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Abstract

We show that homomorphic evaluation of any non-trivial functionality of sufficiently many
inputs with respect to any CPA secure homomorphic encryption scheme cannot be implemented
by circuits of polynomial size and constant depth, i.e., in the class AC0. In contrast, we observe
that there exist ordinary public-key encryption schemes of quasipolynomial security in AC0

assuming noisy parities are exponentially hard to learn. We view this as evidence that homo-
morphic evaluation is inherently more complex than basic operations in encryption schemes.

1 Introduction

A central objective in the theory of cryptography is to classify the relative complexity of various
cryptographic tasks. One common way of arguing that task B is of comparable easiness to task A
is to give a black-box implementation of B using A as a primitive. Notable examples include the
construction of pseudorandom generators from one-way permutations [GL89] and one-way func-
tions [HILL99, HRV10].

But how should we argue that task B is “more complex” than task A? In the generic setting,
one looks for the existence of a black-box separation [IR89, RTV04], or a lower bound on the
query complexity of a black-box reduction [GT00]. However such black box impossibility results
are not always a good indicator of the relative complexity of the two tasks in the real world (under
suitable complexity assumptions). For example, although collision-resistant hash functions cannot
be constructed from one-way functions in a black-box manner [Sim98], both objects have simple,
local (NC0) implementations under standard assumptions [AIK07].

An alternative way to argue that task B is more complex than task A is to provide a concrete
complexity model in which one can implement A (under plausible assumptions), but not B. For
example, Applebaum et al. [AIK07] show that under plausible complexity assumptions, nontrivial
pseudorandom generators can be implemented in the complexity class NC0. However, it is not
difficult to see that this class does not contain pseudorandom functions; in fact, Linial, Mansour,
and Nisan [LMN93] show that pseudorandom functions cannot be implemented even in AC0. Taken
together, these results may be viewed as concrete evidence that pseudorandom functions are more
complex than pseudorandom generators, despite the existence of a black-box reduction [GGM86]
and the lack of lower bounds on the complexity of such reductions [MV11].
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In this work we give concrete complexity-theoretic evidence that homomorphic evaluation of
essentially any non-trivial functionality is more complex than the basic cryptographic operations of
key generation, encryption, and decryption. Our main result (Theorem 3.1) shows that homomor-
phic evaluation of any non-trivial functionality (for example the AND function) that depends on
sufficiently many inputs cannot be implemented by circuits of constant depth and subexponential
size with respect to any CPA secure encryption scheme. In Section 4 we review some proposals of
CPA secure private key encryption schemes of quasipolynomial security that can be implemented
in this model. In the public key setting, we observe that the cryptosystem of Applebaum, Barak,
and Wigderson [ABW10] can be implemented in constant depth.

Thus constant-depth circuits provide sufficient computational power for implementing oper-
ations in both ordinary private and public-key encryption schemes (under a previously studied
assumption), but not for realizing homomorphic evaluation of any non-trivial functionality.

2 Definitions

In this section we give a definition of what it means for an algorithm E to homomorphically
evaluate a given functionality f . A fairly weak requirement is that a homomorphic evaluator
for f(m1, . . . ,mk) should take as inputs encryptions of m1, . . . ,mk and output a ciphertext that
decrypts to f(m1, . . . ,mk).

We will allow for the evaluation algorithm to err on some fraction of the encryptions. This takes
into account the possibility that the encryption scheme itself may produce incorrect encryptions
with some probability.

Definition 2.1. Let (Gen,Enc,Dec) be a private-key encryption scheme over message set Σ with
ciphertexts in {0, 1}n. We say a circuit E is a homomorphic evaluator of f : Σk → Σ with error δ
if for all m1, . . . ,mk ∈ Σ,

Pr[DecSK(E(EncSK(m1, R1), . . . ,EncSK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1− δ,

where SK ∼ Gen is a uniformly chosen secret key and R1, . . . , Rk are independent random seeds.

In the public-key setting, we are given an encryption scheme (Gen,Enc,Dec) and require that

Pr[DecSK(E(PK,EncPK(m1, R1), . . . ,EncPK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1− δ.

where (PK,SK) ∼ Gen is a random key pair.
We point out one challenge that this natural definition poses in the context of ruling out the

existence of homomorphic evaluators. When k is much smaller than n, the definition allows for
plausible encryption schemes that admit trivial homomorphic evaluators, by “outsourcing” the
homomorphic evaluation to the decryption algorithm. For example suppose that the meaningful
portion of an encryption is only captured in the first n/k bits of the ciphertext. Then the homo-
morphic evaluator can simply copy the meaningful portion of its k encryptions in non-overlapping
parts of the output. Upon seeing a ciphertext of this form, the decryption algorithm can easily
compute the value f(m1, . . . ,mk) by first decrypting the ciphertext corresponding to each of the k
encryptions and then evaluating f .

Thus our negative result will only apply to functions whose number of relevant inputs k is
sufficiently large in terms of n. Beyond this requirement, we do not make any assumption on f .
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The requirement we make on the encryption scheme is CPA message indistinguishability. A
private-key encryption scheme is (s, d, ε) CPA message indistinguishable if for every pair of messages
m,m′ ∈ Σ and every distinguishing oracle circuit D? of size s and depth d,

|PrSK,R[DEnc(SK,·)(EncSK(m,R)) = 1]− PrSK,R[DEnc(SK,·)(EncSK(m′, R)) = 1]| ≤ ε.

In the public key setting CPA security follows from ordinary message indistinguishability:

|PrPK,R[D(PK,EncPK(m,R)) = 1]− PrPK,R[D(PK,EncPK(m′, R)) = 1]| ≤ ε.

3 Homomorphic evaluation requires depth

Theorem 3.1. Suppose (Gen,Enc,Dec) is an (2s + k + O(1), d + 1, 1/6(k + 1)) CPA message
indistinguishable private-key (resp. public-key) encryption scheme. Let E be a homomorphic eval-
uator of size s and depth d with error at most 1/3 for some f : Σk → Σ that depends on all of its

inputs with respect to this scheme. Then s > 2Ω((k/6n)1/(d−1)).

For notational simplicity, we present the proof for the private key variant. Since f depends on
all its inputs, for every i ∈ [k] there is a pair of messages m and m′ that differ only in coordinate i
such that f(m) 6= f(m′). Now suppose E is a homomorphic evaluator for f with error 1/3. Then

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))) 6= f(m)] ≤ 1/3 and

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))) 6= f(m′)] ≤ 1/3,

where the probability is taken over the choice of secret key SK (which we omit to simplify notation)
and the randomness R1, . . . , Ri, R

′
i, . . . , Rk used in the encryption. Since f(m) 6= f(m′), it follows

that

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk)))

6= Dec(E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk)))] ≥ 1/3.

Therefore it must be that

Pr[E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))

6= E(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))] ≥ 1/3.

By CPA message indistinguishability and a hybrid argument, we can replace m1, . . . ,mi,m
′
i, . . . ,mk

by 0 to obtain

Pr[E(Enc(0, R1), . . . ,Enc(0, Ri), . . . ,Enc(0, Rk))

6= E(Enc(0, R1), . . . ,Enc(0, R′i), . . . ,Enc(0, Rk))] ≥ 1/6. (1)

Lemma 3.2. Let D1, . . . , Dk be any distributions over {0, 1}n. Let g : ({0, 1}n)k → {0, 1} be a

circuit of size s and depth d where s ≤ 2(εk)1/(d−1)/K for some absolute constant K. Then

Pr[g(X1, . . . , Xi, . . . , Xk) 6= g(X1, . . . , X
′
i, . . . , Xk)] < ε

where the randomness is taken over the choice of i ∼ [k] and independent samples X1 ∼ D1, . . . , Xi, X
′
i ∼

Di, . . . , Xk ∼ Dk.
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We apply this lemma with Di equal to the distribution of encryptions of 0 and ε = 1/6n
to each of the n outputs of E and take a union bound to conclude that (1) is violated unless

s > 2Ω((k/6n)1/(d−1)).

Proof of Lemma 3.2. Fix any pair Z,Z ′ ∈ ({0, 1}n)k. For any w ∈ {0, 1}k, let Zw ∈ ({0, 1}n)k be
the string such that

the i-th block of Zw =

{
the i-th block of Z, if wi = 0

the i-th block of Z ′, if wi = 1.

Let hZ,Z′(w) = g(Zw). Then h is of size at most s and depth at most d. By Boppana [Bop97], for
every Z and Z ′ we have

PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)] ≤ (K log s)d−1/k

for some constant K, where W and i are uniform over {0, 1}k and [k] respectively, and ei is the
i-th indicator vector. Therefore for Z,Z ′ sampled independently from D1 × · · · ×Dk we have

Pr[g(X1, . . . , Xi, . . . , Xk) 6= g(X1, . . . , X
′
i, . . . , Xk)] = EZ,Z′ [PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)]]

≤ EZ,Z′ [(K log s)d−1/k]

= (K log s)d−1/k.

It follows that if this probability is at most ε, then s ≤ 2(εk)1/(d−1)/K .

Lemma 3.2 bounds the total influence of shallow circuits under independent inputs chosen from
an arbitrary distribution. Our proof is based on ideas of Blais, O’Donnell, and Wimmer [BOW10],
who bound the noise sensitivity of such circuits.

4 On CPA-secure encryption schemes in AC0

In this section we review the depth complexity of some studied candidate CPA secure encryp-
tion schemes. To begin with, we observe that asymptotically superpolynomial security cannot
be achieved by NC0 decryption circuits: If every output of the decryption circuit depends on at
most d bits of the ciphertext, then for any message m the decryption circuit on the distribution of
encryptions of m can be PAC-learned in time Od(nd), violating CPA security.

Kharitonov [Kha93] implicitly shows the existence of a “weakly pseudorandom” function family
in AC0 that is 2poly logn hard to predict on a uniformly random input even from membership queries
(assuming Blum integers are sufficiently hard to factor). This function family can be used to obtain
a CPA secure symmetric key encryption scheme whose encryption and decryption algorithms are in
AC0. However, we do not know if key generation (which involves generating random Blum integers
of magnitude 2poly logn) can be performed in AC0. Gilbert et al. [GRS08] give a probabilistic
CPA secure symmetric key encryption scheme whose security can be reduced to the hardness of
the Learning Parity with Noise (LPN) problem. The current best known algorithms for the LPN
problem over {0, 1}m all run in time 2Θ(m/ logm). Assuming this is optimal, by setting m = (log n)d

one can implement all components of this scheme using circuits of size poly(n) and depth d+O(1),

and the scheme has security 2Θ((logn)d/ log logn).
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We are not aware of any implementation of a public key encryption scheme with all but negligible
security all of whose components are in AC0. Here we show that the cryptosystem proposed by
Applebaum, Barak and Wigderson [ABW10] can be implemented using circuits of polynomial size
and constant depth in the security parameter. The variant of the cryptosystem we discuss is
conjectured to have security nΩ(logn).1

First we review the key generation, encryption and decryption in the ABW encryption scheme.
One can refer to [ABW10] for further details. Then we show how to implement each operation in
constant depth.

The public key is a random bipartite graph G = ((U, V ), E), where |U | = n and |V | = r = n0.9,
generated in the following way. First choose a random subset S ⊆ U and T ⊆ V of size s and s/3
respectively, where s = O(log n). Each vertex in S is connected to d (possibly repeated) random
vertices in T and each vertex outside S is connected to d random vertices in V . The secret key SK
is an odd size subset of S such that each vertex in T has an even number of neighbors in SK.

To encrypt a message m ∈ {0, 1}, choose a random subset T ′ of V and output y + e + m1,
where each coordinate of y ∈ {0, 1}n is the degree of the corresponding vertex in U restricted to T ′

mod 2, e ∈ {0, 1}n is a vector with each coordinate sampled from a distribution η̂ with Pr[η̂ = 0] = η
independently, and 1 ∈ {0, 1}n is the all ones vector.

To decrypt a ciphertext c ∈ {0, 1}n, output
∑

i∈SK ci. Now we give an AC0 implementation of
the cryptosystem.

Implementation of the ABW cryptosystem in AC0

Key Generation: Sample

1. y1, y2, . . . , ys from [n] and w1, w2, . . . , ws/3 from [r] to represent the subsets S ⊆ U and T ⊆ V ,
respectively;

2. vi,1, . . . , vi,d from [r] for every i from 1 to n. These are the random neighbors of each vertex
i in U \ S;

3. v̂i,1, . . . , v̂i,d from [s/3] for every i from 1 to s. These become the random neighbors of the
vertices in S after being mapped to the wi’s by the index function ι : [s/3] → [r] such that
ι(i) = wi. This function can be written as

ι(i) =
∨s/3

j=1
[(i = j) ∧ wj ].

The key generation circuit outputs vi,1, . . . vi,d if the vertex i is not in S, and outputs ι(v̂i,1), ι(v̂i,2), . . . , ι(v̂i,d)
otherwise. Now we can output the jth random neighbor of each vertex i ∈ U by[

δi ∧
∨s

k=1
[(i = yk) ∧ ι(v̂k,j)]

]
∨ (δi ∧ vi,j),

where δi :=
∨s

k=1(i = yk) indicates whether i belongs to S.
To come up with the secret key SK, we enumerate all the possible subsets of S (recall that

s = O(log n)) and output the first one that satisfies the linear dependency. Given an odd size

1Owing to the existence of a quasipolynomial time algorithm for learning from random examples [LMN93], if
ciphertexts are computationally indistinguishable from the uniform distribution, any AC0 decryption algorithm can
be broken in time 2poly logn.
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subset of S indicated by the support of the vector a ∈ {0, 1}s. It is not difficult to see that the
formula

fa =

s/3∨
j=1

⊕
i:ai=1

d⊕
k=1

(v̂i,k = j)

outputs 0 if every vertex in T has an even number of neighbors in the support of a and outputs
1 otherwise. (Since the XOR involves only O(d log n) inputs, it can be implemented in depth two
and size nO(d).) Thus we can enumerate all the possible a ∈ {0, 1}s of odd hamming weight and
output the first subset a with fa = 0. The secret key is represented by a vector z containing s
entries in [n], where each nonzero entry corresponds to a vertex in SK. More precisely, we output
the ith entry as

zi = ι

(∨
a∈{0,1}s:wt(a) is odd

[
fa ∧

(∧
b<a

fb

)
∧ (ai ∧ i)

])
.

Encryption: Given a public key represented by the neighbors vi,1, . . . , vi,d of each vertex i in U .

To encrypt a message m ∈ {0, 1}, choose a random vector x in {0, 1}r whose support forms the
subset T ′ of V , a noise vector e ∈ {0, 1}n by choosing each of its entries independently from η̂. The
ith bit of the encryption can be written as

ci =
∨

ki 6=kj ,1≤i<j≤d,ki∈[r]
a1,...,ad: a1+···+ad=1

[
∧d

j=1
(vi,j = kj) ∧ (xk1 = a1) ∧ · · · ∧ (xkd = ad)]⊕ ei ⊕m.

Decryption: Given a ciphertext c and the secret key SK represented by the vector z ∈ {0, 1}s×logn,
output

s⊕
i=1

n∨
k=1

[(zi = k) ∧ ck].

Reducing the encryption error The ABW cryptosystem (as well as the LPN-based system
of Gilbert et al.) has noticeable encryption error. The encryption error can be made negligible
by encrypting the message independently multiple times. While some of the multiple encryptions
may be erroneous, with all but negligible probability at least 2/3 of them will be correct. The
errors can be corrected by taking approximate majority at the decryption stage, which can be
implemented using circuits of depth 3 [Ajt83], thereby preserving the constant depth complexity of
the implementation.

Acknowledgment We thank Yuval Ishai for sharing his insights on encryption schemes in AC0.
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