response of CONDD(S) whether
D were U or DNo by simply choosing a uniform point from S, so there would be no need to call
CONDD on such an S). Thus we may assume that PA,PREFIX (S) is nonzero only for sets S that
have |S0|, |S1| ≥ 1.

Consider the bit bt ∈ {0, 1}. As noted above, we inductively have that (whether D is U or DNo)
the algorithm A′ has perfectly simulated the execution of A for its first t− 1 query-response pairs;
in this simulation some prefix PREFIX = ((S1, s1), . . . , (St−1, st−1)) of query-response pairs has
been constructed. If b = (b1, . . . , bq) is distributed according to D0 then PREFIX is distributed
exactly according to the distribution of A’s prefixes of length t − 1 when A is run with CONDU ,
and if b = (b1, . . . , bq) is distributed according to D4ε then the distribution of PREFIX is exactly
the distribution of A’s prefixes of length t− 1 when A is run with CONDDNo

.

Algorithm A′ simulates the t-th stage of the execution of A as follows:

1. Randomly choose a set S ⊆ [n] according to the distribution PA,PREFIX ; let S = S0 q S1 be
the set that is selected. Let us write α(S) to denote |S′1|/|S′0| (so α(S) ∈ [2/N,N/2]).

2. If bt = 1 then set the bit σ ∈ {0, 1} to be 1 with probability ut and to be 0 with probability
1 − ut. If bt = 0 then set σ to be 1 with probability vt and to be 0 with probability 1 − vt.
(We specify the exact values of ut, vt below.)
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3. Set s to be a uniform random element of Sσ. Output the query-response pair (St, st) = (S, s).

It is clear that Step 1 above perfectly simulates the t-th query that algorithm A would make (no
matter what is the distribution D). To show that the t-th response is simulated perfectly, we must
show that

(i) if bt is uniform random over {0, 1} then s is distributed exactly as it would be distributed if
A were being run on CONDU and had just proposed S as a query to CONDU ; i.e. we must
show that s is a uniform random element of S1 with probability p(α) def= α

α+1 and is a uniform
random element of S0 with probability 1− p(α).

(ii) if bt ∈ {0, 1} has Pr[bt = 1] = 1/2 + 4ε, then s is distributed exactly as it would be distributed
if A were being run on CONDDNo

and had just proposed S as a query to CONDU ; i.e. we must

show that s is a uniform random element of S1 with probability q(α) def= α
α+(1+2ε)/(1−2ε) and is

a uniform random element of S0 with probability 1− q(α).

By (i), we require that
ut
2

+
vt
2

= p(α) =
α

α+ 1
, (18)

and by (ii) we require that(
1
2

+ 4ε
)
ut +

(
1
2
− 4ε

)
vt = q(α) =

α

α+ 1+2ε
1−2ε

(19)

It is straightforward to check that

ut =
α+ 2α2 + 4αε− 2α2ε

2 + 4α+ 2α2 + 4ε− 2α2ε
, vt =

3α+ 2α2 + 4αε− 2α2ε

2 + 4α+ 2α2 + 4ε− 2α2ε
,

satisfy the above equations, and that for 0 < α, 0 < ε ≤ 1/8 we have 0 ≤ u, v ≤ 1. So indeed A′

perfectly simulates the execution of A in all stages t = 1, . . . , q. Finally, after simulating the t-th
stage algorithm A′ outputs whatever is output by its simulation of A, so Equation (17) indeed holds.
This concludes the proof of Theorem 5.

5 Testing equivalence to a known distribution D∗

5.1 A poly(log n, 1/ε)-query PCONDD algorithm

In this subsection we present an algorithm PCOND-Test-Known and prove the following theorem:

Theorem 6 PCOND-Test-Known is a Õ((logN)4/ε4)-query PCONDD testing algorithm for test-
ing equivalence to a known distribution D∗. That is, for every pair of distributions D,D∗ over
[N ] (such that D∗ is fully specified and there is PCOND query access to D) the algorithm outputs
ACCEPT with probability at least 2/3 if D = D∗ and outputs REJECT with probability at least 2/3 if
dTV(D,D∗) ≥ ε.
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Intuition. Let D∗ be a fully specified distribution, and let D be a distribution that may be
accessed via a PCONDD oracle. The high-level idea of the PCOND-Test-Known algorithm is the
following: As in the case of testing uniformity, we shall try to “catch” a pair of points x, y such
that D(x)

D(y) differs significantly from D∗(x)
D∗(y) (so that calling CompareD on {x}, {y} will reveal this

difference). In the uniformity case, where D∗(z) = 1/N for every z (so that D∗(x)
D∗(x)+D∗(y) = 1/2), to

get a poly(1/ε)-query algorithm it was sufficient to show that sampling Θ(1/ε) points uniformly
(i.e., according to D∗) with high probability yields a point x for which D(x) < D∗(x) − Ω(ε/N),
and that sampling Θ(1/ε) points from SAMPD with high probability yields a point y for which
D(x) > D∗(y) + Ω(ε/N). However, for general D∗ it is not sufficient to get such a pair because
it is possible that D∗(y) could be much larger than D∗(x). If this were the case then it might
happen that both D∗(x)

D∗(y) and D(x)
D(y) are very small, so calling CompareD on {x}, {y} cannot efficiently

demonstrate that D∗(x)
D∗(y) differs from D(x)

D(y) .

To address this issue we partition the points into O(logN/ε) “buckets” so that within each
bucket all points have similar probability according to D∗. We show that if D is ε-far from D∗,
then either the probability weight of one of these buckets according to D differs significantly from
what it is according to D∗ (which can be observed by sampling from D), or we can get a pair {x, y}
that belong to the same bucket and for which D(x) is sufficiently smaller than D∗(x) and D(y) is
sufficiently larger than D∗(y). For such a pair Compare will efficiently give evidence that D differs
from D∗.

The algorithm and its analysis. We define some quantities that are used in the algorithm and
its analysis. Let η def= ε/c for some sufficiently large constant c that will be determined later. As
described above we partition the domain elements [N ] into “buckets” according to their probability
weight in D∗. Specifically, for j = 1, . . . , dlog(N/η) + 1e, we let

Bj
def= {x ∈ [N ] : 2j−1 · η/N ≤ D∗(x) < 2j · η/N}

and we let B0
def= {x ∈ [N ] : D∗(x) < η/N}. Let b def= dlog(N/η) + 1e + 1 denote the number of

buckets.

We further define Jh def= {j : D∗(Bj) ≥ η/b} to denote the set of indices of “heavy” buckets, and

let J ` def= {j : D∗(Bj) < η/b} denote the set of indices of “light” buckets. Note that we have∑
j∈J`∪{0}

D∗(Bj) < 2η. (20)

The query complexity of the algorithm is dominated by the number of PCONDD queries performed
in the executions of Compare, which by Lemma 2 is upper bounded by

O(s2 · b2 · (log s)/η2) = O

(
(log N

ε )4 · log
(
(log N

ε )/ε
)

ε4

)
.

We argue completeness and soundness below.

Completeness: Suppose that D = D∗. Since the expected value of D̂(Bj) (defined in Line 3) is
precisely D∗(Bj), for any fixed value of j ∈ {0, . . . , dlog(N/η) + 1e} an additive Chernoff bound
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Algorithm 4: PCONDD-Test-Known

Input: error parameter ε > 0; query access to PCONDD oracle; explicit description
(D∗(1), . . . , D∗(N)) of distribution D∗

1: Call the SAMPD oracle m = Θ(b2(log b)/η2) times to obtain points h1, . . . , hm distributed
according to D.

2: for j = 0 to b do
3: Let D̂(Bj) be the fraction of points h1, . . . , hm that lie in Bj .
4: if some j has |D∗(Bj)− D̂(Bj)| > η/b then
5: output REJECT and exit
6: end if
7: end for
8: Select s = Θ(b/ε) points x1, . . . , xs independently from D∗.
9: Call the SAMPD oracle s = Θ(b/ε) times to obtain points y1, . . . , ys distributed according to D.

10: for all pairs (xi, yj) (where 1 ≤ i, j ≤ s) such that D∗(x)
D∗(y) ∈ [1/2, 2] do

11: Call Compare({x}, {y}, η/(4b), 2, 1/(10s2))
12: if Compare returns Low or a value smaller than (1− η/(2b)) · D

∗(x)
D∗(y) then

13: output REJECT (and exit)
14: end if
15: end for
16: output ACCEPT

implies that
∣∣∣D∗(Bj)− D̂(Bj)

∣∣∣>η/b with failure probability at most 1/(10b). By a union bound
over all b values of j, the algorithm outputs REJECT in Line 5 with probability at most 1/10.
Later in the algorithm, since D = D∗, no matter what points xi, yj are sampled from D∗ and D
respectively, the following holds for each pair (xi, yj) such that D∗(x)/D∗(y) ∈ [1/2, 2]. By Lemma 2
(and the setting of the parameters in the calls to Compare), the probability that Compare returns
Low or a value smaller than (1 − δ/(2b)) · (D∗(x)/D∗(y)), is at most 1/(10s2). A union bound
over all (at most s2) pairs (xi, yj) for which D∗(x)/D∗(y) ∈ [1/2, 2], gives that the probability of
outputting REJECT in Line 13 is at most 1/10. Thus with overall probability at least 8/10 the
algorithm outputs ACCEPT.

Soundness: Now suppose that dTV(D,D∗) ≥ ε; our goal is to show that the algorithm rejects
with probability at least 2/3. Since the algorithm rejects if any estimate D̂(Bj) obtained in Line 3
deviates from D∗(Bj) by more than ±η/b, we may assume that all these estimates are indeed
±η/b-close to the values D∗(Bj) as required. Moreover, by an additive Chernoff bound (as in
the completeness analysis), we have that with overall failure probability at most 1/10, each j has
|D̂(Bj)−D(Bj)| ≤ η/b; we condition on this event going forth. Thus, for every 0 ≤ j ≤ b,

D∗(Bj)− 2η/b ≤ D(Bj) ≤ D∗(Bj) + 2η/b . (21)

Recalling the definition of J ` and Equation (20), we see that

∑
j∈J`∪{0}

D(Bj) < 4η . (22)
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Let
dj

def=
∑
x∈Bj

|D∗(x)−D(x)| , (23)

so that ‖D∗ −D‖1 =
∑

j dj . By Equations (20) and (22), we have∑
j∈J`∪{0}

dj ≤
∑

j∈J`∪{0}

(D∗(Bj) +D(Bj)) ≤ 6η . (24)

Since we have (by assumption) that ‖D∗ −D‖1 = 2dTV(D∗, D) ≥ 2ε, we get that∑
j∈Jh\{0}

dj > 2ε− 6η . (25)

Let Nj
def= |Bj | and observe that Nj ≤ D∗(Bj)/pj ≤ 1/pj , where pj

def= 2j−1 · η/N is the lower
bound on the probability (under D∗) of all elements in Bj . For each Bj such that j ∈ Jh \ {0},
let Hj

def= {x ∈ Bj : D(x) > D∗(x)} and Lj
def= {x ∈ Bj : D(x) < D∗(x)}. Similarly to the “testing

uniformity” analysis, we have that∑
x∈Lj

(D∗(x)−D(x)) +
∑
x∈Hj

(D(x)−D∗(x)) = dj . (26)

Equation (21) may be rewritten as∣∣∣∣∣∣
∑
x∈Lj

(D∗(x)−D(x))−
∑
x∈Hj

(D(x)−D∗(x))

∣∣∣∣∣∣ ≤ 2η/b , (27)

and so we have both∑
x∈Lj

(D∗(x)−D(x)) ≥ dj/2− η/b and
∑
x∈Hj

(D(x)−D∗(x)) ≥ dj/2− η/b . (28)

Also similarly to what we had before, let H ′j
def= {x ∈ Bj : D(x) > D∗(x) + η/(bNj)}, and

L′j
def= {x ∈ Bj : D(x) < D∗(x)− η/(bNj)} (recall that Nj = |Bj |); these are the element of Bj that

are “significantly heavier” (lighter, respectively) under D than under D∗. We have∑
x∈Lj\L′j

(D∗(x)−D(x)) ≤ η/b and
∑

x∈Hj\H′j

(D(x)−D∗(x)) ≤ η/b . (29)

By Equation (25), there exists j∗ ∈ Jh \{0} for which dj∗ ≥ (2ε−6η)/b. For this index, applying
Equations (28) and (29), we get that∑

x∈L′
j∗

D∗(x) ≥
∑
x∈L′

j∗

(D∗(x)−D(x)) ≥ (ε− 5η)/b , (30)
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and similarly, ∑
x∈H′

j∗

D(x) ≥
∑
x∈H′

j∗

(D(x)−D∗(x)) ≥ (ε− 5η)/b . (31)

Recalling that η = ε/6, we have that (ε− 5η)/b = ε/6b. Now since s = Θ(b/ε), with probability
at least 9/10 it is the case both that some xi drawn in Line 8 belongs to L′j∗ and that some yi′
drawn in Line 9 belongs to H ′j∗ . By the definitions of L′j∗ and H ′j∗ and the fact for each j > 0 it
holds that Nj ≤ 1/pj and pj ≤ D∗(x) < 2pj for each x ∈ Bj , we have that

D(xi) < D∗(xi)− η/(bNj∗) ≤ D∗(xi)− (η/b)pj∗ ≤ (1− η/(2b))D∗(xi) (32)

and
D(yi′) > D∗(yi′) + η/(bNj∗) ≥ D∗(yi′) + (η/b)pj ≥ (1 + η/(2b))D∗(yi′) . (33)

Therefore,
D(xi)
D(yi′)

<
1− η/(2b)
1 + η/(2b)

· D
∗(xi)

D∗(yi′)
<

(
1− 3η

4b

)
· D
∗(xi)

D∗(yi′)
. (34)

By Lemma 2, with probability at least 1− 1/(10s2), the output of Compare is either Low or is at
most

(
1− 3η

4b

)
·
(
1 + η

4b

)
<
(
1− η

2b

)
, causing the algorithm to reject. Thus the overall probability

that the algorithm outputs REJECT is at least 8/10− 1/(10s2) > 2/3, and the theorem is proved.

5.2 A (logN)Ω(1) lower bound for PCONDD

In this subsection we prove that any PCONDD algorithm for testing equivalence to a known
distribution must have query complexity at least (logN)Ω(1):

Theorem 7 Fix ε = 1/2. There is a distribution D∗ over [N ] (described below), which is such
that any PCONDD algorithm for testing whether D = D∗ versus dTV(D,D∗) ≥ ε must make

Ω
(√

logN
log logN

)
queries.

The distribution D∗. Fix parameters r = Θ
(

logN
log logN

)
and K = Θ(logN). We partition [N ]

from left (1) to right (N) into 2r consecutive intervals B1, . . . , B2r, which we henceforth refer to
as “buckets.” The i-th bucket has |Bi| = Ki (we may assume without loss of generality that N
is of the form

∑r
i=1K

i). The distribution D∗ assigns equal probability weight to each bucket, so
D∗(Bi) = 1/(2r) for all 1 ≤ i ≤ 2r. Moreover D∗ is uniform within each bucket, so for all j ∈ Bi we
have D∗(j) = 1/(2rKi). This completes the specification of D∗.

To prove the lower bound we construct a probability distribution PNo over possible “No”-
distributions. To define the distribution PNo it will be useful to have the notion of a “bucket-pair.”
A bucket-pair Ui is Ui = B2i−1 ∪B2i, i.e. the union of the i-th pair of consecutive buckets.

A distribution D drawn from PNo is obtained by selecting a string π = (π1, . . . , πr) uniformly
at random from {↓↑, ↑↓}r and setting D to be Dπ, which we now define. The distribution Dπ is
obtained by perturbing D∗ in the following way: for each bucket-pair Ui = (B2i−1, B2i),
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• If πi =↑↓ then the weight of B2i−1 is uniformly “scaled up” from 1/(2r) to 3/(4r) (keeping
the distribution uniform within B2i−1) and the weight of B2i is uniformly “scaled down” from
1/(2r) to 1/(4r) (likewise keeping the distribution uniform within B2i).

• If πi =↓↑ then the weight of B2i−1 is uniformly “scaled down” from 1/(2r) to 1/(4r) and the
weight of B2i is uniformly “scaled up” from 1/(2r) to 3/(4r).

Note that for any distribution D in the support of PNo and any 1 ≤ i ≤ r we have that
D(Ui) = D∗(Ui) = 1/r.

Every distribution D in the support of PNo has dTV(D∗, D) = 1/2. Thus Theorem 7 follows
immediately from the following:

Theorem 8 Let A be any (possibly adaptive) algorithm. which makes at most q ≤ 1
3 ·
√
r calls to

PCONDD. Then∣∣∣PrD←PNo

[
APCONDD outputs ACCEPT

]
− Pr

[
APCONDD∗ outputs ACCEPT

]∣∣∣ ≤ 1/5. (35)

Note that in the first probability of Equation (35) the randomness is over the draw of D from PNo,
the internal randomness of A in selecting its query sets, and the randomness of the responses to the
PCONDD queries. In the second probability the randomness is just over the internal coin tosses of
A and the randomness of the responses to the PCONDD queries.

Intuition for Theorem 8. A very high-level intuition for the lower bound is that PCONDD queries
are only useful for “comparing” points whose probabilities are within a reasonable multiplicative
ratio of each other. But D∗ and every distribution D in the support of PNo are such that every
two points either have the same probability mass under all of these distributions (so a PCONDD

query is not informative), or else the ratio of their probabilities is so skewed that a small number of
PCONDD queries is not useful for comparing them.

In more detail, we may suppose without loss of generality that in every possible execution,
algorithm A first makes q calls to SAMPD and then makes q (possibly adaptive) calls to PCONDD.
The more detailed intuition for the lower bound is as follows: First consider the SAMPD calls.
Since every possible D (whether D∗ or a distribution drawn from PNo) puts weight 1/r on each
bucket-pair U1, . . . , Ur, a birthday paradox argument implies that in both scenarios, with probability
at least 9/10 (over the randomness in the responses to the SAMPD queries) no two of the q ≤ 1

3

√
r

calls to SAMPD return points from the same bucket-pair. Conditioned on this, the distribution
of responses to the SAMPD queries is exactly the same under D∗ and under D where D is drawn
randomly from PNo.

For the pair queries, the intuition is that in either setting (whether the distribution D is D∗

or a randomly chosen distribution from PNo), making q pair queries will with 1− o(1) probability
provide no information that the tester could not simulate for itself. This is because any pair query
PCONDD({x, y}) either has x, y in the same bucket Bi or in different buckets Bi 6= Bj with i < j.
If x, y are both in the same bucket Bi then in either setting PCONDD({x, y}) is equally likely to
return x or y. If they belong to buckets Bi, Bj with i < j then in either setting PCONDD({x, y})
will return the one that belongs to Pi with probability 1− 1/Θ(Kj−i) ≥ 1− 1/Ω(K).
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Proof of Theorem 8: As described above, we may fix A to be any PCONDD algorithm that
makes exactly q calls to SAMPD followed by exactly q adaptive calls to PCONDD.

A transcript for A is a full specification of the sequence of interactions that A has with the
PCONDD oracle in a given execution. More precisely, it is a pair (Y,Z) where Y = (s1, . . . , sq) ∈ [N ]q

and Z = (({x1, y1}, p1), . . . , ({xq, yq}, pq)), where pi ∈ {xi, yi} and xi, yi ∈ [N ]. The idea is that Y
is a possible sequence of responses that A might receive to the initial q SAMPD queries, {xi, yi} is a
possible pair that could be the input to an i-th PCONDD query, and pi is a possible response that
could be received from that query.

We say that a length-i transcript prefix is a pair (Y, Zi) where Y is as above and Zi =
(({x1, y1}, p1), . . . , ({xi, yi}, pi)). A PCOND algorithm A may be viewed as a collection of distribu-
tions over pairs {x, y} in the following way: for each length-i transcript-prefix (Y, Zi) (0 ≤ i ≤ q−1),
there is a distribution over pairs {xi+1, yi+1} that A would use to select the (i+ 1)-st query pair for
PCONDD given that the length-i transcript prefix of A’s execution thus far was (Y,Zi). We write
T(Y,Zi) to denote this distribution over pairs.

Let P∗ denote the distribution over transcripts induced by running A with oracle PCONDD∗ . Let
PNo denote the distribution over transcripts induced by first (i) drawing D from PNo, and then (ii)
running A with oracle PCONDD. To prove Theorem 8 it is sufficient to prove that the distribution
over transcripts of A is statistically close whether the oracle is D∗ or is a random D drawn from
PNo, i.e. it is sufficient to prove that

dTV(P∗,PNo) ≤ 1/5. (36)

For our analysis we will need to consider variants of algorithm A that, rather than making q
calls to PCONDD, instead “fake” the final q − k of these PCONDD queries as described below. For
0 ≤ k ≤ q we define A(k) to be the algorithm that works as follows:

1. A(k) exactly simulates the execution of A in making an initial q SAMPD calls and making the
first k PCONDD queries precisely like A. Let (Y,Zk) be the length-k transcript prefix of A’s
execution thus obtained.

2. Exactly like A, algorithm A(k) draws a pair {xk+1, yk+1} from T(Y,Zk). However, instead of
calling PCONDD({xk+1, yk+1}) to obtain pk+1, algorithm A(k) generates pk+1 in the following
manner:

(i) If xk+1 and yk+1 both belong to the same bucket B` then pk+1 is chosen uniformly from
{xk+1, yk+1}.

(ii) If one of {xk+1, yk+1} belongs to B` and the other belongs to B`′ for some ` < `′, then
pk+1 is set to be the element of {xk+1, yk+1} that belongs to B`.

Let (Y,Zk+1) be the length-(k+1) transcript prefix obtained by appending ({xk+1, yk+1}, pk+1)
to Zk. Algorithm A′ continues in this way for a total of q − k stages; i.e. it next draws
{xk+2, yk+2} from T(Y,Zk+1) and generates pk+2 as described above; then (Y, Zk+2) is the
length-(k + 2) transcript prefix obtained by appending ({xk+2, yk+2}, pk+2) to Zk+1; and so
on. At the end of the process a transcript (Y,Zq) has been constructed.
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Let P∗,(k) denote the distribution over final transcripts (Y, Zq) that are obtained by running A(k)

on a PCONDD∗ oracle. Let PNo,(k) denote the distribution over final transcripts (Y,Zq) that are
obtained by (i) first drawing D from PNo, and then (ii) running A(k) on a PCONDD oracle. Note
that P∗,(q) is identical to P∗ and PNo,(q) is identical to PNo (since algorithm A(q), which does not
fake any queries, is identical to algorithm A).

Recall that our goal is to prove Equation (36). Since P∗,(q) = P∗ and PNo,(q) = PNo, Equation (36)
is an immediate consequence (using the triangle inequality for total variation distance) of the following
two lemmas, which we prove below:

Lemma 5 dTV(P∗,(0),PNo,(0)) ≤ 1/10.

Lemma 6 For all 0 ≤ k < q, we have dTV(P∗,(k),P∗,(k+1)) ≤ 1/(20q) and dTV(PNo,(k),PNo,(k+1)) ≤
1/(20q).

Proof of Lemma 5: Define P∗0 to be the distribution over outcomes of the q calls to SAMPD (i.e.
over length-0 transcript prefixes) when D = D∗. Define PNo to be the distribution over outcomes of
the q calls to SAMPD when D is drawn from PNo. We begin by noting that by the data processing
inequality for total variation distance, we have dTV(P∗,(0),PNo,(0)) ≤ dTV(P∗0,P

No
0 ) (indeed, after

the calls to respectively SAMPD and SAMPD∗ , the same randomized function F – which fakes all
remaining oracle calls – is applied to the two resulting distributions over length-0 transcript prefixes
P∗0 and PNo

0 ). In the rest of the proof we show that dTV(P∗0,P
No
0 ) ≤ 1/10.

Let E denote the event that the q calls to SAMPD yield points s1, . . . , sq such that no bucket-pair
Ui contains more than one of these points. Since D∗(Ui) = 1/r for all i,

P∗0(E) =
q−1∏
j=0

(
1− j

r

)
≥ 9/10 , (37)

where Equation (37) follows from a standard birthday paradox analysis and the fact that q ≤ 1
3

√
r.

Since for each possible outcome of D drawn from PNo we have D(Ui) = 1/r for all i, we further
have that also

PNo
0 (E) =

q−1∏
j=0

(
1− j

r

)
. (38)

We moreover claim that the two conditional distributions (P∗0|E) and (PNo
0 |E) are identical, i.e.

(P∗0|E) = (PNo
0 |E). (39)

To see this, fix any sequence (`1, . . . , `q) ∈ [r]q such that `i 6= `j for all i 6= j. Let (s1, . . . , sq) ∈ [N ]q

denote a draw from (P∗0|E), The probability that (si ∈ U`i for all 1 ≤ i ≤ q) is precisely 1/rq. Now
given that si ∈ U`i for all i, it is clear that si is equally likely to lie in B2`i−1 and in B2`i , and given
that it lies in a particular one of the two buckets, it is equally likely to be any element in that
bucket. This is true independently for all 1 ≤ i ≤ q.

Now let (s1, . . . , sq) ∈ [N ]q denote a draw from (PNo
0 |E). Since each distribution D in the support

of PNo has D(Ui) = 1/r for all i, we likewise have that the probability that (si ∈ U`i for all 1 ≤ i ≤ q)
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is precisely 1/rq. Now given that si ∈ U`i for all i, we have that si is equally likely to lie in B2`i−1

and in B2`i ; this is because πi (recall that π determines D = Dπ) is equally likely to be ↑↓ (in which
case D(B2`i−1) = 3/(4r) and D(B2`i) = 1/(4r)) as it is to be ↓↑ (in which case D(B2`i−1) = 1/(4r)
and D(B2`i) = 3/(4r)). Additionally, given that si lies in a particular one of the two buckets, it is
equally likely to be any element in that bucket. This is true independently for all 1 ≤ i ≤ q (because
conditioning on E ensures that no two elements of s1, . . . , sq lie in the same bucket-pair, so there is
“fresh randomness for each i”), and so indeed the two conditional distributions (P∗0|E) and (PNo

0 |E)
are identical.

Finally, the claimed bound dTV(P∗0,P
No
0 ) ≤ 1/10 follows directly from Equations (37), (38)

and (39).

Proof of Lemma 6: Consider first the claim that dTV(P∗,(k),P∗,(k+1)) ≤ 1/(20q). Fix
any 0 ≤ k < q. The data processing inequality for total variation distance implies that
dTV(P∗,(k),P∗,(k+1)) is at most the variation distance between random variables X and Y , where

• X is the random variable obtained by running A on CONDD∗ to obtain a length-k transcript
prefix (Y,Zk), then drawing {xk+1, yk+1} from T(Y,Zk), then setting pk+1 to be the output of
PCONDD∗({xk+1, yk+1); and

• Y is the random variable obtained by running A on CONDD∗ to obtain a length-k transcript
prefix (Y, Zk), then drawing {xk+1, yk+1} from T(Y,Zk), then setting pk+1 according to the
rules 2(i) and 2(ii) given above.

Consider any fixed outcome of (Y, Zk) and {xk+1, yk+1}. If rule 2(i) is applied (xk+1 and yk+1 are
in the same bucket) then there is zero contribution to the variation distance betweenX and Y , because
choosing a uniform element of {xk+1, yk+1} is a perfect simulation of PCONDD({xk+1, yk+1}). If rule
2(ii) is applied then the contribution is at most O(1/K) < 1/20q, because PCONDD∗({xk+1yk+1})
would return a different outcome from rule 2(ii) with probability 1/Θ(K`′−`) = O(1/K). Averaging
over all possible outcomes of (Y,Zk) and {xk+1, yk+1} we get that the variation distance between
X and Y is at most 1/20q as claimed.

An identical argument shows that similarly dTV(PNo,(k),PNo,(k+1)) ≤ 1/(20q). The key observa-
tion is that for any distribution D in the support of PNo, as with D∗ it is the case that points in
the same bucket have equal probability under D and a point y that is `′ − ` buckets lower than x
has probability only 1/Θ(K`′−`) of being returned by a call to PCONDD({x, y}). This concludes
the proof of Lemma 6 and of Theorem 7.

5.3 A poly(1/ε)-query CONDD algorithm

In this subsection we present an algorithm COND-Test-Known and prove the following theorem:

Theorem 9 COND-Test-Known is a Õ(1/ε4)-query CONDD testing algorithm for testing equiva-
lence to a known distribution D∗. That is, for every pair of distributions D,D∗ over [N ] (such that
D∗ is fully specified and there is COND query access to D), the algorithm outputs ACCEPT with
probability at least 2/3 if D = D∗ and outputs REJECT with probability at least 2/3 if dTV(D,D∗) ≥ ε.
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This constant-query testing algorithm stands in interesting contrast to the (logN)Ω(1)-query
lower bound for PCONDD algorithms for this problem.

High-level overview of the algorithm and its analysis: First, we note that by reordering
elements of [N ] we may assume without loss of generality that D∗(1) ≤ · · · ≤ D∗(N); this will be
convenient for us.

Our (logN)Ω(1) query lower bound for PCONDD algorithms exploited the intuition that com-
paring two points using the PCONDD oracle might not provide much information (e.g. if one of the
two points was a priori “known” to be much heavier than the other). In contrast, with a general
CONDD oracle at our disposal, we can compare a given point j ∈ [N ] with any subset of [N ] \ {j}.
Thus the following definition will be useful:

Definition 3 (comparable points) Fix 0 < λ ≤ 1. A point j ∈ supp(D∗) is said to be λ-
comparable if there exists a set S ⊆ ([N ] \ {j}) such that

D∗(j) ∈ [λD∗(S), D∗(S)/λ].

Such a set S is then said to be a λ-comparable-witness for j (according to D∗), which is denoted
S ∼=∗ j. We say that a set T ⊆ [N ] is λ-comparable if every i ∈ T is λ-comparable.

We stress that the notion of being λ-comparable deals only with the known distribution D∗; this
will be important later.

Fix ε1 = Θ(ε) (we specify ε1 precisely in Equation 42 below). Our analysis and algorithm
consider two possible cases for the distribution D∗ (where it is not hard to verify, and we provide
an explanation subsequently, that one of the two cases must hold):

1. The first case is that for some i∗ ∈ [N ] we have

D∗({1, . . . , i∗}) > 2ε1 but D∗({1, . . . , i∗ − 1}) ≤ ε1. (40)

In this case 1−ε1 of the total probability mass of D∗ must lie on a set of at most 1/ε1 elements,
and in such a situation it is easy to efficiently test whether D = D∗ using poly(1/ε) queries
(see Algorithm CONDD-Test-Known-Heavy and Lemma 9).

2. The second case is that there exists an element k∗ ∈ [N ] such that

ε1 < D∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1}). (41)

This is the more challenging (and typical) case. In this case, it can be shown that every
element j > k∗ has at least one ε1-comparable-witness within {1, . . . , j}. In fact, we show
(see Claim 7) that either (a) {1, . . . , j − 1} is an ε1-comparable witness for j, or (b) the set
{1, . . . , j − 1} can be partitioned into disjoint sets9 S1, . . . , St such that each Si, 1 ≤ i ≤ t, is
a 1

2 -comparable-witness for j. Case (a) is relatively easy to handle so we focus on (b) in our
informal description below.

9In fact the sets are intervals (under the assumption D∗(1) ≤ · · · ≤ D∗(n)), but that is not really important for
our arguments.
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The partition S1, . . . , St is useful to us for the following reason: Suppose that dTV(D,D∗) ≥ ε.
It is not difficult to show (see Claim 8) that unless D({1, . . . , k∗}) > 3ε1 (which can be easily
detected and provides evidence that the tester should reject), a random sample of Θ(1/ε) draws
from D will with high probability contain a “heavy” point j > k∗, that is, a point j > k∗ such that
D(j) ≥ (1 + ε2)D∗(j) (where ε2 = Θ(ε)). Given such a point j, there are two possibilities:

1. The first possibility is that a significant fraction of the sets S1, . . . , St have D(j)/D(Si)
“noticeably different” from D∗(j)/D∗(Si). (Observe that since each set Si is a 1

2 -comparable
witness for j, it is possible to efficiently check whether this is the case.) If this is the case then
our tester should reject since this is evidence that D 6= D∗.

2. The second possibility is that almost every Si has D(j)/D(Si) very close to D∗(j)/D∗(Si). If
this is the case, though, then sinceD(j) ≥ (1+ε2)D∗(j) and the union of S1, . . . , St is {1, . . . , j−
1}, it must be the case that D({1, . . . , j}) is “significantly larger” than D∗({1, . . . , j}). This
will be revealed by random sampling from D and thus our testing algorithm can reject in this
case as well.

Key quantities and useful claims. We define some quantities that are used in the algorithm
and its analysis. Let

ε1
def=

ε

10
; ε2

def=
ε

2
; ε3

def=
ε

48
; ε4

def=
ε

6
. (42)

Claim 7 Suppose there exists an element k∗ ∈ [N ] that satisfies Equation (41). Fix any j > k∗.
Then

1. If D∗(j) ≥ ε1, then S1
def= {1, . . . , j − 1} is an ε1-comparable witness for j;

2. If D∗(j) < ε1 then the set {1, . . . , j − 1} can be partitioned into disjoint sets S1, . . . , St such
that each Si, 1 ≤ i ≤ t, is a 1

2 -comparable-witness for j.

Proof: First consider the case that D∗(j) ≥ ε1. In this case S1 = {1, . . . , j− 1} is an ε1-comparable
witness for j because D∗(j) ≥ ε1 ≥ ε1D

∗({1, . . . , j − 1}) and D∗(j) ≤ 1 ≤ 1
ε1
D∗({1, . . . , k∗}) ≤

1
ε1
D∗({1, . . . , j − 1}), where the last inequality holds since k∗ ≤ j − 1.

Next, consider the case that D∗(j) < ε1. In this case we build our intervals iteratively from right
to left, as follows. Let j1 = j − 1 and let j2 be the minimum index in {0, . . . , j1 − 1} such that

D∗({j2 + 1, . . . , j1}) ≤ D∗(j).

(Observe that we must have j2 ≥ 1, because D∗({1, . . . , k∗}) > ε1 > D∗(j).) Since
D∗({j2, . . . , j1}) > D∗(j) and the function D∗(·) is monotonically increasing, it must be the case
that

1
2
D∗(j) ≤ D∗({j2 + 1, . . . , j1}) ≤ D∗(j).

Thus the interval S1
def= {j2 + 1, . . . , j1} is a 1

2 -comparable witness for j as desired.
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We continue in this fashion from right to left; i.e. if we have defined j2, . . . , jt as above and
there is an index j′ ∈ {0, . . . , jt − 1} such that D∗({j′ + 1, . . . , jt}) > D∗(j), then we define jt+1 to
be the minimum index in {0, . . . , jt − 1} such that

D∗({jt+1 + 1, . . . , jt}) ≤ D∗(j),

and we define St to be the interval {jt+1 + 1, . . . , jt}. The argument of the previous paragraph tells
us that

1
2
D∗(j) ≤ D∗({jt+1 + 1, . . . , jt}) ≤ D∗(j) (43)

and hence St is an 1
2 -comparable witness for j.

At some point, after intervals S1 = {j2 + 1, . . . , j1}, . . . , St = {jt+1 + 1, . . . , jt} have been
defined in this way, it will be the case that there is no index j′ ∈ {0, . . . , jt − 1} such that
D∗({j′ + 1, . . . , jt}) > D∗(j). At this point there are two possibilities: first, if jt+1 + 1 = 1, then
S1, . . . , St give the desired partition of {1, . . . , j − 1}. If jt+1 + 1 > 1 then it must be the case that
D∗({1, . . . , jt+1}) ≤ D∗(j). In this case we simply add the elements {1, . . . , jt+1} to St, i.e. we
redefine St to be {1, . . . , jt}. By Equation (43) we have that

1
2
D∗(j) ≤ D∗(St) ≤ 2D∗(j)

and thus St is an 1
2 -comparable witness for j as desired. This concludes the proof.

Definition 4 (Heavy points) A point j ∈ supp(D∗) is said to be η-heavy if D(j) ≥ (1 + η)D∗(j).

Claim 8 Suppose that dTV(D,D∗) ≥ ε and Equation (41) holds. Suppose moreover that
D({1, . . . , k∗}) ≤ 4ε1. Let i1, . . . , i` be i.i.d. points drawn from D. Then for ` = Θ(1/ε), with proba-
bility at least 99/100 (over the i.i.d. draws of i1, . . . , i` ∼ D) there is some point ij ∈ {i1, . . . , i`}
such that ij > k∗ and ij is ε2-heavy.

Proof: Define H1 to be the set of all ε2-heavy points and H2 to be the set of all “slightly lighter”
points as follows:

H1 = { i ∈ [N ] | D(i) ≥ (1 + ε2)D∗(i) }
H2 = { i ∈ [N ] | (1 + ε2)D∗(i) > D(i) ≥ D∗(i) }

By definition of the total variation distance, we have

ε ≤ dTV(D,D∗) =
∑

i:D(i)≥D∗(i)

(D(i)−D∗(i)) = (D(H1)−D∗(H1)) + (D(H2)−D∗(H2))

≤ D(H1) + ((1 + ε2)D∗(H2)−D∗(H2))

= D(H1) + ε2D
∗(H2) < D(H1) + ε2 = D(H1) +

ε

2
.

So it must be the case that D(H1) ≥ ε/2 = 5ε1. Since by assumption we have D({1, . . . , k∗}) ≤ 4ε1,
it must be the case that D(H1 \ {1, . . . , k∗}) ≥ ε1. The claim follows from the definition of H1 and
the size, `, of the sample.
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Algorithm 5: CONDD-Test-Known

Input: error parameter ε > 0; query access to CONDD oracle; explicit description
(D∗(1), . . . , D∗(N)) of distribution D∗ satisfying D∗(1) ≤ · · · ≤ D∗(N)

1: Let i∗ be the minimum index i ∈ [N ] such that D∗({1, . . . , i}) > 2ε1.
2: if D∗({1, . . . , i∗ − 1}) ≤ ε1 then
3: Call algorithm CONDD-Test-Known-Heavy(ε,CONDD, D

∗, i∗) (and exit)
4: else
5: Call algorithm CONDD-Test-Known-Main(ε,CONDD, D

∗, i∗ − 1) (and exit).
6: end if

Algorithm 6: CONDD-Test-Known-Heavy

Input: error parameter ε > 0; query access to CONDD oracle; explicit description
(D∗(1), . . . , D∗(N)) of distribution D∗ satisfying D∗(1) ≤ · · · ≤ D∗(N); value i∗ ∈ [N ]
satisfying D∗({1, . . . , i∗ − 1}) ≤ ε1, D∗({1, . . . , i∗}) > 2ε1

1: Call the SAMPD oracle m = Θ((log(1/ε))/ε4) times. For each i ∈ [i∗, N ] let D̂(j) be the
fraction of the m calls to SAMPD that returned i. Let D̂′ = 1−

∑
i∈[i∗,N ] D̂(i) be the fraction

of the m calls that returned values in {1, . . . , i∗ − 1}.
2: if either (any i ∈ [i∗, N ] has |D̂(i)−D∗(i)| > ε1

2) or (D̂′ −D∗({1, . . . , i∗ − 1}) > ε1) then
3: output REJECT (and exit)
4: end if
5: Output ACCEPT

5.3.1 Proof of Theorem 6

It is straightforward to verify that the query complexity of CONDD-Test-Known-Heavy is Õ(1/ε4) and
the query complexity of CONDD-Test-Known-Main is also Õ(1/ε4), so the overall query complexity
of COND-Test-Known is as claimed.

By the definition of i∗ (in the first line of the algorithm), either Equation (40) holds for this
setting of i∗, or Equation (41) holds for k∗ = i∗ − 1. To prove correctness of the algorithm, we first
deal with the simpler case, which is that Equation (40) holds:

Lemma 9 Suppose that D∗ is such that D∗({1, . . . , i∗}) > 2ε1 but D∗({1, . . . , i∗ − 1}) ≤ ε1. Then
CONDD-Test-Known-Heavy(ε,CONDD, D

∗, i∗) returns ACCEPT with probability at least 2/3 if
D = D∗ and returns REJECT with probability at least 2/3 if dTV(D,D∗) ≥ ε.

Proof: The conditions of Lemma 9, together with the fact that D∗(·) is monotone non-decreasing,
imply that each i ≥ i∗ has D∗(i) ≥ ε1. Thus there can be at most 1/ε1 many values i ∈ {i∗, . . . , N},
i.e. it must be the case that i∗ ≥ N − 1/ε1 + 1. Since the expected value of D̂(i) (defined in
Line 1 of CONDD-Test-Known-Heavy) is precisely D(i), for any fixed value of i ∈ {i∗, . . . , n}
an additive Chernoff bound implies that |D(i) − D̂(i)| ≤ (ε1)2 with failure probability at most

1

10
“

1+ 1
ε1

” . Similarly |D̂′−D({1, . . . , i∗−1})| ≤ ε1 with failure probability at most 1

10
“

1+ 1
ε1

” . A union

bound over all failure events gives that with probability at least 9/10 each value i ∈ {i∗, . . . , N}
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Algorithm 7: CONDD-Test-Known-Main

Input: error parameter ε > 0; query access to CONDD oracle; explicit description
(D∗(1), . . . , D∗(N)) of distribution D∗ satisfying D∗(1) ≤ · · · ≤ D∗(N); value k∗ ∈ [N ]
satisfying ε1 < D∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1})

1: Call the SAMPD oracle Θ(1/ε2) times and let D̂({1, . . . , k∗}) denote the fraction of responses
that lie in {1, . . . , k∗}. If D̂({1, . . . , k∗}) /∈ [ ε12 ,

5ε1
2 ] then output REJECT (and exit).

2: Call the SAMPD oracle ` = Θ(1/ε) times to obtain points i1, . . . , i`.
3: for all j ∈ {1, . . . , `} such that ij > k∗ do
4: Call the SAMPD oracle m = Θ(log(1/ε)/ε) times and let D̂({1, . . . , ij}) be the fraction of

responses that lie in {1, . . . , ij}. If D̂({1, . . . , ij}) /∈ [1− ε3, 1 + ε3]D∗({1, . . . , ij}) then output
REJECT (and exit).

5: if D∗(ij) ≥ ε1 then
6: Run Compare({ij}, {1, . . . , ij − 1}, ε216 ,

2
ε1
, 1

10`) and let v denote its output. If

v /∈ [1− ε2
8 , 1 + ε2

8 ]D
∗({1,...,ij−1})
D∗({ij}) then output REJECT (and exit).

7: else
8: Let S1, . . . , St be the partition of {1, . . . , ij − 1} such that each Si is an ε1-comparable

witness for ij , which is provided by Claim 7.
9: Select a list of h = Θ(1/ε) elements Sa1 , . . . , Sah independently and uniformly from

{S1, . . . , Sj}.
10: For each Sar , 1 ≤ r ≤ h, run Compare({ij}, Sar , ε48 , 4,

1
10`h) and let v denote its output. If

v /∈ [1− ε4
4 , 1 + ε4

4 ]D
∗(Sar )

D∗({ij}) then output REJECT (and exit).
11: end if
12: end for
13: Output ACCEPT.
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has |D(i)− D̂(i)| ≤ ε12 and additionally |D̂′ −D({1, . . . , i∗ − 1})| ≤ ε1; we refer to this compound
event as (*).

If D∗ = D, by (*) the algorithm outputs ACCEPT with probability at least 9/10.

Now suppose that dTV(D,D∗) ≥ ε. With probability at least 9/10 we have (*) so we suppose
that indeed (*) holds. In this case we have

ε ≤ dTV(D,D∗) =
∑
i<i∗

|D(i)−D∗(i)|+
∑
i≥i∗
|D(i)−D∗(i)|

≤
∑
i<i∗

(D(i) +D∗(i)) +
∑
i≥i∗
|D(i)−D∗(i)|

≤ D({1, . . . , i∗ − 1}) + ε1 +
∑
i≥i∗

(
|D̂(i)−D∗(i)|+ ε1

2
)

≤ D̂′ + ε1 + 2ε1 +
∑
i≥i∗

(
|D̂(i)−D∗(i)|

)

where the first inequality is by the triangle inequality, the second is by (*) and the fact that
D∗({1, . . . , i∗ − 1}) ≤ ε1, and the third inequality is by (*) and the fact that there are at most 1/ε1
elements in {i∗, . . . , N}. Since ε1 = ε/10, the above inequality implies that

7
10
ε ≤ D̂′ +

∑
i≥i∗

(
|D̂(i)−D∗(i)|

)
.

If any i ∈ {i∗, . . . , N} has |D̂(i) −D∗(i)| > (ε1)2 then the algorithm outputs REJECT so we may
assume that |D̂(i)−D∗(i)| ≤ ε12 for all i. This implies that

6ε1 =
6
10
ε ≤ D̂′

but since D∗({1, . . . , i∗ − 1}) ≤ ε1 the algorithm must REJECT.

Now we turn to the more difficult (and typical) case, that Equation (41) holds (for k∗ = i∗ − 1),
i.e.

ε1 < D∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1}).

With the claims we have already established it is straightforward to argue completeness:

Lemma 10 Suppose that D = D∗ and Equation (41) holds. Then with probability at least 2/3
algorithm CONDD-Test-Known-Main outputs ACCEPT.

Proof: We first observe that the expected value of the quantity D̂({1, . . . , k∗}) defined in Line 1 is
precisely D({1, . . . , k∗}) = D∗({1, . . . , k∗}) and hence lies in [ε1, 2ε1] by Equation (41). The additive
Chernoff bound implies that the probability the algorithm outputs REJECT in Line 1 is at most
1/10. Thus we may assume the algorithm continues to Line 2.

In any given execution of Line 4, since the expected value of D̂({1, . . . , ij}) is precisely
D({1, . . . , ij}) = D∗({1, . . . , ij}) > ε1, a multiplicative Chernoff bound gives that the algorithm
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outputs REJECT with probability at most 1/(10`). Thus the probability that the algorithm outputs
REJECT in any execution of Line 4 is at most 1/10. We henceforth assume that the algorithm never
outputs REJECT in this step.

Fix a setting of j ∈ {1, . . . , `} such that ij > k∗. Consider first the case that D∗(ij) ≥ ε1 so
the algorithm enters Line 6. By item (1) of Claim 7 and item (1) of Lemma 2, we have that with
probability at least 1− 1

10` Compare outputs a value v in the range [1− ε2
16 , 1 + ε2

16 ]D
∗({1,...,ij−1})
D∗({ij})

(recall that D = D∗), so the algorithm does not output REJECT in Line 6. Now suppose that
D∗(ij) < ε1 so the algorithm enters Line 8. Fix a value 1 ≤ r ≤ h in Line 10. By Claim 7 we have
that Sar is a 1

2 -comparable witness for ij . By item (1) of Lemma 2, we have that with probability at
least 1− 1

10`h Compare outputs a value v in the range [1− ε4
4 , 1 + ε4

4 ]D
∗(Sar )

D∗({ij}) (recall that D = D∗).
A union bound over all h values of r gives that the algorithm outputs REJECT in Line 10 with
probability at most 1/(10`). So in either case, for this setting of j, the algorithm outputs REJECT on
that iteration of the outer loop with probability at most 1/(10`). A union bound over all ` iterations
of the outer loop gives that the algorithm outputs REJECT at any execution of Line 6 or Line 10 is
at most 1/10.

Thus the overall probability that the algorithm outputs REJECT is at most 3/10, and the lemma
is proved.

Next we argue soundness:

Lemma 11 Suppose that dTV(D,D∗) ≥ ε and Equation (41) holds. Then with probability at least
2/3 algorithm CONDD-Test-Known-Main outputs REJECT.

Proof: If D({1, . . . , k∗}) /∈ [ε1, 3ε1] then a standard additive Chernoff bound implies that the
algorithm outputs REJECT in Line 1 with probability at least 9/10. Thus we may assume going
forward in the argument that D({1, . . . , k∗}) ∈ [ε1, 3ε1]. As a result we may apply Claim 8, and we
have that with probability at least 99/100 there is an element ij ∈ {i1, . . . , i`} such that ij > k∗

and ij is ε2-heavy, i.e. D(ij) ≥ (1 + ε2)D∗(ij). We condition on this event going forward (the rest of
our analysis will deal with this specific element ij).

We now consider two cases:

Case 1: Distribution D has D({1, . . . , ij}) /∈ [1− 3ε3, 1 + 3ε3]D∗({1, . . . , ij}). Since the quantity
D̂({1, . . . , ij}) obtained in Line 4 has expected value D({1, . . . , ij}) ≥ D({1, . . . , k∗}) ≥ ε1, applying
the multiplicative Chernoff bound implies that D̂({1, . . . , ij}) ∈ [1− ε3, 1 + ε3]D({1, . . . , ij}) except
with failure probability at most ε/10 ≤ 1/10. If this failure event does not occur then since
D({1, . . . , ij}) /∈ [1 − 3ε3, 1 + 3ε3]D∗({1, . . . , ij}) it must hold that D̂({1, . . . , ij}) /∈ [1 − ε3, 1 +
ε3]D∗({1, . . . , ij}) and consequently the algorithm outputs REJECT. Thus in Case 1 the algorithm
outputs REJECT with overall failure probability at least 89/100.

Case 2: Distribution D has D({1, . . . , ij}) ∈ [1− 3ε3, 1 + 3ε3]D∗({1, . . . , ij}). This case is divided
into two sub-cases depending on the value of D∗(ij).

Case 2(a): D∗(ij) ≥ ε1. In this case the algorithm reaches Line 6. We use the following claim:

35



Claim 12 In Case 2(a), suppose that ij > k∗ is such that D(ij) ≥ (1 + ε2)D∗(ij), and
D({1, . . . , ij}) ∈ [1− 3ε3, 1 + 3ε3]D∗({1, . . . , ij}). Then

D({1, . . . , ij − 1})
D(ij)

≤
(

1− ε2
4

)
· D
∗({1, . . . , ij − 1})

D∗(ij)
.

Proof: To simplify notation we write

a
def= D(ij); b

def= D∗(ij); c
def= D({1, . . . , ij − 1}); d

def= D∗({1, . . . , ij − 1}).

We have that
a ≥ (1 + ε2)b and a+ c ≤ (1 + 3ε3)(b+ d). (44)

This gives

c ≤ (1 + 3ε3)(b+ d)− (1 + ε2)b = (1 + 3ε3)d+ (3ε3 − ε2)b < (1 + 3ε3)d , (45)

where in the last inequality we used ε2 > 3ε3. Recalling that a ≥ (1 + ε2)b and using ε3 = ε2/24 we
get

c

a
<

(1 + 3ε3)d
(1 + ε2)b

=
d

b
· 1 + ε2/8

1 + ε2
<
d

b
·
(

1− ε2
4

)
. (46)

This proves the claim.

Applying Claim 12, we get that in Line 6 we have

D({1, . . . , ij − 1})
D(ij)

≤
(

1− ε2
4

)
· D
∗({1, . . . , ij − 1})

D∗(ij)
. (47)

Recalling that by the premise of this case D∗(ij) ≥ ε1, by applying Claim 7 we have that
{1, . . . , ij − 1} is an ε1-comparable witness for ij . Therefore, by Lemma 2, with probability at least
1− 1

10` the call to Compare({ij}, {1, . . . , ij − 1}, ε216 ,
2
ε1
, 1

10`) in Line 6 either outputs an element of

{High, Low} or outputs a value v ≤ (1− ε2
4 )(1 + ε2

16)D
∗({1,...,ij−1})
D∗(ij)

< (1− ε2
8 )D

∗({1,...,ij−1})
D∗(ij)

. In either
case the algorithm outputs REJECT in Line 6, so we are done with Case 2(a).

Case 2(b): D∗(ij) < ε1. In this case the algorithm reaches Line 10, and by item 2 of Claim 7,
we have that S1, . . . , St is a partition of {1, . . . , ij − 1} and each set S1, . . . , St is a 1

2 -comparable
witness for ij , i.e.,

for all i ∈ {1, . . . , t}, 1
2
D∗(j) ≤ D∗(Si) ≤ 2D∗(j). (48)

We use the following lemma:

Claim 13 In Case 2(b) suppose ij > k∗ is such that D(ij) ≥ (1 + ε2)D∗(ij) and D({1, . . . , ij}) ∈
[1− 3ε3, 1 + 3ε3]D∗({1, . . . , ij}). Then at least (ε4/8)-fraction of the sets S1, . . . , St are such that

D(Si) ≤ (1 + ε4)D∗(Si).
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Proof: The proof is by contradiction. Let ρ = 1 − ε4/8 and suppose that there are w sets
(without loss of generality we call them S1, . . . , Sw) that satisfy D(Si) > (1 + ε4)D∗(Si), where
ρ′ = w

t > ρ. We first observe that the weight of the w subsets S1, . . . , Sw under D∗, as a fraction of
D∗({1, . . . , ij − 1}), is at least

D∗(S1 ∪ · · · ∪ Sw)
D∗(S1 ∪ · · · ∪ Sw) + (t− w) · 2D∗(j)

≥
w
D∗(ij)

2

w
D∗(ij)

2 + (t− w) · 2D∗(j)
=

w

4t− 3w
=

ρ′

4− 3ρ′
,

where we used the right inequality in Equation (48) on Sw+1, . . . , St to obtain the leftmost expression
above, and the left inequality in Equation (48) (together with the fact that x

x+c is an increasing
function of x for all c > 0) to obtain the inequality above. This implies that

D({1, . . . , ij − 1}) =
w∑
i=1

D(Si) +
t∑

i=w+1

D(Si) ≥ (1 + ε4)
w∑
i=1

D∗(Si) +
t∑

i=w+1

D(Si)

≥ (1 + ε4)
ρ′

4− 3ρ′
D∗({1, . . . , ij − 1})

≥ (1 + ε4)
ρ

4− 3ρ
D∗({1, . . . , ij − 1}) . (49)

From Equation (49) we have

D({1, . . . , ij}) ≥ (1 + ε4)
ρ

4− 3ρ
D∗({1, . . . , ij − 1}) + (1 + ε2)D∗(ij)

≥
(

1 +
3ε4
8

)
D∗({1, . . . , ij − 1}) + (1 + ε2)D∗(ij)

where for the first inequality above we used D(ij) ≥ (1 + ε2)D∗(ij) and for the second inequality we
used (1 + ε4) ρ

4−3ρ ≥ 1 + 3ε4
8 . This implies that

D({1, . . . , ij}) ≥
(

1 +
3ε4
8

)
D∗({1, . . . , ij − 1}) +

(
1 +

3ε4
8

)
D∗(ij) =

(
1 +

3ε4
8

)
D∗({1, . . . , ij})

where the inequality follows from ε2 ≥ 3ε4
8 . Since 3ε4

8 > 3ε3, though, this is a contradiction and the
claim is proved.

Applying Claim 13, and recalling that h = Θ(1/ε) = Θ(1/ε4) sets are chosen randomly
in Line 9, we have that with probability at least 9/10 there is some r ∈ {1, . . . , h} such that
D(Sar) ≤ (1 + ε4)D∗(Sar). Combining this with D(ij) ≥ (1 + ε2)D∗(ij), we get that

D(Sar)
D(ij)

≤ 1 + ε4
1 + ε2

· D
∗(Sar)
D∗(ij)

≤
(

1− ε4
2

)
· D
∗(Sar)
D∗(ij)

.

By Lemma 2, with probability at least 1 − 1
10`h the call to Compare({ij}, Sar , ε48 , 4,

1
10`n) in

Line 10 either outputs an element of {High,Low } or outputs a value v ≤ (1− ε4
2 )(1 + ε4

8 )D
∗(Sar )
D∗(ij)

<

(1− ε4
4 )D

∗(Sar )
D∗(ij)

. In either case the algorithm outputs REJECT in Line 10, so we are done in Case 2(b).
This concludes the proof of soundness and the proof of Theorem 6.
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6 Testing equality between two unknown distributions

6.1 An approach based on PCOND queries

In this subsection we consider the problem of testing whether two unknown distributions D1, D2

are identical versus ε-far, given PCOND access to these distributions. Although this is known
to require Ω

(
N2/3

)
many samples in the standard model [BFR+10, Val11], we are able to give

a poly(logN, 1/ε)-query algorithm using PCOND queries, by taking advantage of comparisons to
perform some sort of clustering of the domain.

On a high level the algorithm works as follows. First it obtains (with high probability) a small
set of points R such that almost every element in [N ], except possibly for some negligible subset
according to D1, has probability weight (under D1) close to some “representative” in R. Next,
for each representative r in R it obtains an estimate of the weight, according to D1, of a set of
points U such that D1(u) is close to D1(r) for each u in U (i.e, r’s “neighborhood under D1”).
This is done using the procedure Estimate-Neighborhood from Subsection 3.2). Note that
these neighborhoods can be interpreted roughly as a succinct cover of the support of D1 into (not
necessarily disjoint) sets of points, where within each set the points have similar weight (according
to D1). Our algorithm is based on the observation that, if D1 and D2 are far from each other, it
must be the case that one of these sets, denoted U∗, reflects it in one of the following ways: (1)
D2(U∗) differs significantly from D1(U∗); (2) U∗ contains a subset of points V ∗ such that D2(v)
differs significantly from D2(r) for each v in V ∗, and either D1(V ∗) is relatively large or D2(V ∗)
is relatively large. (This structural result is made precise in Lemma 15). We thus take additional
samples, both from D1 and from D2, and compare the weight (according to both distributions)
of each point in these samples to the representatives in R (using the procedure Compare from
Subsection 3.1). In this manner we detect (with high probability) that either (1) or (2) holds.

We begin by formalizing the notion of a cover discussed above:

Definition 5 (Weight-Cover) Given a distribution D on [N ] and a parameter ε1 > 0, we say
that a point i ∈ [N ] is ε1-covered by a set R = {r1, . . . , rt} ⊆ [N ] if there exists a point rj ∈ R such
that D(i) ∈ [1/(1 + ε1), 1 + ε1]D(rj). Let the set of points in [N ] that are ε1-covered by R be denoted
by CDε1 (R). We say that R is an (ε1, ε2)-cover for D if D([N ] \ CDε1 (R)) ≤ ε2.

The following lemma says that a small sample of points drawn from D gives a cover with high
probability:

Lemma 14 Let D be any distribution over [N ]. Given any fixed c > 0, there exists a constant
c′ > 0 such that with probability at least 99/100, a sample R of size m = c′ log(N/ε)

ε2
· log

(
log(N/ε)

ε

)
drawn according to distribution D is an (ε/c, ε/c)-cover for D.

Proof: Let t denote dln(2cN/ε) · cεe. We define t “buckets” of points with similar weight under D
as follows: for i = 0, 1, . . . , t− 1, define Bi ⊆ [N ] to be

Bi
def=
{
x ∈ [N ] :

1
(1 + ε/c)i+1

< D(x) ≤ 1
(1 + ε/c)i

}
.
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Let L be the set of points x which are not in any of B0, . . . , Bt−1 (because D(x) is too small); since
every point in L has D(x) < ε

2cN , one can see that D(L) ≤ ε
2c .

It is easy to see that if the sample R contains a point from a bucket Bj then every point y ∈ Bj
is ε

c -covered by R. We say that bucket Bi is insignificant if D(Bi) ≤ ε
2ct ; otherwise bucket Bi is

significant. It is clear that the total weight under D of all insignificant buckets is at most ε/2c. Thus
if we can show that for the claimed sample size, with probability at least 99/100 every significant
bucket has at least one of its points in R, we will have established the lemma.

This is a simple probabilistic calculation: fix any significant bucket Bj . The probability that
m random draws from D all miss Bj is at most (1 − ε

2ct)
m, which is at most 1

100t for a suitable
(absolute constant) choice of c′. Thus a union bound over all (at most t) significant buckets gives
that with probability at least 99/100, no significant bucket is missed by R.

Lemma 15 Suppose dTV(D1, D2) ≥ ε, and let R = {r1, . . . , rt} be an (ε̃, ε̃)-cover for D1 where
ε̃ ≤ ε/100. Then, there exists j ∈ [t] such that at least one of the following conditions holds for
every α ∈ [ε̃, 2ε̃]:

1. D1(UD1
α (rj)) ≥ ε̃

t and D2(UD1
α (rj)) /∈ [1 − ε̃, 1 + ε̃]D1(UD1

α (rj)), or D1(UD1
α (rj)) < ε̃

t and
D2(UD1

α (rj)) > 2ε̃
t ;

2. D1(UD1
α (rj)) ≥ ε̃

t , and at least a ε̃-fraction of the points i in UD1
α (rj) satisfy

D2(i)
D2(rj)

/∈ [1/(1 + α+ ε̃), 1 + α+ ε̃];

3. D1(UD1
α (rj)) ≥ ε̃

t , and the total weight according to D2 of the points i in UD1
α (rj) for which

D2(i)
D2(rj)

/∈ [1/(1 + α+ ε̃), 1 + α+ ε̃] is at least ε̃2

t ;

Proof: Without loss of generality, we can assume that ε ≤ 1/4. Suppose, contrary to the claim,
that for each rj there exists αj ∈ [ε̃, 2ε̃] such that if we let Uj

def= UD1
αj (rj), then the following holds:

1. If D1(Uj) < ε̃
t , then D2(Uj) ≤ 2ε̃

t ;

2. If D1(Uj) ≥ ε̃
t , then:

(a) D2(Uj) ∈ [1− ε̃, 1 + ε̃]D1(Uj);

(b) Less than an ε̃-fraction of the points y in Uj satisfy D2(y)
D2(rj)

/∈ [1/(1 + αj + ε̃), 1 + αj + ε̃];

(c) The total weight according to D2 of the points y in Uj for which
D2(y)
D2(rj)

/∈ [1/(1 + αj + ε̃), 1 + αj + ε̃] is at most ε̃2

t ;

We show that in such a case dTV(D1, D2) < ε, contrary to the premise of the claim.

Consider each point rj ∈ R such that D1(Uj) ≥ ε̃
t . By the foregoing discussion (point 2(a)),

D2(Uj) ∈ [1− ε̃, 1 + ε̃]D1(Uj). By the definition of Uj (and since αj ≤ 2ε̃),

D1(rj) ∈ [1/(1 + 2ε̃), 1 + 2ε̃]
D1(Uj)
|Uj |

. (50)
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Turning to bound D2(rj), on one hand (by 2(b))

D2(Uj) =
∑
y∈Uj

D2(y) ≥ ε̃|Uj | · 0 + (1− ε̃)|Uj | ·
D2(rj)
1 + 3ε̃

, (51)

and so
D2(rj) ≤

(1 + 3ε̃)D2(Uj)
(1− ε̃) |Uj |

≤ (1 + 6ε̃)
D1(Uj)
|Uj |

. (52)

On the other hand (by 2(c)),

D2(Uj) =
∑
y∈Uj

D2(y) ≤ ε̃2

t
+ |Uj | · (1 + 3ε̃)D2(rj) , (53)

and so

D2(rj) ≥
D2(Uj)− ε̃2/t
(1 + 3ε̃) |Uj |

≥ (1− ε̃)D1(Uj)− ε̃D1(Uj)
(1 + 3ε̃) |Uj |

≥ (1− 5ε̃)
D1(Uj)
|Uj |

. (54)

Therefore, for each such rj we have

D2(rj) ∈ [1− 8ε̃, 1 + 10ε̃]D1(rj) . (55)

Let C def=
⋃t
j=1 Uj . We next partition the points in C so that each point i ∈ C is assigned to some

rj(i) such that i ∈ Uj(i). We define the following “bad” subsets of points in [N ]:

1. B1
def= [N ] \ C, so that D1(B1) ≤ ε̃ (we later bound D2(B1));

2. B2
def=
{
i ∈ C : D1(Uj(i)) < ε̃/t

}
, so that D1(B2) ≤ ε̃ and D2(B2) ≤ 2ε̃;

3. B3
def=

{
i ∈ C \B2 : D2(i) /∈ [1/(1 + 3ε̃), 1 + 3ε̃]D2(rj(i))

}
, so that D1(B3) ≤ 2ε̃ and

D2(B3) ≤ ε̃2.

Let B def= B1 ∪B2 ∪B3. Observe that for each i ∈ [N ] \B we have that

D2(i) ∈ [1/(1 + 3ε̃), 1 + 3ε̃]D2(rj(i)) ⊂ [1− 15ε̃, 1 + 15ε̃]D1(rj(i)) ⊂ [1− 23ε̃, 1 + 23ε̃]D1(i) , (56)

where the first containment follows from the fact that i /∈ B, the second follows from Equation (55),
and the third from the fact that i ∈ Uj(i). In order to complete the proof we need a bound on
D2(B1), which we obtain next.

D2(B1) = 1−D2([N ] \B1) ≤ 1−D2([N ] \B) ≤ 1− (1− 23ε̃)D1([N ] \B)
≤ 1− (1− 23ε̃)(1− 4ε̃) ≤ 27ε̃ . (57)

Therefore,

dTV(D1, D2) =
1
2

N∑
i=1

|D1(i)−D2(i)|

≤ 1
2

(
D1(B) +D2(B) +

∑
i/∈B

23ε̃D1(i)
)

< ε , (58)

and we have reached a contradiction.
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Algorithm 8: Algorithm PCONDD1,D2-Test-Equality-Unknown

Input: PCOND query access to distributions D1 and D2 and a parameter ε.

1. Set ε̃ = ε/100.

2. Draw a sample R of size t = Θ̃
(

logN
ε2

)
from D1.

3. For each rj ∈ R:

(a) Call Estimate-NeighborhoodD1 on rj with κ = ε̃, η = ε̃
8 , β = ε̃

2t , δ = 1
100t and let the

output be denoted by (ŵ(1)
j , αj).

(b) Set θ = κηβδ/64 = Θ̃(ε7/ log2N).

(c) Draw a sample S1 from D1, of size s1 = Θ
(
t
ε2

)
= Θ̃

(
logN
ε4

)
.

(d) Draw a sample S2 from D2, of size s2 = Θ
(
t log t
ε3

)
= Θ̃

(
logN
ε5

)
.

(e) For each point i ∈ S1 ∪ S2 call CompareD1({rj}, {i}, θ/4, 4, 1/(200t(s1 + s2))) and
CompareD2({rj}, {i}, θ/4, 4, 1/(200t(s1 + s2))), and let the outputs be denoted ρ

(1)
rj (i)

and ρ
(2)
rj (i), respectively (where in particular these outputs may be High or Low).

(f) Let ŵ(2)
j be the fraction of occurrences of i ∈ S2 such that

ρ
(1)
rj (i) ∈ [1/(1 + αj + θ/2), 1 + αj + θ/2].

(g) If ( ŵ(1)
j ≤

3
4
ε̃
t and ŵ

(2)
j > 3

2
ε̃
t ) or ( ŵ(1)

j > 3
4
ε̃
t and ŵ

(2)
j /ŵ

(1)
j /∈ [1− ε̃/2, 1 + ε̃/2] ), then

output REJECT.

(h) If there exists i ∈ S1 ∪ S2 such that ρ(1)
rj (i) ∈ [1/(αj + ε̃/2), 1 + αj + ε̃/2] and

ρ
(2)
rj (i) /∈ [1/(αj + 3ε̃/2), 1 + αj + 3ε̃/2], then output REJECT.

4. Output ACCEPT.

Theorem 10 If D1 = D2 then with probability at least 2/3 Algorithm PCOND-Test-Equality-
Unknown returns ACCEPT, and if dTV(D1, D2) ≥ ε, then with probability at least 2/3 Algorithm
PCOND-Test-Equality-Unknown returns REJECT. The number of PCOND queries performed
by the algorithm is Õ

( log6 N
ε21

)
.

Proof: The number of queries performed by the algorithm is the sum of: (1) t times the
number of queries performed in each execution of Estimate-Neighborhood (in Line 3-a) and (2)
t·(s1+s2) = O(t·s2) times the number of queries performed in each execution of Compare (in Line 3-
e). By Lemma 3 (and the settings of the parameters in the calls to Estimate-Neighborhood),
the first term is O

(
t · log(1/δ)·log(log(1/δ)/(βη2))

κ2η4β3δ2

)
= Õ

(
log6 N
ε19

)
, and by Lemma 2 (and the settings of

the parameters in the calls to Compare), the second term is O
(
t · s2 · log(t·s2)

θ2

)
= Õ

(
log6N
ε21

)
, so

that we get the bound stated in the theorem.

We now turn to establishing the correctness of the algorithm. We shall use the shorthand Uj for
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UD1
αj (rj), and U ′j for UD1

αj+θ
(rj). We consider the following “desirable” events.

1. The event E1 is that the sample R is a (ε̃, ε̃)-weight-cover for D1 (for ε̃ = ε/100). By Lemma 14
(and an appropriate constant in the Θ(·) notation for the size of R), the probability that E1

holds is at least 99/100.

2. The event E2 is that all calls to the procedure Estimate-Neighborhood are as specified by
Lemma 3. By the setting of the confidence parameter in the calls to the procedure, the event
E2 holds with probability at least 99/100.

3. The event E3 is that all calls to the procedure Compare are as specified by Lemma 2. By
the setting of the confidence parameter in the calls to the procedure, the event E3 holds with
probability at least 99/100.

4. The event E4 is that D2(U ′j \ Uj) ≤ ηβ/16 = ε̃2/(256t) for each j. If D2 = D1 then this event
follows from E2. Otherwise, it holds with probability at least 99/100 by the setting of θ and
the choice of αj (as shown in the proof of Lemma 3 in the analysis of the event E1 there ).

5. The event E5 is defined as follows. For each j, if D2(Uj) ≥ ε̃/(4t), then |S2 ∩ Uj |/|S2| ∈
[1− ε̃/10, 1 + ε̃/10]D2(Uj), and if D2(Uj) < ε̃/(4t) then |S2 ∩Uj |/|S2| < (1 + ε̃/10)ε̃/(4t). This
event holds with probability at least 99/100 by applying a multiplicative Chernoff bound in
the first case, and Corollary 2 in the second.

6. The event E6 is that for each j we have |S2 ∩ (U ′j \ Uj)|/|S2| ≤ ε̃2/(128t). Conditioned on E4,
the event E6 holds with probability at least 99/100 by applying Corollary 2.

From this point on we assume that events E1 −E6 all hold. Note that in particular this implies the
following:

1. By E2, for every j:

• If D1(Uj) ≥ β = ε̃/(2t), then ŵ
(1)
j ∈ [1− η, 1 + η]D1(Uj) = [1− ε̃/8, 1 + ε̃/8]D1(Uj).

• If D1(Uj) < ε̃/(2t), then ŵ
(1)
j ≤ (1 + ε̃/8)(ε̃/(2t)).

2. By E3, for every j and for each point i ∈ S1 ∪ S2:

• If i ∈ Uj , then ρ
(1)
rj (i) ∈ [1/(1 + αj + θ

2), 1 + αj + θ
2 ].

• If i /∈ U ′j , then ρ
(1)
rj (i) /∈ [1/(1 + αj + θ

2), 1 + αj + θ
2 ].

3. By the previous item and E4–E6:

• If D2(Uj) ≥ ε̃/(4t), then ŵ
(2)
j ≥ (1 − ε̃/10)D2(Uj) and ŵ

(2)
j ≤ (1 + ε̃/10)D2(Uj) +

ε̃2/(128t) ≤ (1 + ε̃/8)D2(Uj).

• If D2(Uj) < ε̃/(4t) then ŵ
(2)
j ≤ (1 + ε̃/10)ε̃/(4t) + ε̃2/(128t) ≤ (1 + ε̃/4)(ε̃/(4t)).
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Completeness. Assume D1 and D2 are the same distribution D. For each j, if D(Uj) ≥ ε̃/t, then
by the foregoing discussion, ŵ(1)

j ≥ (1−ε̃/8)D(Uj) > 3ε̃/(4t) and ŵ(2)
j /ŵ

(1)
j ∈ [(1−ε̃/8)2, (1+ε̃/8)2] ⊂

[1− ε̃/2, 1+ ε̃/2], so that the algorithm does not reject in Line 3-g. Otherwise (i.e., D(Uj) < ε̃/t), we
consider two subcases. Either D(Uj) ≤ ε̃/(2t), in which case ŵ(1)

j ≤ 3ε̃/(4t), or ε̃/(2t) < D(Uj) < ε̃/t,

and then ŵ
(1)
j ∈ [1− ε̃/8, 1 + ε̃/8]D1(Uj). Since in both cases ŵ(2)

j ≤ (1 + ε̃/8)D(Uj) ≤ 3ε̃/(2t), the
algorithm does not reject in Line 3-g. By E3, the algorithm does not reject in Line 3-h either. We
next turn to establish soundness.

Soundness. Assume dTV(D1, D2) ≥ ε. By applying Lemma 15 on R (and using E1), there exists
an index j for which one of the items in the lemma holds. We denote this index by j∗, and consider
the three items in the lemma.

1. If Item 1 holds, then we consider its two cases:

(a) In the first case, D1(Uj∗) ≥ ε̃/t and D2(Uj ∗) /∈ [1− ε̃, 1 + ε̃]D1(Uj∗). Due to the lower
bound on D1(Uj∗) we have that ŵ(1)

j∗ ∈ [1 − ε̃/8, 1 + ε̃/8]D1(Uj∗), so that in particular

ŵ
(1)
j∗ > 3ε̃/(4t). As for ŵ(2)

j∗ , either ŵ(2)
j∗ < (1− ε̃)(1 + ε̃/8)D1(Uj∗) (this holds both when

D2(Uj∗) ≥ ε̃/(4t) and when D2(Uj∗) < ε̃/(4t)) or ŵ(2)
j∗ > (1 + ε̃)(1 − ε̃/10)D1(Uj∗). In

either (sub)case ŵ(2)
j∗ /ŵ

(1)
j∗ /∈ [1 − ε̃/2, 1 + ε̃/2], causing the algorithm to reject in (the

second part of ) Line 3-g.

(b) In the second case, D1(Uj∗) < ε̃/t and D2(Uj∗) > 2ε̃/t. Due to the lower bound on
D2(Uj∗) we have that ŵ(2)

j∗ ≥ (1− ε̃/10)D2(Uj∗) > (1− ε̃/10)(2ε̃/t), so that in particular

ŵ
(2)
j∗ > (3ε̃/(2t)). As for ŵ(1)

j∗ , if D1(Uj∗) ≤ ε̃/(2t), then ŵ
(1)
j∗ ≤ 3ε̃/(4t), causing the

algorithm to reject in (the first part of) Line 3-g. If ε̃/(2t) < D1(Uj∗) ≤ ε̃/t, then ŵ(1)
j∗ ∈

[1− ε̃/8, 1 + ε̃/8]D1(Uj∗) ≤ (1 + ε̃/8)(ε̃/t), so that ŵ(2)
j∗ /ŵ

(1)
j∗ ≥

(1−ε̃/10)(2ε̃/t)
(1+ε̃/8)ε̃/t > (1 + ε̃/2),

causing the algorithm to reject in (either the first or second part of) Line 3-g.

2. If Item 2 holds, then by the choice of the size of S1, which is Θ(t/ε̃2), with probability at least
99/100, the sample S1 will contain a point i for which D2(i)

D2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃],
and by E3 this will be detected in Line 3-h.

3. Similarly, if Item 3 holds, then by the choice of the size of S2, with probability at least 99/100,
the sample S2 will contain a point i for which D2(i)

D2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃], and by
E3 this will be detected in Line 3-h.

The theorem is thus established.

6.2 An approach based on simulating EVAL

In this subsection we present an alternate approach for testing whether two unknown distributions
D1, D2 are identical versus ε-far. We prove the following theorem:
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Theorem 11 COND-Test-Equality-Unknown is a

Õ

(
(logN)5 · (log(1/δ))2

ε4

)
-query algorithm with the following properties: given CONDD1 , CONDD2 oracles for any two distri-
butions D1, D2 over [N ], it outputs ACCEPT with probability at least 2/3 if D1 = D2 and outputs
REJECT with probability at least 2/3 if dTV(D1, D2) ≥ ε.

At the heart of this result is an efficient simulation of an “approximate EVALD oracle” using a
CONDD oracle. (Recall that an EVALD oracle is an oracle which, given as input an element i ∈ [N ],
outputs the numerical value D(i).) We feel that this efficient simulation of an approximate EVAL
oracle using a COND oracle is of independent interest since it sheds light on the relative power of
the COND and EVAL models.

In more detail, the starting point of our approach to prove Theorem 11 is a simple algorithm
from [RS09] that uses an EVALD oracle to test equality between D and a known distribution D∗.
We first show (see Theorem 12) that a modified version of the algorithm, which uses a SAMP oracle
and an “approximate” EVAL oracle, can be used to efficiently test equality between two unknown
distributions D1 and D2. We then show (see Theorem 13) how the required “approximate” EVAL
oracle can be efficiently implemented using a COND oracle. Theorem 11 follows straightforwardly
by combining Theorems 12 and 13.

6.2.1 Approximate EVAL oracles.

We begin by defining the notion of an “approximate EVAL oracle” that we will use. Intuitively this
is an oracle which gives a multiplicatively (1 ± ε)-accurate estimate of the value of D(i) for all i
in a fixed set of probability weight at least 1− ε under D. More precisely, we have the following
definition:

Definition 6 Let D be a distribution over [N ]. An (ε, δ)-approximate EVALD simulator is a
randomized procedure ORACLE with the following property: For each 0 < ε < 1, there is a fixed set
S(ε,D) ( [N ] with D(S(ε,D)) < ε for which the following holds. Given as input an element i∗ ∈ [N ],
the procedure ORACLE either outputs a value α ∈ [0, 1] or outputs UNKNOWN. The following holds
for all i∗ ∈ [N ]:

(i) If i∗ /∈ S(ε,D) then with probability at least 1− δ the output of ORACLE on input i∗ is a value
α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗);

(i) If i∗ ∈ S(ε,D) then with probability at least 1− δ the procedure either outputs UNKNOWN or
outputs a value α ∈ [0, 1] such that α ∈ [1− ε, 1 + ε]D(i∗).

We note that according to the above definition, it may be the case that different calls to ORACLE on
the same input element i∗ ∈ [N ] may return different values. However, the “low-weight” set S(ε,D)

is an a priori fixed set that does not depend in any way on the input point i∗ given to the algorithm.
The key property of an (ε, δ)-approximate EVAL D oracle is that it reliably gives a multiplicatively
(1± ε)-accurate estimate of the value of D(i) for all i in some fixed set of probability weight at least
1− ε under D.
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6.2.2 Testing equality between D1 and D2 using an approximate EVAL oracle.

We now show how an approximate EVALD1 oracle, an approximate EVALD2 oracle, and a SAMPD1

oracle can be used together to test whether D1 = D2 versus dTV(D1, D2) ≥ ε. As mentioned earlier,
the approach is a simple extension of the EVAL algorithm given in Observation 24 of [RS09].

Theorem 12 Let ORACLE1 be an (ε/100, ε/100)-approximate EVALD1 simulator and let ORACLE2

be an (ε/100, ε/100)-approximate EVALD2 simulator. There is an algorithm Test-Equality-
Unknown with the following properties: for any distributions D1, D2 over [N ], algorithm Test-
Equality-Unknown makes O(1/ε) queries to ORACLE1, ORACLE2 and SAMPD1 , and it outputs
ACCEPT with probability at least 7/10 if D1 = D2 and outputs REJECT with probability at least
7/10 if dTV(D1, D2) ≥ ε.

Algorithm 9: Test-Equality-Unknown

Input: query access to ORACLE1, to ORACLE2, and access to SAMPD1 oracle
1: Call the SAMPD1 oracle m = 5/ε times to obtain points h1, . . . , hm distributed according to D1.

2: Call the SAMPD2 oracle m = 5/ε times to obtain points hm+1, . . . , h2m distributed according to
D2.

3: for j = 1 to 2m do
4: Call ORACLE1(hj). If it returns UNKNOWN then output REJECT, otherwise let v1,i ∈ [0, 1]

be the value it outputs.
5: Call ORACLE2(hj). If it returns UNKNOWN then output REJECT, otherwise let v2,i ∈ [0, 1]

be the value it outputs.
6: if v1,j /∈ [1− ε/8, 1 + ε/8]v2,j then
7: output REJECT and exit
8: end if
9: end for

10: output ACCEPT

It is clear that Test-Equality-Unknown makes O(1/ε) queries as claimed. To prove Theo-
rem 12 we argue completeness and soundness below.

Completeness: Suppose that D1 = D2. Since ORACLE1 is an (ε/100, ε/100)-approximate EVALD1

simulator, the probability that any of the 2m = 10/ε points h1, . . . , h2m drawn in Lines 1 and 2
lies in S(ε/100,D1) is at most 1/10. Going forth, let us assume that all points hi indeed lie outside
S(ε/100,D1). Then for each execution of Line 4 we have that with probability at least 1 − ε/100
the call to ORACLE(hi) yields a value v1,i satisfying v1,i ∈ [1− ε

100 , 1 + ε
100 ]D1(i). The same holds

for each execution of Line 5. Since there are 20/ε total executions of Lines 4 and 5, with overall
probability at least 7/10 we have that each 1 ≤ j ≤ m has v1,j , v2,j ∈ [1− ε

100 , 1 + ε
100 ]D1(i). If this

is the case then v1,j , v2,j pass the check in Line 6, and thus the algorithm outputs ACCEPT with
overall probability at least 7/10.
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Soundness: Now suppose that dTV(D1, D2) ≥ ε. Let us say that i ∈ [N ] is good if D1(i) ∈
[1− ε/5, 1 + ε/5]D2(i). Let BAD ⊆ [N ] denote the set of all i ∈ [N ] that are not good. We have

2dTV(D1, D2) =
∑

i is good

|D1(i)−D2(i)|+
∑

i is bad

|D1(i)−D2(i)| ≥ 2ε.

Since ∑
i is good

|D1(i)−D2(i)| ≤
∑

i is good

ε

5
|D2(i)| ≤ ε

5
,

we have ∑
i is bad

(|D1(i)|+ |D2(i)|) ≥
∑

i is bad

|D1(i)−D2(i)| ≥ 9
5
ε.

Consequently it must be the case that either D1(BAD) ≥ 9
10ε or D2(BAD) ≥ 9

10ε. For the rest of
the argument we suppose that D1(BAD) ≥ 9

10ε (by the symmetry of the algorithm, an identical
argument to the one we give below but with the roles of D1 and D2 flipped throughout handles the
other case).

Since D1(BAD) ≥ 9
10ε, a simple calculation shows that with probability at least 98/100 at least

one of the 5/ε points h1, . . . , hm drawn in Line 1 belongs to BAD. For the rest of the argument we
suppose that indeed (at least) one of these points is in BAD; let hi∗ be such a point. Now consider
the execution of Line 4 when ORACLE1 is called on hi∗ . By Definition 6, whether or not i∗ belongs to
S(ε/100,D1), with probability at least 1− ε/100 the call to ORACLE1 either causes Test-Equality-
Unknown to REJECT in Line 4 (because ORACLE1 returns UNKNOWN) or it returns a value
v1,i∗ ∈ [1− ε

100 , 1+ ε
100 ]D1(i∗). We may suppose that it returns a value v1,i∗ ∈ [1− ε

100 , 1+ ε
100 ]D1(i∗).

Similarly, in the execution of Line 5 when ORACLE2 is called on hi∗ , whether or not i∗ belongs to
S(ε/100,D2), with probability at least 1− ε/100 the call to ORACLE2 either causes Test-Equality-
Unknown to reject in Line 5 or it returns a value v2,i∗ ∈ [1− ε

100 , 1 + ε
100 ]D2(i∗). We may suppose

that it returns a value v2,i∗ ∈ [1 − ε
100 , 1 + ε

100 ]D2(i∗). But recalling that i∗ ∈ BAD, an easy
calculation shows that the values v1,i∗ and v2,i∗ must be multiplicatively far enough from each other
that the algorithm will output REJECT in Line 7. Thus with overall probability at least 96/100 the
algorithm outputs REJECT.

6.2.3 Constructing an approximate EVALD simulator using CONDD

In this subsection we show that a CONDD oracle can be used to obtain an approximate EVAL
simulator:

Theorem 13 Let D be any distribution over [N ] and let 0 < ε, δ < 1. The algorithm Approx-
Eval-Simulator has the following properties: It uses

Õ

(
(logN)5 · (log(1/δ))2

ε3

)
calls to CONDD and it is an (ε, δ)-approximate EVALD simulator.
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A few notes: First, in the proof we give below of Theorem 13 we assume throughout that
0 < ε ≤ c, where c is a small absolute constant. This incurs no loss of generality because if the
desired ε parameter is in (c, 1) then the parameter can simply be set to c/2. We further note that in
keeping with our requirement on a CONDD algorithm, the algorithm Approx-Eval-Simulator
only ever calls the CONDD oracle on sets S which are either S = [N ] or else contain at least one
element i that has been returned as the output of an earlier call to CONDD. (To see this, note that
Line 6 is the only line when CONDD queries are performed. In the first execution of the outer “For”
loop clearly all COND queries are on set S0 = [N ]. In subsequent stages the only way a set Sj is
formed is if either (i) Sj is set to {i∗} in Line 10, in which case clearly i∗ was previously received as
the response of a CONDD(Sj−1) query, or else (ii) a nonzero fraction of elements i1, . . . , im received
as responses to CONDD(Sj−1) queries belong to Sj (see Line 19).)

A preliminary simplification. Fix a distribution D over [N ]. Let Z denote supp(D), i.e.
Z = {i ∈ [N ] : D(i) > 0}. We first claim that in proving Theorem 13 we may assume without loss
of generality that no two distinct elements i, j ∈ Z have D(i) = D(j) – in other words, we shall
prove the theorem under this assumption on D, and we claim that this implies the general result.
To see this, observe that if Z contains elements i 6= j with D(i) = D(j), then for any arbitrarily
small ξ > 0 and any arbitrarily large M we can perturb the weights of elements in Z to obtain a
distribution D′ supported on Z such that (i) no two elements of Z have the same probability under
D′, and (ii) for every S ⊆ [N ], S ∩Z 6= ∅ we have dTV(DS , D

′
S) ≤ ξ/M. Since the variation distance

between D′S and DS is at most ξ/M for an arbitrarily small ξ, the variation distance between (the
execution of any M -query COND algorithm run on D) and (the execution of any M -query COND
algorithm run on D′) will be at most ξ. Since ξ can be made arbitrarily small this means that indeed
without loss of generality we may work with D′ in what follows.

Thus, we henceforth assume that the distributionD has no two elements in supp(D) with the same
weight. For such a distribution we can explicitly describe the set S(ε,D) from Definition 6 that our
analysis will deal with. Let π : {1, . . . , |Z|} → Z be the bijection such thatD(π(1)) > · · · > D(π(|Z|))
(note that the bijection π is uniquely defined by the assumption that D(i) 6= D(j) for all distinct
i, j ∈ Z). Given a value 0 < τ < 1 we define the set Lτ,D to be ([N ] \ Z) ∪ {π(s), . . . , π(|Z|)} where
s is the smallest index in {1, . . . , |Z|} such that

∑|Z|
j=sD(π(j)) < τ (if D(π(|Z|)) itself is at least τ

then we define Lτ,D = [N ] \ Z). Thus intuitively Lτ,D contains the τ fraction (w.r.t. D) of [N ]
consisting of the lightest elements. The desired set S(ε,D) is precisely Lε,D.

Intuition for the algorithm. The high-level idea of the EVALD simulation is the following: Let
i∗ ∈ [N ] be the input element given to the EVALD simulator. The algorithm works in a sequence
of stages. Before performing the j-th stage it maintains a set Sj−1 that contains i∗, and it has a
high-accuracy estimate D̂(Sj−1) of the value of D(Sj−1). (The initial set S0 is simply [N ] and the
initial estimate D̂(S0) is of course 1.) In the j-th stage the algorithm attempts to construct a subset
Sj of Sj−1 in such a way that (i) i∗ ∈ Sj , and (ii) it is possible to obtain a high-accuracy estimate
of D(Sj)/D(Sj−1) (and thus a high-accuracy estimate of D(Sj)). If the algorithm cannot construct
such a set Sj then it outputs UNKNOWN; otherwise, after at most (essentially) O(logN) stages,
it reaches a situation where Sj = {i∗} and so the high-accuracy estimate of D(Sj) = D(i∗) is the
desired value.

A natural first idea towards implementing this high-level plan is simply to split Sj−1 randomly
into two pieces and use one of them as Sj . However this simple approach may not work; for example,
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if Sj−1 has one or more elements which are very heavy compared to i∗, then with a random split
it may not be possible to efficiently estimate D(Sj)/D(Sj−1) as required in (ii) above. Thus we
follow a more careful approach which first identifies and removes “heavy” elements from Sj−1 in
each stage.

In more detail, during the j-th stage, the algorithm first performs CONDD queries on the set
Sj−1 to identify a set Hj ⊆ Sj−1 of “heavy” elements; this set essentially consists of all elements
which individually each contribute at least a κ fraction of the total mass D(Sj−1). (Here κ
is a “not-too-small” quantity but it is significantly less than ε.) Next, the algorithm performs
additional CONDD queries to estimate D(i∗)/D(Sj−1). If this fraction exceeds κ/20 then it is
straightforward to estimate D(i∗)/D(Sj−1) to high accuracy, so using D̂(Sj−1) it is possible to
obtain a high-quality estimate of D(i∗) and the algorithm can conclude. However, the typical case
is that D(i∗)/D(Sj−1) < κ/20. In this case, the algorithm next estimates D(Hj)/D(Sj−1). If this
is larger than 1 − ε/10 then the algorithm outputs UNKNOWN (see below for more discussion
of this). If D(Hj)/D(Sj−1) is less than 1 − ε/10 then D(Sj−1 \ Hj)/D(Sj−1) ≥ ε/10 (and so
D(Sj−1 \ Hj)/D(Sj−1) can be efficiently estimated to high accuracy), but each element k of
Sj−1 \Hj has D(k)/D(Sj−1) ≤ κ� ε/10 ≤ D(Sj−1 \Hj)/D(Sj−1). Thus it must be the case that
the weight under D of Sj−1 \Hj is “spread out” over many “light” elements.

Given that this is the situation, the algorithm next chooses S′j to be a random subset of
Sj−1 \ (Hj ∪ {i∗}), and sets Sj to be S′j ∪ {i∗}. It can be shown that with high probability (over the
random choice of Sj) it will be the case that D(Sj) ≥ 1

3D(Sj−1 \Hj) (this relies crucially on the
fact that the weight under D of Sj−1 \Hj is “spread out” over many “light” elements). This makes
it possible to efficiently estimate D(Sj)/D(Sj−1 \Hj); together with the high-accuracy estimate
of D(Sj−1 \Hj)/D(Sj−1) noted above, and the high-accuracy estimate D̂(Sj−1) of D(Sj−1), this
means it is possible to efficiently estimate D(Sj) to high accuracy as required for the next stage.
(We note that after defining Sj but before proceeding to the next stage, the algorithm actually
checks to be sure that Sj contains at least one point that was returned from the CONDD(Sj−1)
calls made in the past stage. This check ensures that whenever the algorithm calls CONDD(S) on a
set S, it is guaranteed that D(S) > 0 as required by our CONDD model. Our analysis shows that
doing this check does not affect correctness of the algorithm since with high probability the check
always passes.)

Intuition for the analysis. We require some definitions to give the intuition for the analysis
establishing correctness. Fix a nonempty subset S ⊆ [N ]. Let πS be the bijection mapping
{1, . . . , |S|} to S in such a way that DS(πS(1)) > · · · > DS(πS(|S|)), i.e. πS(1), . . . , πS(|S|) is a
listing of the elements of S in order from heaviest under DS to lightest under DS . Given j ∈ S, we
define the S-rank of j, denoted rankS(j), to be the value

∑
i:DS(π(i))≤DS(j)DS(π(i)), i.e. rankS(j)

is the sum of the weights (under DS) of all the elements in S that are no heavier than j under DS .
Note that having i∗ /∈ Lε,N implies that rank[N ](i∗) ≥ ε.

We first sketch the argument for correctness. (It is easy to show that the algorithm only outputs
FAIL with very small probability so we ignore this possibility below.) Suppose first that i∗ /∈ Lε,D.
A key lemma shows that if i∗ /∈ Lε,D (and hence rank[N ](i∗) ≥ ε), then with high probability every
set Sj−1 constructed by the algorithm is such that rankSj−1(i∗) ≥ ε/2. (In other words, if i∗ is not
initially among the ε-fraction (under D) of lightest elements, then it never “falls too far” to become
part of the ε/2-fraction (under DSj−1) of lightest elements for Sj−1, for any j.). Given that (whp)
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i∗ always has rankSj−1(i∗) ≥ ε/2, though, then it must be the case that (whp) the procedure does
not output UNKNOWN (and hence it must whp output a numerical value). This is because there
are only two places where the procedure can output UNKNOWN, in Lines 14 and 19; we consider
both cases below.

1. In order for the procedure to output UNKNOWN in Line 14, it must be the case that the
elements of Hj – each of which individually has weight at least κ/2 under DSj−1 – collectively
have weight at least 1− 3ε/20 under DSj−1 by Line 13. But i∗ has weight at most 3κ/40 under
DSj−1 (because the procedure did not go to Line 2 in Line 10), and thus i∗ would need to be
in the bottom 3ε/20 of the lightest elements, i.e. it would need to have rankSj−1(i∗) ≤ 3ε/20;
but this contradicts rankSj−1(i∗) ≥ ε/2.

2. In order for the procedure to output UNKNOWN in Line 19, it must be the case that all
elements i1, . . . , im drawn in Line 6 are not chosen for inclusion in Sj . In order for the algorithm
to reach Line 19, though, it must be the case that at least (ε/10− κ/20)m of these draws do
not belong to Hj ∪ {i∗}; since these draws do not belong to Hj each one occurs only a small
number of times among the m draws, so there must be many distinct values, and hence the
probability that none of these distinct values is chosen for inclusion in S′j is very low.

Thus we have seen that if i∗ /∈ Lε,D, then whp the procedure outputs a numerical value; it
remains to show that whp this value is a high-accuracy estimate of D(i∗). However, this follows
easily from the fact that we inductively maintain a high-quality estimate of D(Sj−1) and the fact
that the algorithm ultimately constructs its estimate of D̂(i∗) only when it additionally has a
high-quality estimate of D(i∗)/D(Sj−1). This fact also handles the case in which i∗ ∈ Lε,D – in such
a case it is allowable for the algorithm to output UNKNOWN, so since the algorithm w.h.p. outputs
a high-accuracy estimate when it outputs a numerical value, this means the algorithm performs as
required in Case (ii) of Definition 6.

We now sketch the argument for query complexity. We will show that the heavy elements can be
identified in each stage using poly(logN, 1/ε) queries. Since the algorithm constructs Sj by taking
a random subset of Sj−1 (together with i∗) at each stage, the number of stages is easily bounded
by (essentially) O(logN). Since the final probability estimate for D(i∗) is a product of O(logN)
conditional probabilities, it suffices to estimate each of these conditional probabilities to within a
multiplicative factor of (1±O

(
ε

logN

)
). We show that each conditional probability estimate can be

carried out to this required precision using only poly(logN, 1/ε) calls to CONDD; given this, the
overall poly(logN, 1/ε) query bound follows straightforwardly.

Now we enter into the actual proof. We begin our analysis with a simple but useful lemma
about the “heavy” elements identified in Line 7.

Lemma 16 With probability at least 1 − δ/K, every set Hj that is ever constructed in Line 7
satisfies the following for all ` ∈ Sj−1:

(i) If D(`)/D(Sj−1) > κ, then ` ∈ Hj;

(ii) If D(`)/D(Sj−1) < κ/2 then ` /∈ Hj .
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Algorithm 10: Approx-Eval-Simulator

Input: access to CONDD; parameters 0 < ε, δ < 1; input element i∗ ∈ [N ]
1: Set S0 = [N ] and D̂(S0) = 1. Set K = 9. Set M = logN + log(K/δ) + 1. Set
κ = Θ(ε/(M2 log(M/δ))).

2: for j = 1 to M do
3: if |Sj−1| = 1 then
4: return D̂(Sj−1) (and exit)
5: end if
6: Perform m = Θ(max{M2 log(M/δ)/(ε2κ), log(M/(δκ))/κ2}) CONDD queries on Sj−1 to

obtain points i1, . . . , im ∈ Sj−1.
7: Let Hj = {k ∈ [N ] : k appears at least 3

4κm times in the list i1, . . . , im}
8: Let D̂Sj−1(i∗) denote the fraction of times that i∗ appears in i1, . . . , im

9: if D̂Sj−1(i∗) ≥ κ
20 then

10: Set Sj = {i∗}, set D̂(Sj) = D̂Sj−1(i∗) · D̂(Sj−1), increment j, and go to Line 2.
11: end if
12: Let D̂Sj−1(Hj) denote the fraction of elements among i1, . . . , im that belong to Hj .
13: if D̂Sj−1(Hj) > 1− ε/10 then
14: return UNKNOWN (and exit)
15: end if
16: Set S′j to be a uniform random subset of Sj−1 \ (Hj ∪ {i∗}) and set Sj to be S′j ∪ {i∗}.
17: Let D̂Sj−1(Sj) denote the fraction of elements among i1, . . . , im that belong to Sj
18: if D̂Sj−1(Sj) = 0 then
19: return UNKNOWN (and exit)
20: end if
21: Set D̂(Sj) = D̂Sj−1(Sj) · D̂(Sj−1)
22: end for
23: Output FAIL.
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Proof: Fix an iteration j. By Line 7 in the algorithm, a point ` is included in Hj if it appears
at least 3

4κm times among i1, . . . , im (which are the output of CONDD queries on Sj−1). For the
first item, fix an element ` such that D(`)/D(Sj−1) > κ. Recall that m = Ω(M2 log(M/δ)/(ε2κ)) =
Ω(log(MN/δ)/κ) (since M = Ω(log(N))). By a multiplicative Chernoff bound, the probability (over
the choice of i1, . . . , im in Sj−1) that ` appears less than 3

4κm times among i1, . . . , im (that is, less
than 3/4 times the lower bound on the expected value) is at most δ/(KMN) (for an appropriate
constant in the setting of m). On the other hand, for each fixed ` such that D(`)/D(Sj−1) < κ/2,
the probability that ` appears at least 3

4κm times (that is, at least 3/2 times the upper bound on
the expected value) is at most δ/(KMN) as well. The lemma follows by taking a union bound over
all (at most N) points considered above and over all M settings of j,

Next we show that with high probability Algorithm Approx-Eval-Simulator returns either
UNKNOWN or a numerical value (as opposed to outputting FAIL in Line 23):

Lemma 17 For any D, ε, δ and i∗, Algorithm Approx-Eval-Simulator outputs FAIL with
probability at most δ/K.

Proof: Fix any element i 6= i∗. The probability (taken only over the choice of the random subset
in each execution of Line 16) that i is placed in S′j in each of the first logN + log(K/δ) executions
of Line 16 is at most δ

KN . Taking a union bound over all N − 1 points i 6= i∗, the probability that
any point other than i∗ remains in Sj−1 through all of the first logN + log(K/δ) executions of the
outer “for” loop is at most δ

K . Assuming that this holds, then in the execution of the outer “for”
loop when j = logN + log(K/δ) + 1, the algorithm will return D̂(Sj−1) = D̂(i∗) in Line 4.

For the rest of the analysis it will be helpful for us to define several “desirable” events and show
that they all hold with high probability:

1. Let E1 denote the event that every set Hj that is ever constructed in Line 7 satisfies both
properties (i) and (ii) stated in Lemma 16. By Lemma 16 the event E1 holds with probability
at least 1− δ/K.

2. Let E2 denote the event that in every execution of Line 9, the estimate D̂Sj−1(i∗) is within
an additive ± κ

40 of the true value of D(i∗)/D(Sj−1). By the choice of m in Line 6 (i.e., using
m = Ω(log(M/δ)/κ2)), an additive Chernoff bound, and a union bound over all iterations,
the event E2 holds with probability at least 1− δ/K.

3. Let E3 denote the event that if Line 10 is executed, the resulting value D̂Sj−1(i∗) lies in
[1− ε

2M , 1 + ε
2M ]D(i∗)/D(Sj−1). Assuming that event E2 holds, if Line 10 is reached then

the true value of D(i∗)/D(Sj−1) must be at least κ/40, and consequently a multiplicative
Chernoff bound and the choice of m (i.e. using m = Ω(M2 log(M/δ)/(ε2κ))) together imply
that D̂Sj−1(i∗) lies in [1− ε

2M , 1 + ε
2M ]D(i∗)/D(Sj−1) except with failure probability at most

δ/K.

4. Let E4 denote the event that in every execution of Line 12, the estimate D̂Sj−1(Hj) is within
an additive error of ± ε

20 from the true value of D(Hj)/D(Sj−1). By the choice of m in Line 6
(i.e., using m = Ω(log(M/δ)/ε2)) and an additive Chernoff bound, the event E4 holds with
probability at least 1− δ/K.
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The above arguments show that E1, E2, E3 and E4 all hold with probability at least 1− 4δ/K.

Let E5 denote the event that in every execution of Line 16, the set S′j which is drawn satisfies
D(S′j)/D(Sj−1 \ (Hj ∪ {i∗})) ≥ 1/3. The following lemma says that conditioned on E1 through E4

all holding, event E5 holds with high probability:

Lemma 18 Conditioned on E1 through E4 the probability that E5 holds is at least 1− δ/K.

Proof: Fix a value of j and consider the j-th iteration of Line 16. Since events E2 and E4 hold,
it must be the case that D(Sj−1 \ (Hj ∪ {i∗}))/D(Sj−1) ≥ ε/40. Since event E1 holds, it must be
the case that every i ∈ (Sj−1 \ (Hj ∪ {i∗})) has D(i)/D(Sj−1) ≤ κ. Now since S′j is chosen by
independently including each element of Sj−1 \ (Hj ∪ {i∗}) with probability 1/2, we can apply the
first part of Corollary 3 and get

Pr
[
D(S′j) <

1
3
D(Sj−1 \ (Hj ∪ {i∗}))

]
≤ ε−4ε/(40·9·4κ) <

δ

KM
,

where the last inequality follows by the setting of κ = Θ(ε/(M2 log(1/δ))).

Thus we have established that E1 through E5 all hold with probability at least 1− 5δ/K.

Next, let E6 denote the event that the algorithm never returns UNKNOWN and exits in Line 19.
Our next lemma shows that conditioned on events E1 through E5, the probability of E6 is at least
1− δ/K:

Lemma 19 Conditioned on E1 through E5 the probability that E6 holds is at least 1− δ/K.

Proof: Fix any iteration j of the outer “For” loop. In order for the algorithm to reach Line 18
in this iteration, it must be the case (by Lines 9 and 13) that at least (ε/10− κ/20)m > (ε/20)m
points in i1, . . . , im do not belong to Hj ∪ {i∗}. Since each point not in Hj appears at most 3

4κm
times in the list i1, . . . , im, there must be at least ε

15κ distinct such values. Hence the probability
that none of these values is selected to belong to S′j is at most 1/2ε/(15κ) < δ/(KM). A union bound
over all (at most M) values of j gives that the probability the algorithm ever returns UNKNOWN
and exits in Line 19 is at most δ/M , so the lemma is proved.

Now let E7 denote the event that in every execution of Line 17, the estimate D̂Sj−1(Sj) lies in
[1 − ε

2M , 1 + ε
2M ]D(Sj)/D(Sj−1). The following lemma says that conditioned on E1 through E5,

event E7 holds with probability at least 1− δ/K:

Lemma 20 Conditioned on E1 through E5, the probability that E7 holds is at least 1− δ/K.

Proof: Fix a value of j and consider the j-th iteration of Line 16. The expected value of D̂Sj−1(Sj)
is precisely

D(Sj)
D(Sj−1)

=
D(Sj)

D(Sj−1 \ (Hj ∪ {i∗}))
· D(Sj−1 \ (Hj ∪ {i∗}))

D(Sj−1)
. (59)
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Since events E2 and E4 hold we have that D(Sj−1\(Hj∪{i∗}))
D(Sj−1) ≥ ε/40, and since event E5 holds we

have that D(Sj)
D(Sj−1\(Hj∪{i∗})) ≥ 1/3 (note that D(Sj) ≥ D(S′j)). Thus we have that (59) is at least

ε/120. Recalling the value of m (i.e., using m = Ω(M2 log(M/δ)/ε2κ) = Ω(M2 log(KM/δ)/ε3)) a
multiplicative Chernoff bound gives that indeed D̂Sj−1(Sj) ∈ [1− ε

2M , 1 + ε
2M ]D(Sj)/D(Sj−1) with

failure probability at most δ/(KM). A union bound over all M possible values of j finishes the
proof.

At this point we have established that events E1 through E7 all hold with probability at least
1− 7δ/K.

We can now argue that each estimate D̂(Sj) is indeed a high-accuracy estimate of the true value
D(Sj):

Lemma 21 With probability at least 1− 7δ/K each estimate D̂(Sj) constructed by Approx-Eval-
Simulator lies in [(1− ε

2M )j , (1 + ε
2M )j ]D(Sj).

Proof: We prove the lemma by showing that if all events E1 through E7 hold, then the following
claim (denoted (*)) holds: each estimate D̂(Sj) constructed by Approx-Eval-Simulator lies in
[(1− ε

2M )j , (1 + ε
2M )j ]D(Sj). Thus for the rest of the proof we assume that indeed all events E1

through E7 hold.

The claim (*) is clearly true for j = 0. We prove (*) by induction on j assuming it holds for
j − 1. The only places in the algorithm where D̂(Sj) may be set are Lines 10 and 21. If D̂(Sj) is set
in Line 21 then (*) follows from the inductive claim for j − 1 and Lemma 20. If D̂(Sj) is set in
Line 10, then (*) follows from the inductive claim for j − 1 and the fact that event E3 holds. This
concludes the proof of the lemma.

Finally, we require the following crucial lemma which establishes that if i∗ /∈ Lε,N (and hence the
initial rank rank[N ] of i∗ is at least ε), then with very high probability the rank of i∗ never becomes
too low during the execution of the algorithm:

Lemma 22 Suppose i∗ /∈ Lε,N . Then with probability at least 1− δ/K, every set Sj−1 constructed
by the algorithm has rankSj−1(i∗) ≥ ε/2.

We prove Lemma 22 in Section 6.2.4 below.

With these pieces in place we are ready to prove Theorem 13.

Proof of Theorem 13: It is straightforward to verify that algorithm Approx-Eval-Simulator
has the claimed query complexity. We now argue that Approx-Eval-Simulator meets the two
requirements (i) and (ii) of Definition 6. Throughout the discussion below we assume that all the
“favorable events” in the above analysis (i.e. events E1 through E7, Lemma 17, and Lemma 22)
indeed hold as desired (incurring an overall failure probability of at most δ).

Suppose first that i∗ /∈ Lε,D. By Lemma 22 it must be the case that the algorithm does not
return UNKNOWN in Line 14. (This is because in order to reach Line 14 it would need to be the
case that D(i∗)/D(Sj−1) ≤ 3κ/40 (so the algorithm does not instead go to Line 22 in Line 10), but
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since by Lemma 16 every element k in Hj has D(k)/D(Sj−1) ≥ κ/2, this means that i∗ does not
belong to Hj . In order to reach Line 14, by event E4 we must have D(Hj)/D(Sj−1) ≥ 1− 3ε/20.
Since every element of Hj has more mass under D (at least κ/2) than i∗ (which has at most 3κ/40),
this implies that rankSj−1(i∗)≤3ε/20. This contradicts Lemma 22.) And by Lemma 19 it must be
the case that the algorithm does not return UNKNOWN in Line 19. Thus the algorithm terminates
by returning an estimate D̂(Sj) = D̂(i∗) which, by Lemma 21, lies in [(1− ε

2M )j , (1 + ε
2M )j ]D(i∗).

Since j ≤M this estimate lies in [1− ε, 1 + ε]D(i∗) as required.

Now suppose that i∗ ∈ Lε,D. By Lemma 17 we may assume that the algorithm either outputs
UNKNOWN or a numerical value. As above, Lemma 21 implies that if the algorithm outputs a
numerical value then the value lies in [1 − ε, 1 + ε]D(i∗) as desired. This concludes the proof of
Theorem 13.

6.2.4 Proof of Lemma 22.

The key to proving Lemma 22 will be proving the next lemma. (In the following, for S a set of real
numbers we write sum(S) to denote

∑
α∈S α.)

Lemma 23 Fix 0 < ε ≤ c. Set κ = Θ(ε/(M2 log(1/δ))). Let T = {α1, . . . , αn} be a set of values
α1 < · · · < αn such that sum(T ) = 1. Fix ` ∈ [n] and let TL = {α1, . . . , α`} and let TR =
{α`+1, . . . , αn}, so TL ∪ TR = T. Assume that sum(TL) ≥ ε/2 and that α` ≤ κ/10.

Fix H to be any subset of T satisfying the following two properties: (i) H includes every αj
such that αj ≥ κ; and (ii) H includes no αj such that αj < κ/2. (Note that consequently H does
not intersect TL.)

Let T ′ be a subset of (T \ (H ∪ {α`}) selected uniformly at random. Let T ′L = T ′ ∩ TL and let
T ′R = T ′ ∩ TR.

Then we have the following:

1. If sum(TL) > 20ε, then with probability at least 1 − δ/M (over the random choice of T ′) it
holds that

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ 9ε;

2. If ε/2 ≤ sum(TL) < 20ε, then with probability at least 1− δ/M (over the random choice of T ′)
it holds that

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ sum(TL) (1− ρ) ,

where ρ = ln 2
M .

Proof of Lemma 22 using Lemma 23: We apply Lemma 23 repeatedly at each iteration j of
the outer “For” loop. The set H of Lemma 23 corresponds to the set Hj of “heavy” elements
that are removed at a given iteration, the set of values T corresponds to the values D(i)/D(Sj−1)
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for i ∈ Sj−1, and the element α` of Lemma 23 corresponds to D(i∗)/D(Sj−1). The value sum(TL)
corresponds to rankSj−1(i∗) and the value

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

corresponds to rankSj (i
∗). Observe that since i∗ /∈ Lε,N we know that initially rank[N ](i∗) ≥ ε, which

means that the first time we apply Lemma 23 (with T = {D(i) : i ∈ [N ]}) we have sum(TL) ≥ ε.

By Lemma 23 the probability of failure in any of the (at most M) iterations is at most δ/K, so
we assume that there is never a failure. Consequently for all j we have that if rankSj−1(i∗) ≥ 20ε
then rankSj (i

∗) ≥ 9ε, and if ε/2 ≤ rankSj−1(i∗) < 20ε then rankSj (i
∗) ≥ rankSj (i

∗) · (1− ρ) . Since
rankS0(i∗) ≥ ε, it follows that for all j ≤M we have rankSj (i

∗) ≥ ε · (1− ρ)M > ε/2.

Proof of Lemma 23. We begin with the following claim:

Claim 24 With probability at least 1 − δ/(2M) (over the random choice of T ′) it holds that
sum(T ′L) ≥ 1

2 · sum(TL) · (1− ρ/2).

Proof: Recall from the setup that every element αi ∈ TL satisfies αi ≤ κ/10, and sum(TL) ≥ ε/2.
Also recall that κ = Θ(ε/(M2 log(1/δ))) and that ρ = ln 2

M , so that ρ2ε/(6κ) ≥ ln(2M/δ). The claim
follows by applying the first part of Corollary 3 (with γ = ρ/2).

Part (1) of Lemma 23 is an immediate consequence of Claim 24, since in part (1) we have

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

≥ sum(T ′L) ≥ 1
2
· sum(TL) ·

(
1− ρ

2

)
≥ 1

2
· 20ε ·

(
1− ρ

2

)
≥ 9ε.

It remains to prove Part (2) of the lemma. We will do this using the following claim:

Claim 25 Suppose ε/2 ≤ sum(TL) ≤ 20ε. Then with probability at least 1 − δ/(2M) (over the
random choice of T ′) it holds that sum(T ′R) ≤ 1

2sum(TR) · (1 + ρ/2).

Proof: Observe first that that αi < κ for each αi ∈ TR \H. We consider two cases.

If sum(TR \H) ≥ 4ε, then we apply the first part of Corollary 3 to the αi’s in TR \H and get
that

Pr
[
sum(T ′R) >

1
2

sum(TR) · (1 + ρ/2)
]
≤ Pr

[
sum(T ′R) >

1
2

sum(TR \H)) · (1 + ρ/2)
]

< exp(−ρ2sum(TR \H)/24κ) (60)

≤ exp(−ρ2ε/(6κ)) ≤ δ

(2M)
(61)

(recall from the proof of Claim 24 that ρ2ε/(6κ) ≥ ln(2M/δ)).

If sum(TR \H) < 4ε, (so that the expected value of sum(T ′R) is less than 2ε) then we can apply
the second part of Corollary 3 as we explain next. Observe that by the premise of the lemma,
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sum(TR) ≥ 1− 20ε which is at least 1/2 (recalling that ε is at most a small absolute constant c).
Consequently, the event “sum(T ′R) ≥ 1

2 · sum(TR) · (1 + ρ/2)” implies the event “sum(T ′R) ≥ 1
4”, and

by applying the second part of Corollary 3 we get

Pr
[
sum(T ′R) >

1
2

sum(TR) · (1 + ρ/2)
]
≤ Pr

[
sum(T ′R) >

1
4

]
< 2−1/4κ <

δ

2
, (62)

as required.

Now we can prove Lemma 23. Using Claims 24 and 25 we have that with probability at least
1− δ/M ,

sum(T ′L) ≥ 1
2
· sum(TL) · (1− ρ/2) and sum(T ′R) ≤ 1

2
sum(TR) · (1 + ρ/2);

we assume that both these inequalities hold going forth. Since

sum(T ′L ∪ {α`})
sum(T ′ ∪ {α`})

=
sum(T ′L) + α`
sum(T ′) + α`

>
sum(T ′L)
sum(T ′)

,

it is sufficient to show that sum(T ′L)

sum(T ′) ≥ sum(TL)(1 − ρ); we now show this. As
sum(T ′) = sum(T ′L) + sum(T ′R),

sum(T ′L)
sum(T ′)

=
sum(T ′L)

sum(T ′L) + sum(T ′R)
=

1

1 + sum(T ′R)

sum(T ′L)

≥ 1

1 + (1/2)·sum(TR)·(1+ρ/2)
(1/2)·sum(TL)·(1−ρ/2)

=
sum(TL) · (1− ρ/2)

sum(TL) · (1− ρ/2) + sum(TR) · (1 + ρ/2)

≥ sum(TL) · (1− ρ/2)
sum(TL) · (1 + ρ/2) + sum(TR) · (1 + ρ/2)

= sum(TL) · 1− ρ/2
1 + ρ/2

> sum(TL) · (1− ρ).

This concludes the proof of Lemma 23.

7 An algorithm for estimating the distance to uniformity

In this section we describe an algorithm that estimates the distance between a distribution D and
the uniform distribution U by performing poly(1/ε) PCOND (and SAMP) queries. We start by
giving a high level description of the algorithm.

By the definition of the variation distance (and the uniform distribution),

dTV(D,U) =
∑

i:D(i)<1/N

(
1
N
−D(i)

)
. (63)
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We define the following function over [N ]:

ψD(i) = (1−N ·D(i)) for D(i) <
1
N
, and ψD(i) = 0 for D(i) ≥ 1

N
. (64)

Observe that ψD(i) ∈ [0, 1] for every i ∈ [N ] and

dTV(D,U) =
1
N

N∑
i=1

ψD(i) . (65)

Thus dTV(D,U) can be viewed as an average value of a function whose range is in [0, 1]. Since D
is fixed throughout this subsection, we shall use the shorthand ψ(i) instead of ψD(i). Suppose we
were able to compute ψ(i) exactly for any i of our choice. Then we could obtain an estimate d̂ of
dTV(D,U) to within an additive error of ε/2 by simply selecting Θ(1/ε2) points in [N ] uniformly
at random and setting d̂ to be the average value of ψ(·) on the sampled points. By an additive
Chernoff bound (for an appropriate constant in the Θ(·) notation), with high constant probability
the estimate d̂ would deviate by at most ε/2 from dTV(D,U).

Suppose next that instead of being able to compute ψ(i) exactly, we were able to compute
an estimate ψ̂(i) such that |ψ̂(i) − ψ(i)| ≤ ε/2. By using ψ̂(i) instead of ψ(i) for each of the
Θ(1/ε2) sampled points we would incur an additional additive error of at most ε/2. Observe first
that for i such that D(i) ≤ ε/(2N) we have that ψ(i) ≥ 1 − ε/2, so the estimate ψ̂(i) = 1 meets
our requirements. Similarly, for i such that D(i) ≥ 1/N , any estimate ψ̂(i) ∈ [0, ε/2] can be
used. Finally, for i such that D(i) ∈ [ε/(2N), 1/N ], if we can obtain an estimate D̂(i) such that
D̂(i) ∈ [1− ε/2, 1 + ε/2]D(i), then we can use ψ̂(i) = N · D̂(i).

In order to obtain such estimates ψ̂(i), we shall be interested in finding a reference point x.
Namely, we shall be interested in finding a pair (x, D̂(x)) such that D̂(x) ∈ [1− ε/c, 1 + ε/c]D(x)
for some sufficiently large constant c, and such that D(x) = Ω(ε/N) and D(x) = O(1/(εN)). In
Subsection 7.1 we describe a procedure for finding such a reference point. More precisely, the
procedure is required to find such a reference point (with high constant probability) only under
a certain condition on D. It is not hard to verify (and we show this subsequently), that if this
condition is not met, then dTV(D,U) is very close to 1. In order to state the lemma we introduce
the following notation. For γ ∈ [0, 1], let

HD
γ

def=
{
i : D(i) ≥ 1

γN

}
. (66)

Lemma 26 Given an input parameter κ ∈ (0, 1/4] as well as SAMP and PCOND query access to
a distribution D, the procedure Find-Reference (Algorithm 12) either returns a pair (x, D̂(x))
where x ∈ [N ] and D̂(x) ∈ [0, 1] or returns No-Pair. The procedure satisfies the following:

1. If D(HD
κ ) ≤ 1− κ, then with probability at least 9/10, the procedure returns a pair (x, D̂(x))

such that D̂(x) ∈ [1− 2κ, 1 + 3κ]D(x) and D(x) ∈
[
κ
8 ,

4
κ

]
· 1
N .

2. If D(HD
κ ) > 1− κ, then with probability at least 9/10, the procedure either returns No-Pair or

it returns a pair (x, D̂(x)) such that D̂(x) ∈ [1− 2κ, 1 + 3κ]D(x) and D(x) ∈
[
κ
8 ,

4
κ

]
· 1
N .
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The procedure performs Õ(1/κ20) PCOND and SAMP queries.

Once we have a reference point x we can use it to obtain an estimate ψ̂(i) for any i of our choice,
using the procedure Compare, whose properties are stated in Lemma 2 (see Subsection 3.1).

Algorithm 11: Estimating the Distance to Uniformity
Input: PCOND and SAMP query access to a distribution D and a parameter ε ∈ [0, 1].

1. Call the procedure Find-Reference (Algorithm 12) with κ set to ε/8. If it returns No-Pair,
then output d̂ = 1 as the estimate for the distance to uniformity. Otherwise, let (x, D̂(x)) be
its output.

2. Select a sample S of Θ(1/ε2) points uniformly.

3. Let K = max
{

2/NbD(x)
,
bD(x)
ε/(4N)

}
.

4. For each point y ∈ S:

(a) Call Compare
(
{x}, {y}, ε/2,K, 1

10|S|

)
.

(b) If Compare returns High or it returns a value ρ(y) such that ρ(y) · D̂(x) ≥ 1/N , then
set ψ̂(y) = 0;

(c) Else, if Compare returns Low or it returns a value ρ(y) such that ρ(y) · D̂(x) ≤ ε/4N ,
then set ψ̂(y) = 1;

(d) Else set ψ̂(y) = N · ρ(y) · D̂(x).

5. Output d̂ = 1
|S|
∑

y∈S ψ̂(y).

Theorem 14 With probability at least 2/3, the estimate d̂ returned by Algorithm 11 satisfies:
d̂ = dTV(D,U)±O(κ). The number of queries performed by the algorithm is Õ(1/ε20).

Proof: In what follows we shall use the shorthand Hγ instead of HD
γ . Let E0 denote the event

that the procedure Find-Reference (Algorithm 12) obeys the requirements in Lemma 26, where
by Lemma 26 the event E0 holds with probability at least 9/10. Conditioned on E0, the algorithm
outputs d̂ = 1 right after calling the procedure (because the procedure returns No-Pair) only when
D(Hκ) > 1− κ = 1− ε/8. We claim that in this case dTV(D,U) ≥ 1− 2ε/8 = 1− ε/4. To verify
this, observe that

dTV(D,U) =
∑

i:D(i)>1/N

(
D(i)− 1

N

)
≥
∑
i∈Hκ

(
D(i)− 1

N

)
= D(Hκ)− |Hκ|

N
≥ D(Hκ)− κ . (67)

Thus, in this case the estimate d̂ is as required.

We turn to the case in which D(Hκ) ≤ 1− κ and the procedure Find-Reference returns a
pair (x, D̂(x)) such that D̂(x) ∈ [1− 2κ, 1 + 3κ]D(x) and D(x) ∈

[
κ
8 ,

4
κ

]
· 1
N .
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We start by defining two more “desirable” events, which hold (simultaneously) with high constant
probability, and then show that conditioned on these events holding (as well as E0), the output of
the algorithm is as required. Let E1 be the event that the sample S satisfies∣∣∣∣∣∣ 1

|S|
∑
y∈S

ψ(y)− dTV(D,U)

∣∣∣∣∣∣ ≤ ε/2 . (68)

By an additive Chernoff bound, the event E1 holds with probability at least 9/10.

Next, let E2 be the event that all calls to the procedure Compare return answers as specified
in Lemma 2. Since Compare is called |S| times, and for each call the probability that it does not
return an answer as specified in the lemma is at most 1/(10|S|), by the union bound the probability
that E2 holds is at least 9/10.

From this point on assume events E0, E1 and E2 all occur, which holds with probability at least
1− 3/10 ≥ 2/3. Since E2 holds, we get the following.

1. When Compare returns High for y ∈ S (so that ψ̂(y) is set to 0) we have that

D(y) > K ·D(x) ≥ 2/N

D̂(x)
·D(x) >

1
N
, (69)

implying that ψ̂(y) = ψ(y).

2. When Compare returns Low for y ∈ S (so that ψ̂(y) is set to 1) we have that

D(y) <
D(x)
K
≤ D(x)

D̂(x)/(ε/4N)
≤ ε

2N
, (70)

implying that ψ̂(y) ≤ ψ(y) + ε/2 (and clearly ψ(y) ≤ ψ̂(y)).

3. When Compare returns a value ρ(y) it holds that ρ(y) ∈ [1− κ, 1 + κ](D(y)/D(x)), so that
ρ(y) · D̂(x) ∈ [(1− κ)2, (1 + κ)2]D(y). Since κ = ε/8, if ρ(y) · D̂(x) ≥ 1/N (so that ψ̂(y) is set
to 0), then ψ(y) < ε/2, if ρ(y) · D̂(x) ≤ ε/4N (so that ψ̂(y) is set to 1), then ψ(y) ≥ 1− ε/2,
and otherwise |ψ̂(y)− ψ(y)| ≤ ε/2.

It follows that

d̂ =
1
|S|
∑
y∈S

ψ̂(y) ∈

 1
|S|
∑
y∈S

ψ(y)− ε/2, 1
|S|
∑
y∈S

ψ(y) + ε/2

 ⊆ [dTV(D,U)−ε, dTV(D,U)+ε] (71)

as required.

The number of queries performed by the algorithm is the number of queries performed by
the procedure Find-Reference, which is Õ(1/ε20), plus Θ(1/ε2) times the number of queries
performed in each call to Compare. The procedure Compare is called with the parameter K,
which is bounded by O(1/ε2), the parameter η, which is Ω(ε), and δ, which is Ω(1/ε2). By Lemma 2,
the number of queries performed in each call to Compare is O(log(1/ε)/ε4). The total number of
queries performed is hence Õ(1/ε20).
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7.1 Finding a reference point

In this subsection we prove Lemma 26. We start by giving the high-level idea behind the procedure.
For a point x ∈ [N ] and γ ∈ [0, 1], let UDγ (x) be as defined in Equation (11). Since D is fixed
throughout this subsection, we shall use the shorthand Uγ(x) instead of UDγ (x). Recall that κ
is a parameter given to the procedure. Assume we had a point x for which D(Uκ(x)) ≥ κd1

and |Uκ(x)| ≥ κd2N for some constants d1 and d2 (so that necessarily D(x) = Ω(κd1/N) and
D(x) = O(1/(κd2N)). It is not hard to verify (and we show this in detail subsequently), that if
D(H) ≤ 1− κ, then a sample of size Θ(1/poly(κ)) distributed according to D will contain such a
point x with high constant probability. Now suppose that we could obtain an estimate ŵ of D(Uκ(x))
such that ŵ ∈ [1−κ, 1 +κ]D(Uκ(x)) and an estimate û of |Uκ(x)| such that û ∈ [1−κ, 1 +κ]|Uκ(x)|.
By the definition of Uκ(x) we have that (ŵ/û) ∈ [1−O(κ), 1 +O(κ)]D(x).

Obtaining good estimates of D(Uκ(x)) and |Uκ(x)| (for x such that both |Uκ(x)| and D(Uκ(x))
are sufficiently large) might be infeasible. This is due to the possible existence of many points y for
which D(y) is very close to (1+κ)D(x) or D(x)/(1+κ) which define the boundaries of the set Uκ(x).
For such points it is not possible to efficiently distinguish between those among them that belong to
Uκ(x) (so that they are within the borders of the set) and those that do not belong to Uκ(x) (so
that they are just outside the borders of the set). However, for our purposes it suffices to estimate
the weight and size of some set Uα(x) such that α ≥ κ (so that Uκ(x) ⊆ Uα(x)) and α is not much
larger than κ (e.g., α ≤ 2κ)). To this end we can apply Procedure Estimate-Neighborhood (see
Subsection 3.2), which (conditioned on D(Uκ(x)) being above a certain threshold), returns a pair
(ŵ(x), α) such that ŵ(x) is a good estimate of D(Uα(x)). Furthermore, α is such that for α′ slightly
larger than α, the weight of Uα′(x) \ Uα(x) is small, allowing us to obtain also a good estimate µ̂(x)
of |Uα(x)|/N .

Proof of Lemma 26: We first introduce the following notation.

L
def=
{
i : D(i) <

κ

2N

}
, M

def=
{
i :

κ

2N
≤ D(i) <

1
κN

}
. (72)

Let H = HD
κ where HD

κ is as defined in Equation (66). Observe that D(L) < κ/2, so that if
D(H) ≤ 1 − κ, then D(M) ≥ κ/2. Consider further partitioning the set M of “medium weight”
points into buckets M1, . . . ,Mr where r = log1+κ(2/κ2) = Θ(log(1/κ)/κ) and the bucket Mj is
defined as follows:

Mj
def=
{
i : (1 + κ)j−1 · κ

2N
≤ D(i) < (1 + κ)j · κ

2N

}
. (73)

We consider the following “desirable” events.

1. Let E1 be the event that conditioned on the existence of a bucket Mj such that D(Mj) ≥
κ/2r = Ω(κ2/ log(1/κ)), there exists a point x∗ ∈ X that belongs to Mj . By the setting of
the size of the sample X, the (conditional) event E1 holds with probability at least 1− 1/40.

2. Let E2 be the event that all calls to Estimate-Neighborhood return an output as specified
by Lemma 3. By Lemma 3, the setting of the confidence parameter δ in each call and a union
bound over all |X| calls, E2 holds with probability at least 1− 1/40.
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Algorithm 12: Procedure Find-Reference

Input: PCOND and SAMP query access to a distribution D and a parameter κ ∈ (0, 1/4]

1. Select a sample X of Θ(log(1/κ)/κ2) points distributed according to D.

2. For each x ∈ X do the following:

(a) Call Estimate-Neighborhood with the parameters κ as in the input to
Find-Reference, β = κ2/(40 log(1/κ)), η = κ, and δ = 1/(40|X|). Let
θ = κηβδ/64 = Θ(κ6/ log2(1/κ)) (as in Find-Reference).

(b) If Estimate-Neighborhood returns a pair (ŵ(x), α(x)) such that
ŵ(x) < κ2/20 log(1/κ), then go to Line 2 and continue with next x ∈ X.

(c) Select a sample Yx of size Θ(log2(1/κ)/κ5) distributed uniformly.

(d) For each y ∈ Yx call Compare({x}, {y}, θ/4, 4, 1/40|X||Yx|), and let the output be
denoted ρx(y).

(e) Let µ̂(x) be the fraction of occurrences of y ∈ Yx such that
ρx(y) ∈ [1/(1 + α+ θ/2), 1 + α+ θ/2].

(f) Set D̂(x) = ŵ(x)/(µ̂(x)N).

3. If for some point x ∈ X we have ŵ(x) ≥ κ2/20 log(1/κ), µ̂(x) ≥ κ3/20 log(1/κ), and
κ/4n ≤ D̂(x) ≤ 2/(κN), then return (x, D̂(x)). Otherwise return No-Pair.

3. Let E3 be the event that for each x ∈ X we have the following.

(a) If |Uα(x)(x)|
N ≥ κ3

40 log(1/κ) , then |Yx∩Uα(x)(x)|
|Yx| ∈ [1− η/2, 1 + η/2] |Uα(x)(x)|

N ;

If |Uα(x)(x)|
N < κ3

40 log(1/κ) , then |Yx∩Uα(x)(x)|
|Yx| < κ3

30 log(1/κ) ;

(b) Let ∆α(x),θ(x) def= Uα(x)+θ(x) \ Uα(x)(x) (where θ is as specified by the algorithm).

If |∆α(x),θ(x)|
N ≥ κ4

240 log(1/κ) , then |Yx∩∆α(x),θ(x)|
|Yx| ≤ 2 · |∆α(x),θ(x)|

N ;

If |∆α(x),θ(x)|
N < κ4

240 log(1/κ) , then |Yx∩∆α(x),θ(x)|
|Yx| < κ4

120 log(1/κ) .

By the size of each set Yx and a union bound over all x ∈ X, the event E3 holds with
probability at least 1− 1/40.

4. Let E4 be the event that all calls to Compare return an output as specified by Lemma 2. By
Lemma 2, the setting of the confidence parameter δ in each call and a union bound over all
(at most) |X| · |Y | calls, E3 holds with probability at least 1− 1/40.

Assuming events E1–E4 all hold (which occurs with probability at least 9/10) we have the following.

1. By E2, for each x ∈ X such that ŵ(x) ≥ κ2/20 log(1/κ) (so that x may be selected for the
output of the procedure) we have that D(Uα(x)(x)) ≥ κ2/40 log(1/κ).
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The event E2 also implies that for each x ∈ X we have that D(∆α(x),θ(x)) ≤ ηβ/16 ≤
(η/16) ·D(Uα(x)(x)), so that

|∆α(x),θ(x)|
N

≤ η(1 + α(x))(1 + α(x) + θ)
16

·
|Uα(x)(x)|

N
≤ η

6
·
|Uα(x)(x)|

N
. (74)

2. Consider any x ∈ X such that ŵ(x) ≥ κ2/20 log(1/κ). Let Tx
def= {y : ρx(y) ∈ [1/(1 + α +

θ/2), (1 + α+ θ/2], so that µ̂(x) = |Tx|/|Yx|. By E4, for each y ∈ Yx ∩ Uα(x)(x) we have that
ρx(y) ≤ (1 + α)(1 + θ/4) ≤ (1 + α+ θ/2) and ρx(y) ≥ (1 + α)−1(1− θ/4) ≥ (1 + α+ θ/2)−1,
so that y ∈ Tx. On the other hand, for each y /∈ Yx ∩ Uα(x)+θ(x) we have that ρx(y) >
(1 + α+ θ)(1− θ/4) ≥ 1 + α+ θ/2 or ρx(y) < (1 + α+ θ)−1(1− θ/4) < (1 + α+ θ/2)−1, so
that y /∈ Tx. It follows that

Yx ∩ Uα(x)(x) ⊆ Tx ⊆ Yx ∩ (Uα(x)(x) ∪∆α(x),θ(x)) . (75)

By E3, when µ̂(x) = |Tx|/|Yx| ≥ κ3/20 log(1/κ), then necessarily µ̂(x) ∈ [1 − η, 1 +
η]|Uα(x)(x)|/N . To verify this consider the following cases.

(a) If |Uα(x)(x)|
N ≥ κ3

40 log(1/κ) , then (by the left-hand-side of Equation (75) and the definition of

E3) we get that µ̂(x) ≥ (1− η/2) |Uα(x)(x)|
N , and (by the right-hand-side of Equation (75),

Equation (74) and E3) we get that µ̂(x) ≤ (1 + η/2) |Uα(x)(x)|
N + 2(η/6) |Uα(x)(x)|

N < (1 +

η) |Uα(x)(x)|
N .

(b) If |Uα(x)(x)|
N < κ3

40 log(1/κ) , then (by the right-hand-side of Equation (75), Equation (74)

and E3) we get that µ̂(x) < κ3

30 log(1/κ) + κ4

120 log(1/κ) < κ3/20 log(1/κ).

3. If D(H) ≤ 1 − κ, so that D(M) ≥ κ/2, then there exists at least one bucket Mj such that
D(Mj) ≥ κ/2r = Ω(κ2/ log(1/κ)). By E1, the sample X contains a point x∗ ∈ Mj . By the
definition of the buckets, for this point x∗ we have that D(Uκ(x∗)) ≥ κ/2r ≥ κ2/(10 log(1/κ)
and |Uκ(x∗)| ≥ (κ2/2r)N ≥ κ3/(10 log(1/κ).

By the first two items above and the setting η = κ we have that for each x such that ŵ(x) ≥
κ2/20 log(1/κ) and µ̂(x) ≥ κ3/20 log(1/κ),

D̂(x) ∈
[

1− κ
1 + κ

,
1 + κ

1− κ

]
D(x) ⊂ [1− 2κ, 1 + 3κ]D(x) .

Thus, if the algorithm outputs a pair (x, D̂(x)) then it satisfies the condition stated in both items
of the lemma. This establishes the second item in the lemma. By combining all three items we
get that if D(H) ≥ 1 − κ then the algorithm outputs a pair (x, D̂(x)) (where possibly, but not
necessarily, x = x∗), and the first item is established as well.

Turning to the query complexity, the total number of PCOND queries performed in the
|X| = O(log(1/κ)/κ2) calls to Estimate-Neighborhood is O

(
|X| log(1/γ)2 log(1/(βη))

κ2η4(β)3γ2

)
= Õ(1/κ18),

and the total number of PCOND queries performed in the calls to Compare (for at most all pairs
x ∈ X and y ∈ Yx) is Õ(1/κ20).
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8 Algorithms and lower bounds for testing uniformity with
ICONDD

In this section we consider ICOND algorithms for testing whether an unknown distribution D over [N ]
is the uniform distribution versus ε-far from uniform. Our results show that ICOND algorithms are
not as powerful as PCOND algorithms for this basic testing problem; we give a poly(logN, 1/ε)-query
ICONDD algorithm, and prove that any ICONDD algorithm must make Ω̃(logN) queries.

8.1 A Õ
(

log3N
ε3

)
-query ICONDD algorithm for testing uniformity

In this subsection we describe an algorithm ICONDD-Test-Uniform and prove the following
theorem:

Theorem 15 ICONDD-Test-Uniform is a Õ( log3N
ε3

)-query ICONDD testing algorithm for uni-
formity, i.e. it outputs ACCEPT with probability at least 2/3 if D = U and outputs REJECT with
probability at least 2/3 if dTV(D,U) ≥ ε.

Intuition. Recall that, as mentioned in Section 4.1, any distribution D which is ε-far from
uniform must put Ω(ε) probability mass on “significantly heavy” elements (that is, if we define
H ′ =

{
h ∈ [N ]

∣∣ D(h) ≥ 1
N + ε

4N

}
, it must hold that D(H ′) ≥ ε/4). Consequently a sample of

O(1/ε) points drawn from D will contain such a point with high probability. Thus, a natural
approach to testing whether D is uniform is to devise a procedure that, given an input point y, can
distinguish between the case that y ∈ H ′ and the case that D(y) = 1/N (as it is when D = U).

We give such a procedure, which uses the ICONDD oracle to perform a sort of binary search over
intervals. The procedure successively “weighs” narrower and narrower intervals until it converges
on the single point y. In more detail, we consider the interval tree whose root is the whole domain
[N ], with two children {1, . . . , N/2} and {N/2 + 1, . . . , N}, and so on, with a single point at each of
the N leaves. Our algorithm starts at the root of the tree and goes down the path that corresponds
to y; at each child node it Compare to compare the weight of the current node to the weight of its
sibling under D. If at any point the estimate deviates significantly from the value it should have if
D were uniform (namely the weights should be essentially equal, with slight deviations because of
even/odd issues), then the algorithm rejects Assuming the algorithm does not reject, it provides a
(1±O(ε))-accurate multiplicative estimate of D(y), and the algorithm checks whether this estimate
is sufficiently close to 1/N (rejecting if this is not the case). If no point in a sample of Θ(1/ε) points
(drawn according to D) causes rejection, then the algorithm accepts.

The algorithm we use to perform the “binary search” described above is Algorithm 13, Binary-
Descent. We begin by proving correctness for it:

Lemma 27 Suppose the algorithm Binary-Descent is run with inputs ε ∈ (0, 1], a = 1, b =
N , and y ∈ [N ], and is provided ICOND oracle access to distribution D over [N ]. It performs
Õ(log3N/ε2) queries and either outputs a value D̂(y) or REJECT, where the following holds:
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Algorithm 13: Binary-Descent

Input: parameter ε > 0; integers 1 ≤ a ≤ b ≤ N ; y ∈ [a, b]; query access to ICONDD oracle
1: if a = b then
2: return 1
3: end if
4: Let c =

⌊
a+b

2

⌋
; ∆ = (b− a+ 1)/2.

5: if y ≤ c then
6: Define Iy = {a, . . . , c}, Iȳ = {c+ 1, . . . , b} and ρ = d∆e/b∆c
7: else
8: Define Iȳ = {a, . . . , c}, Iy = {c+ 1, . . . , b} and ρ = b∆c/d∆e
9: end if

10: Call Compare on Iy, Iȳ with parameters η = ε
48 logN , K = 2, δ = ε

100(1+logN) to get an
estimate ρ̂ of D(Iy)/D(Iȳ)

11: if ρ̂ /∈ [1− ε
48 logN , 1 + ε

48 logN ] · ρ (this includes the case that ρ̂ is High or Low) then
12: return REJECT
13: end if
14: Call recursively Binary-Descent on input (ε, the endpoints of Iy, y);
15: if Binary-Descent returns a value ν then
16: return ρ̂

1+ρ̂ · ν
17: else
18: return REJECT
19: end if

Algorithm 14: ICONDD-Test-Uniform

Input: error parameter ε > 0; query access to ICONDD oracle
1: Draw t = 20

ε points y1, . . . , yt from SAMPD.
2: for j = 1 to t do
3: Call Binary-Descent(ε, 1, N, yj) and return REJECT if it rejects, otherwise let d̂j be the

value it returns as its estimate of D(yj)
4: if d̂j /∈ [1− ε

12 , 1 + ε
12 ] · 1

N then
5: return REJECT
6: end if
7: end for
8: return ACCEPT
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1. if D(y) ≥ 1
N + ε

4N , then with probability at least 1− ε
100 the procedure either outputs a value

D̂(y) ∈ [1− ε/12, 1 + ε/12]D(y) or REJECT;

2. if D = U , then with probability at least 1 − ε
100 the procedure outputs a value D̂(y) ∈

[1− ε/12, 1 + ε/12] · 1
N .

Proof of Lemma 27: The claimed query bound is easily verified, since the recursion depth is at
most 1 + logN and the only queries made are during calls to Compare, each of which performs
O(log(1/δ)/γ2) = Õ(log2N/ε2) queries.

Let E0 be the event that all calls to Compare satisfy the conditions in Lemma 2; since each of
them succeeds with probability at least 1− δ = 1− ε

100(1+logN) , a union bound shows that E0 holds
with probability at least 1− ε/100. We hereafter condition on E0.

We first prove the second part of the lemma where D = U . Fix any specific recursive call, say
the j-th, during the execution of the procedure. The intervals I(j)

y , I
(j)
ȳ used in that execution of the

algorithm are easily seen to satisfy D(Iy)/D(Iȳ) ∈ [1/K,K] (for K = 2), so by event E0 it must be
the case that Compare returns an estimate ρ̂j ∈ [1− ε

48 logN , 1 + ε
48 logN ] ·D(I(j)

y )/D(I(j)
ȳ ). Since

D = U , we have that D(I(j)
y )/D(I(j)

ȳ ) = ρ(j), so the overall procedure returns a numerical value
rather than REJECT.

Let M = dlogNe be the number of recursive calls (i.e., the number of executions of Line 14).
Note that we can write D(y) as a product

D(y) =
M∏
j=1

D(I(j)
y )

D(I(j)
y ) +D(I(j)

ȳ )
=

M∏
j=1

D(I(j)
y )/D(I(j)

ȳ )

D(I(j)
y )/D(I(j)

ȳ ) + 1
. (76)

We next observe that for any 0 ≤ ε′ < 1 and ρ, d > 0, if ρ̂ ∈ [1 − ε′, 1 + ε′]d then we have
ρ̂
ρ̂+1 ∈ [1− ε′

2 , 1 + ε′] d
d+1 (by straightforward algebra). Applying this M times, we get

M∏
j=1

ρ̂j
ρ̂j + 1

∈

[(
1− ε

96 logN

)M
,

(
1 +

ε

48 logN

)M]
·
M∏
j=1

D(I(j)
y )/D(I(j)

ȳ )

D(I(j)
y )/D(I(j)

ȳ ) + 1

∈

[(
1− ε

96 logN

)M
,

(
1 +

ε

48 logN

)M]
·D(y)

∈
[
1− ε

12
, 1 +

ε

12

]
D(y).

Since
∏M
j=1

ρ̂j
ρ̂j+1 is the value that the procedure outputs, the second part of the lemma is proved.

The proof of the first part of the lemma is virtually identical. The only difference is that now
it is possible that Compare outputs High or Low at some call (since D is not uniform it need
not be the case that D(I(j)

y )/D(I(j)
ȳ ) = ρ(j)), but this is not a problem for (i) since in that case

Binary-Descent would output REJECT.

See Algorithm 13 for a description of the testing algorithm ICONDD-Test-Uniform. We now
prove Theorem 15:
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Proof of Theorem 15: Define E1 to be the event that all calls to Binary-Descent satisfy the
conclusions of Lemma 27. With a union bound over all these t = 20/ε calls, we have Pr[E1] ≥ 8/10.

Completeness: Suppose D = U , and condition again on E1. Since this implies that Binary-
Descent will always return a value, the only case ICONDD-Test-Uniform might reject is
by reaching Line 5. However, since it is the case that every value d̂j returned by the procedure
satisfies D̂(y) ∈ [1− ε/12, 1 + ε/12] · 1

N , this can never happen.

Soundness: Suppose dTV(D,U) ≥ ε. Let E2 be the event that at least one of the yi’s drawn in
Line 1 belongs to H ′. As D(H ′) ≥ ε/4, we have Pr[E2] ≥ 1−(1−ε/4)20/ε ≥ 9/10. Conditioning
on both E1 and E2, for such a yj , one of two cases below holds:

• either the call to Binary-Descent outputs REJECT and ICONDD-Test-Uniform
outputs REJECT;

• or a value d̂j is returned, for which d̂j ≥ (1− ε
12)(1 + ε

4) · 1
N > (1 + ε/12)/N (where we

used the fact that E1 holds); and ICONDD-Test-Uniform reaches Line 5 and rejects.

Since Pr[E1 ∪ E2] ≥ 7/10, ICONDD-Test-Uniform is correct with probability at least 2/3.
Finally, the claimed query complexity directly follows from the t = Θ(1/ε) calls to Binary-Descent,
each of which makes Õ(log3N/ε2) queries to ICONDD.

8.2 An Ω(logN/ log logN) lower bound for ICONDD algorithms that test unifor-
mity

This subsection proves that any ICONDD algorithm that ε-tests uniformity even for constant ε must
have query complexity Ω̃(logN). This shows that our algorithm in the previous subsection is not
too far from optimal, and sheds light on a key difference between ICOND and PCOND oracles.

Theorem 16 Fix ε = 1/3. Any ICONDD algorithm for testing whether D = U versus
dTV(D,D∗) ≥ ε must make Ω

(
logN

log logN

)
queries.

To prove this lower bound we define a probability distribution PNo over possible “No”-
distributions (i.e. distributions that have variation distance at least 1/3 from U). A distribution
drawn from PNo is constructed as follows: first, we partition [N ] into b = 2X consecutive intervals
of the same size ∆ = N

2X
, which we refer to as “blocks”, where X is a random variable distributed

uniformly on the set {1
3 logN, 1

3 logN + 1, . . . , 2
3 logN}. Once the block size ∆ is determined, a

random offset y is drawn uniformly at random in [N ], and all block endpoints are shifted by y modulo
[N ] (intuitively, this prevents the testing algorithm from “knowing” a priori that specific points are
endpoints of blocks). Finally, independently for each block, a fair coin is thrown to determine its
profile: with probability 1/2, each point in the first half of the block will have probability weight
1−2ε
N and each point in the second half will have probability 1+2ε

N (such a block is said to be a a
low-high block, with profile ↓↑). With probability 1/2 the reverse is true: each point in the first half
has probability 1+2ε

N and each point in the second half has probability 1−2ε
N (a high-low block ↑↓). It

is clear that each distribution D in the support of PNo defined in this way indeed has dTV(D,U) = ε.
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To summarize, each “No”-distribution D in the support of PNo is parameterized by (b + 2)
parameters: its block size ∆, offset y, and profile ϑ ∈ {↓↑, ↑↓}b. Note that regardless of the profile
vector, each block always has weight exactly ∆/N .

We note that while there is only one “Yes”-distribution U , it will sometimes be convenient for
the analysis to think of U as resulting from the same initial process of picking a block size and
offset, but without the subsequent choice of a profile vector. We sometimes refer to this as the “fake
construction” of the uniform distribution U (the reason for this will be clear later).

The proof of Theorem 16 will be carried out in two steps. First we shall restrict the analysis to
non-adaptive algorithms, and prove the lower bound for such algorithms. This result will then be
extended to the general setting by introducing (similarly to Section 5.2) the notion of a query-faking
algorithm, and reducing the behavior of adaptive algorithms to non-adaptive ones through an
appropriate sequence of such query-faking algorithms.

Before proceeding, we define the transcript of the interaction between an algorithm and a
ICONDD oracle. Informally, the transcript captures the entire history of interaction between the
algorithm and the ICONDD oracle during the whole sequence of queries.

Definition 7 Fix any (possibly adaptive) testing algorithm A that queries an ICONDD oracle. The
transcript of A is a sequence T = (Ii, si)i∈N∗ of pairs, where Ii is the i-th interval provided by the
algorithm as input to ICONDD, and si ∈ Ii is the response that ICONDD provides to this query.
Given a transcript T , we shall denote by T |k the partial transcript induced by the first k queries, i.e.
T |k = (Ii, si)1≤i≤k.

Equipped with these definitions, we now turn to proving the theorem in the special case of
non-adaptive testing algorithms. Observe that there are three different sources of randomness in our
arguments: (i) the draw of the “No”-instance from PNo, (ii) the internal randomness of the testing
algorithm; and (iii) the random draws from the oracle. Whenever there could be confusion we shall
explicitly state which probability space is under discussion.

8.2.1 Against non-adaptive algorithms

Throughout this subsection we assume that A is an arbitrary, fixed, non-adaptive, randomized
algorithm that makes exactly q ≤ τ · logN

log logN queries to ICONDD; here τ > 0 is some absolute
constant that will be determined in the course of the analysis. (The assumption that A always
makes exactly q queries is without loss of generality since if in some execution the algorithm makes
q′ < q queries, it can perform additional “dummy” queries). In this setting algorithm A corresponds
to a distribution PA over q-tuples Ī = (I1, . . . , Iq) of query intervals. The following theorem will
directly imply Theorem 16 in the case of non-adaptive algorithms:

Theorem 17∣∣∣PrD∼PNo
[AICONDD outputs ACCEPT]− Pr[AICONDU outputs ACCEPT]

∣∣∣ ≤ 1/5. (77)
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Observe that in the first probability of Equation (77) the randomness is taken over the draw of D
from PNo, the draw of Ī ∼ PA that A performs to select its sequence of query intervals, and the
randomness of the ICONDD oracle. In the second one the randomness is just over the draw of Ī
from PA and the randomness of the ICONDU oracle.

Intuition for Theorem 17. The high-level idea is that the algorithm will not be able to distinguish
between the uniform distribution and a “No”-distribution unless it manages to learn something
about the “structure” of the blocks in the “No”-case, either by guessing (roughly) the right block size,
or by guessing (roughly) the location of a block endpoint and querying a short interval containing
such an endpoint.

In more detail, we define the following “bad events” (over the choice of D and the points si) for
a fixed sequence Ī = (I1, . . . , Iq) of queries (the dependence on Ī is omitted in the notation for the
sake of readability):

BN
size =

{
∃i ∈ [q]

∣∣ ∆/ logN ≤ |Ii| ≤ ∆ · (logN)2
}

BN
boundary = { ∃i ∈ [q] | |Ii| < ∆/ logN and Ii intersects two blocks }
BN
i,outer = {∆ · (logN)2 < |Ii| and si belongs to a block not contained entirely in Ii} i ∈ [q]

BN
i,collide = {∆ · (logN)2 < |Ii| and ∃j < i, si and sj belong to the same block} i ∈ [q]

The first two events depend only on the draw of D from PNo which determines ∆ and y, while
the last 2q events also depend on the random draws of si from the ICONDD oracle. We define in the
same fashion the corresponding bad events for the “Yes”-instance (i.e. the uniform distribution U)
BY

size, B
Y
boundary, BY

i,outer and BY
i,collide, using the notion of the “fake construction” of U mentioned

above.

Events BN
size and BY

size correspond to the possibility, mentioned above, that algorithm A “guesses”
essentially the right block size, and events BN

boundary and BY
boundary correspond to the possibility that

algorithm A “guesses” a short interval containing a block endpoint. The final bad events correspond
to A guessing a “too-large” block size but “getting lucky” with the sample returned by ICOND,
either because the sample belongs to one of the (at most two) outer blocks not entirely contained in
the query interval, or because A has already received a sample from the same block as the current
sample.

We can now describe the failure events for both the uniform distribution and for a “No”-
distribution as the union of the corresponding bad events:

BN
(Ī) = BN

size ∪BN
boundary ∪

(
q⋃
i=1

BN
i,outer

)
∪

(
q⋃
i=1

BN
i,collide

)

BY
(Ī) = BY

size ∪BY
boundary ∪

(
q⋃
i=1

BY
i,outer

)
∪

(
q⋃
i=1

BY
i,collide

)

These failure events can be interpreted, from the point of view of the algorithm A, as the
“opportunity to potentially learn something;” we shall argue below that if the failure events do not
occur then the algorithm gains no information about whether it is interacting with the uniform
distribution or with a “No”-distribution.
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Structure of the proof of Theorem 17. First, observe that since the transcript is the result
of the interaction of the algorithm and the oracle on a randomly chosen distribution, it is itself a
random variable; we will be interested in the distribution over this random variable induced by the
draws from the oracle and the choice of D. More precisely, for a fixed sequence of query sets Ī, let
ZN
Ī

denote the random variable over “No”-transcripts generated when D is drawn from PNo. Note
that this is a random variable over the probability space defined by the random draw of D and the
draws of si by ICONDD(Ii). We define AN

Ī
as the resulting distribution over these “No”-transcripts.

Similarly, ZY
Ī

will be the random variable over “Yes”-transcripts, with corresponding distribution
AY
Ī

.

As noted earlier, the nonadaptive algorithm A corresponds to a distribution PA over q-tuples Ī
of query intervals. We define AN as the distribution over transcripts corresponding to first drawing
Ī from PA and then making a draw from AN

Ī
. Similarly, we define AY as the distribution over

transcripts corresponding to first drawing Ī from PA and then making a draw from AY
Ī

.

To prove Theorem 17 it is sufficient to show that the two distributions over transcripts described
above are statistically close:

Lemma 28 dTV

(
AY,AN

)
≤ 1/5.

The proof of this lemma is structured as follows: first, for any fixed sequence of q queries Ī, we
bound the probability of the failure events, both for the uniform and the “No”-distributions:

Claim 29 For each fixed sequence Ī of q query intervals, we have

Pr
[
BY

(Ī)

]
≤ 1/10 and PrD←PNo

[
BN

(Ī)

]
≤ 1/10.

(Note that the first probability above is taken only over the randomness of the ICONDU responses,
while the second is over the random draw of D ∼ PNo and over the ICONDD responses.)

Next we show that, provided the failure events do not occur, the distribution over transcripts is
exactly the same in both cases:

Claim 30 Fix any sequence Ī = (I1, . . . , Iq) of q queries. Then, conditioned on their respective
failure events not happening, ZN

Ī
and ZY

Ī
are identically distributed:

for every transcript T = ((I1, s1), . . . , (Iq, sq)), Pr
[
ZN
Ī = T

∣∣∣ BN
(Ī)

]
= Pr

[
ZY
Ī = T

∣∣∣ BY
(Ī)

]
.

Finally we combine these two claims to show that the two overall distributions of transcripts are
statistically close:

Claim 31 Fix any sequence of q queries Ī = (I1, . . . , Iq). Then dTV

(
AN
Ī
,AY

Ī

)
≤ 1/5.
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Lemma 28 (and thus Theorem 17) directly follows from Claim 31 since, using the notation
s̄ = (s1, . . . , sq) for a sequence of q answers to a sequence Ī = (I1, . . . , Iq) of q queries, which
together define a transcript T (Ī , s̄) = ((I1, s1), . . . , (Iq, sq)),

dTV

(
AY,AN

)
=

1
2

∑
Ī

∑
s̄

∣∣PA(Ī) · Pr
[
ZYĪ = T (Ī , s̄)

]
− PA(Ī) · Pr

[
ZNĪ = T (Ī , s̄)

]∣∣
=

∑
Ī

∑
s̄

PA(Ī) ·
∑
s̄

∣∣Pr
[
ZYĪ = T (Ī , s̄)

]
− Pr

[
ZNĪ = T (Ī , s̄)

]∣∣
≤ max

Ī

{
dTV

(
AY
Ī ,A

N
Ī

)}
≤ 1/5 . (78)

This concludes the proof of Lemma 28 modulo the proofs of the above claims; we give those proofs
in Section 8.2.2 below.

8.2.2 Proof of Claims 29 to 31

To prove Claim 29 we bound the probability of each of the bad events separately, starting with the
“No”-case.

(i) Defining the event BN
i,size as

BN
i,size = {∆/ logN ≤ |Ii| ≤ ∆ · (logN)2} ,

we can use a union bound to get Pr[BN
size] ≤

∑q
i=1 Pr[BN

i,size]. For any fixed setting of
Ii there are O(log logN) values of ∆ ∈ { N

2X
| X ∈ {1

3 logN, . . . , 2
3 logN}} for which

∆/ logN ≤ Ii ≤ ∆ · (logN)2. Hence we have Pr[BN
i,size] = O((log logN)/ logN), and conse-

quently Pr[BN
size] = O(q(log logN)/ logN).

(ii) Similarly, defining the event BN
i,boundary as

BN
i,boundary = {|Ii| < ∆/ logN and Ii intersects two blocks} ,

we have Pr[BN
boundary] ≤

∑q
i=1 Pr[BN

i,boundary]. For any fixed setting of Ii, recalling the choice
of a uniform random offset y ∈ [N ] for the blocks, we have that Pr[BN

i,boundary] ≤ O(1/ logN),
and consequently Pr[BN

boundary] = O(q/ logN).

(iii) Fix i ∈ [q] and recall that BN
i,outer = {∆ · (logN)2 < |Ii| and si is drawn from a block ( Ii}.

Fix any outcome for ∆ such that ∆ · (logN)2 < |Ii| and let us consider only the randomness
over the draw of si from Ii. Since there are Ω((logN)2) blocks contained entirely in Ii, the
probability that si is drawn from a block not contained entirely in Ii (there are at most two such
blocks, one at each end of Ii) is O(1/(logN)2). Hence we have Pr[BN

i,outer] ≤ O(1)/(logN)2.

(iv) Finally, recall that

BN
i,collide = {∆ · (logN)2 < |Ii| and ∃j < i s.t. si and sj belong to the same block } .
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Fix i ∈ [q] and a query interval Ii. Let ri be the number of blocks in Ii within which
resides some previously sampled point sj , j ∈ [i− 1]. Since there are Ω((logN)2) blocks in
Ii and ri ≤ i − 1, the probability that si is drawn from a block containing any sj , j < i, is
O(i/(logN)2). Hence we have Pr[BN

i,collide] = O(i/(logN)2).

With these probability bounds for bad events in hand, we can prove Claim 29:

Proof of Claim 29: Recall that q ≤ τ · logN
log logN . Recalling the definition of BN

(Ī)
, a union bound

yields

Pr[BN
(Ī)] ≤ Pr[BN

size] + Pr[BN
boundary] +

q∑
i=1

Pr[BN
i,outer] +

q∑
i=1

Pr[BN
i,collide]

= O

(
q · log logN

logN

)
+O

(
q

logN

)
+

q∑
i=1

O

(
1

(logN)2

)
+

q∑
i=1

O

(
i

(logN)2

)
≤ 1

10
,

where the last inequality holds for a sufficiently small choice of the absolute constant τ.

The same analysis applies unchanged for Pr[BY
size], and Pr[BY

boundary], using the “fake construction”
view of U as described earlier. The arguments for Pr[BY

i,outer] and Pr[BY
i,collide] go through unchanged

as well, and Claim 29 is proved.

Proof of Claim 30: Fix any Ī = (I1, . . . , Iq) and any transcript T = ((I1, s1), . . . , (Iq, sq)).
Recall that the length-` partial transcript T |` is defined to be ((I1, s1), . . . , (I`, s`)). We define the
random variables ZN

Ī,`
and ZY

Ī,`
to be the length-` prefixes of ZN

Ī
and ZY

Ī
respectively. We prove

Claim 30 by establishing the following, which we prove by induction on `:

Pr
[
ZN
Ī = T

∣∣∣ BN
(Ī)

]
= Pr

[
ZY
Ī = T

∣∣∣ BY
(Ī)

]
. (79)

For the base case, it is clear that (79) holds with ` = 0. For the inductive step, suppose (79) holds
for all k ∈ [`− 1]. When querying I` at the `-th step, one of the following cases must hold (since we
conditioned on the “bad events” not happening):

(1) I` is contained within a half-block (more precisely, either entirely within the first half of a
block or entirely within the second half). In this case the “yes” and “no” distribution oracles
behave exactly the same since both generate si by sampling uniformly from Ii.

(2) I` contains many blocks and s` belongs to a block, contained entirely in Ii, which is “fresh” in
the sense that it contains no sj , j < i. In the “No”-case this block may either be high-low or
low-high; but since both outcomes have the same probability, there is another transcript with
equal probability in which the two profiles are switched. Consequently (over the randomness
in the draw of D ∼ PNo) the probability of picking s` in the “No”-distribution case is the
same as in the uniform distribution case (i.e, uniform on I`).

(3) I` is contained within one block, but not within one half-block (i.e. I` intersects both the first
and second halves of its block). By the same symmetry argument as in (2), the profile of this
block could have been switched, and hence the distribution of si is uniform over Ii.
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This concludes the proof of Claim 30.

Proof of Claim 31: Given Claims 29 and 30, Claim 31 is an immediate consequence of the
following basic fact:

Fact 32 Let D1, D2 be two distributions over the same finite set X. Let E1, E2, be two events
such that Di[Ei] = αi ≤ α for i = 1, 2 and the conditional distributions (Di)Ei are identical, i.e.
dTV((D1)E1

, (D2)E2
) = 0. Then dTV(D1, D2) ≤ α.

Proof: We first observe that since (D2)E2
(E2) = 0 and (D1)E1

is identical to (D2)E2
, it must

be the case that (D1)E1
(E2) = 0, and likewise (D2)E2

(E1) = 0. This implies that D1(E2 \ E1) =
D2(E1 \ E2) = 0. Now let us write

2dTV(D1, D2) =
∑

x∈X\(E1∪E2)

|D1(x)−D2(x)|+
∑

x∈E1∩E2

|D1(x)−D2(x)|+

∑
x∈E1\E2

|D1(x)−D2(x)|+
∑

x∈E2\E1

|D1(x)−D2(x)|.

We may upper bound
∑

x∈E1∩E2
|D1(x)−D2(x)| by

∑
x∈E1∩E2

(D1(x) +D2(x)) = D1(E1 ∩ E2) +
D2(E1 ∩ E2), and the above discussion gives

∑
x∈E1\E2

|D1(x) − D2(x)| = D1(E1 \ E2) and∑
x∈E2\E1

|D1(x)−D2(x)| = D2(E2 \ E1). We thus have

2dTV(D1, D2) ≤
∑

x∈X\(E1∪E2)

|D1(x)−D2(x)|+D1(E1) +D2(E2)

≤
∑

x∈X\(E1∪E2)

|D1(x)−D2(x)|+ α1 + α2.

Finally, since dTV((D1)E1
, (D2)E2

) = 0, we have∑
x∈X\(E1∪E2)

|D1(x)−D2(x)| = |D1(X \ (E1 ∪ E2))−D2(X \ (E1 ∪ E2)|

=
∣∣D1(E1)−D2(E2)

∣∣ = |α1 − α2|.

Thus 2dTV(D1, D2) ≤ |α1 − α2|+ α1 + α2 = 2 max{α1, α2} ≤ 2α, and the fact is established.

This concludes the proof of Claim 31.

8.2.3 A lower bound against adaptive algorithms: Proof of Theorem 16

Throughout this subsection A denotes a general adaptive algorithm that makes q ≤ τ · logN
log logN

queries, where as before τ > 0 is an absolute constant. Theorem 16 is a consequence of the following
theorem, which deals with adaptive algorithms:

Theorem 18∣∣∣PrD←PNo
[AICONDD outputs ACCEPT]− Pr[AICONDU outputs ACCEPT]

∣∣∣ ≤ 1/4. (80)
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The idea here is to use the previous analysis for non-adaptive algorithms, and argue that
“adaptiveness does not really help” to distinguish between D = U and D ∼ PNo given access to
ICONDD.

As in Section 5.2, we will need the notion of an algorithm faking queries. Given an adaptive
algorithm A, we define A(1) as the algorithm that fakes its first query, in the following sense: If
the first query made by A to the oracle is some interval I, then the algorithm A(1) does not call
ICOND on I but instead chooses a point s uniformly at random from I and then behaves exactly as
A would behave if the ICOND oracle had returned s in response to the query I. More generally, we
define A(k) for all k ≥ 0 as the algorithm behaving like A but faking its first k queries (note that
A(0) = A).

Let A(k),N denote the distribution over transcripts (of length q) when the distribution D is
drawn from PNo and the algorithm is A(k). Note that by this definition we have A(0),N = AN and
A(q),N = AY.10 For a fixed outcome ∆ of the block size and y of the offset in the construction of
D ∼ PNo, we write A

(k),N
(∆,y) to denote distribution A(k),N conditioned on that particular outcome of

the block size and offset.

As in the non-adaptive case, in order to prove Theorem 18, it is sufficient to prove that the
transcripts for uniform and “No”-distributions are close in total variation distance; i.e, that

dTV

(
AY,AN

)
≤ 1/4. (81)

The key lemma used to prove this is the following lemma, which bounds the variation distance
between the transcripts of A(k) (the variant of A that fakes its first k queries) and A(k+1), conditioned
on a high-probability event over the choice of block size and offset.

Lemma 33 For all k ≥ 0, with probability at least 1− η(N) over the choice of (∆, y) in the draw
of D from PNo, we have

dTV

(
A

(k),N
(∆,y),A

(k+1),N
(∆,y)

)
= β(k,N) (82)

where η(N) = O( log logN
logN ) and β(k,N) = O( k

(logN)2 ).

To see why Equation((81)) follows from this lemma, first observe that

dTV

(
AN,AY

)
= dTV

(
A(0),N,A(q),N

)
≤

q−1∑
k=0

dTV

(
A(k),N,A(k+1),N

)
.

Let us say that a pair (∆, y) for which Equation (82) holds is good. We now require the following
variant of Fact 32:

Fact 34 Let D1, D2 be two distributions over the same finite set X. Let E be an event such that
Di[E] = αi ≤ α for i = 1, 2 and the conditional distributions (D1)E and (D2)E are statistically
close, i.e. dTV((D1)E , (D2)E) = β. Then dTV(D1, D2) ≤ α+ β.

10We observe that there is no point in defining the corresponding distribution over transcripts for the “yes” case, as
faking a call is exactly the same as querying the oracle when the underlying distribution is uniform.
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Proof: As in the proof of Fact 32, let us write

2dTV(D1, D2) =
∑

x∈X\E

|D1(x)−D2(x)|+
∑
x∈E
|D1(x)−D2(x)|.

We may upper bound
∑

x∈E |D1(x)−D2(x)| by
∑

x∈E(D1(x)+D2(x)) = D1(E)+D2(E) = α1 +α2;
furthermore,∑

x∈Ē

|D1(x)−D2(x)| =
∑
x∈Ē

∣∣(D1)Ē(x) ·D1(Ē)− (D2)Ē(x) ·D2(Ē)
∣∣

≤ D1(Ē) ·
∑
x∈Ē

|(D1)Ē(x)− (D2)Ē(x)|+
∣∣D1(Ē)−D2(Ē)

∣∣ · (D2)Ē(Ē)

≤ (1− α1) · (2β) + |α2 − α1| · 1 ≤ 2β + |α2 − α1|

Thus 2dTV(D1, D2) ≤ 2β + |α1 − α2|+ α1 + α2 = 2β + 2 max{α1, α2} ≤ 2(α+ β), and the fact is
established.

Applying this fact to distributions A(k),N and A(k+1),N and the event E = {(∆, y) is good},
we get that dTV

(
A(k),N,A(k+1),N

)
≤ η(N) + β(k,N), and consequently we have dTV

(
AN,AY

)
≤∑q

k=0 (η(N) + β(k,N)), which is at most 1/4 for a suitable choice of the absolute constant τ.

Thus it remains only to prove Lemma 33. In the next subsection we describe an alternative view
of the random draw of D ∼ PNo, and in the following subsection we use this alternate view to prove
the lemma.

8.2.4 Extended transcripts and drawing D ∼ PNo on the fly.

Observe that the testing algorithm, seeing only pairs of queries and answers, does not have direct
access to all the underlying information – namely, in the case of a “No”-distribution, whether
the part of the block the sample comes from is high or low. It will be useful for us to consider
an “extended” version of the transcripts, which includes this information though it is not directly
available to the algorithm.

Definition 8 With the same notation as in Definition 7, the extended transcript of a sequence of
queries made by A and the corresponding responses is a sequence E = (Ii, si, bi)i∈[q] of triples, where
Ii and si are as before, and bi ∈ {↓, ↑, ↑↓} is the profile of the block si belongs to. We define E|k to
be the length-k prefix of an extended transcript E.

We also consider extended transcripts of algorithms that fake queries. For any 0 ≤ k ≤ q we let
E(k),N denote the distribution over extended transcripts when D ∼ PNo and the algorithm is A(k).
We may think of a draw from E(k),N in the following way: every time a query Ii from the algorithm
is answered with a point si (either answered from the oracle or faked), the corresponding block
profile bi of si is “unveiled” and included as the third component of that triple in the extended
transcript. (We go into significantly more detail on this below.) Observe that if we discard the
third component bi of each triple, then E(0),N corresponds precisely to the distribution AN of regular
transcripts and E(k),N corresponds precisely to the distribution AY of regular transcripts. Similar to
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before, for a fixed outcome ∆ of the block size and y of the offset in the construction of D ∼ PNo,
we write E

(k),N
(∆,y) to denote distribution E(k),N conditioned on that particular outcome of the block

size and offset.

Our proof of Lemma 33 takes advantage of the fact that one can view the draw of a “No”-
distribution from PNo as being done “on the fly” during the course of algorithm A’s (or, more
generally, A(k)’s) execution. More precisely, the size ∆ and the offset y are drawn at the very
beginning, but we may view the profile vector ϑ as having its components chosen independently,
coordinate by coordinate, only as A interacts with ICOND – each time an element si is obtained in
response to the i-th query, only then is the corresponding element bi of the profile vector ϑ chosen (if
it was not already determined by previous calls to ICOND). We now describe how the coordinates
of the profile vector ϑ are generated sequentially as A interacts with ICOND.

Consider the `-th query I` that A makes to ICONDD. Inductively some coordinates of ϑ may
have been already set by previous queries. Let B1, . . . , Bk be the blocks that I` intersects.

1. If both of the outermost blocks B1, Bk have had their bits in ϑ set already by previous queries,
then these settings (↓↑ or ↑↓) completely determine the probability under ICONDD that each
block B1, . . . , Bk is the block from which s` will be chosen.11 The algorithm draws a block
Bi ∈ {B1, . . . , Bk} according to these probabilities. If the coordinate of ϑ corresponding to Bi
has already been determined by a previous query, then si is drawn from the correct distribution
(as determined by the ↓↑ or ↑↓ setting) over Bi, and bi is set accordingly .Otherwise a fair
coin is tossed, b` is set either to ↓↑ or to ↑↓ depending on the outcome, s` is then drawn from
the correct distribution ( as determined by b` ) and the corresponding coordinate of ϑ is set
to bi. The triple (I`, s`, b`) is taken as the `-th element of the extended transcript.

2. If either of the outermost blocks B1, Bk (or both) have not had their bits in ϑ set by previous
queries, then again the probability under ICONDD of having s` belong to each block B1, . . . , Bk
is completely determined (the probability allocated to the “undetermined” outermost blocks
is exactly proportionate to the amount of the block contained in I` – since the block is
still undetermined, the probabilities average out to uniform). The algorithm then proceeds
as above, using the correct probabilities in this case – it draws a block Bi ∈ {B1, . . . , Bk}
according to these probabilities and either sets a new coordinate of ϑ if necessary or uses the
old coordinate, draws s` from the block Bi, and returns s`, b` as above. As before the triple
(I`, s`, b`) is taken as the `-th element of the extended transcript.

This completes our description of how one may view the coordinates of the profile vector ϑ as
being generated sequentially as A interacts with ICOND.

We next observe that we can also adopt such a view for an algorithm A(k), which fakes the
first k queries. Recall that when an algorithm A(k) fakes one of the first k queries (say the `-th
query) it draws s` uniformly at random in I`. In the corresponding extended transcript E|k of A(k)

the profile bits are set even though A(k) has no access to them; we now describe how these bits
11We could give an exact expression for these probabilities but it would be cumbersome and is not necessary for

the rest of the argument – all we need is that the probabilities are well defined. Note that any two “internal” blocks
B2, . . . , Bk−1 have equal probability regardless of whether or not their coordinates of ϑ have yet been set.
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are set. Consider the `-th query I` (` ≤ k) that A(k) fakes. Let B1, . . . , Bj be the blocks that I`
intersects. The point s` is chosen uniformly at random from I`, the bit b` is set as follows, and the
triple (I`, s`, b`) is taken as the `-th element of the extended transcript:

1. If s` belongs to a block whose profile was already set during the interaction for the `′-th query
for some `′ < `, then the bit b` is set to b` = b`′ .

2. If I` is completely included within a single half-block, then b` is set uniformly at random to
one of {↓↑, ↑↓}.

3. If s` belongs to a block B that is completely included in I`, then we look at the half of the
block s` belongs to, and toss a biased coin to set its profile b` ∈ {↓↑, ↑↓}: If s` belongs to the
first half, then the coin toss’s probabilities are ((1 − 2ε)/2, (1 + 2ε)/2); otherwise, they are
((1 + 2ε)/2, (1− 2ε)/2).

4. if s` belongs to one of the two end blocks, then:

(a) if I` contains at most half of the block that s` belongs to, again b` is set to ↓↑ or ↑↓ with
equal probability;

(b) if I` contains a fraction 1
2 +x of the block that s` belongs to, then the coin is biased, with

probability for setting the part of the block in which s` lies to “high” either 1
1+ ∆

2x
· 1−2ε
1+2ε

if

this part is the small one (the x portion), and 1
1+ 2x

∆
· 1−2ε
1+2ε

if s` is in the complete half-block.

It follows from the foregoing description that in both cases (an algorithm A that does not fake
queries, or an algorithm A(k) that does), the process described above for choosing the profile vector
of D “on the fly” indeed corresponds to drawing D from PNo. Similarly, the resulting distributions
over extended transcripts correspond to draws from E(0),N (in the A case) and from E(k),N (in the
A(k) case) respectively.

8.2.5 Proof of Lemma 33

Fix 0 ≤ k ≤ q and recall the definitions of A(k), A(k+1) and E
(k),N
(∆,y), E

(k+1),N
(∆,y) . (For the sake of

concision, we shall write E(k) and E(k+1) for the transcript random variables, and E(k), E(k+1) for
their distribution.)

We first observe that prior to the (k+1)st query, the distribution of length-k transcript prefixes is
exactly the same under E(k) and E(k+1), so we have dTV

(
E(k)|k,E(k+1)|k

)
= 0. For any fixed extended

transcript E = (E1, . . . , Eq), we thus have pk(E) def= Pr[ E(k)|k = E|k ] = Pr[ E(k+1)|k = E|k ], and

∣∣∣Pr[ E(k) = E ]− Pr[ E(k+1) = E ]
∣∣∣ =∣∣∣Pr[E(k)

k+1 = Ek+1 | E(k)|k = Ek]− Pr[E(k+1)
k+1 = Ek+1 | E(k+1)|k = Ek]

∣∣∣︸ ︷︷ ︸
(†)

·pk(E).
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Consequently it suffices to only analyze the distribution of the (k + 1)-st component
(Ik+1, sk+1, bk+1) of the transcript random variables E(k), E(k+1). Because both variants A(k) and
A(k+1) of the algorithm select the query interval Ik+1 based only on the length-k transcript prefix
(identical in both cases, since we conditioned on this in (†)) and their internal randomness (identi-
cally distributed in both cases), both algorithms will query any given interval Ik+1 with the same
probability, so we only have to deal with the remainder of the triple, namely the last two entries
(sk+1, bk+1).

Fix any given outcome I ′k+1 for Ik+1. We now define a set G of possible outcomes (∆, y) for the
block size and the offset in the draw of a “No”-distribution D ∼ PNo as follows. The outcomes
(∆, y) that are not in G are those that fall into one of the following three categories (the first two
corresponding to two of the “bad events” from our earlier discussion):

(a) ∆/ logN ≤ |I ′k+1| ≤ ∆ · (logN)2;

(b) |I ′k+1| < ∆/ logN and I ′k+1 intersects two blocks;

(c) |I ′k+1| < ∆/ logN and I ′k+1 is contained entirely within a single block but not entirely within
a half block (it intersects both the first half and second half of the block it is in).

We claim that Pr[(∆, y) ∈ G] ≥ 1− η(N) (where η(N) = O( log logN
logN ) is as defined in Lemma 33).

This is because the probability of (a) (over a random choice of ∆) is at most O( log logN
logN ) and the

probability of both (b) and (c) (over a random choice of y, for any fixed outcome of ∆ satisfying
|I ′k+1| < ∆/ logN) is at most O(1/ logN), by applying an argument that is essentially the same as
the one used to argue Items (i) and (ii) in Section 8.2.2.

Fix any pair (∆, y) ∈ G. It remains only to argue that Equation (82) holds for such a pair;
from the discussion above, it is enough to consider outcomes I ′k+1 for Ik+1 that fall into one of the
following categories:

(d) |I ′k+1| < ∆/ logN and I ′k+1 is contained entirely within a single half block (either the first half
of a block or the second half of a block);

(e) |I ′k+1| > ∆ · (logN)2.

Fix an outcome of |I ′k+1| that satisfies (d). We claim that the variation distance between (the
distribution of (sk+1, bk+1) under E(k)) and (the distribution of (sk+1, bk+1) under E(k+1)) is zero.
This is because as described in the previous subsection, in both situations (A(k) or A(k+1)) the
sample s is uniformly selected from Ik+1, and bk+1 is either set to the previously determined value
(if a profile for this block was previously determined in a earlier step) or to a randomly selected
element of {↓↑, ↑↓} otherwise (see items 1 and 2 p.76). Thus in Case (d) both distributions E(k)

and E(k+1) over the (k + 1)-th triple (Ik+1, sk+1, bk+1) are identical, conditioned on Ik+1 = I ′k+1.

Now fix an outcome of |I ′k+1| that satisfies (e), so |I ′k+1| > ∆·(logN)2. Intuitively, the probability
that in either setting (A(k) or A(k+1)) the point sk+1 belongs to either one of the “already touched”
blocks (blocks that contain some previous sample s`, ` ≤ k), or to one of the outermost blocks that
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Ik+1 overlaps but does not fully contain, is very small. (In more detail, an analysis that is essentially
the same as that of (iii) and (iv) in Section 8.2.2 gives that the random choice of sk+1 (in either
setting) hits a “previously touched” block or one of the two outermost blocks with probability at most
O(k/(logN)2).) Conditioned on this not occurring, in both settings sk+1 is uniformly distributed
among all other blocks, and the discussion of the previous subsection implies that bk+1 is high
(respectively, low) with probability 1+2ε

2 (1−2ε
2 , respectively) depending on the half-block si+1 falls

into, so the variation distance between the two distributions over (sk+1, bk+1) under this conditioning
is zero. Applying Fact 32, we get that the two distributions over triples (I ′k+1, sk+1, bk+1) have
variation distance at most O(k/(logN)2). Averaging over all possible outcomes of I ′k+1, we get that
the two distributions over the (k + 1)-st component (Ik+1, sk+1, bk+1) have variation distance at
most β(k,N) = O(k/(logN)2). This establishes Lemma 33 and concludes the proof of the theorem.

9 Conclusion

We have introduced a new conditional sampling framework for testing probability distributions and
shown that it allows significantly more query-efficient algorithms than the standard framework for a
range of problems. This new framework presents many potential directions for future work.

One specific goal is to strengthen the upper and lower bounds for problems studied in this
paper. As a concrete question along these lines, we conjecture that COND algorithms for testing
equality of two unknown distributions D1 and D2 over [N ] require (logN)Ω(1) queries. A broader
goal is to study more properties of distributions beyond those considered in this paper; natural
candidates here, which have been well-studied in the standard model, are monotonicity (for which we
have preliminary results), independence between marginals of a joint distribution, and entropy.Yet
another goal is to study distributions over other structured domains such as the Boolean hypercube
{0, 1}n – here it would seem natural to consider “subcube” queries, analogous to the ICOND queries
we considered when the structured domain is the linearly ordered set [N ]. A final broad goal is to
study distribution learning (rather than testing) problems in the conditional sampling framework.
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