
Limits of provable security for homomorphic encryption

Andrej Bogdanov∗ Chin Ho Lee†

Abstract

We show that public-key bit encryption schemes which support weak homomorphic evalua-
tion of parity or majority cannot be proved message indistinguishable beyond AM ∩ coAM via
general (adaptive) reductions, and beyond statistical zero-knowledge via reductions of constant
query complexity.

Previous works on the limitation of reductions for proving security of encryption schemes
make restrictive assumptions about the encryption algorithm (Brassard, Goldreich and Gold-
wasser, Akavia et al.) or about the reduction (Feigenbaum and Fortnow, Bogdanov and Trevisan,
Akavia et al.) Our first result makes no assumptions of either sort.

Towards these results, we show that any homomorphic evaluator for parity or majority
over sufficiently many inputs can be converted into a rerandomization algorithm. This is a
procedure that converts a ciphertext into another ciphertext which is statistically close to being
independent and identically distributed with the original one.

1 Introduction

In this work we revisit the question of basing cryptography on NP-hardness. If P equals NP then
computationally secure encryption is impossible. Is the converse true?

Despite considerable efforts, there is no candidate encryption scheme whose security can be plausibly
reduced to the worst-case hardness of some NP-complete problem. Neither is there conclusive
evidence that rules out constructions of secure encryption schemes from NP-complete problems,
although several obstacles have been pointed out over the years.

Restricting the encryption Brassard [Bra79] shows that no public-key encryption scheme
can be proved secure beyond NP ∩ coNP, but under the implicit assumption that every public
key-ciphertext pair (queried by the reduction) can be decrypted uniquely. Goldreich and Gold-
wasser [GG98] argue that this assumption is unrealistic by giving examples of encryption schemes
that do not satisfy it. They show that the conclusion holds under the relaxed assumption that
invalid queries to the decryption oracle can be efficiently certified as such. (If the reduction is
randomized, the limitation weakens to AM ∩ coAM.)

Goldreich and Goldwasser warn that these assumptions are unrealistic as they do not apply to many
known proofs of security. Bogdanov and Trevisan [BT06] point out the following example of Even
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and Yacobi [EY80]. They construct a public key encryption scheme and show how to solve an NP-
hard problem using a distinguishing oracle. Their notion of security is unrealistic, as they require
a perfect distinguishing oracle. However, their example illustrates that the restrictions imposed by
Brassard and Goldreich and Goldwasser do not capture the difficulty of basing cryptography on
NP hardness.

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] rule out reductions from NP-complete
problems to inverting one-way functions (the basis of private-key encryption) assuming that sizes
of preimage sets are worst-case approximable in AM. The same considerations apply to their
argument. There are natural examples of conjectured one-way functions (for example, Goldreich’s
function [Gol00]) not known to satisfy the aforementioned assumptions.

Restricting the reduction Another line of works makes restrictive assumptions about the type
of reduction used to prove NP-hardness. Feigenbaum and Fortnow [FF93] show that a decision
problem cannot be proven NP-hard on average (unless the polynomial hierarchy collapses) by a
reduction that is non-adaptive and each of its queries is uniformly distributed. Bogdanov and
Trevisan [BT06] obtain the same conclusion without restricting the distribution of queries, but still
under non-adaptive reductions. More precisely, they show that if there is a non-adaptive reduction
from a decision problem L to a problem in distributional NP, then L must be in AM/poly ∩
coAM/poly. In particular their result applies to the problem of inverting a one-way function.
For this important case, Akavia et al. improve the limitation to AM ∩ coAM, also assuming the
reduction is non-adaptive.

Lattice-based cryptography provides the only known examples of encryption schemes whose inse-
curity would imply worst-case solutions to conjectured hard problems, like finding short vectors in
lattices. The reduction of Regev [Reg09], which gives the most efficient cryptosystems of this kind
with a proof of security (against quantum algorithms), is adaptive. For certain settings of param-
eters, these cryptosystems support homomorphic evaluation of a bounded class of functionalities
(and general functionalities under additional security assumptions).

Our results

We say a public-key encryption scheme supports weak homomorphic evaluation of f : {0, 1}n →
{0, 1} if there is an efficient algorithm that for every x1 . . . xn ∈ {0, 1}n takes as inputs the public
key and encryptions of the bits x1, . . . , xn and outputs a ciphertext that decrypts to f(x1 . . . xn).
See Section 2 for a formal definition.

Our main theorem (Theorem 1) shows that any public key encryption scheme that supports weak
homomorphic evaluation of parity (or majority) cannot be proved message indistinguishable beyond
AM ∩ coAM, even under adaptive reductions. To the best of our knowledge this applies to all
known schemes with homomorphic properties, including El Gamal encryption [Gam85], Paillier
encryption [Pai99], as well as the more recent somewhat and fully homomorphic encryption schemes
of Gentry [Gen09], Van Dijk et al. [vDGHV10], and Brakerski and Vaikuntanathan [BV11] (which
build upon the lattice-based cryptosystems of Regev [Reg09] and Peikert [Pei09]).

In Theorem 2 we show that if the reduction has constant query complexity, then message indis-
tinguishability cannot be proved beyond statistical zero knowledge (SZK), which is a subclass of
AM∩ coAM. We are not aware of any previous general results that show statistical zero knowledge
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as a limitation for proving security of encryptions.

The reductions we consider are randomized and meet the following definition: Given an input,
the reduction makes arbitrary (adaptive) queries to a distinguishing oracle for bit encryptions. We
require that for any (not necessarily efficient) distinguishing oracle, which may depend on the input
to the reduction, the reduction outputs the correct answer. We do not know of any cryptographic
reductions that treat the adversary as a black box which fall outside our definition.

Lemma 5 which is used in the proofs of Theorems 1 and 2 gives a way to obtain rerandomization
of ciphertexts from any homomorphic evaluator for parity or majority. While rerandomization has
been used in constructions of homomorphic evaluators [Gen09, vDGHV10], it is not a priori clear
that it is necessary for homomorphic evaluation. Homomorphic evaluation may be implemented
deterministically while rerandomization requires randomness.

Examples Consider El Gamal encryption over a sufficiently large cyclic group G. We can view
it as a bit encryption scheme like this. The public key is a pair of group elements (g, h) and the
secret key is an integer s such that gs = h. Let v 6= 1 be any group element. The encryption
of a bit m has the form Encg,h(m) = (gr, hrvm) where r ∼ [|G|] is random. The (homomorphic)
decryption algorithm on input (a, b) finds the smallest t such that b = asvt and outputs t modulo 2.
This scheme supports efficient homomorphic evaluation of parity by multiplying the corresponding
ciphertexts, i.e. Decs(Encg,h(m1) · · ·Encg,h(mk)) = m1 + · · ·+mk mod 2.

Applying our main theorems, we conclude that El Gamal encryption cannot be proved secure
beyond AM ∩ coAM using general reductions and beyond SZK using reductions of constant query
complexity. In this example, one can give direct proofs of these statements by using specific
properties of the discrete logarithm [GK93].

Other examples include Paillier encryption, which explicitly supports homomorphic evaluation of
sums and therefore parities, as well as all the homomorphic encryption schemes of Gentry, van
Dijk et al., and Brakerski and Vaikuntanathan, which support homomorphic evaluation of any
functionality on a constant number of inputs (for sufficiently large values of the security parameter).

Our proof

The symmetric increasing function sifn(x) on n inputs, where n is odd, is a partial function over
{0, 1}n that takes value 0 when x has Hamming weight (n−1)/2 and 1 when x has weight (n+1)/2.
Its extensions over the boolean cube include parity and majority.

From homomorphic evaluation to rerandomization (Section 4) For simplicity let’s assume
that we have a strong homomorphic evaluator H for sifn. This is an algorithm that takes as inputs
independent encryptions of x1, . . . , xn and outputs a ciphertext which is statistically close to an
encryption of sifn(x1, . . . , xn). In Lemma 5 we show that H can be used to obtain an approximate
rerandomization Rer: This is a procedure that takes an encryption as its input and produces
an independent and identically distributed encryption as its output. Our rerandomization will
be approximate in the sense that the input and output of Rer will be only statistically close to
independent.

Our construction works as follows: Given a ciphertext C, generate (n−1)/2 independent encryptions
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of 0, (n−1)/2 independent encryptions of 1, randomly shuffle them together with C and feed the n
resulting ciphertexts to the homomorphic evaluator for sifn. By the strong homomorphic property,
the output of the homomorphic evaluator will be identically distributed with C. But why should
they be independent? From the point of view of the homomorphic evaluator, if C is an encryption
of b, then it is indistinguishable from the other (n− 1)/2 encryptions of b. Since the output of the
homomorphic evaluator is bounded in length, the evaluator must “forget” most of the information
about most of the ciphertexts it is given as inputs, including C as it is indistinguishable from the
others. Therefore the output is forced to look almost statistically independent of C.

Lemma 5 also applies to weak homomorphic evaluators, in which case it achieves a weaker notion
of rerandomization. While this weak rerandomization is sufficient to carry out the rest of the proof,
to simplify this discussion we will assume the availability of strong rerandomization as described
above.

From rerandomization to a distinguishing protocol (Section 5) To turn a reduction from
distinguishing encryptions to L into a proof system for L, we proceed as in previous works: The
verifier plays the role of the reduction and the prover plays the role of the distinguishing oracle.
The challenge is to force the prover to give answers that are consistent with a specific, fixed
distinguishing oracle.

To illustrate the difficulties in the context of public key encryption, let us point out the deficiencies
of some naive proof systems. Suppose the verifier submits a public key-ciphertext query (PK,C)
to the prover, who is supposed to act as a distinguishing oracle. A natural attempt is to ask the
prover to provide the message m and randomness R such that C is an encryption of m under public
key PK with randomness R. This fails to account for the possibility that C may not be a valid
ciphertext at all: Perhaps there is no pair (m,R) that encrypts to C under PK. It is not clear
how a prover can certify such a statement. Another attempt would be to ask the prover for the
secret key SK associated to PK. Again, it is not clear how to achieve completeness in case the
public key is invalid and there is no corresponding secret key, or soundness in case the public key
can be paired with several different secret keys (the choice of which may affect how different invalid
ciphertexts decrypt).

Our protocol works as follows: Given a query (PK,C), the verifier asks the prover for the value
b that encrypts to C, together with a proof that the rerandomization of C is statistically close
to encryptions of b but statistically far from encryptions of b. If the pair (PK,C) is properly
distributed, this forces the prover to a unique correct answer. But since statistical closeness and
statistical farness are both efficiently verifiable [BBM11, SV03], the prover can now also certify
that a pair (PK,C) is not a valid public key-ciphertext pair. We call this protocol DP (the
distinguishing protocol).

One important detail is that the protocols for statistical closeness and statistical farness are only
guaranteed to solve promise versions of these problems: For a given gap [`, r), they can distinguish
distributions that are within statistical distance ` from those that are at distance at least r, but
give no guarantee about the outcome for instances that fall inside the gap. Therefore DP is only
complete and sound provided that none of the underlying instances fall inside the respective gaps.

The proof system (Section 7) Given a reduction R from a decision problem L to distinguishing
encryptions, this suggests the following constant-round proof system for L: On a given input, the
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verifier chooses randomness for the reduction and sends this randomness to the prover. The prover
sends back a transcript of the reduction interacting with a distinguishing oracle, which includes a
list of queries (PKi, Ci) made by the reduction together with an answer ai saying if Ci encrypts 0
or 1 under PKi, or the pair (PKi, Ci) is invalid (⊥). The verifier and prover then apply the DP
protocol to certify that all the answers ai are correct.

This proof system is complete and sound, provided that all the inputs (PKi, Ci, ai) to the DP
protocol satisfy its promise. But in general the verifier does not know in advance if the promise
is satisfied or not. We resolve this issue by choosing the width of the gaps [`, r) to be sufficiently
small and by having the verifier randomize the location of the gaps. This should make it unlikely
for any of the queries to fall inside the promise gap of DP .

This approach was also used by Bogdanov and Trevisan [BT06] in the context of non-adaptive
reductions. An additional twist is required when the reduction is adaptive because the location of
the gaps may affect the answers of the honest prover. For example, imagine an adaptive reduction
that does a “binary search” for the gap [`, r): If the first answer a is to the right of r, its next
query will be a/2, and so on until it hits the gap. To handle such reductions, we want to make the
location of the gaps in each round independent of the answers of the honest prover in the previous
rounds. On the other hand, the locations of these gaps must be consistent with a specific, fixed
distinguishing oracle that the prover is required to emulate.

To achieve both objectives we specify a randomized family of decryption oracles, where for each
query to the oracle the gap location is random, and the gap locations among the various queries
are q-wise independent, where q is an upper bound on the number of queries performed by the
reduction. In the first round of the reduction the verifier chooses a random oracle from this family
and sends its (polynomial length) description to the prover. The honest prover is then expected to
give answers that are consistent with this instantiation of the decryption oracle. By independence,
the probability that any of the queries made by the honest prover falls inside the gap will be small.
In Section 6.1 we develop the relevant complexity-theoretic framework and we prove Theorem 1 in
Section 7.1.

To prevent any of the queries from falling into the gaps [`, r), the size of the gaps needs to be
inverse proportional to the number of queries made by the reduction. Unless the reduction makes
a bounded number of queries, this requires protocols for statistical closeness and statistical farness
where the verifier runs in time inverse polynomial to the size of the gap and the gap can be at an
arbitrary location. Such protocols were developed by Bhatnagar, Bogdanov, and Mossel [BBM11]1

and we use them in the proof of Theorem 1.

For reductions that make a constant number of queries, it is sufficient to have statistical close-
ness/farness protocols over a constant number of disjoint gaps [`, r). Sahai and Vadhan [SV03] give
implementations of such protocols in SZK. Using their protocols and the closure properties of SZK
which we recall in Section 6.2, we prove Theorem 2 in Section 7.2.

1Technically their statement is not as strong as the one we need here, but their proof can be easily adapted. We
provide the details in Appendix A.
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2 Definitions

In this section we give definitions of homomorphic evaluation and rerandomization. Although for
the proofs of Theorems 1 and 2 we only require weak homomorphic evaluation and weak reran-
domization, we also give the corresponding strong notions. Lemma 5, which shows how to convert
homomorphic evaluation into rerandomization, applies to both the weak and the strong notions.

Homomorphic evaluation and rerandomization Let (Gen,Enc,Dec) be a bit encryption
scheme. Fix a security parameter s and let (PK,SK) ∼ Gen(1s) the distribution on key pairs.
(We will assume that s is implicit in the public and secret keys.)

• We say H is a strong homomorphic evaluator for f : Kn → {0, 1} with error ε if for all m ∈ Kn,
the random variables

(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) and (PK,EncPK(f(m)))

(where all encryptions are independent) are within statistical distance ε.

• We say H is a weak homomorphic evaluator for f with error ε if for all m ∈ Kn,

Pr[DecSK(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) = f(m)] ≥ 1− ε,

where all encryptions are independent.

A bit encryption scheme is efficient if Gen,Enc,Dec all run in time polynomial in the security
parameter s. We say a partial function f : {0, 1}∗ → {0, 1} has an efficient homomorphic eval-
uator if there exists a polynomial p in the security parameter such that fp(s) can be evaluated
homomorphically in polynomial time uniformly over the security parameter s.

Let Rer be a randomized function that maps public keys and ciphertexts into ciphertexts. In the
following definitions R and R′ are independent choices of randomness for Rer.

• We say Rer is a strong rerandomization with error ε if for every b ∈ {0, 1}, the random
variables

(PK,E,RerPK(E,R)) and (PK,E,E′)

where E,E′ ∼ EncPK(b) are independent are within statistical distance ε.

• We say Rer is a weak rerandomization with decryption error ε and rerandomization error ρ
if for every b ∈ {0, 1}, Pr[DecSK(RerPK(EncPK(b))) = b] ≥ 1− ε and the random variables

(PK,RerPK(E,R),RerPK(E,R′)) and (PK,RerPK(E,R),RerPK(E′, R′))

where E,E′ ∼ EncPK(b) are independent are within statistical distance ρ.

The symmetric increasing function For simplicity we will assume n is odd. Let Kn ⊆ {0, 1}n
denote the strings of hamming weight (n− 1)/2 and (n+ 1)/2. The symmetric increasing function
sifn : Kn → {0, 1} takes value 0 on the strings of weight (n − 1)/2 and value 1 on the strings of
hamming weight (n+ 1)/2. Let K∗ = ∪n oddKn and sif : K∗ → {0, 1} be the function that equals
sifn on input length n.

The functions sif can be viewed as partial functions on the boolean cube. Their extensions include
parity (on input lengths of the form 4k + 1) and majority.
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3 The main theorems

We say (Gen,Enc,Dec) supports weak homomorphic evaluation of f : K∗ → {0, 1} with error ε if
it has an efficient homomorphic evaluator for f with error ε.

A γ-distinguishing oracle for (Gen,Enc,Dec) is a function D such that

Pr[D(PK,EncPK(0)) accepts]− Pr[D(PK,EncPK(1)) accepts] > γ.

A reduction from a decision problem L to γ-distinguishing encryptions in (Gen,Enc,Dec) is
an efficient randomized oracle algorithm R? such that for every valid input x there exists a γ-
distinguishing oracle D such that RD(x) = L(x) with probability at least 8/9. (For our results the
exact constant won’t matter, as long as it is strictly greater than 1/2.)

Theorem 1. Let ε ∈ (0, 1/18) be any constant and δ ≥ 2
√
ε. Let (Gen,Enc,Dec) be a public key

encryption scheme that supports homomorphic evaluation of sif with error at most ε. If there is a
reduction from L to (1− δ)-distinguishing (Gen,Enc,Dec), then L is in AM ∩ coAM.

We will assume that the reduction is query length regular: On input x, the reduction first computes
a query length m ≥ |x| and only makes queries of length m. The theorem can be proved without
this assumption, but we make it for notational convenience.

In the case when the reduction has constant query complexity, a stronger conclusion can be ob-
tained.

Theorem 2. Let q be any constant, δ > 0, and ε = ε(q, δ) a sufficiently small constant. Let
(Gen,Enc,Dec) be a public key encryption scheme that supports homomorphic evaluation of sif
with error at most ε. If there is a reduction from L to (1− δ)-distinguishing (Gen,Enc,Dec) that
makes at most q queries, then L is in statistical zero-knowledge.

4 Ciphertext rerandomization from homomorphic evaluation

In this section we show how to convert a homomorphic evaluation algorithm for sif into a reran-
domization. Let H denote entropy and I denote mutual information.

Claim 3. Let X1, . . . , Xn be i.i.d. random variables and I ∼ {1, . . . , n} a uniformly random index.
Let F,G,G′ be random variables such that (1) F and G are independent conditioned on XI , (2) F
is independent of I, (3) G and G′ are identically distributed and (4) F and G′ are independent.
Then the random variables (F,G) and (F,G′) are within statistical distance

√
2 H(F )/n.

Proof.

H(XI | F ) ≥ H(XI | F, I) (conditioning reduces entropy)

=
1

n

n∑
i=1

H(Xi | F ) ≥ 1

n
H(X1, . . . , Xn | F ) ≥ 1

n
(H(X1, . . . , Xn)−H(F )) = H(XI)−

H(F )

n
.

Since F and G are conditionally independent of XI , I(F ;G) ≤ I(F ;XI). Therefore

I(F ;G) ≤ I(F ;XI) = H(XI)−H(XI | F ) ≤ H(F )

n

and the conclusion follows by Pinsker’s inequality [Pin64].
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In the special case when G = XI we get the following corollary.

Corollary 4. Let X1, . . . , Xn be i.i.d and I ∼ {1, . . . , n} a uniformly random index and F be
independent of I. Then (F,XI) and (F,X) are within statistical distance

√
2 H(F )/n, where X is

i.d. with X1, . . . , Xn and independent of F .

The next lemma shows how to obtain rerandomization from homomorphic evaluation of the sif
function.

Lemma 5. If (Gen,Enc,Dec) has a strong (resp. weak) efficient homomorphic evaluator for
sif2k+1 with error ε, then it has a strong (resp. weak) efficient rerandomization Rer with error at
most ε+

√
2c/(k + 1) (resp. decryption error ε and rerandomization error

√
2c/(k + 1)), where c

is the length of ciphertexts.

Proof. We prove the strong version of the lemma and then describe the changes needed to obtain
the weak version. Define Rer to be the following procedure. Given public key PK and ciphertext
E:

1. Let

Xi =


EncPK(0, Ri) for 1 ≤ i ≤ k,
E for i = k + 1, and

EncPK(1, Ri) for k + 2 ≤ i ≤ 2k + 1.

2. Choose a random permutation π on the set {1, . . . , 2k + 1}.

3. Output F = HPK(Xπ(1), . . . , Xπ(2k+1)).

We will now assume that E ∼ EncPK(0); the case E ∼ EncPK(1) is similar. We first condition
on the choice of the public key PK, letting εPK denote the statistical distance between the two
distributions in the definition of strong homomorphic evaluator conditioned on PK.

The random variables X1, . . . , Xk+1 and F satisfy the assumptions of the Corollary 4, so (XI , F )
(where I ∼ {1, . . . , k + 1}) is within statistical distance

√
2c/(k + 1) from (E′, F ), where E′ ∼

EncPK(0) is independent of F . On the one hand, by the randomness of π, (XI , F ) is identically
distributed to (E,F ) = (E,RerPK(E)). On the other hand, by the strong homomorphic property,
(E′, F ) is within distance εPK of a pair of independent random encryptions of 0 under PK. So
conditioned on PK, the statistical distance in rerandomization is at most εPK +

√
2c/(k + 1).

Averaging over εPK we prove the strong version of the lemma.

To prove the weak version, it is clear by construction that the decryption error is upper bounded
by the homomorphic evaluation error. Let F and G be two independent instantiations of Rer
on the same input E. Conditioned on PK, the random variables X1, . . . , Xk+1, F,G satisfy the
assumptions of Claim 3, so (F,G) and (F,G′), where G′ is i.i.d with G and therefore with F , are
within statistical distance

√
2c/(k + 1).

5 The distinguishing protocol

In this section we describe a constant-round interactive proof systemDP that, given input (PK,C, b),
certifies that C is an encryption of b under PK when b ∈ {0, 1} and that (PK,C) is an invalid
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pair when b = ⊥. The proof system is parametrized by two gaps [`, r) and [`′, r′), which describe
a promise on the inputs.

We will assume we have the following constant-round protocols for statistical closeness (SC[`,r))
and statistical farness (SF[`,r)), where 0 ≤ ` < r ≤ 1. The protocols take as inputs a pair of sampler
circuits D,D′ producing distributions over the same set {0, 1}m with the following completeness /
soundness properties:

• If D,D′ are at statistical distance less than `, SC[`,r)(D,D
′) accepts with probability 1− σ.

• If D,D′ are at statistical distance at least r, SC[`,r)(D,D
′) rejects with probability 1− σ.

• If D,D′ are at statistical distance at least r, SF[`,r)(D,D
′) accepts with probability 1− σ.

• If D,D′ are at statistical distance less than `, SF[`,r)(D,D
′) rejects with probability 1− σ.

Here σ can be any inverse polynomial in the size of the input. The following two theorems state
the existence of these protocols. The second one is stronger as provides statistical zero-knowledge
implementation, but makes a stronger assumption about the gaps.

Formally we will view SC and SF as promise problems that take `, r,D,D′ as their inputs. The-
orem 6 essentially follows from work of Bhatnagar, Bogdanov, and Mossel [BBM11]. We provide
the missing details in Appendix A.

Theorem 6. For r > `, the problems SC and SF are in AM where the running time of the verifier
is polynomial in the size of D, the size of D′, and 1/(r − `).

Theorem 7 is proved by Sahai and Vadhan [SV03].

Theorem 7. For r2 > `, the problems SC and SF are in SZK where the running time of the
verifier is polynomial in the size of D, the size of D′, and 1/`1/ log(r2/`).

The protocol DP will certify that the rerandomization of C is close to an rerandomized encryption
of b but far from a rerandomized encryption of b when b ∈ {0, 1}. When b = ⊥, it certifies that
either the rerandomized encryptions of 0 and 1 are close, or the rerandomized encryption of C is
far from both.

Let ZPK,b be the circuit that on input R,R′ outputs RerPK(EncPK(b, R), R′), i.e. a rerandomized
encryption of b.

The distinguishing protocol DP[`,r),[`′,r′)

On input (PK,C, b), where b ∈ {0, 1,⊥}:
1. If b = 0 or b = 1:
2. Verifier and Prover execute SF[`,r)(ZPK,0, ZPK,1).

3. If the protocol rejects, reject. Otherwise:
4. Verifier and Prover execute SC[`′,r′)(ZPK,b,RerPK(C)).

5. If the protocol accepts, accept, else reject.
6. If b = ⊥:
7. Verifier and Prover execute SC[`,r)(ZPK,0, ZPK,1).

8. If the protocol accepts, accept. Otherwise:
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9. Verifier and Prover execute SF[`′,r′)(ZPK,0,RerPK(C)).

10. Verifier and Prover execute SF[`′,r′)(ZPK,1,RerPK(C)).

11. If both accept, accept, else reject.

The distinguishing oracle We now define an oracle π that distinguishes between encryptions
of 0 and encryptions of 1. This oracle answers ⊥ on all queries (PK,C) that do not represent
valid key-ciphertext pairs and answers bad on all queries that fall inside the gaps of the underlying
protocols SC and SF . We then show that for every pair (PK,C) that falls outside the gaps,
b = π(PK,C) is the unique answer that makes DP (PK,C, b) accept.

Assume `′ < r/2 and consider the following oracle

π[`,r),[`′,r′)(PK,C) =


⊥, if d < ` or (d ≥ r and d0 ≥ r′ and d1 ≥ r′)
0, if d ≥ r and d0 < `′ (and so d1 ≥ `′)
1, if d ≥ r and d1 < `′ (and so d0 ≥ `′)
bad, if d ∈ [`, r) or d0 ∈ [`′, r′) or d1 ∈ [`′, r′)

where d = sd(ZPK,0, ZPK,1) and db = sd(ZPK,b,RerPK(C)) (for b ∈ {0, 1}).

Let π = π[`,r),[`′,r′) and DP = DP[`,r),[`′,r′). The following claim shows that π is a distinguishing
oracle.

Claim 8. Assume Rer is a rerandomization with decryption error ε < (1 − r)2/2 and rerandom-
ization error ρ < `′2. Then Pr[π(PK,EncPK(b)) = b] ≥ 1−

√
2ε−√ρ for every b ∈ {0, 1}.

Proof. First we show that the statistical distance between the distributions

(PK,RerPK(EncPK(0, R), R′) = ZPK,0) and (PK,RerPK(EncPK(1, R), R′) = ZPK,1)

is at least 1 − 2ε. Consider the test T that on input (PK,C), samples SK conditioned on PK,
and outputs DecSK(C). Since Rer is a rerandomization with decryption error ε, we have for every
b ∈ {0, 1}

Pr[DecSK(RerPK(EncPK(b))) = b] ≥ 1− ε.
Therefore T distinguishes the two distributions with advantage 1− 2ε. By Markov’s inequality, for
at least a 1−

√
2ε fraction of the PK, the statistical distance between ZPK,0 and ZPK,1 is at least

1−
√

2ε. Since Rer has a rerandomization error ρ, the statistical distance between

(PK,RerPK(C,R),RerPK(C,R′)) and (PK,RerPK(C,R),RerPK(C ′, R′))

(where C,C ′ ∼ EncPK(b) are independent) is at most ρ. By Markov’s inequality, for at least a 1−√
ρ fraction of the pairs (PK,C), the statistical distance between RerPK(C,R′) and RerPK(C ′, R′) =

ZPK,b is at most
√
ρ < `′. The claim follows by taking a union bound.

The following claims are immediate from the definitions and the completeness and soundness as-
sumptions on SC and SF .

Claim 9. (Completeness) Assume `′ < r/2 and π(PK,C) 6= bad. Then DP (PK,C, π(PK,C))
accepts with probability at least 1− 3σ.

Claim 10. (Soundness) Assume `′ < r/2. If DP (PK,C, b) accepts with probability more than 3σ,
then π(PK,C) ∈ {b,bad}.
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6 Complexity theoretic setup

In this section we cover the complexity-theoretic framework for the proofs of Theorems 1 and 2.

6.1 Promise oracles for adaptive reductions

Let Ξ be any finite set of values that includes the special symbol bad. An oracle family over input
length m with size d is a multiset Π of functions π : {0, 1}m → Ξ, 1 ≤ i ≤ d. We say Π is ε-bad if
for every input x, Prπ∼Π[π(x) = bad] ≤ ε.

Let F : {0, 1}m → [d] be a function. The oracle ΠF : {0, 1}m → Ξ is given by ΠF (z) = πF (z)(z). In
the lemma below F will be a randomized function of the same form.

Lemma 11. Let R? be a reduction that on an input of length n, makes at most q queries of length
m. Let Π be an oracle family of size d. Assume d is a power of two. There exists a randomized
function F : {0, 1}m → [d] such that:

• F is computable in time (and hence uses randomness) polynomial in m, q, and d.

• For every input x of length n, the probability that RΠF (x) never receives bad as an answer to
any of its queries is at least (1− ε)q.

Proof. Fix m and let F : {0, 1}m → [d] be a q-wise independent function family. Using standard
constructions, F can be described by O(mq) random bits and is computable in time polynomial in
m, q, and d.

Let (Q1, a1), . . . , (Qq, aq) denote the query-answer pairs of the reduction when interacting with the
oracle ΠF . We may assume all queries are distinct. We write the probability that any of the
ai’s equals bad as a product of conditional probabilities. Let pi be the probability that ai 6= bad
conditioned on a1, . . . , ai−1 6= bad.

Let’s look at p1 first. Since Π is ε-bad, the probability that a1 is bad is at most ε and p1 ≥ 1−ε. Now
we consider pi. Since F is q-wise independent it follows that conditioned on every possible collection
of values of F (Q1), . . . , F (Qi−1) (which in particular determine the event a1, . . . , ai−1 6= bad), F (Qi)
is uniformly distributed in [d]. Since Π is ε-bad, the conditional probability that ai = bad can be
at most ε, and so pi ≥ 1− ε. Multiplying the conditional probabilities gives the second part of the
lemma.

6.2 Statistical zero-knowledge

We recall some results about the complexity of statistical zero-knowledge SZK. Sahai and Vad-
han [SV03] show that the statistical distance problem SD = SF[1/9,8/9) is complete for SZK under
many-one reductions.

We also need the following result of Sahai and Vadhan [SV03] that states the closure of SZK under
truth-table reductions.

Theorem 12. There is a deterministic algorithm that takes as input instances x1, . . . , xk of SD
and a boolean predicate P : {0, 1}k → {0, 1} and outputs an instance x of SD such that SD(x) =
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P (SD(x1), . . . , SD(xk)). The running time of the algorithm is polynomial in 2k and the sizes of
x1, . . . , xk.

We also need the following fact, which says that reductions within SZK can without loss of generality
be assumed deterministic.

Claim 13. If there is a randomized many-one reduction R from L to SD such that Pr[SD(R(x)) =
L(x)] ≥ p, where p is any constant above 1/2, then L is in SZK.

Proof. The reduction takes input x and randomness r and produces a pair of circuits D,D′. Let
Ex(r, s) (resp. E′x(r, s)) be the circuits that on input r, s runs the reduction on input x and
randomness r and outputs D(s) (resp., D′(s)).

Assume L(x) = SD(R(x)) with probability at least 8/9 over the randomness of the reduction. For
x ∈ L, the statistical distance between Ex and E′x is at least (8/9)2 ≥ 2/3 because at least 8/9
choices of r contribute at least 8/9 to the statistical distance. If x 6∈ L, then the statistical distance
is at most 8/9 · 1/9 + 1/9 · 1 ≤ 1/3, because for at least 8/9 choices of r the statistical distance over
s is at most 1/9, and for the other choices it is at most 1. Therefore L reduces deterministically to
SF[1/3,2/3), so L is in SZK by Theorem 7.

If Pr[L(x) = SD(R(x))] is any constant above 1/2, the probability can be first amplified to 8/9 via
Theorem 12 with the majority predicate.

Combining Theorem 12 and Claim 13 we get the following corollary.

Corollary 14. Suppose there is a randomized algorithm A that on input x of length n and ran-
domness r computes inputs x1, . . . , xk and a predicate P : {0, 1}k → {0, 1}, where k = O(log n) and
accepts if P (SD(x1), . . . , SD(xk)) is true. If Pr[A(x) = L(x)] ≥ p, where p is any constant greater
than 1/2, then L is in SZK.

7 Proofs of the main theorems

7.1 Proof of Theorem 1

Let Fω : {0, 1}m → [d] be the randomized function from Lemma 11, with ω describing the random-
ness. We set Ij =

[
1
3 + j−1

3d ,
1
3 + j

3d

)
and I ′j = 1

3Ij , where 1 ≤ j ≤ d.

The decision protocol DL: On input x:

V: Compute the oracle query length m. Let d be the smallest power of two above 90q where
q is an upper bound on the number of queries R?(x) makes. Choose randomness r for the
reduction and randomness ω for Fω. Send r, d, ω to the prover.

P: Send a sequence ((PKi, Ci), bi), 1 ≤ i ≤ q of oracle query-answer pairs.

V: Verify that the received query-answer pairs determine an accepting computation of R?(x, r).
If not, reject. For every query i, compute j = Fω(PKi, Ci) and let [`i, ri) = Ij and [`′i, r

′
i) = I ′j .
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V, P: Execute in parallel the protocols DP[`i,ri),[`′i,r
′
i)

(PKi, Ci, bi) for 1 ≤ i ≤ q with complete-
ness/soundness gap σ = 1/9q. If any of them result in rejection, reject. Otherwise, accept.

Let πj = πIj ,I′j and ΠF be the oracle from Lemma 11.

Claim 15. The oracle family {πj}1≤j≤d is at most 3/d-bad.

Proof. Query (PK,C) is bad for πj if sd(ZPK,0, ZPK,1) ∈ Ij or sd(ZPK,0,RerPK(C)) ∈ I ′j or
sd(ZPK,1,RerPK(C)) ∈ I ′j . Since the intervals Ij are disjoint, and so are the intervals I ′j , each
of the three events occurs with probability at most 1/d, so their union occurs with probability at
most 3/d.

Proof of Theorem 1 It is sufficient to prove that L ∈ AM. By applying the same argument to
its complement L we also get L ∈ coAM.

Assume (Gen,Enc,Dec) supports homomorphic evaluation of sif with error at most ε and there
is a reduction R? from L to (1− δ)-distinguishing encryptions.

We instantiate the constructions with the following parameters. Let ε be the homomorphic evalu-
ation error and c an upper bound on the length of ciphertexts queried by the reduction on input x.
Set the number of inputs 2k + 1 to sif to 4c/ε4. Let Rer be the rerandomization from Lemma 5
with this value of k. By Lemma 5 its decryption error is ε and its rerandomization error is at most
ρ ≤ ε2. The protocol DP is instantiated with this rerandomization.

Claim 16. For an appropriate choice of parameters and for every F , ΠF is a (1−δ)-distinguishing
oracle.

Proof. Notice that all the intervals Ij are within [1/3, 2/3) and I ′j are all within [1/9, 2/9). Since
ε < 1/18 and ρ < 1/81, we have for every j, πj satisfies the assumptions of Claim 8, which shows
that

Pr[πj(PK,EncPK(b)) = b] ≥ 1−
√

2ε−√ρ ≥ 1− 2
√
ε ≥ 1− δ.

Since ΠF equals some πj on every query, it follows that the same formula is true for ΠF , so ΠF is
a (1− δ)-distinguishing oracle.

By Theorem 6, the verifier for DL can be implemented in polynomial time. Theorem 1 the follows
by the next two claims:

Claim 17. (Completeness) If x ∈ L, there exists a prover that makes DL(x) accept with probability
at least 2/3.

Proof. In the second step, the prover will emulate RΠF (x, r). If the oracle returns bad on any of
the queries in this emulation, the prover aborts (causing the verifier to reject). In the fourth step,
the prover emulates the honest prover for DP[`i,ri),[`′i,r

′
i)

.

Let B be the event that RΠF (x, r) rejects or ΠF returns bad on any of the queries in RΠF (x, r) or
any of DP protocols rejects. If B does not happen, then the verifier accepts. We upper bound the
rejecting probability of the verifier by taking a union bound. Since ΠF is a distinguishing oracle,
RΠF rejects with probability at most 1/9. By Claim 15 and Lemma 11, RΠF returns bad with
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probability at most 1 − (1 − 3/d)q ≤ 1/9; by Claim 9, each of the step 4 protocols rejects with
probability at most 1/9q, so by a union bound B happens with probability at most 1/3.

Claim 18. (Soundness) If x 6∈ L then no prover makes DL(x) accept with probability at least 1/3.

Proof. Assume x 6∈ L. If DL(x) accepts, then at least one of the following must be true:

1. RΠF (x, r) accepts, or

2. ΠF returns bad on at least one query in RΠF (x, r), or

3. DL(x) accepts, RΠF (x, r) rejects, and ΠF never returns bad.

We upper bound the probabilities of each of these events. Since ΠF is a distinguishing oracle, the
first one occurs with probability at most 1/9. By Claim 15 and Lemma 11, the second one occurs
with probability at most 1 − (1 − 3/d)q ≤ 1/9. If the third event is satisfied, then bi must differ
from ΠF (PKi, Ci) = πpi,qi(PKi, Ci) for at least one i. By Claim 10, the i’th instantiation of the
DP protocol in then accepts with probability at most 1/9. By a union bound, DL(x) accepts with
probability at most 1/3.

7.2 Proof of Theorem 2

Let Ij , 1 ≤ j ≤ d be the following collection of intervals: Ij = [`j , rj) where r1 = 1/2, `j = r2
j/4,

and rj+1 = `j . Let I ′j = 1
3Ij . Assume the reduction makes at most q queries on every input and let

d = 27q · 3q.

By Theorem 7, for every j the problems SCIj , SCI′j , SFIj , SFI′j are all in SZK so by Theorem 12

and the completeness of SD, DPIj ,I′j is also in SZK for every j.

Consider the following algorithm A. On input x, choose randomness r for R and a random j ∼ [d]
and accept if there exists a sequence of answers (a1, . . . , aq) ∈ {0, 1,⊥}q such that R(x, r) accepts
given these oracle answers and DPIj ,I′j (Qi, ai) accepts for all 1 ≤ i ≤ q. Since DPIj ,I′j is in SZK

and SD is complete for SZK, A satisfies the assumption of Corollary 14, so if we can prove that
Pr[A(x) = L(x)] ≥ 2/3, it will follow that L is in SZK.

Say j is bad if πj = πIj ,I′j answers bad on any pair (Q, a) queried by A. Since A makes at most q3q

queries, by Claim 15 and a union bound the probability that A answers bad on any of its queries
is at most 1/9.

Fix an input x. By our choice of parameters, when ε is sufficiently small and ρ = ε2, Claim 8
guarantees that πj is a (1− 4ε)-decryption oracle for every 1 ≤ j ≤ d. So for at least 8/9 fraction
of r, Rπj (x, r) = L(x). Therefore with probability at least 7/9, both Rπj (x, r) = L(x) and πj never
answers bad on any of A’s queries. By Claims 9 and Claim 10, it must then hold that a = πj(Q)
for all query-answer pairs (Q, a) made by A, and so A(x) = L(x).
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A An AM protocol for statistical closeness

Bogdanov, Bhatnagar and Mossel [BBM11] show the existence of a protocol for statistical farness
(SF ) meeting the specifications of Theorem 6. They also give a protocol for statistical closeness
(SC), but they only provide a soundness proof for gaps [`, r) satisfying r/` ≥ 4. We show how to
extend their protocol and analysis to general gaps.

Theorem 19. For r > `, the problem SC[`,r)(D,D
′) is in AM where the running time of the

verifier is polynomial in the size of D, the size of D′, and 1/(r − l).

Let N(t) = |{ω : |D−1(ω)| ≥ t and |D′−1(ω)| ≥ t}|. From [BBM11], there is a lower bound protocol
for N(t) with completeness 1− δ/20n and soundness δ/20n. More specifically, they show that the
following decision problem is in AM:

Input: A pair of circuits D,D′ : {0, 1}n → {0, 1}, a number 1 ≤ t ≤ 2n, a target number
0 ≤ Ñ ≤ 2n, and a fraction 0 < δ ≤ 1 (represented in unary).
Yes instances: (D,D′, t, Ñ , δ) such that N(t) ≥ Ñ .
No instances: (D,D′, t, Ñ , δ) such that N((1− δ)t) < (1− δ)Ñ .

Following the ideas of [BBM11] we have the following protocol for statistical closeness:

An AM protocol for SC: On input `, r,D,D′: Set δ = (r − `)/4 and

P: Send claims Ñi for the values Ni = N((1− δ)−i), 0 ≤ i ≤ en/δ.

P, V: Run the AM lower bound protocol for Ni on inputs (D,D′, (1− δ)−i, Ñi, δ) for every 1 ≤ i ≤
en/δ. If all of them pass accept, otherwise reject.

V: Accept if
∑en/δ

i=0 (Ñi − Ñi+1)(1− δ)−i ≥ (1− δ)(1− `) · 2n.

The completeness and soundness of the protocol rely on the following approximation from [BBM11]:

en/δ∑
i=0

(Ni −Ni+1)(1− δ)−i ≤ (1− sd(D,D′))2n ≤
en/δ∑
i=0

(Ni −Ni+1)(1− δ)−(i+1).

Claim 20 (Completeness). If sd(D,D′) ≤ ` then the protocol accepts with probability 2/3.

Proof. Assume the honest prover claims that Ñi = Ni for every i. By the completeness of the lower
bound protocol and a union bound, with probability at least 2/3 none of the lower bound protocol
rejects. In this case, using the above approximation we have

en/δ∑
i=0

(Ñi − Ñi+1)(1− δ)−i ≥ (1− δ)(1− sd(D,D′)) · 2n.
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Claim 21 (Soundness). If the protocol accepts with probability at least 1/3 then sd(D,D′) ≤ r.

Proof. Assume the verifier accepts with probability at least 1/3. By the soundness of the lower
bound protocol for N(t) and a union bound, there exists at least one setting of the randomness of
the verifier for which Ni−1 ≥ (1 − δ)Ñi for all i (where N−1 = N0) and the verifier accepts. Now
(using the fact that the value Nen/δ+1 is zero):

en/δ∑
i=−1

(Ni −Ni+1)(1− δ)−i = N−1(1− δ) +

en/δ∑
i=0

Ni((1− δ)−i − (1− δ)−i+1)

≥ Ñ0(1− δ)2 + (1− δ)
en/δ∑
i=0

Ñi+1((1− δ)−i − (1− δ)−i+1)

= (1− δ) ·
en/δ∑
i=0

(Ñi − Ñi+1)(1− δ)−i+1

≥ (1− δ)3(1− `) · 2n

so we get that 1− sd(D,D′) ≥ 1− ` and therefore sd(D,D′) ≤ 1− (1− δ)3(1− `) ≤ `+ 4δ. Setting
δ = (r − `)/4 proves the claim.
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