
Optimal Hitting Sets for Combinatorial Shapes

Aditya Bhaskara∗ Devendra Desai† Srikanth Srinivasan‡

November 14, 2012

Abstract

We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a
class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011).
These generalize many well-studied classes of tests, including symmetric functions and combi-
natorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica
1997) and Rabani and Shpilka (SICOMP 2010), we construct hitting sets for Combinatorial
Shapes of size polynomial in the alphabet, dimension, and the inverse of the error parame-
ter. This is optimal up to polynomial factors. The best previous hitting sets came from the
Pseudorandom Generator construction of Gopalan et al., and in particular had size that was
quasipolynomial in the inverse of the error parameter.

Our construction builds on natural variants of the constructions of Linial et al. and Rabani
and Shpilka. In the process, we construct fractional perfect hash families and hitting sets for
combinatorial rectangles with stronger guarantees. These might be of independent interest.

1 Introduction

Randomness is a tool of great importance in Computer Science and combinatorics. The probabilistic
method is highly effective both in the design of simple and efficient algorithms and in demonstrating
the existence of combinatorial objects with interesting properties. But the use of randomness also
comes with some disadvantages. In the setting of algorithms, introducing randomness adds to the
number of resource requirements of the algorithm, since truly random bits are hard to come by.
For combinatorial constructions, ‘explicit’ versions of these objects often turn out to have more
structure, which yields advantages beyond the mere fact of their existence (e.g., we know of explicit
error-correcting codes that can be efficiently encoded and decoded, but we don’t know if random
codes can [5]). Thus, it makes sense to ask exactly how powerful probabilistic algorithms and
arguments are. Can they be ‘derandomized’, i.e., replaced by determinstic algorithms/arguments
of comparable efficiency?1 There is a long line of research that has addressed this question in
various forms [19, 11, 18, 23, 16].

An important line of research into this subject is the question of derandomizing randomized
space-bounded algorithms. In 1979, Aleliunas et al. [1] demonstrated the power of these algorithms

∗Department of Computer Science, Princeton University. Email: bhaskara@cs.princeton.edu
†Department of Computer Science, Rutgers University. Email: devdesai@cs.rutgers.edu
‡Department of Mathematics, Indian Institute of Technology Bombay. Email: srikanth@math.iitb.ac.in. This work

was done when the author was a postdoctoral researcher at DIMACS, Rutgers University.
1A ‘deterministic argument’ for the existence of a combinatorial object is one that yields an efficient deterministic

algorithm for its construction.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 158 (2012)

by showing that undirected s-t connectivity can be solved by randomized algorithms in just O(logn)
space. In order to show that any randomized logspace computation could be derandomized within
the same space requirements, researchers considered the problem of constructing an efficient ε-
Pseudorandom Generator (ε-PRG) that would stretch a short random seed to a long pseudorandom
string that would be indistinguishable (up to error ε) to any logspace algorithm.2 In particular,
an ε-PRG (for small constant ε > 0) with seedlength O(logn) would allow efficient deterministic
simulations of logspace randomized algorithms since a deterministic algorithm could run over all
possible random seeds.

A breakthrough work of Nisan [18] took a massive step towards this goal by giving an explicit ε-
PRG for ε = 1/poly(n) that stretches O(log2 n) truly random bits to an n-bit pseudorandom string
for logspace computations. In the two decades since, however, Nisan’s result has not been improved
upon at this level of generality. However, many interesting subcases of this class of functions have
been considered as avenues for progress [20, 12, 14, 13, 15].

The class of functions we consider are the very natural class of Combinatorial Shapes. A boolean
function f is a combinatorial shape if it takes n inputs x1, . . . , xn ∈ [m] and computes a symmetric
function of boolean bits yi that depend on the membership of the inputs xi in sets Ai ⊆ [m]
associated with f . (A function of boolean bits y1, . . . , yn is symmetric if its output depends only
on their sum.) In particular, ANDs, ORs, Modular sums and Majorities of subsets of the input
alphabet all belong to this class. Until recently, Nisan’s result gave the best known seedlength for
any explicit ε-PRG for this class, even when ε was a constant. In 2011, however, Gopalan et al.
[9] gave an explicit ε-PRG for this class with seedlength O(log(mn) + log2(1/ε)). This seedlength
is optimal as a function of m and n but suboptimal as a function of ε, and for the very interesting
case of ε = 1/nO(1), this result does not improve upon Nisan’s work.

Is the setting of small error important? We think the answer is yes, for many reasons. The
first deals with the class of combinatorial shapes: many tests from this class accept a random
input only with inverse polynomial probability (e.g., the alphabet is {0, 1} and the test accepts iff
the Hamming weight of its n input bits is n/2); for such tests, the guarantee that a 1/no(1)-PRG
gives us is unsatisfactory. Secondly, while designing PRGs for some class of statistical tests with
(say) constant error, it often is the case that one needs PRGs with much smaller error — e.g.,
one natural way of constructing almost-log n wise independent spaces uses PRGs that fool parity
tests [17] to within inverse polynomial error. Thirdly, the reason to improve the dependence on the
error is simply because we know that such PRGs exist. Indeed, a randomly chosen function that
expands O(logn) bits to an n-bit string is, w.h.p., an ε-PRG for ε = 1/poly(n). Derandomizing this
existence proof is a basic challenge in understanding how to eliminate randomness from existence
proofs. The tools we gain in solving this problem might help us in solving others of a similar flavor.

Our result. While we are unable to obtain optimal PRGs for the class of combinatorial shapes,
we make progress on a well-studied weakening of this problem: the construction of an ε-Hitting
Set (ε-HS). An ε-HS for the class of combinatorial shapes has the property that any combinatorial
shape that accepts at least an ε fraction of truly random strings accepts at least one of the strings
in the hitting set. This is clearly a weaker guarantee than what an ε-PRG gives us. Nevertheless, in
many cases, this problem turns out to be very interesting and non-trivial: in particular, an ε-HS for
the class of space-bounded computations would solve the long-standing open question of whether
RL = L. Our main result is an explicit ε-HS of size poly(mn/ε) for the class of combinatorial

2As a function of its random bits, the logspace algorithm is read-once: it scans its input once from left to right.

2

shapes, which is optimal, to within polynomial factors, for all errors.

Theorem 1.1 (Main Result (informal)). For any m,n ∈ N, ε > 0, there is an explicit ε-HS for the
class of combinatorial shapes of size poly(mn/ε).

Related work: There has been a substantial amount of research into both PRGs and hitting sets
for many interesting subclasses of the class of combinatorial shapes, and also some generalizations.
Naor and Naor [17] constructed PRGs for parity tests of bits (alphabet size 2); these results were
extended by Lovett, Reingold, Trevisan, and Vadhan [13] and Meka and Zuckerman [15] to modular
sums (with coefficients). Combinatorial rectangles, another subclass of combinatorial shapes, have
also been the subject of much attention. A series of works [6, 4, 14] have constructed ε-PRGs for
this class of functions: the best such PRG, due to Lu [14], has seedlength O(logn + log3/2(1/ε)).
Linial, Luby, Saks, and Zuckerman [12] constructed optimal hitting sets for this class of tests. We
build on many ideas from this work.

We also mention two more recent results that are very pertinent to our work. The first is
to do with Linear Threshold functions which are weighted generalizations of threshold symmetric
functions of input bits. For this class, Rabani and Shpilka [21] construct an explicit ε-HS of optimal
size poly(n/ε). They use a bucketing and expander walk construction to build their hitting set.
Our construction uses similar ideas.

The final result that we use is the PRG for combinatorial shapes by Gopalan et al. [9] that was
mentioned in the introduction. This work directly motivates our results and moreover, we use their
PRG as a black-box within our construction.

2 Notation and Preliminaries

Definition 2.1 (Combinatorial Shapes, Rectangles, Thresholds). A function f is an (m,n)-
Combinatorial Shape if there exist sets A1, . . . , An ⊆ [m] and a symmetric function h : {0, 1}n →
{0, 1} such that f(x1, . . . , xn) = h(1A1(x1), . . . , 1An(xn)).

3 If h is the AND function, we call f
an (m,n)-Combinatorial Rectangle. If h is an unweighted threshold function (i.e. h accepts iff
∑

i 1Ai
(xi) ≥ θ for some θ ∈ N), then f is said to be an (m,n)-Combinatorial Threshold. We

denote by CShape(m,n), CRect(m,n), and CThr(m,n) the class of (m,n)-Combinatorial Shapes,
Rectangles, and Thresholds respectively.

Notation. In many arguments, we will work with a fixed collection of accepting sets A1, . . . , An ⊆
[m] that will be clear from the context. In such a scenario, for i ∈ [n], we let Xi = 1Ai

(xi),
pi = |Ai|/m, qi = 1− pi and wi = piqi. Define the weight of a shape f as w(f) =

∑

iwi. For θ ∈ N,
let T−

θ (resp. T+
θ) be the function that accepts iff

∑

1Ai
(Xi) is at most (resp. at least) θ.

Definition 2.2 (Pseudorandom Generators and Hitting Sets). Let F ⊆ {0, 1}D denote a boolean
function family for some input domain D. A function G : {0, 1}s → D is an ε-pseudorandom
generator (ε-PRG) with seedlength s for a class of functions F if for all f ∈ F ,

| P
x∈u{0,1}s

[f(G(x)) = 1]− P
y∈uD

[f(y) = 1]| ≤ ε.

31A is the indicator function of the set A.

3

An ε-hitting set (ε-HS) for F is a multiset H containing only elements from D s.t. for any f ∈ F ,
if Px∈uD[f(x) = 1] ≥ ε, then ∃x ∈ H s.t. f(x) = 1.

Remark 2.3. Whenever we say that there exist explicit families of combinatorial objects of some
kind, we mean that the object can be constructed by a deterministic algorithm in time polynomial
in the description of the object.

We will need the following previous results in our constructions.

Theorem 2.4 (ε-PRGs for CShape(m,n) [9]). For every ε > 0, there exists an explicit ε-PRG
Gm,n,ε
GMRZ : {0, 1}s → [m]n for CShape(m,n) with seed-length s = O(log(mn) + log2(1/ε)).

Theorem 2.5 (ε-HS for CRect(m,n) [12]). For every ε > 0, there exists an explicit ε-hitting set
Sm,n,ε
LLSZ for CRect(m,n) of size poly(m(log n)/ε).

We will also need a stronger version of Theorem 2.5 for special cases of combinatorial rectangles.
Informally, the strengthening says that if the acceptance probability of a ‘nice’ rectangle is > p for
some reasonably large p, then a close to p fraction of the strings in the hitting set are accepting.
Formally, the following is proved later in the paper.

Theorem 2.6 (Stronger HS for CRect(m,n)). For all constants c ≥ 1, m = nc, and ρ ≤ c log n,
there is an explicit set Sn,c,ρ

rect of size nOc(1) s.t. for any R ∈ CRect(m,n) which satisfies the proper-
ties:

1. R is defined by Ai, and the rejecting probabilities qi := (1− |Ai|/m) which satisfy
∑

i qi ≤ ρ,

2. PX∼[m]n [R(X) = 1] ≥ p (≥ 1/nc)

we have
P

X∼Sn,c,ρ
rect

[R(X) = 1] ≥ p

2Oc(ρ)
.

Recall that a distribution µ over [m]n is k-wise independent for k ∈ N if for any S ⊆ [n] s.t.
|S| ≤ k, the marginal µ|S is uniform over [m]|S|. Also, G : {0, 1}s → [m]n is a k-wise independent
probability space over [m]n if for uniformly randomly chosen z ∈ {0, 1}s, the distribution of G(z) is
k-wise independent.

Fact 2.7 (Explicit k-wise independent spaces). For any k,m, n ∈ N, there is an explicit k-wise
independent probability space Gm,n

k-wise : {0, 1}s → [m]n with s = O(k log(mn)).

We will also use the following result of Even et al. [6].

Theorem 2.8. Fix any m,n, k ∈ N. Then, if f ∈ CRect(m,n) and µ is any k-wise independent
distribution over [m]n, then we have

∣

∣

∣

∣

P
x∈[m]n

[f(x) = 1]− P
x∼µ

[f(x) = 1]

∣

∣

∣

∣

≤ 1

2Ω(k)

4

Expanders. Recall that a degree-D multigraphG = (V,E) onN vertices is an (N,D, λ)-expander
if the second largest (in absolute value) eigenvalue of its normalized adjacency matrix is at most
λ. We will use explicit expanders as a basic building block. We refer the reader to the excellent
survey of Hoory, Linial, and Wigderson [10] for various related results.

Fact 2.9 (Explicit Expanders [10]). Given any λ > 0 and N ∈ N, there is an explicit (N,D, λ)-
expander where D = (1/λ)O(1).

Expanders have found numerous applications in derandomization. A central theme in these
applications is to analyze random walks on a sequence of expander graphs. Let G1, . . . , Gℓ be
a sequence of (possibly different) graphs on the same vertex set V . Assume Gi (i ∈ [ℓ]) is an
(N,Di, λi)-expander. Fix any u ∈ V and y1, . . . , yℓ ∈ N s.t. yi ∈ [Di] for each i ∈ [ℓ]. Note that
(u, y1, . . . , yℓ) naturally defines a ‘walk’ (v1, . . . , vℓ) ∈ V ℓ as follows: v1 is the y1th neighbour of u in
G1 and for each i > 1, vi is the yith neighbour of vi−1 in Gi. We denote by W(G1, . . . , Gℓ) the set
of all tuples (u, y1, . . . , yℓ) as defined above. Moreover, given w = (u, y1, . . . , yℓ) ∈ W(G1, . . . , Gℓ),
we define vi(w) to be the vertex vi defined above (we will simply use vi if the walk w is clear from
the context).

We need a variant of a result due to Alon, Feige, Wigderson, and Zuckerman [2]. The lemma
as it is stated below is slightly more general than the one given in [2] but it can be obtained by
using essentially the same proof and setting the parameters appropriately. The proof is given in
the appendix.

Lemma 2.10. Let G1, . . . , Gℓ be a sequence of graphs defined on the same vertex set V of size N .
Assume that Gi is an (N,Di, λi)-expander. Let V1, . . . , Vℓ ⊆ V s.t. |Vi| ≥ piN > 0 for each i ∈ [ℓ].
Then, as long as for each i ∈ [ℓ], λi ≤ (pipi−1)/8,

P
w∈W(G1,...,Gℓ)

[∀i ∈ [ℓ], vi(w) ∈ Vi] ≥ (0.75)ℓ
∏

i∈[ℓ]
pi. (1)

Also, in our applications, we will sometimes use the following corollary.

Corollary 2.11. Let V be a set of N elements, and let 0 < pi < 1 for 1 ≤ i ≤ s be given. There
exists an explicit set of walks W, each of length s, s.t. for any subsets V1, V2, . . . , Vs of V , with
|Vi| ≥ piN , there exists a walk w = w1w2 . . . ws ∈ W such that wi ∈ Vi for all i. Furthermore, there
exist such W satisfying |W| ≤ poly

(

N,
∏s

i=1
1
pi

)

.

This follows from Lemma 2.10 by picking λi smaller than pipi−1/10 for each i. By Fact 2.9,

known explicit constructions of expanders require choosing degrees di = 1/λ
O(1)
i . The number of

walks of length s is N ·∏ℓ
i=1 di, which gives the bound on W above.

Hashing. Hashing plays a vital role in all our constructions. Thus, we need explicit hash families
which have several “good” properties. First, we state a lemma obtained by slightly extending part
of a lemma due to Rabani and Shpilka [21], which itself builds on the work of Schmidt and Siegel
[22] and Fredman, Komlós, and Szemerédi [8]. It is somewhat folklore and the proof is omitted.

Lemma 2.12 (Perfect Hash Families). For any n, t ∈ N, there is an explicit family of hash functions
Hn,t

perf ⊆ [t][n] of size 2O(t)poly(n) s.t. for any S ⊆ [n] with |S| = t, we have

P
h∈Hn,t

perf

[h is 1-1 on S] ≥ 1

2O(t)
.

5

The family of functions thus constructed are called “perfect hash families”. We also need a
fractional version of the above lemma, whose proof is similar to that of the perfect hashing lemma
and is presented later in the paper.

Lemma 2.13 (Fractional Perfect Hash families). For any n, t ∈ N, there is an explicit family of
hash functions Hn,t

frac ⊆ [t][n] of size 2O(t)nO(1) s.t. for any z ∈ [0, 1]n with
∑

j∈[n] zj ≥ 10t, we have

P
h∈Hn,t

frac

∀i ∈ [t],
∑

j∈h−1(i)

zj ∈ [0.01M, 10M]

 ≥ 1

2O(t)
,

where M =
∑

j∈[n] zj
t .

3 Outline of the Construction

We will outline some simplifying assumptions, and an observation which “reduces” constructing hit-
ting sets for Combinatorial shapes CShape(m,n) to those for Combinatorial Thresholds CThr(m,n).
It turns out that these are somewhat simpler to construct, appealing to the recent results of Gopalan
et al. [9].

We first make a standard simplifying observation that we can throughout assume that m,n, 1/ε
can be nO(1). Thus, we only need to construct hitting sets of size nO(1) in this case. From now on,
we assume m, 1/ε = nO(1).

Lemma 3.1. Assume that for some c ≥ 1, and m ≤ nc, there is an explicit 1/nc-HS for CShape(m,n)
of size nOc(1). Then, for any m,n,∈ N and ε > 0, there is an explicit ε-HS for CShape(m,n) of
size poly(mn/ε).

Proof. Fix c ≥ 1 so that the assumptions of the lemma hold. Note that when m > nc, we can
increase the number of coordinates to n′ = m. Now, an ε-HS for CShape(m,n′) is also an ε-HS for
CShape(m,n), because we can ignore the final n′−n coordinates and this will not affect the hitting
set property. Similarly, when ε < 1/nc, we can again increase the number of coordinates to n′ that
satisfies ε ≥ 1/(n′)c and the same argument follows. In each case, by assumption we have an ε-HS
of size (n′)Oc(1) = poly(mn/ε) and thus, the lemma follows.

Next, we prove a crucial lemma which shows how to obtain hitting sets for CShape(m,n) starting
with hitting sets for CThr(m,n). This reduction crucially uses the fact that CShape does only
‘symmetric’ tests – it fails to hold, for instance, for natural “weighted” generalizations of CShape.

Lemma 3.2. Suppose that for every ε > 0, there exist an explicit ε-HS for CThr(m,n) of size
F (m,n, 1/ε). Then there exists an explicit ε-HS for CShape(m,n) of size (n+1)·F 2(m,n, (n+1)/ε).

Proof. Suppose we can construct hitting sets for CThr(m,n) and parameter ε′ of size F (m,n, 1/ε′),
for all ε′ > 0. Now consider some f ∈ CShape(m,n), defined using sets Ai and symmetric function
h. Since h is symmetric, it depends only on the number of 1’s in its input. In particular, there is
a W ⊆ [n] ∪ {0} s.t. for a ∈ {0, 1}n we have h(a) = 1 iff |a| ∈ W . Now if Px[f(x) = 1] ≥ ε, there
must exist a w ∈ W s.t.

P
x
[|{i ∈ [n] | 1Ai

(xi) = 1}| = w] ≥ ε

|W | ≥
ε

n+ 1
.

6

Thus if we consider functions in CThr(m,n) defined by the same Ai, and thresholds T+
w and T−

w

respectively, we have that both have accepting probability at least ε/(n+1), and thus an ε/(n+1)-HS
S for CThr(m,n) must have ‘accepting’ elements y, z ∈ [m]n for T−

w and T+
w respectively.

The key idea is now the following. Suppose we started with the string y and moved to string z
by flipping the coordinates one at a time – i.e., the sequence of strings would be:

(y1 y2 . . . yn), (z1 y2 . . . yn), (z1 z2 . . . yn), . . . , (z1 z2 . . . zn).

In this sequence the number of “accepted” indices (i.e., i for which 1Ai
(xi) = 1) changes by

at most one in each ‘step’. To start with, since y was accepting for T−
w , the number of accepting

indices was at most w, and in the end, the number is at least w (since z is accepting for T+
w), and

hence one of the strings must have precisely w accepting indices, and this string would be accepting
for f !

Thus, we can construct an ε-HS for CShape(m,n) as follows. Let S denote an explicit (ε/(n+1))-
HS for CThr(m,n) of size F (m,n, 1/ε). For any y, z ∈ S, let Iy,z be the set of n+1 “interpolated”
strings obtained above. Define S ′ =

⋃

y,z∈S Iy,z. As we have argued above, S ′ is an ε-HS for
CShape(m,n). It is easy to check that S ′ has the size claimed.

Overview of the Constructions. In what follows, we focus on constructing hitting sets for
CThr(m,n). We will describe the construction of two families of hitting sets: the first is for the
“high weight” case – w(f) :=

∑

iwi > C log n for some large constant C, and the second for the
case w(f) < C log n. The final hitting set is a union of the ones for the two cases.

The high-weight case (Section 4.1) is conceptually simpler, and illustrates the important tools.
A main tool in both cases is a “fractional” version of the perfect hashing lemma, which, though a
consequence of folklore techniques, does not seem to be known in this generality (Lemma 2.13).

The proof of the low-weight case is technically more involved, so we first present the solution
in the special case when all the sets Ai are “small”, i.e., we have pi ≤ 1/2 for all i (Section 4.2).
This case illustrates the main techniques we use for the general low-weight case. The special case
uses the perfect hashing lemma (which appears, for instance in derandomization of “color coding”
– a trick introduced in [3], which our proof in fact bears a resemblance to).

The general case (Section 4.3), in which pi are arbitrary, is more technical: here we need to do
a “two level” hashing. The top level is by dividing into buckets, and in each bucket we get the
desired “advantage” using a generalization of hitting sets for combinatorial rectangles (which itself
uses hashing: Theorem 2.6).

Finally we describe the main tools used in our construction. The stronger hitting set construc-
tion for special combinatorial rectangles is discussed in Section 5 and the fractional perfect hash
family construction is discussed in Section 6. We end with some interesting open problems and a
proof of the expander walk lemma follows in the appendix.

4 Hitting sets for Combinatorial Thresholds

As described above, we first consider the high-weight case (i.e., w(f) ≥ C log n for some large
absolute constant C). Next, we consider the low-weight case, with an additional restriction that
each of the accepting probabilities pi ≤ 1/2. This serves as a good starting point to explain the
general low-weight case, which we get to in Section 4.3. In each section, we outline our construction
and then analyze it for a generic combinatorial threshold f : [m]n → {0, 1} (subject to weight

7

constraints) defined using sets A1, . . . , An ⊆ [m]. The theorem we finally prove in the section is as
follows.

Theorem 4.1. For any constant c ≥ 1, the following holds. Suppose m, 1/ε ≤ nc. For the class of
functions CThr(m,n), there exists an explicit ε-hitting set of size nOc(1).

The main theorem, which we state below, follows directly from the statements of Theorem 4.1
and Lemmas 3.1 and 3.2.

Theorem 4.2. For any m,n ∈ N and ε > 0, there is an explicit ε-hitting set for CShape(m,n) of
size poly(mn/ε).

4.1 High weight case

In this section we will prove the following:

Theorem 4.3. For any c ≥ 1, there is a C > 0 s.t. for m, 1/ε ≤ nc, there is an explicit ε-HS of
size nOc(1) for the class of functions in CThr(m,n) of weight at least C log n.

As discussed earlier, we wish to construct hitting sets for combinatorial shapes f where the
associated symmetric function is either T+

θ or T−
θ , for θ s.t. the probability of the event for

independent, perfectly random xi is at least 1/n
c. For convenience, define µ := p1 + p2 + · · ·+ pn,

and W := w1 + w2 + . . . wn. We have W > C log n for a large constant C (it needs to be large
compared to c, as seen below). First, we have the following by Chernoff bounds.

Claim 4.4. If Px[T
+
θ (
∑

i∈[n] 1Ai
(xi)) = 1] > ε (≥ 1/nc), we have θ ≤ µ+ 2

√
cW logn.

Outline. Let us concentrate on hitting sets for combinatorial shapes that use symmetric functions
of the form T+

θ (the case T−
θ follows verbatim). The main idea is the following: we first divide

the indices [n] into logn buckets using a hash function h (from a fractional perfect hash family, see
Lemma 2.13). This is to ensure that the wi get distributed somewhat uniformly. Second, we aim

to obtain an advantage of roughly 2
√

cW
logn in each of the buckets (advantage is w.r.t. the mean in

each bucket): i.e., for each i ∈ [log n], we choose the indices xj (j ∈ h−1(i)) s.t. we get

∑

j∈h−1(i)

1Aj
(xj) ≥

∑

j∈h−1(i)

pj + 2
√

cW/ logn

with reasonable probability. Third, we ensure that the above happens for all buckets simultane-
ously (with probability > 0) so that the advantages add up, giving a total advantage of 2

√
cW logn

over the mean, which is what we intended to obtain. In the second step (i.e., in each bucket),
we can prove that the desired advantage occurs with constant probability for uniformly randomly
and independently chosen xj ∈ [m] and then derandomize this choice by the result of Gopalan et
al. [9] (Theorem 2.4). Finally, in the third step, we cannot afford to use independent random bits
in different buckets (this would result in a seed length of Θ(log2 n)) – thus we need to use expander
walks to save on randomness.

8

Construction and Analysis. Let us now describe the three steps in detail. We note that these
steps parallel the results of Rabani and Shpilka [21].

The first step is straightforward: we pick a hash function from a perfect fractional hash family
Hn,logn

frac . From Lemma 2.13, we obtain

Claim 4.5. For every set of weights w, there exists an h ∈ Hn,logn
frac s.t. for all 1 ≤ i ≤ logn, we

have W
100 logn ≤∑j∈h−1(i)wj ≤ 100W

logn .

The rest of the construction is done starting with each h ∈ Hn,logn
frac . Thus for analysis, suppose

that we are working with an h satisfying the inequality from the above claim. For the second step,
we first prove that for independent random xi ∈ [m], we have a constant probability of getting an

advantage of 2
√

cW
logn over the mean in each bucket.

Lemma 4.6. Let S be the sum of k independent random variables Xi, with P[Xi = 1] = pi, let
c′ ≥ 0 be a constant, and let

∑

i pi(1−pi) ≥ σ2, for some σ satisfying σ ≥ 20ec
′2
. Define µ :=

∑

i pi.
Then P[S > µ+ c′σ] ≥ α, and P[S < µ− c′σ] ≥ α, for some constant α depending on c′.

The proof is straightforward, but it is instructive to note that in general, a random variable
(in this case, S) need not deviate “much more” (in this case, a c′ factor more) than its standard
deviation: we have to use the fact that S is the sum of independent r.v.s. This is done by an
application of the Berry-Esséen theorem [7].

Proof. We recall the standard Berry-Esséen theorem [7].

Fact 4.7 (Berry-Esseen). Let Y1, . . . , Yn be independent random variables satisfying ∀i, EYi = 0,
∑

EY 2
i = σ2 and ∀i, |Yi| ≤ βσ. Then the following error bound holds for any t ∈ R,

∣

∣

∣
P

[

∑

Yi > t
]

− P
[

N(0, σ2) > t
]

∣

∣

∣
≤ β.

We can now apply this to Yi := Xi− pi (so as to make EYi = 0). Then EY 2
i = pi(1− pi)

2+(1−
pi)p

2
i = pi(1− pi), thus the total variance is still ≥ σ2. Since |Yi| ≤ 1 for all i ∈ [n], this means we

have the condition |Yi| ≤ βσ for β ≤ e−c′2/20. Now for the Gaussian, a computation shows that we
have P[N(0, σ2) > c′σ] > e−c′2/10. Thus from our bound on β, we get P[

∑

Yi > c′σ] > e−c′2/20,
which we pick to be α. This proves the lemma.

Assume now that we choose x1, . . . , xn ∈ [m] independently and uniformly at random. For each
bucket i ∈ [log n] defined by the hash function h, we let µi =

∑

j∈h−1(i) pj andWi =
∑

j∈h−1(i) pj(1−
pj) =

∑

j∈h−1(i)wj . Recall that Claim 4.5 assures us that for i ∈ [log n],Wi ≥ W/100 logn ≥ C/100.

Let X(i) denote
∑

j∈h−1(i) 1Aj
(xj). Then, for any i ∈ [log n], we have

P

[

X(i) > µi + 2

√

cW

logn

]

≥ P

[

X(i) > µi +
√
400c ·

√

Wi

]

By Lemma 4.6, if C is a large enough constant so that Wi ≥ C/100 ≥ 20e400c, then for uniformly

randomly chosen x1, . . . , xn ∈ [m] and each bucket i ∈ [logn], we have P
[

X(i) ≥ µi + 2
√

cW/ logn
]

≥
α, where α > 0 is some fixed constant depending on c. When this event occurs for every bucket,

9

we obtain
∑

j∈[n] 1Aj
(xj) ≥ µ+2

√
cW log n ≥ µ+θ. We now show how to sample such an x ∈ [m]n

with a small number of random bits.
Let G : {0, 1}s → [m]n denote the PRG of Gopalan et al. [9] from Theorem 2.4 with parameters

m,n, and error α/2 i.e. Gm,n,α/2
GMRZ . Note that since α is a constant depending on c, we have

s = Oc(log n). Moreover, since we know that the success probability with independent random xj
(j ∈ h−1(i)) for obtaining the desired advantage is at least α, we have for any i ∈ [logn] and y(i)

randomly chosen from {0, 1}s,

P
x(i)=G(y(i))

[

X(i) > µi + 2

√

cW

logn

]

≥ α/2

This only requires seedlength Oc(log n) per bucket.
Thus we are left with the third step: here for each bucket i ∈ [log n], we would like to have

(independent) seeds which generate the corresponding x(i) (and each of these PRGs has a seed
length of Oc(log n)). Since we cannot afford Oc(log

2 n) total seed length, we instead do the following:
consider the PRG G defined above. As mentioned above, since α = Ωc(1), the seed length needed
here is only Oc(log n). Let S be the range of G (viewed as a multiset of strings: S ⊆ [m]n). From
the above, we have that for the ith bucket, the probability x ∼ S exceeds the threshold on indices
in bucket i is at least α/2. Now there are log n buckets, and in each bucket, the probability of
‘success’ is at least α/2. We can thus appeal to the ‘expander walk’ lemma of Alon et al. [2] (see
preliminaries, Lemma 2.10 and the corollary following it).

This means the following: we consider an explicitly constructed expander on a graph with
vertices being the elements of S, and the degree being a constant depending on α). We then
perform a random walk of length log n (the number of buckets). Let s1, s2, . . . , slogn be the strings
(from S) we see in the walk. We form a new string in [m]n by picking values for indices in bucket
i, from the string si. By the Lemma 2.10, with non-zero probability, this will succeed for all
1 ≤ i ≤ log n, and this gives the desired advantage.

The seed length for generating the walk is O(log |S|)+Oc(1) · log n = Oc(log n). Combining (or
in some sense, composing) this with the hashing earlier completes the construction.

4.2 Thresholds with small weight and small sized sets

We now prove Theorem 4.1 for the case of thresholds f satisfying w(f) = O(logn). Also we
will make the simplifying assumption (which we will get rid of in the next sub-section) that the
underlying subsets of f , A1, . . . , An ⊆ [m] are of small size.

Theorem 4.8. Fix any c ≥ 1. For any m = nc, there exists an explicit 1/nc-HS Sn,c
low,1 ⊆ [m]n of

size nOc(1) for functions f ∈ CThr(m,n) s.t. w(f) ≤ c logn and pi ≤ 1/2 for each i ∈ [n].

We will prove this theorem in the rest of this sub-section. Note that since pi ≤ 1/2 for each
i ∈ [n], we have wi = pi(1− pi) ≥ pi/2.

To begin, we note that hitting sets for the case when the symmetric function is T−
θ is easily

obtained. In particular, since T−
0 accepts iff

∑

Xi = 0, it can also be interpreted as a combinatorial
rectangle with accepting sets A1, . . . , An. The probability of this event over uniformly chosen inputs
is at least

∏

i(1 − pi) ≥ e−2
∑

i pi ≥ e−4
∑

i pi(1−pi) ≥ n−4c, where the first inequality uses the fact
that (1− x) ≥ e−2x for x ∈ [0, 1/2]. Thus the existence of a hitting set for such f follows from the

10

result of Linial et al.. [12]. Further, by definition, a hitting set for T−
0 is also a hitting set for T−

θ

for θ > 0. We will therefore focus on hitting sets for thresholds of the form T+
θ for some θ > 0.

Let us now fix a function f(x) = T+
θ (
∑

i 1Ai
(xi)) that accepts with good probability: Px[T

+
θ (
∑

i 1Ai
(xi)) =

1] ≥ ε. Since w(f) ≤ c logn and pi ≤ 2wi for each i ∈ [n], it follows that µ ≤ 2c logn. Thus by a
Chernoff bound and the fact that ε = 1/nc, we have that θ ≤ c′ logn for some c′ = Oc(1).

Outline. The idea is to use a hash function h from a perfect hash family (Lemma 2.12) mapping
[n] 7→ [θ]. The aim will now be to obtain a contribution of 1 to the sum

∑

i 1Ai
(xi) from each

bucket4. In order to do this, we require
∏

i µi be large, where µi is the sum of pj for j in bucket
Bi = h−1(i). By a reason similar to color coding (see [3]), it will turn out that this quantity is
large when we bucket using a perfect hash family. We then prove that using a pairwise independent
space in each bucket Bi “nearly” gives probability µi of succeeding. As before, since we cannot use
independent hashes in each bucket, we take a hash function over [n], and do an expander walk. The
final twist is that in the expander walk, we cannot use a constant degree expander: we will have to
use a sequence of expanders on the same vertex set with appropriate degrees (some of which can
be super-constant, but the product will be small). This will complete the proof. We note that the
last trick was implicitly used in the work of [12].

Construction. Let us formally describe a hitting set for T+
θ for a fixed θ. (The final set Sn,c

low,1

will be a union of these for θ ≤ c′ logn along with the hitting set of [12]).

Step 1: Let Hn,θ
perf = {h : [n] → [θ]} be a perfect hash family as in Lemma 2.12. The size of the

hash family is 2O(θ)poly(n) = nOc′ (1) = nOc(1). For each hash function h ∈ Hn,θ
perf divide [n] into θ

buckets B1, . . . , Bθ (so Bi = h−1(i)).
Step 2: We will plug in a pairwise independent space in each bucket. Let Gm,n

2−wise : {0, 1}s →
[m]n denote the generator of a pairwise independent space. Note that the seed-length for any bucket
is s = O(logn)5.

Step 3: The seed for the first bucket is chosen uniformly at random and seeds for the subsequent
buckets are chosen by a walk on expanders with varying degrees. For each i ∈ [θ] we choose every
possible η′i such that 1/η′i is a power of 2 and

∏

i η
′
i ≥ 1/nOc(1), where the constant implicit in the

Oc(1) will become clear in the analysis of the construction below. There are at most poly(n) such
choices for all η′i’s in total. We then take a (2s, di, λi)-expander Hi on vertices {0, 1}s with degree
di = poly(1/(η′iη

′
i−1)) and λi ≤ η′iη

′
i−1/100 (by Fact 2.9, such explicit expanders exist). Now for

any u ∈ {0, 1}s, {yi ∈ [di]}θi=1, let (u, y1, . . . , yθ) ∈ W(H1, . . . , Hθ) be a θ-step walk. For all starting
seeds z0 ∈ {0, 1}s and all possible yi ∈ [di], we construct the input x ∈ [m]n s.t. for all i ∈ [θ], we
have x|Bi

= Gm,n
2−wise(vi(z0, y1, . . . , yθ))|Bi

.

Size. We have |Sn,c
low,1| = c′ log n ·nOc(1) ·

∏

i di, where the c
′ log n factor is due to the choice of θ,

the nOc(1) factor is due to the size of the perfect hash family, the number of choices of (η′1, . . . , η
′
θ),

and the choice of the first seed, and an additional nO(1) ·∏i di factor is the number of expander
walks. Simplifying, |Sn,c

low,1| = nOc(1)
∏

di = nOc(1)
∏

i(η
′
i)
−O(1) ≤ nOc(1), where the last inequality is

due to the choice of η′i’s.

4This differs from the high-weight case, where we looked at advantage over the mean.
5We do not use generators with different output lengths, instead we take the n-bit output of one generator and

restrict to the entries in each bucket.

11

Analysis. We follow the outline. First, by a union bound we know that Px∼[m]n [T
+
θ (x) = 1] ≤

∑

|S|=θ

∏

i∈S pi and hence
∑

|S|=θ

∏

i∈S pi ≥ ε. Second, if we hash the indices [n] into θ buckets
at random and consider one S with |S| = θ, the probability that the indices in S are ‘uniformly
spread’ (one into each bucket) is 1/2O(θ). By Lemma 2.12, this property is also true if we pick h

from the explicit perfect hash family Hn,θ
perf .

Formally, given an h ∈ Hn,θ
perf , define αh =

∏

i∈[θ]
∑

j∈Bi
pj . Over a uniform choice of h from

the family Hn,θ
perf , we can conclude that

Ehαh ≥
∑

|S|=θ

∏

i∈S
pi P

h
[h is 1-1 on S] ≥ ε

2O(θ)
≥ 1

nOc(1)
.

Thus there must exist an h that satisfies αh ≥ 1/nOc(1).
We fix such an h. For a bucket Bi, define ηi = Px∈Gm,n

2−wise
[
∑

j∈Bi
1Aj

(xj) ≥ 1]. Now for

a moment, let us analyze the construction assuming independently seeded pairwise independent
spaces in each bucket. Then the success probability, namely the probability that every bucket Bi

has a non-zero
∑

j∈Bi
1Aj

(xj) is equal to
∏

i ηi. The following claim gives a lower bound on this
probability.

Claim 4.9. For the function h satisfying αh ≥ 1/nOc(1), we have
∏

i∈[θ] ηi ≥ 1/nOc(1).

Proof. For a bucket Bi, define µi =
∑

j∈Bi
pj . Further, call a bucket Bi as being good if µi ≤ 1/2,

otherwise call the bucket bad. For the bad buckets,

∏

Bi bad

µi ≤
∏

Bi bad

eµi = exp

∑

Bi bad

µi

 ≤ eµ ≤ nOc(1). (2)

From the choice of h and the definition of αh we have

1

nOc(1)
≤
∏

i∈[θ]
µi =

∏

Bi bad

µi

∏

Bi good

µi ≤ nOc(1)
∏

Bi good

µi ⇒
∏

Bi good

µi ≥
1

nOc(1)
, (3)

where we have used Equation (2) for the second inequality.
Now let’s analyze the ηi’s. For a good bucket Bi, by inclusion-exclusion,

ηi = P
x

∑

j∈Bi

1Aj
(xj) ≥ 1

 ≥
∑

j∈Bi

pj −
∑

j,k∈Bi:j<k

pjpk ≥ µi −
µ2
i

2
≥ µi

2
. (4)

For a bad bucket, µi > 1/2. But since all pi’s are ≤ 1/2, it isn’t hard to see that there must exist
a non empty subset B′

i ⊂ Bi satisfying 1/4 ≤ µ′
i :=

∑

j∈B′
i
pj ≤ 1/2. We now can use Equation (4)

on the good bucket B′
i to get the bound on the bad bucket Bi as follows:

ηi ≥ P
x

∑

j∈B′
i

1Aj
(xj) ≥ 1

 ≥ µ′
i

2
≥ 1

8
. (5)

So finally,
∏

i∈[θ]
ηi ≥

∏

Bi bad

1

8

∏

Bi good

µi

2
≥ 1

2O(θ)

1

nOc(1)
=

1

nOc(1)
,

where we have used (4) and (5) for the first inequality and (3) for the second inequality.

12

If now the seeds for Gm,n
2−wise in each bucket are chosen according to the expander walk “cor-

responding” to the probability vector (η1, . . . , ηθ), then by Lemma 2.10 the success probability
becomes at least (1/2O(θ))

∏

i ηi ≥ 1/nOc(1), using Claim 4.9 for the final inequality.
But we are not done yet. We cannot guess the correct probability vector exactly. Instead, we

get a closest guess (η′1, . . . , η
′
θ) such that for all i ∈ [θ], 1/η′i is a power of 2 and η′i ≥ ηi/2. Again, by

Lemma 2.10 the success probability becomes at least (1/2O(θ))
∏

i η
′
i ≥ (1/2O(θ))2

∏

i ηi ≥ 1/nOc(1),
using Claim 4.9 for the final inequality. Note that this also tells us that it is sufficient to guess η′i
such that

∏

i(1/η
′
i) ≤ nOc(1).

4.3 The general low-weight case

The general case (where pi are arbitrary) is more technical: here we need to do a “two level” hashing.
The top level is by dividing into buckets, and in each bucket we get the desired “advantage” using
a generalization of hitting sets for combinatorial rectangles (which itself uses hashing) from [12].
The theorem we prove for this case can be stated as follows.

Theorem 4.10. Fix any c ≥ 1. For any m ≤ nc, there exists an explicit 1/nc-HS Sn,c
low ⊆ [m]n of

size nOc(1) for functions f ∈ CThr(m,n) s.t. w(f) ≤ c logn.

Construction. We describe Sn,c
low by demonstrating how to sample a random element x of this

set. The number of possible random choices bounds |Sn,c
low|. We define the sampling process in

terms of certain constants ci (i ∈ [5]) that depend on c in a way that will become clear later in the
proof. Assuming this, it will be clear that |Sn,c

low| = nOc(1).
Step 1: Choose at random t ∈ {0, . . . , 15c logn}. If t = 0, then we simply output a random

element x of Sm,n,1/nc1

LLSZ for some constant c1. The number of choices for t is Oc(log n) and if
t = 0, the number of choices for x is nOc(1). The number of choices for non-zero t are bounded
subsequently.

Step 2: Choose h ∈ Hn,t
perf uniformly at random. The number of choices for h is nOc(1) · 2O(t) =

nOc(1).
Step 3: Choose at random non-negative integers ρ1, . . . , ρt and a1, . . . , at s.t.

∑

i ρi ≤ c2 logn
and

∑

i ai ≤ c3 logn. For any constants c2 and c3, the number of choices for ρ1, . . . , ρt and a1, . . . , at
is nOc(1).

Step 4: Choose a set V s.t. |V | = nOc(1) = N and identify V with Sn,c4,ρi
rect for some constant

c4 ≥ 1 and each i ∈ [t] in some arbitrary way (we assume w.l.o.g. that the sets Sn,c4,ρi
rect (i ∈ [t]) all

have the same size). Fix a sequence of expander graphs (G1, . . . , Gt) with vertex set V where Gi is
an (N,Di, λi)-expander with λi ≤ 1/(10 · 2ai · 2ai+1) and Di = 2O(ai+ai+1) (this is possible by Fact
2.9). Choose w ∈ W(G1, . . . , Gt) uniformly at random. For each i ∈ [t], the vertex vi(w) ∈ V gives
us some x(i) ∈ Sn,c4,ρi

rect . Finally, we set x ∈ [m]n so that x|h−1(i) = x(i)|h−1(i). The total number of

choices in this step is bounded by |W(G1, . . . , Gt)| ≤ N ·∏iDi ≤ nOc(1) · 2O(
∑

i ai) = nOc(1).
Thus, the number of random choices (and hence |Sn,c

low|) is at most nOc(1).

Analysis. We will now prove Theorem 4.10. The analysis once again follows the outline of
Section 4.2.

For brevity, we will denote Sn,c
low by S. Fix any A1, . . . , An ⊆ [m] and a threshold test f ∈

CThr(m,n) such that f(x) := T+
θ (
∑

i∈[n] 1Ai
(xi)) for some θ ∈ N (we can analyze combinatorial

13

thresholds f that use thresholds of the form T−
θ in a symmetric way). We assume that f has

low-weight and good acceptance probability on uniformly random input: that is, w(f) ≤ c logn
and Px∈[m]n [f(x) = 1] ≥ 1/nc . For each i ∈ [n], let pi denote |Ai|/m and qi denote 1 − pi. We
call Ai small if pi ≤ 1/2 and large otherwise. Let S = {i |Ai small} and L = [n] \ S. Note that
w(f) =

∑

i piqi ≥
∑

i∈S pi/2 +
∑

i∈L qi/2.
Also, given x ∈ [m]n, let Y (x) =

∑

i∈S 1Ai
(xi) and Z(x) =

∑

i∈L 1Ai
(xi). We have

∑

i 1Ai
(xi) =

Y (x) + (|L| − Z(x)) for any x. We would like to show that Px∈S [f(x) = 1] > 0. Instead we show
the following stronger statement: Px∈S

[

Z(x) = 0 ∧ Y (x) ≥ θ − |L|
]

> 0. To do this, we first need
the following simple claim.

Claim 4.11. Px∈[m]n
[

Z(x) = 0 ∧ Y (x) ≥ θ − |L|
]

≥ 1/nc1, for c1 = O(c).

Proof. Clearly, we have Px∈[m]n
[

Z(x) = 0 ∧ Y (x) ≥ θ − |L|
]

= Px∈[m]n
[

Z(x) = 0
]

·Px∈[m]n [Y (x) ≥ θ − |L|].
We lower bound each term separately by 1/nO(c).

To bound the first term, note that Px∈[m]n
[

Z(x) = 0
]

=
∏

i∈L(1 − qi) = exp{−O(
∑

i∈L qi)}
where the last inequality follows from the fact that qi < 1/2 for each i ∈ L and (1 − x) ≥ e−2x

for x ∈ [0, 1/2]. Now, since each qi < 1/2, we have wi ≤ 2qi for each i ∈ L and hence,
∑

i∈L qi =
O(w(f)) = O(c logn). The lower bound on the first term follows.

To bound the second term, we note that Px∈[m]n [Y (x) ≥ θ′] can only decrease as θ′ increases.
Thus, we have

P
x∈[m]n

[Y (x) ≥ θ − |L|] =
∑

i≥0

P
x∈[m]n

[Y (x) ≥ θ − |L|] · P
x∈[m]n

[

Z(x) = i
]

≥
∑

i≥0

P
x∈[m]n

[

Y (x) ≥ (θ − |L|+ i) ∧ Z(x) = i
]

= P
x∈[m]n

∑

i∈[n]
1Ai

(xi) ≥ θ

 ≥ 1/nc

This proves the claim.

To show that Px∈S
[

Z(x) = 0 ∧ Y (x) ≥ θ − |L|
]

> 0, we define a sequence of “good” events
whose conjunction occurs with positive probability and which together imply that Z(x) = 0 and
Y (x) ≥ θ − |L|.

Event E1: t = max{θ−|L|, 0}. Since f(x) = T+
θ (
∑

i 1Ai
(xi)) accepts a uniformly random x with

probability at least 1/nc, we have by Chernoff bounds, we must have θ−Ex[
∑

i 1Ai
(xi)] ≤ 10c log n.

Since Ex[
∑

i 1Ai
(xi)] ≤

∑

i∈S pi+
∑

i∈L pi ≤ 2w(f)+ |L|, we see that θ−|L| ≤ 12c log n and hence,
there is some choice of t in Step 1 so that E1 occurs. We condition on this choice of t. Note that
by Claim 4.11, we have Px∈[m]n

[

Z(x) = 0 ∧ Y (x) ≥ t
]

≥ 1/nc1 . If t = 0, then the condition that

Y (x) ≥ t is trivial and hence the above event reduces to Z(x) = 0, which is just a combinatorial

rectangle and hence, there is an x ∈ Sm,n,1/nc1

LLSZ with f(x) = 1 and we are done. Therefore, for the
rest of the proof we assume that t ≥ 1.

Event E2: Given h ∈ Hn,t
perf , define αh to be the quantity

∏

i∈[t]

(

∑

j∈h−1(i)∩S pj

)

. Note that by

14

Lemma 2.12, for large enough constant c′1 depending on c, we have

E
h∈Hn,t

perf

[αh] ≥
∑

T⊆S:|T |=t

∏

j∈T
pj P

h
[h is 1-1 on T]

≥ 1

2O(t)

∑

T⊆S:|T |=t

∏

j∈T
pj

≥ 1

2O(t)
P
x
[Y (x) ≥ t] (by union bound)

≥ 1

nc′1

Event E2 is simply that αh ≥ 1/nc′1 . By averaging, there is such a choice of h. Fix such a choice.
Event E3: We say that this event occurs if for each i ∈ [t], we have ρi = ⌈∑j∈h−1(i)∩S pj +

∑

k∈h−1(i)∩S qk⌉ + 1. To see that this event can occur, we only need to verify that for this choice
of ρi, we have

∑

i ρi ≤ c2 log n for a suitable constant c2 depending on c. But this straightaway
follows from the fact that

∑

j∈S pj +
∑

k∈L qk ≤ 2w(f) ≤ 2c logn. Fix this choice of ρi (i ∈ [t]).

To show that there is an x ∈ S s.t. Z(x) = 0 and Y (x) ≥ t, our aim is to show that there is an
x ∈ S with Zi(x) :=

∑

j∈h−1(i)∩L 1Aj
(xj) = 0 and Yi(x) :=

∑

j∈h−1(i)∩S 1Aj
(xj) ≥ 1 for each i ∈ [t].

To show that this occurs, we first need the following claim.

Claim 4.12. Fix i ∈ [t]. Let p′i = Px∈Sn,c4,ρi
rect

[

Zi(x) = 0 ∧ Yi(x) ≥ 1
]

. Then, p′i ≥ (
∑

j∈h−1(i)∩S pj)/2
c′4ρi ,

for large enough constants c4 and c′4 depending on c.

Proof of Claim 4.12. We assume that pj > 0 for every j ∈ h−1(i)∩S (the other j do not contribute
anything to the right hand side of the inequality above).

The claim follows from the fact that the event Zi(x) = 0 ∧ Yi(x) ≥ 1 is implied by any of
the pairwise disjoint rectangles Rj(x) = 1Aj

(xj) ∧
∧

j 6=k∈h−1(i)∩S 1Ak
(xk) ∧

∧

ℓ∈h−1(i)∩L 1Aℓ
(xℓ) for

j ∈ h−1(i) ∩ S. Thus, we have

p′i = P
x∈Sn,c4,ρi

rect

[

Zi(x) = 0 ∧ Yi(x) ≥ 1
]

≥
∑

j∈h−1(i)∩S
P

x∈Sn,c4,ρi
rect

[Rj(x) = 1] (6)

However, by our choice of ρi, we know that ρi ≥
∑

j∈h−1(i)∩S pj +
∑

k∈h−1(i)∩S qk + 1, which is at
least the sum of the rejecting probabilities of each combinatorial rectangle Rj above. Moreover,
ρi ≤

∑

s∈[t] ρt ≤ c2 logn. Below, we choose c4 ≥ c2 and so we have ρi ≤ c4 logn.

Note also that for each j ∈ h−1(i) ∩ S, we have

Pj := P
x∈[m]n

[Rj(x) = 1]

≥ pj
∏

k∈h−1(i)∩S
(1− pk)

∏

ℓ∈h−1(i)∩L
(1− qℓ)

≥ pj exp{−2(
∑

k

pk +
∑

ℓ

qℓ)} ≥ pj exp{−2ρi}

where the second inequality follows from the fact that (1 − x) ≥ e−2x for any x ∈ [0, 1/2]. In
particular, for large enough constant c4 > c2, we see that Pj ≥ 1/m · 1/nO(c) ≥ 1/nc4 .

15

Thus, by Theorem 2.6, we have for each j, Px∈Sn,c4,ρi
rect

[Rj(x) = 1] ≥ Pj/2
Oc(ρi); since Pj ≥

pj/2
O(ρi), we have Px∈Sn,c4,ρi

rect
[Rj(x) = 1] ≥ pj/2

(Oc(1)+O(1))ρi ≥ pj/2
c′4ρi for a large enough constant

c′4 depending on c. This bound, together with (6), proves the claim.

The above claim immediately shows that if we plug in independent x(i) chosen at random from
Sn,c4,ρi
rect in the indices in h−1(i), then the probability that we pick an x such that Z(x) = 0 and

Y (x) ≥ t is at least

∏

i

p′i ≥ 1/2Oc(
∑

i∈[t] ρi)
∏

i∈[t]
(

∑

j∈h−1(i)∩S
pj)

= 1/2Oc(logn) · αh ≥ 1/nOc(1) (7)

However, the x(i) we actually choose are not independent but picked according to a random
walk w ∈ W(G1, . . . , Gt). But by Lemma 2.10, we see that for this event to occur with positive
probability, it suffices to have λi ≤ p′i−1p

′
i/10 for each i ∈ [t]. To satisfy this, it suffices to have

1/2ai ≤ p′i ≤ 1/2ai−1 for each i. This is exactly the definition of the event E4.
Event E4: For each i ∈ [t], we have 1/2ai ≤ p′i ≤ 1/2ai−1. For this to occur with positive

probability, we only need to check that
∑

i∈[t]⌈log(1/p′i)⌉ ≤ c3 log n for large enough constant c3.
But from (7), we have

∑

i

⌈log(1/p′i)⌉ ≤
(

∑

i

log(1/p′i)

)

+ t

≤ Oc(log n) +O(c logn) ≤ c3 logn

for large enough constant c3 depending on c. This shows that E4 occurs with positive probability
and concludes the analysis.

Proof of Theorem 4.1. The theorem follows easily from Theorems 4.3 and 4.10. Fix constant
c ≥ 1 s.t. m, 1/ε ≤ nc. For C > 0 a constant depending on c, we obtain hitting sets for thresholds
of weight at least C logn from Theorem 4.3 and for thresholds of weight at most C log n from
Theorem 4.10. Their union is an ε-HS for all of CThr(m,n).

5 Stronger Hitting sets for Combinatorial Rectangles

As mentioned in the introduction, [12] give ε-hitting set constructions for combinatorial rectangles,
even for ε = 1/poly(n). However in our applications, we require something slightly stronger – in
particular, we need a set S s.t. Px∼S(x in the rectangle) ≥ ε (roughly speaking). We however need
to fool only special kinds of rectangles, given by the two conditions in the following theorem.

Theorem 5.1 (Theorem 2.6 restated). For all constants c > 0, m = nc, and ρ ≤ c logn, for any
R ∈ CRect(m,n) which satisfies the properties:

1. R is defined by Ai, and the rejecting probabilities qi satisfy
∑

i qi ≤ ρ and

2. p := Px∼[m]n [R(x) = 1] ≥ 1/nc,

16

there is an explicit set Sn,c,ρ
rect of size nOc(1) that satisfies Px∼Sn,c,ρ

rect
[R(x) = 1] ≥ p/2Oc(ρ).

To outline the construction, we keep in mind a rectangle R (though we will not use it, of course)
defined by sets Ai, and write pi = |Ai|/m, qi = 1 − pi. W.l.o.g., we assume that ρ ≥ 10. The
outline of the construction is as follows:

1. We guess an integer r ≤ ρ/10 (supposed to be an estimate for
∑

i qi/10).

2. Then we use a fractional hash family Hn,r
frac to map the indices into r buckets. This ensures

that each bucket has roughly a constant weight.

3. In each bucket, we show that taking O(1)-wise independent spaces (Fact 2.7) ensures a success
probability (i.e. the probability of being inside R) depending on the weight of the bucket.

4. We then combine the distributions for different buckets using expander walks (this step has
to be done with more care now, since the probabilities are different across buckets).

Steps (1) and (2) are simple: we try all choices of r, and the ‘right’ one for the hashing in step (2)
to work is r =

∑

i qi/10; the probability that we make this correct guess is at least 1/ρ ≫ 1/2ρ. In
this case, by the fractional hashing lemma, we obtain a hash family Hn,r

frac, which has the property
that for an h drawn from it, we have

P

∑

j∈h−1(i)

qj ∈ [1/100, 100] for all i

 ≥ 1

2Oc(r)
≥ 1

2Oc(ρ)
.

Step (3) is crucial, and we prove the following:

Claim 5.2. There is an absolute constant a ∈ N s.t. the following holds. Let A1, . . . , Ak be
the accepting sets of a combinatorial rectangle R in CRect(m, k), and let q1, . . . , qk be rejecting
probabilities as defined earlier, with

∑

i qi ≤ C, for some constant C ≥ 1. Suppose
∏

i(1− qi) = π,
for some π > 0. Let S be the support of an aC-wise independent distribution on [m]n (in the sense
of Fact 2.7). Then

P
x∈S

[R(x) = 1] ≥ π

2
.

Proof. We observe that if
∑

i qi ≤ C, then at most 2C of the qi are ≥ 1/2. Let B (for ‘big’) denote
the set of such indices. Now consider S, an aC-wise independent distribution over [m]n. Let us
restrict to the vectors in the distribution for which the coordinates corresponding to B are in the
rectangle R. Because the family is aC-wise independent, the number of such vectors is precisely a
factor

∏

i∈B(1− qi) of the support of S.
Now, even after fixing the values at the locations indexed by B, the chosen vectors still form

a (a − 2)C-wise independent distribution. Thus by Theorem 2.8, we have that the distribution
δ-approximates, i.e., maintains the probability of any event (in particular the event that we are in
the rectangle R) to an additive error of δ = 2−Ω((a−2)C) < (1/2)e−2

∑
i qi < (1/2)

∏

i 6∈B(1 − qi) for

large enough a (In the last step, we used the fact that if x < 1/2, then (1 − x) > e−2x). Thus if
we restrict to coordinates outside B, we have that the probability that these indices are ‘accepting’
for R is at least (1/2)

∏

i 6∈B pi (because we have a very good additive approximation).
Combining the two, we get that the overall accepting probability is π

2 , finishing the proof of the
claim.

17

Let us now see how the claim fits into the argument. Let B1, . . . , Br be the sets of indices of
the buckets obtained in Step (2). Claim 5.2 now implies that if we pick an aC-wise independent
family on all the n positions (call this S), the probability that we obtain a rectangle on Bi is at
least (1/2)

∏

j∈Bi
(1−qj). For convenience, let us write Pi = (1/2)

∏

j∈Bi
(1−qj). We wish to use an

expander walk argument as before – however this time the probabilities Pi of success are different
across the buckets.

The idea is to estimate Pi for each i, up to a sufficiently small error. Let us define L = ⌈c logn⌉
(where p is as in the statement of Theorem 2.6). Note that L ≥ log(1/p), since p ≥ 1/nc. Now, we
estimate log(1/Pi) by the smallest integer multiple of L′ := ⌊L/r⌋ ≥ 10 which is larger than it: call
it αi · L′. Since

∑

i log(1/Pi) is at most L, we have
∑

i αiL
′ ≤ 2L, or

∑

i αi ≤ 3r. Since the sum is
over r indices, there are at most 2O(r) choices for the αi we need to consider. Each choice of the
αi’s gives an estimate for Pi (which is also a lower bound on Pi). More formally, set ρi = e−αiL

′
, so

we have Pi ≥ ρi for all i.
Finally, let us construct graphs Gi (for 1 ≤ i ≤ r) with the vertex set being S (the aC-wise

independent family), and Gi having a degree depending on ρi (we do this for each choice of the ρi’s).
By the expander walk lemma 2.10, we obtain an overall probability of success of at least

∏

i Pi/2
O(r)

for the “right” choice of the ρi’s. Since our choice is right with probability at least 2−O(r), we
obtain a success probability in Steps (3) and (4) of at least

∏

i Pi/2
O(r) ≥ p/2O(r) ≥ p/2O(ρ). In

combination with the success probability of 1/2Oc(ρ) above for Steps (1) and (2), this gives us the
claimed overall success probability.

Finally, we note that the total seed length we have used in the process is Oc(log n+
∑

i log(1/ρi)),
which can be upper bounded by Oc(log n+ L) = Oc(log n).

6 Constructing a Fractional Perfect Hash family

The first step in all of our constructions has been hashing into a smaller number of buckets. To
this effect, we need an explicit construction of hash families which have several “good” properties.
In particular, we will prove the following lemma in this section.

Lemma 6.1 (Fractional Perfect Hash Lemma: Lemma 2.13 restated). For any n, t ∈ N such that
t ≤ n, there is an explicit family of hash functions Hn,t

frac ⊆ [t][n] of size 2O(t)nO(1) such that for
any z ∈ [0, 1]n such that

∑

j∈[n] zj ≥ 10t, we have

P
h∈Hn,t

frac

∀i ∈ [t], 0.01

∑

j∈[n] zj

t
≤

∑

j∈h−1(i)

zj ≤ 10

∑

j∈[n] zj

t

 ≥ 1

2O(t)

Proof. For S ⊆ [n], we define z(S) to be
∑

j∈S zj . By assumption, we have z([n]) ≥ 10t. Without
loss of generality, we assume that z([n]) = 10t (otherwise, we work with z̃ = (10t/z([n]))z which
satisfies this property; since we prove the lemma for z̃, it is true for z as well). We thus need to
construct Hn,t

frac such that

P
h∈Hn,t

frac

[

∀i ∈ [t], z(h−1(i)) ∈ [0.1, 100]
]

≥ 1

2O(t)

for some constant cfrac > 0.

18

We describe the formal construction by describing how to sample a random element h of Hn,t
frac.

To sample a random h ∈ Hn,t
frac, we do the following:

Step 1 (Top-level hashing): We choose a pairwise independent hash function h1 : [n] → [10t] by
choosing a random seed to generator Gt,n

2−wise. By Fact 2.7, this requires O(logn+ log t) = O(logn)
bits.

Step 2 (Guessing bucket sizes): We choose at random a subset I ′ ⊆ [10t] of size exactly t and
y1, . . . , y10t ∈ N so that

∑

i yi ≤ 30t. It can be checked that the number of possibilities for I ′ and
y1, . . . , y10t is only 2O(t).

Step 3 (Second-level hashing): By Fact 2.7, for each i ∈ [10t], we have an explicit pairwise
independent family of hash functions mapping [n] to [yi] given by Gyi,n

2−wise. We assume w.l.o.g.
that each such generator has some fixed seedlength s = O(log n) (if not, increase the seedlength of
each to the maximum seedlength among them). Let V = {0, 1}s. Using Fact 2.9, fix a sequence
(G1, . . . , G10t) of 10t many (2s, D, λ)-expanders on set V with D = O(1) and λ ≤ 1/100. Choosing
w ∈ W(G1, . . . , G10t) uniformly at random, set h2,i : [n] → [yi] to be Gyi,n

2−wise(vi(w)). Define,
h2 : [n] → [30t] as follows:

h2(j) =

∑

i<h1(j),i 6∈I′
yi

+ h2,h1(j)(j)

Given the random choices made in the previous steps, the function h2 is completely determined by
|W(G1, . . . , G10t)|, which is 2O(t).

Step 4 (Folding): This step is completely deterministic given the random choices made in the
previous steps. We fix an arbitrary map f : (I ′ × {0}) ∪ ([30t] × {1}) → [t] with the following
properties: (a) f is 1-1 on I ′ × {0}, (b) f is 30-to-1 on [30t] × {1}. We now define h : [n] → [t].
Define h(j) as

h(j) =

{

f(h1(j), 0) if h1(j) ∈ I ′,
f(h2,h1(j)(j), 1) otherwise.

It is easy to check that |Hn,t
frac|, which is the number of possibilities for the random choices made

in the above steps, is bounded by 2O(t)nO(1), exactly as required.
We now show that a random h ∈ Hn,t

frac has the properties stated in the lemma. Assume h is
sampled as above. We analyze the construction step-by-step. First, we recall the following easy
consequence of the Paley-Zygmund inequality:

Fact 6.2. For any non-negative random variable Z we have

P [Z ≥ 0.1 E[Z]] ≥ 0.9
(E[Z])2

E[Z2]
.

Consider h1 sampled in the first step. Define, for each i ∈ [30t], the random variables Xi =
z(h−1

1 (i)) and Yi =
∑

j1 6=j2:h1(j1)=h1(j2)=i zj1zj2 , and let X =
∑

i∈[10t]X
2
i and Y =

∑

i∈[10t] Yi. An

easy calculation shows that X = z2i + Y ≤ 10t+ Y . Hence, Eh1 [X] ≤ 10t+Eh1 [Y] and moreover

E
h1

[Y] =
∑

j1 6=j2

zj1zj2 P
h1

[h1(j1) = h1(j2)] ≤ z([n])2/10t = 10t

Let E1 denote the event that Y ≤ 20t. By Markov’s inequality, this happens with probability at
least 1/2. We condition on any choice of h1 so that E1 occurs. Note that in this case, we have
X ≤ 10t+ Y ≤ 30t.

19

Let Z = Xi for a randomly chosen i ∈ [10t]. Clearly, we have Ei[Z] = (1/10t)
∑

iXi = 1 and
also Ei[Z

2] = (1/10t)
∑

iX
2
i = (1/10t)X ≤ 3. Thus, Fact 6.2 implies that for random i ∈ [n],

we have Pi [Z ≥ 0.1] ≥ 0.3. Markov’s Inequality tells us that Pi [Z > 10] ≤ 0.1. Putting things
together, we see that if we set I = {i ∈ [n] |Xi ∈ [0.1, 10]}, then |I| ≥ 0.2 × 10t = 2t. We call the
i ∈ I the medium-sized buckets.

We now analyze the second step. We say that event E2 holds if (a) I ′ contains only medium-
sized buckets, and (b) for each i ∈ [t], yi = ⌈Yi⌉. Since the number of random choices in Step 2 is
only 2O(t) and there are more than t many medium-sized buckets, it is clear that P [E2] ≥ 1/2O(t).
We now condition on random choices in Step 2 so that both E1 and E2 occur.

For the third step, given i 6∈ I ′, we say that hash function h2,i is collision-free if for each
k ∈ [yi], we have z(Si,k) ≤ 2 where Si,k = h−1

2,i (k) ∩ h−1
1 (i). The following simple claim shows that

this condition is implied by the condition that for each k, Yi,k :=
∑

j1 6=j2∈Si,k
zj1zj2 ≤ 2.

Claim 6.3. For any α1, . . . , αm ∈ [0, 1], if
∑

j αj > 2, then
∑

j1 6=j2
αj1αj2 > 2.

For the sake of analysis, assume first that the hash functions h2,i (i ∈ [10t]) are chosen to be
pairwise independent and independent of each other. Now fix any i ∈ [10t] and k ∈ [yi]. Then,
since h2,i is chosen to be pairwise-independent, we have

E[Yi,k] =
∑

j1 6=j2:h2,i(j1)=h2,i(j2)=i

zj1zj2 P
h2,i

[h2,i(j1) = h2,i(j2) = k] = Yi/y
2
i ≤ 1/yi

In particular, by Markov’s inequality, P [Yi,k ≥ 2] ≤ 1/2yi. Thus, by a union bound over k, we see
that the probability that a uniformly random pairwise independent hash function h2,i is collision-
free is at least 1/2.

Now, let us consider the hash functions h2,i as defined in the above construction. Let E3 denote
the event that for each i 6∈ I ′, h2,i is collision-free. Hence, by Lemma 2.10, we see that

P [E3] = P
w∈W(G1,...,G10t)

[

∀i ∈ [10t] \ I ′ : h2,i collision-free
]

≥ 1/2O(t)

Thus, we have established that P [E1 ∧ E2 ∧ E3] ≥ 1/2O(t). We now see that when these events
occur, then the sampled h satisfies the properties we need. Fix such an h and consider i ∈ [t].

Since f is a bijection on I ′×{0}, we see that there must be an i′ ∈ I ′ s.t. f(i′) = i. Since i′ ∈ I ′

and the event E2 occurs, it follows that i′ is a medium-sized bucket. Thus, z(h−1(i)) ≥ z(h−1
1 (i′)) ≥

0.1. Secondly, since E3 occurs, we have

z(h−1(i)) = z(h−1
1 (i′)) +

∑

ℓ∈f−1(i)

z(h−1
2 (ℓ) \ h−1

1 (I ′)) ≤ 10 + 30 max
i∈[10t],k∈[yi]

z(Si,k) ≤ 100

where the final inequality follows because E3 holds. This shows that for each i, we have z(h−1(i)) ∈
[0.1, 100] and hence h satisfies the required properties. This concludes the proof of the lemma.

7 Open Problems.

We have used a two-level hashing procedure to construct hitting sets for combinatorial thresholds
of low weight. It would be nice to obtain a simpler construction avoiding the use of an ‘inner’
hitting set construction.

20

It would also be nice to extend our methods to weighted variants of combinatorial shapes:
functions which accept an input x iff

∑

i αi1Ai
(xi) = S where αi ∈ R≥0. The difficulty here is

that having hitting sets for this sum being ≥ S and ≤ S do not imply a hitting set for ‘= S’. The
simplest open case here is m = 2 and all Ai being {1}.6 However, it would also be interesting to
prove formally that such weighted versions can capture much stronger computational classes.

References

[1] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science, pages 218–223, San Juan, Puerto
Rico, 29–31 October 1979. IEEE.

[2] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products.
Computational Complexity, 5:60–75, 1995. 10.1007/BF01277956.

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[4] Roy Armoni, Michael Saks, Avi Wigderson, and Shiyu Zhou. Discrepancy sets and pseudo-
random generators for combinatorial rectangles. In 37th Annual Symposium on Foundations
of Computer Science (Burlington, VT, 1996), pages 412–421. IEEE Comput. Soc. Press, Los
Alamitos, CA, 1996.

[5] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003.

[6] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velic̆ković. Efficient
approximation of product distributions. Random Structures Algorithms, 13(1):1–16, 1998.

[7] William Feller. An Introduction to Probability Theory and its Applications, Vol 2. Wiley, 1971.

[8] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

[9] Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudorandom gen-
erators for combinatorial shapes. In STOC, pages 253–262, 2011.

[10] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the AMS, 43(4):439–561, 2006.

[11] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pages 220–229, El Paso, Texas, 4–6 May 1997.

[12] Nathan Linial, Michael Luby, Michael Saks, and David Zuckerman. Efficient construction of a
small hitting set for combinatorial rectangles in high dimension. Combinatorica, 17:215–234,
1997. 10.1007/BF01200907.

6Note that by the pigeon hole principle, such S exist for every choice of the αi.

21

[13] Shachar Lovett, Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom bit gener-
ators fooling modular sums. In Proceedings of the 13th International Workshop on Random-
ization and Computation (RANDOM), Lecture Notes in Computer Science, pages 615–630.
Springer-Verlag, 2009.

[14] Chi-Jen Lu. Improved pseudorandom generators for combinatorial rectangles. Combinatorica,
22(3):417–434, 2002.

[15] Raghu Meka and David Zuckerman. Small-bias spaces for group products. In APPROX-
RANDOM, pages 658–672, 2009.

[16] Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
J. ACM, 57(2), 2010.

[17] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing, 22(4):838–856, August 1993.

[18] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[19] Noam Nisan and Avi Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

[20] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, February 1996.

[21] Yuval Rabani and Amir Shpilka. Explicit construction of a small epsilon-net for linear threshold
functions. SIAM J. Comput., 39(8):3501–3520, 2010.

[22] Jeanette P. Schmidt and Alan Siegel. The analysis of closed hashing under limited randomness
(extended abstract). In STOC, pages 224–234, 1990.

[23] Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Computational Complexity, 15(4):298–341, 2006.

A Proof of the Expander Walk Lemma

In this section we prove Lemma 2.10. For convenience we restate it below.

Lemma A.1 (Lemma 2.10 restated). Let G1, . . . , Gℓ be a sequence of graphs defined on the same
vertex set V of size N . Assume that Gi is an (N,Di, λi)-expander. Let V1, . . . , Vℓ ⊆ V s.t. |Vi| ≥
piN > 0 for each i ∈ [ℓ]. Then, as long as for each i ∈ [ℓ], λi ≤ (pipi−1)/8,

P
w∈W(G1,...,Gℓ)

[∀i ∈ [ℓ], vi(w) ∈ Vi] ≥ (0.75)ℓ
∏

i∈[ℓ]
pi. (8)

Without loss of generality, we can assume that each subset Vi (i ∈ [ℓ]) has size exactly piN .
Let us consider an ℓ step random walk starting at a uniformly random starting vertex in [N],

in which step i is taken in the graph Gi. The probability distribution after ℓ steps is now given by

22

A1A2 . . . Aℓ1N , where 1N denotes the vector (1/N, . . . , 1/N), and Ai is the normalized adjacency
matrix of the graph Gi.

Now, we are interested in the probability that a walk satisfies the property that its ith vertex
is in set Vi for each i. For ℓ = 1, for example, this is precisely the L1 weight of the set V1, in the
vector A11N . More generally, suppose we define the operator IS to be one which takes a vector
and returns the “restriction” to S (and puts zero everywhere else), we can write the probability as
‖IV1A11N‖1. In general, it is easy to see that we can write the probability that the ith vertex in
the walk is in Vi for all 1 ≤ i ≤ t is precisely ‖IVtAtIVt−1At−1 . . . IV1A1‖1. We will call the vector of
interest u(t), for convenience, and bound ‖u(t)‖1 inductively.

Intuitively, the idea will be to show that u(t) should be a vector with a ‘reasonable mass’, and
is distributed ‘roughly uniformly’ on the set Vt. Formally, we will show the following inductive
statement. Define u(0) = 1N .

Lemma A.2. For all 1 ≤ t ≤ ℓ, we have the following two conditions

‖u(t)‖1 ≥
3pt
4

‖u(t−1)‖1 (9)

‖u(t)‖2 ≤
2√
ptN

‖u(t)‖1 (10)

Note that the second equation informally says that the mass of u(t) is distributed roughly equally
on a set of size ptN . The proof is by induction, but we will need a bit of simple notation before
we start. Let us define u‖ and u⊥ to be the components of a vector u which are parallel and
perpendicular (respectively) to the vector 1N . Thus we have u = u‖ + u⊥ for all u. The following
lemma is easy to see.

Claim A.3. For any N -dimensional vector x with all positive entries, we have ‖x‖‖1 = ‖x‖1.
Furthermore, x‖ is an N -dimensional vector with each entry ‖x‖1/N .

Proof. The “furthermore” part is by the definition of x‖, and the first part follows directly from
it.

We can now prove Lemma A.2. We will use the fact that Ai1N = 1N for each i, and that
‖Aiu‖2 ≤ λ‖u‖2 for u orthogonal to 1N .

Proof of Lemma A.2. For t = 1, we have u(1) = IV1A11N = IV11N , and thus we have ‖u(1)‖1 = p1,
and we have ‖u(1)‖2 = p1√

p1N
, and thus the claims are true for t = 1. Now suppose t ≥ 2, and that

they are true for t− 1.
For the first part, we observe that

‖u(t)‖1 = ‖IVtAtu(t−1)‖1 ≥ ‖IVtAtu
‖
(t−1)‖1 − ‖IVtAtu

⊥
(t−1)‖1 (11)

The first term is equal to ‖IVtu
‖
(t−1)‖1 = pt‖u(t−1)‖1, because IVt preserves ptN indices, and each

has a contribution of ‖u(t−1)‖1/N , by Claim A.3.
The second term can be upper bounded as

‖IVtAtu
⊥
(t−1)‖1 ≤

√
N‖IVtAtu

⊥
(t−1)‖2 ≤

√
N · λt‖u(t−1)‖2 ≤

2λt

√
N√

pt−1N
‖u(t−1)‖1,

23

where we used the inductive hypothesis in the last step. From the condition λt ≤ ptpt−1/8, we
have that the term above is bounded above by pt‖u(t−1)‖1/4. Combining this with Eq.(11), the
first inequality follows.

The second inequality is proved similarly. Note that for this part we can even assume the first
inequality for t, i.e., ‖u(t)‖1 ≥ (3/4)pt‖u(t−1)‖1. We will call this (*).

‖u(t)‖2 ≤ ‖IVtAtu
‖
(t−1)‖2 + ‖IVtAtu

⊥
(t−1)‖2 (12)

The first term is the ℓ2 norm of a vector with support Vt, and each entry ‖u(t−1)‖1/N , from

Claim A.3 we have that the first term is equal to
‖u(t−1)‖1

N · √ptN ≤ (4/3) · ‖u(t)‖1√
ptN

, with the

inequality following from (*).
The second term can be bounded by

λt‖u(t−1)‖2 ≤
2λt√
pt−1N

· ‖u(t−1)‖1 ≤
1

4
√
ptN

‖u(t)‖1.

Here we first used the inductive hypothesis, and then used (*), along with our choice of λt. Plugging
these into Eq. (12), we obtain the second inequality.

This completes the inductive proof of the two inequalities.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

