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Abstract

The study of locally testable codes (LTCs) has benefited from a number of nontrivial con-
structions discovered in recent years. Yet we still lack a good understanding of what makes a
linear error correcting code locally testable and as a result we do not know what is the rate-limit
of LTCs and whether asymptotically good linear LTCs with constant query complexity exist.

In this paper we provide a combinatorial characterization of smooth locally testable codes,
which are locally testable codes whose associated tester queries every bit of the tested word
with equal probability. Our main contribution is a combinatorial property defined on the Tanner
graph associated with the code tester (“well-structured tester”). We show that a family of codes
is smoothly locally testable if and only if it has a well-structured tester.

As a case study we show that the standard tester for the Hadamard code is “well-structured”,
giving an alternative proof of the local testability of the Hadamard code, originally proved by
[Blum, Luby, Rubinfeld, STOC 1990]. Additional connections to the works of [Ben-Sasson,
Harsha, Raskhodnikova, SICOMP 2005] and of [Lachish, Newman and Shapira, Computational
Complexity 2008] are also discussed.
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1 Introduction

Locally testable codes (LTCs) are error correcting codes for which membership in the code can
be tested to a high degree of certainty via a randomized testing procedure that reads only a few
bits from the purported codeword. This testing procedure accepts all legal codewords, and rejects
with non-negligible probability all words that are sufficiently far from every codeword in Hamming
distance. Certain LTCs (with additional properties) are a crucial building block in the construction
of probabilistically checkable proofs (PCPs) [6, 5] and as a result LTCs were defined and studied
in early works on PCPs [42, 4, 24, 41]. A more systematic study of LTCs was initiated by [25] and
since then a number of nontrivial constructions of families of LTCs have been discovered, including
LTCs based on PCPs of proximity (PCPPs) [10, 22, 37], on tensors of codes [16, 17, 18, 21, 23, 44],
on sparse codes [30, 32, 19] and on affine-invariant codes [11, 15, 31, 29].

In spite of this impressive progress, a number of basic questions regarding LTCs remain unsolved.
First and foremost is the question of the existence of a family of asymptotically good LTCs, i.e., a
family of codes of arbitrarily large blocklength that all have constant (non-zero) rate and are locally
testable with a constant number of queries (cf. [9]). One of the major problems impeding progress
on this fundamental question is our lack of understanding of what makes a code locally testable,
and this is true even for the special case of linear codes that is nevertheless quite interesting (most
known LTCs are linear). Recall that an [n, k, d]F-code C is a k-dimensional linear subspace of Fn

where F is a finite field and every nonzero codeword w ∈ C has at least d nonzero entries. Soon we
will also rely on the notion of the dual code C⊥, which is the linear space that is dual to C in F

n.
It was shown by [13] that for a linear code to be testable with q queries it must be the case that

the distance of its dual code is at most q, yet this by itself is far from being a sufficient condition for
local testability. Indeed, they showed a random low-density-parity-check (LDPC) code is not locally
testable even though C is characterized as the set of codewords that satisfy all low-density-parity
checks. Furthermore, any LTC must have a certain amount of “redundant” low-weight dual words
that are nontrivial combinations of the constraints that characterize C [12]. Somewhat surprisingly,
even when a code is characterized by a large pair-wise independent set of low-weight constraints,
as is the case for affine-invariant codes, this is not sufficient for guaranteeing local testability [14].
This brief survey highlights the mystery surrounding LTCs and calls for a better understanding of
the combinatorial and algebraic characterization of LTCs.

In this paper we provide such a characterization for smooth linear LTCs. A smooth LTC is
one in which the associated tester queries each coordinate with roughly the same probability, i.e.,
the distribution on {1, . . . , n} induced by selecting a random bit in a random query of the tester
is roughly uniform (see Definition 2.1). Our characterization says that a family of codes is locally
testable with query complexity q if and only if one can construct a Tanner graph with certain
properties, explained next for the simple case of binary codes which are codes over the two-element
field F2.

Code testers as Tanner graphs Every binary linear code C can be characterized by a bipartite
Tanner graph G with left vertex set {1, . . . , n} and right vertex set U as:

C =







w ∈ F
n
2

∣

∣

∣

∣

∣

∣

∀u ∈ U,
∑

i∈N(u)

wi = 0






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where wi denotes the ith entry of w and N(u) is the set of neighbors of u in G. 1 There are many
Tanner graphs that characterize C, one graph for each set of vectors U =

{

u(1), . . . , u(m)
}

that span

C⊥, where we set the neighborhood of (the vertex) u(j) in G to be the support of (the vector) u(j),

i.e., its set of nonzero entries denoted as supp(u(j)) =
{

i
∣

∣

∣
u
(j)
i 6= 0

}

. Due to the correspondence

between right vertices in G and dual codewords of C we will often refer to right vertices as dual
codewords, or “constraints” imposed on C. Now, since any q-query tester for C is defined by a
distribution D over words in C⊥ of support size at most q (cf. [12, Section 2]), one can equate
a q-query tester for C with a Tanner-graph G of right-degree at most q, where the probability of
picking a dual word u under D is proportional to the number of vertices whose set of neighbors is
supp(u).

A nontrivial result of [12] says that not all Tanner graphs of an LTC correspond to good testers.
For instance, Tanner graphs corresponding to a basis for C⊥ are invariably bad. But based on our
previous discussion we know that every LTC must have some Tanner graph that corresponds to
a good tester and the main result of this paper is to characterize LTCs in terms of their Tanner
graphs.

Characterization of smooth linear LTCs in terms of their Tanner graphs Informally
speaking, we show that a code is smoothly locally testable with query complexity q if and only
if it has a “locally redundant” and “stable” Tanner graph of right-degree at most q. A locally
redundant Tanner graph has the property that for any constraint (right vertex) u with neighborhood
I = supp(u), if an adversary removes an ǫ fraction of the constraints that touch I, then the
remaining constraints still span u. In other words, local redundancy means that every constraint
u in the Tanner graph is spanned “locally” by other constraints that touch supp(u), and moreover
this property is redundant, so much so that even when a non-negligible fraction of u’s neighboring
constraints are removed, one can still recover u as a linear combination of its remaining local
neighbors. A Tanner graph is called stable if it has the property that removing all constraints
that touch a small set of indices I ⊂ [n], leaves one with a Tanner graph that still pretty much
characterizes the same code C (up to discarding a small auxiliary corrupted set of bits I ′).

Our main result, Theorem 2.7, shows that a family of codes is smoothly locally testable if and
only if every code in the family has a Tanner graph subscribing to the previous two requirements.
The forward direction, going from a smoothly-testable code to a locally redundant and stable
Tanner graph is fairly straightforward and it is the backward direction that is nontrivial. To prove
it, i.e., to show that a Tanner graph that is locally redundant and stable implies a locally testable
code, we argue that any word w that is far from the code contains a large fraction of bits that
are each involved in many constraints that are unsatisfied by w. Therefore, sampling a random
constraint from the Tanner graph and using it as a test will reject w with constant probability.

To show that our characterization is meaningful we use it to show a new proof of the celebrated
result of [20] showing that the family of Hadamard codes is locally testable, by arguing that the
Tanner graph corresponding to the BLR-tester is locally redundant and stable. While the bounds
obtained from our method (cf. Theorem 2.9) are weaker than those arising from the Fourier-based
analysis of [8, 28], we think that obtaining a different proof for the most basic and well-studied
locally testable code is of value.

1Tanner graphs of codes over larger fields must have weighted edges, a complication that we choose to avoid in
this introductory discussion.

4



1.1 A relation to the work of Ben-Sasson et al. [13]

Ben-Sasson et al. [13] showed that to test some 3-CNF formulas it is necessary to use Ω(n) queries
to the input assignment to check whether it is close to satisfy the formula. This result was obtained
by showing that if a Tanner graph of a regular LDPC code C ⊆ F

n
2 has certain expansion properties

then to test the code requires Ω(n) queries. These expansion properties required two assumptions.
The first assumption is that any small subset of left vertex set has many unique neighbors on the

right side of the underlying Tanner graph, or equivalently, every small subset of indexes has many
unique neighbor constraints of small weight. Assume now that the codeword indices are labeled by
elements of the cyclic group of size n. Let us say informally that the cyclic-width of a constraint
is large if the maximum distance between two coordinates in its support is Ω(n), and otherwise we
say the cyclic-width of the constraint is small (see Section 3 for a formal definition of cyclic-width).
We will show that the first assumption implies that the cyclic-width of the constraints of S must
be large, i.e. (see Claim 3.1). The second assumption is that every small weight constraint can be
obtained only by a linear combination of a small number of other small weight constraints (from
the right side of the Tanner graph).

Roughly speaking, using our characterization of smooth LTCs (in particular, Lemma 2.11) we
show a result that contrasts with that of [13]. Namely, we show that if the first assumption does
not hold but the second one does, then the code is locally testable. In different words, a code that
has small cyclic-width (negation of first assumption) but each of its constraint u can be expressed
as a sum of a small number of “adjacent” constraints (second assumption), is locally testable. See
Section 3 for more details.

1.2 Space complexity vs. Query complexity

One of the research lines in property testing investigates the testability of low complexity languages.
Alon et al. [1] proved that all regular languages are testable with a constant number of queries. It
has been long known (see Exercise 2.8.12 in [39]) that DSPACE (o(log log n)) is exactly the set of
regular languages. Hence, the work of [1] implies that all languages in DSPACE (o(log log n)) are
testable with O(1) of queries.

This result was generalized later by Newman [38] who investigated the relation between space
complexity and query complexity. He proved that languages that have constant cyclic-width branch-
ing program are testable with constant number of queries. Newman raised a question about the
maximal gap between the space complexity and the query complexity. Lachish et al. [33] continued
to study the relation between space complexity and query complexity of languages. They showed
that for any space constructible function s(n)2, there exists a language L ∈ DSPACE (s(n)) whose
testing requires 2Ω(s(n)) queries. Lachish et al. conjectured that their result is tight, i.e., the query
complexity of any language is at most exponential in its space complexity.

Conjecture 1.1 ([33]). For any function s(n) and language L ∈ DSPACE (s(n)) it holds that L
is testable with 2O(s(n)) queries.

Clearly, the relevant range for s(n) is s(n) ≤ O(log n) since any decidable language is testable

2The notion of “space constructibility” they used is the standard one in the complexity theory, see e.g. [39]. A
function s(n) is called space-constructible if there exists a Turing machine M which, given a string 1n consisting of n
ones, outputs the binary representation of s(n), while using only O(s(n)) space.

5



with n queries.3 As was explained above, this conjecture was known to be true for s(n) = o(log log n)
due to [1]. In this way, Conjecture 1.1 remains open for Ω(log log n) ≤ s(n) ≤ O(logn). This range
of the space function is usually referred to as sublogarithmic space computations.

In spite of the beautiful research on limitations of the computations with sublogarithmic space,
e.g. [2, 3, 26, 27, 34], and the progress on understanding of the power and limitations of sublogarith-
mic space computations, it seems that it is hard to resolve Conjecture 1.1 in the current state. We

suggest to simplify the task and consider this conjecture for linear languages L =
⋃

n

Ln satisfying

that for every n ∈ N it holds that Ln ⊆ F
n
2 is a linear subspace of Fn

2 . In other words, we suggest
to try and prove the following corollary of Conjecture 1.1.

Conjecture 1.2. For any function s(n) and a linear language L ∈ DSPACE (s(n)) it holds that
L is testable with 2O(s(n)) queries.

In Section 3.3 we address Conjecture 1.2 and describe some progress towards resolving it. Our
proofs use the observations related to the structured codes and the fact that structured codes imply
local testability (Lemma 2.11).

Organization of the paper. In the following section we provide the standard definitions regard-
ing locally testable codes and state our main results. In particular, Section 2.3 contains a definition
of structured codes and Section 2.4 contains the statements of our main results. In Section 3 we
discuss connections to the works [13, 33] and state Theorems 3.3 and 3.8. Sections 4 and 5 show
that structured codes are (smooth) LTCs and that smooth LTCs are structured. In Section 6 we
show that Hadamard codes are strongly structured. Finally, in Sections 7 and 8 we prove Theorems
3.3 and 3.8, respectively.

2 Definitions and Main Results

After presenting the standard definition of locally testable codes we introduce the notion of a
“structured” code, then prove that a family of linear codes is a smooth LTC if and only if it is
structured. We start with necessary notation.

2.1 Notation

Let [n] be the set {1, . . . , n}. We assume that i mod n is an element of [n]. In particular, n
mod n = n and (n+1) mod n = 1. For a finite setA ⊂ N we let (A mod n) = {a mod n | a ∈ A}.

F will invariably denote a finite field. A linear code over F is a linear subspace C ⊆ F
n. The

dimension of C, denoted by dim(C), is its dimension as a vector space. The rate of C is the
ratio of its dimension to n. We define the distance between two words x, y ∈ F

n to be ∆(x, y) =

|{i | xi 6= yi}| and the relative distance to be δ(x, y) = ∆(x,y)
n . The distance of C is defined by

∆(C) = min
x 6=y∈C

∆(x, y) and its relative distance is defined by δ(C) = ∆(C)
n . We note that ∆(C) =

min
c∈C\{0}

{wt(c)}.

3If L is a decidable language then there exists a Turing Machine M , which decides it. By definition, a tester for
L has no running time restrictions. Thus, the tester can query all bits from the input word w ∈ {0, 1}n, and after
that to run M on w to decide whether it belongs to the language.
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For w ∈ F
n, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. For x ∈ F

n and C ⊆ F
n, let

δ(x,C) = min
y∈C

{δ(x, y)} denote the relative hamming distance of x from the code C. If δ(x,C) ≥ ǫ,

we say that x is ǫ-far from C and otherwise x is ǫ-close to C. For u = (u1, u2, . . . , un), v =
(v1, v2, . . . , vn) ∈ F

n let 〈u, v〉 denote the bilinear function from F
n × F

n to F defined by 〈u, v〉 =
n
∑

i=1

uivi. For T ⊆ F
n we say that w ⊥ T if for all t ∈ T we have 〈w, t〉 = 0. The dual code C⊥

is defined as C⊥ = {u ∈ F
n | u ⊥ C}. Similarly, we define C⊥

≤t =
{

u ∈ C⊥ | |u| ≤ t
}

and C⊥
t =

{

u ∈ C⊥ | |u| = t
}

. For w ∈ F
n and S = {j1, j2, . . . , jm} ⊆ [n] we let w|S = (wj1 , wj2 , . . . , wjm),

where j1 < j2 < . . . < jm, be the restriction of w to the subset S. Similarly, we let C|S =
{c|S | c ∈ C} denote the projection of the code C onto S. For A ⊆ C⊥ and J ⊆ [n] we let
A(−J) = {u ∈ A | supp(u) ∩ J = ∅}.

2.2 Families of linear locally testable codes

We extend the standard definition of LTCs (cf. [12]) to families of linear codes. In this paper, a
family of codes refers to an infinite sequence {Cni

}i=1,2,... of [ni, ki, di]F-linear codes Ci satisfying
n1 < n2 < . . . and all having relative distance at least δ for some δ > 0.

Definition 2.1 (Families of LTCs). A q-query tester, or simply q-tester, for a linear code C ⊆ F
n

is a distribution D supported on S ⊆ C⊥
≤q. D is said to be

A (q, ǫ, δ)-tester if for all w ∈ F
n, δ(w,C) ≥ δ we have Pr

u∼D
[〈u,w〉 6= 0] ≥ ǫ.

A (q, ǫ)-strong tester if for all w ∈ F
n we have Pr

u∼D
[〈u,w〉 6= 0] ≥ ǫ · δ(w,C).

t-smooth if for all i ∈ [n] we have Pr
u∼D

[i ∈ supp(u)] ≤ t/n.

Accordingly, C ⊆ F
n is a (q, ǫ, δ)-LTC ((q, ǫ)-strong LTC, respectively) if it has a (q, ǫ, δ)-tester

((q, ǫ)-strong tester, respectively). If the associated tester is t-smooth we say C is a (q, ǫ, δ, t)-smooth
LTC or a (q, ǫ, t)-smooth strong LTC, respectively.

Let F = {Cni
}i=1,2,... be a family of linear codes with relative distance δ such that each member

has a q-tester Di. F is called a q-LTC if for every δ′ ∈ (0, δ/3) there exist i0 and ǫ > 0 such that
for i > i0, the tester Di is a (q, ǫ, δ′)-tester. If every Di is (q, ǫ)-strong for some ǫ > 0, then F is
a q-strong LTC. Finally, if there exists t such that every Di is t-smooth we say that the family is
smooth.

2.3 Families of structured codes

The notion of structured codes is the main contribution of this paper, because it will turn out that
families of codes are smooth and structured if and only if they are smooth and locally testable.

Before presenting the definition we give an intuitive graph-based explanation for it. For C ⊂ F
n

a linear code, J ⊂ [n], and S ⊂ C⊥ let

NS(J) = {u ∈ S | supp(u) ∩ J 6= ∅}.

For v ∈ F
n we let NS(v) = NS(supp(v)), noting that if u is a nonzero element of S then u ∈ NS(u).

For i ∈ [n] we simplify notation and set NS(i) = NS({i}).
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Tanner graph intuition Informally, a q-tester for a linear code C ⊆ F
n can be described by

a distribution over (right) vertices in a Tanner-graph [43]. Given S ⊆ C⊥ that spans C⊥, the
Tanner graph ([n], S, E, e) corresponding to S consists of a bipartite graph G([n], S, E), where
E = {(i, u) | i ∈ [n], u ∈ S, i ∈ supp(u)} and a function e : E → F \ {0}. This Tanner graph defines
the code C ⊆ F

n via the rule that for all x ∈ F
n it holds that x ∈ C if and only if for all u ∈ S we

have
∑

j∈N(u) xj · e(j, u) = 0, where N(u) denotes the set of neighbors of u in the graph.

Therefore, given a q-tester D supported on S ⊂ C⊥
≤q the resulting Tanner graph will have

right-degree at most q and D defines a distribution over the right vertices of G.
For a code to be structured, it should have a Tanner graph that fulfills two requirements. The

first is a locality property that says, informally, that every constraint u ∈ S is redundantly spanned
by NS(u), i.e., even if an ǫ-fraction of NS(u) is removed, u is still spanned by the remaining
constraints in its neighborhood.

The second requirement is of a global nature, and says, informally, that even when an ρ-fraction
of coordinates J ⊂ [n] are removed, then one can throw a small additional fraction ρ′ of coordinates
J ′ ⊂ [n] such that the remaining constraints in S that are supported on [n] \ J span the code that
is the projection of C onto [n] \ (J ∪ J ′). Crucially, we will require ρ′ to approach 0 as ρ goes to 0.
We now give the formal definitions. In what follows, for D a distribution supported on a set S and
S′ ⊂ S let D(S′) =

∑

s∈S′ D(s).

Definition 2.2 (Local Redundancy). Let C ⊆ F
n be a linear code and D be a distribution sup-

ported on S ⊆ C⊥. For ǫ ∈ (0, 1) we say that C is ǫ-redundant with respect to S and D if for any
u ∈ S and S′ ⊆ S such that for every i ∈ supp(u) we have D(NS(i) ∩ S′) < ǫ · D(NS(i)), it holds
that u ∈ span(S \ S′).

Remark 2.3. We stress that every tester is ǫ-redundant for some ǫ > 0, by taking ǫ = minu∈S D(u).
For such small ǫ, inspecting the previous definition we see that the only possible S′ there is the
empty set. This trivially implies u ∈ span(S \ S′) = span(S) because u ∈ S.

We say that S ⊆ C⊥ characterizes C if span(S) = C⊥. In this case, for all x ∈ F
n we have:

x ∈ C if and only if x ⊥ S. Intuitively, we say that C is stable with respect to S if even after some
vectors are removed from S it still approximately characterizes the code C.

Definition 2.4 (Stable Characterization). Let 0 < ρ′ ≤ 1 and S ⊆ C⊥. We say that C is
ρ′-(strictly) characterized by S if there exists J ′ ⊆ [n] such that |J ′| ≤ ρ′n (|J ′| < ρ′n) and
(C⊥)(−J ′) ⊆ span(S).

We say that C is (ρ, ρ′)-stable with respect to S if for all J ⊂ [n], |J | < ρn it holds that C is
ρ′-strictly characterized by S(−J). We say that C is (ρ, ρ′)-strongly stable with respect to S if for

all J ⊂ [n], |J | < ρn it holds that C is min
{(

|J |
n · 1

ρ′

)

, 1
}

-characterized by S(−J).

We are ready to introduce our main definition, that of families of structured codes.

Definition 2.5 (Families of structured codes). A linear code C ⊆ F
n is a (q, ǫ, ρ, ρ′)-structured

(strongly structured) if there exists a distribution D supported on S ⊆ C⊥
≤q such that the following

three conditions hold.

Local redundancy C is ǫ-redundant with respect to S and D,

Stability C is (ρ, ρ′)-stable (strongly stable) with respect to S,
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Sampling For all I ⊆ [n], |I| ≥ ρn (|I| ≥ 0) such that ∀i ∈ I, ∃u ∈ S : i ∈ supp(u) we have

Pr
u∼D

[supp(u) ∩ I 6= ∅] ≥ ǫ ·
|I|

n
.

Let F = {Cni
}i=1,2,... be a family of linear codes such that each member has a q-tester Di. F is

said to be q-structured if for every ρ ∈ (0, 1) there exists ρ′ = ρ′(ρ), ǫ = ǫ(ρ) and i0 such that both
conditions hold:

1. Both ρ′ and ǫ go to 0 as ρ goes to 0.

2. For every i > i0 the code Ci is (q, ǫ, ρ, ρ
′)-structured.

If, additionally, there exists t such that every Di is t-smooth we say that F is a smooth q-
structured family.

Remark 2.6. Note that local redundancy and sampling property were defined using the same
parameter ǫ. This is done for the sake of convenience, since otherwise one could use ǫ1 for local
redundancy, ǫ2 for sampling and then set ǫ = min {ǫ1, ǫ2}.

Our main Theorem is the following, its proof appears in Section 2.4.

Theorem 2.7 (Main Theorem). A family F of linear codes is smooth q-LTC if and only if it is
smooth q-structured.

As a proof of concept we provide a simple combinatorial proof that the family of Hadamard
codes, defined next, is strongly structured, and this implies, via Lemma 2.11 that it is also strong
locally testable, thereby recovering the proof of the famous linearity-testing theorem of [20].

Definition 2.8 (The Hadamard family). For integer k let Gk ∈ F
(2k−1)×k
2 be the matrix whose

rows are all distinct nonzero vectors in F
k
2. Then Ck =

{

Gk · x | x ∈ F
k
2

}

is the Hadamard code of
dimension k and the Hadamard family of codes is {Ck}k=1,2,....

Theorem 2.9 (Hadamard codes are strongly structured). A Hadamard code C ⊆ F
n
2 is (3, 13 ,

1
6 , 1)-

strongly structured and 3-smooth. Hence, Theorem 2.7 implies that C is a smooth q-LTC. Moreover,
Lemma 2.11 below implies that C is (3, 1

54)-strong LTC and 3-smooth.

The proof of Theorem 2.9 is postponed to Section 6. We end this section by giving a simple
and easy-to-analyze example of a structured family of codes.

Example 2.10 (Repetition code). Let C = {0n, 1n} and let D be the uniform distribution over
S = C⊥

2 = {u | |u| = 2}.
First of all, one can see that C is 1

2 -redundant with respect to S and D. This fact follows
from the observation that for u ∈ S all its neighbors can be written as a list of disjoint pairs
(u1, u

′
1), (u2, u

′
2), . . . such that for every i we have ui + u′i = u. So, if S′ ⊆ S such that for every

i ∈ supp(u) we have D(NS(i) ∩ S′) < ǫ · D(NS(i)), then u = ui + u′i for some ui, u
′
i ∈ span(S \ S′).

It can also be readily verified that C is (1, 1)-strongly stable. To see this let I ⊆ [n] be a subset
and S′ = {u ∈ S | supp(u) ∩ I = ∅} then S \ S′ characterizes the code C|[n]\I , i.e., (C

⊥)(−I) ⊆

span(S \ S′). Finally, for all I ⊆ [n] we have Pr
u∼D

[supp(u) ∩ I 6= ∅] ≥
1

2
·
|I|

n
.

Thus C is (2, 12 , 1, 1)-strongly structured (Definition 2.5) and hence by Lemma 2.11, C is a
(2, 1

22
)-strong LTC.
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2.4 Proof of Theorem 2.7

We break the proof of Main Theorem (Theorem 2.7) into two parts, stated below. Notice that
the reverse direction — that structured codes are LTCs — holds even for non-smooth (structured)
codes.

Lemma 2.11 (Structured codes are LTCs). • If C ⊆ F
n is (q, ǫ, ρ, ρ′)-structured then C is a

(q, ǫ2ρ, ρ′)-LTC. Furthermore, if C is t-smooth and structured then it is t-smooth as an LTC.

• If C ⊆ F
n is (q, ǫ, ρ, ρ′)-strongly structured then C is a (q, ǫ2ρρ′)-strong LTC. Furthermore, if

C is t-smooth and strongly structured then it is t-smooth as a strong LTC.

We notice that Lemma 2.11 does not assume that the code C has a linear distance but only that
it is (strongly) structured. The proof of Lemma 2.11 appears in Section 4. The following lemma
states the forward direction of Theorem 2.7.

Lemma 2.12 (Smooth LTCs are structured). Let C ⊆ F
n be a (q, ǫ, ρ, t)-smooth LTC such that

ρ ≤ δ(C)/3. Then C is (q, ǫ2

120tq2(log |F|) ,
ǫ3

7·120tq(log |F|) , 2ρ)-structured and (120tq(log |F|)/ǫ2)-smooth.

The proof of Lemma 2.12 is postponed to Section 5.

Proof of Main Theorem 2.7. Let F = {Cni
}i=1,2,... be a family of linear codes. We argue that F is

smooth q-LTC if and only if F is smooth q-structured.
For the first direction, assume that C ⊆ F

n is a (q, ǫ, ρ, t)-smooth LTC such that ρ ≤ δ(C)/3.

Then Lemma 2.12 implies that C is (q, ǫ2

120tq2(log |F|) ,
ǫ3

7·120tq(log |F|) , 2ρ)-structured and (120tq(log |F|)/ǫ2)-

smooth.
For the second direction, assume that C ⊆ F

n is a (q, ǫ, ρ, ρ′)-structured and t-smooth. Then
by Lemma 2.11 it follows that C is a (q, ǫ2ρ, ρ′, t)-smooth LTC.

3 Testing of small cyclic-width linear properties

We want to define a measure, called cwidth, with regards to the constraints of the code. Imagine
that the coordinates [n] are associated with elements of Zn, the cyclic group of size n. Notice
that there can be different permutations over [n] and for each such permutation the code remains
the same, up to a different enumeration of the coordinates. For permutation σ : [n] → [n] and a
vector t ∈ F

n we denote by σ(t) the vector permuted by σ. Similarly, for subset T ⊆ F
n we define

σ(T ) = {σ(t) | t ∈ T}. Note that σ(T ) ⊆ F
n.

Intuitively, the cyclic-width of a constraint is the width of a “window” required to view all its
support. More formally, the cyclic-width of a constraint u ∈ F

n
2 is a minimal integer s ∈ [n] such

that for some i ∈ [n] it holds that supp(u) ⊆ {(i+ 1) mod n, (i+ 2) mod n, . . . , (i+ s)} mod n,
i.e.,

cwidth(u) = min {s ∈ [n]|∃i ∈ [n] : supp(u) ⊆ ({(i+ 1), (i+ 2), . . . , (i+ s)} mod n)}.

Notice that if supp(u) = {1, n} for u ∈ F
n
2 then cwidth(u) = 2.

For S ⊆ F
n we let cwidth(S) = min

σ:[n]→[n]

(

max
u∈σ(S)

{cwidth(u)}

)

. In words, the cyclic-width of

a subset is obtained by choosing the optimal arrangement of coordinates to receive the minimal
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upper-bound on the cyclic-width of all vectors in S. We say that cwidth(S) = m with respect to σ
if m =

(

maxu∈σ(S) {cwidth(u)}
)

.
It turns out that there is a relation between unique neighbor expanding Tanner graphs and the

cyclic-width of constraints in the graph.

3.1 Expansion implies large cyclic-width

Assume C ⊆ F
n is a linear code and let S ⊆ C⊥. For a subset L0 ⊆ [n] let N1

S(L0) =
{u ∈ S | | supp(u) ∩ L0| = 1}. We say that a code C has (ǫ, δ)-unique neighbor expansion if for
every L0 ⊆ [n] if |L0| ≤ δn then |N1

S(L0)| ≥ ǫ|L0|. The code is called c-regular if for every i ∈ [n]
we have |{u ∈ S | i ∈ supp(u)}| ≤ c.

In the following claim we assume C⊥
1 = ∅, i.e., the code does not contain entries which are

identically 0. This can be assumed since such entries can always be removed from the code.

Claim 3.1. Let ǫ, δ, c > 0 be constants. Assume that a linear code C is c-regular and has (ǫ, δ)-
unique neighbor expansion with respect to S ⊆ C⊥ such that C⊥

1 = ∅. Then,

cwidth(S) ≥
ǫδn

4c
= Ω(n).

Proof. Assume by contradiction that cwidth(S) < ǫδn
4c . Then for every u ∈ S we have cwidth(u) ≤

cwidth(S) < ǫδn
4c . Let L0 = [δn/2]. It holds that |N1

S(L0)| ≤ 2 · cwidth(S) · c < ǫ|L0| with
contradiction to the expansion property of C. In the above inequality we used two facts. The
first one is that every unique neighbor of L0 has cyclic-width at most cwidth(S) and thus only the
indices of {1, 2, . . . , cwidth(S)} and {|L0| − cwidth(S) + 1, |L0| − cwidth(S) + 2, . . . , |L0|} can be
contained in the support of any u ∈ N1

S(L0). The second fact is that every index i can be contained
in at most c constraints of N1

S(L0).

In the rest of the section we will be interested in a linear code C with S ⊆ C⊥ such that
span(S) = C⊥ and cwidth(S) = o(n).

3.2 A relation to the work of Ben-Sasson et al. [13]

Ben-Sasson et al. [13] showed that a random regular LDPC code C ⊆ F
n
2 is not testable, and in

particular, its testing requires Ω(n) queries. This random LDPC code C was picked by random
selection of many constant weight dual codewords S = {uj1 , uj2 , . . .} and defining C = (span(S))⊥.
Then it was examined that the fact that if small weight dual codewords in S are randomly chosen
then they have two basic properties, which imply the impossibility of testing the code C. The
first property was large unique neighbor expansion which holds for random Tanner graphs with
high probability. This property, in particular, implies large cyclic-width of the code (Claim 3.1).
The second property was that if many dual codewords in S are summed, then the resulting dual
codeword will necessarily have large support size. This second property means that, relative to the
number of dual codewords used in a summation, the number of cancelations is not too large.

In Definition 3.2 we require a similar property: every dual codeword can be spanned only by
“adjacent” dual codewords of S. This property is similar to the above second property since it also
requires assumes a small number of cancelations in the sum.
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Definition 3.2 (d-adjacent vectors). Let u1, u2 ∈ F
n
2 be vectors. We say that u1 is d-adjacent to

u2 if for every i1 ∈ u1 there exists i2 ∈ u2 such that min {|i1 − i2|+ 1, n− |i1 − i2|+ 1} ≤ d. Note
that the “adjacency of vectors” is not a symmetric property, i.e., it might be that u1 is d-adjacent
to u2 but u2 is not d-adjacent to u1.

We say that u1 is d-adjacent to u2 with respect to a permutation σ : [n] → [n] if σ(u1) is
d-adjacent to σ(u2).

We say that B ⊆ C⊥ is d-neighboring with respect to C and permutation σ if for u ∈ C⊥ we

have u1, . . . , um ∈ B such that
m
∑

i=1

ui = u and for all i ∈ [m] it holds that ui is d-adjacent to u with

respect to σ.

Now we state Theorem 3.3.

Theorem 3.3 (Codes with small cyclic-width constraints are testable). Let C ⊆ F
n be a linear

subspace. Assume that there exists a permutation σ : [n] → [n] and a subset B ⊆ C⊥ such that
span(B) = C⊥ and B is d-neighboring with respect to σ and cwidth(B) ≤ m with respect to σ.
Then C is (4m, 16 , 1,

1
m·(⌈d/m⌉))-strongly structured and by Lemma 2.11 is a (4m, 1

36·⌈d/m⌉m)-strong
LTC.

The proof of Theorem 3.3 appears in Section 7.

Example 3.4. Let C ⊆ F
logn be any linear code. Assume that (log n)|n. Let C ′ ⊆ F

n be
a linear code such that for every j ∈ [n/ logn] it holds that C ′|i,i+1,...,log n = C. Let B =
⋃

j∈[n/ logn]C
′|i,i+1,...,log n

⊥ and let D be a distribution over S′ that picks first a random j ∈ [n/ logn]

and then a random dual codeword in C ′|i,i+1,...,log n
⊥.

It can be verified that B is (log n)-neighboring with respect to the identity permutation and
cwidth(B) ≤ log n with respect to the identity permutation.

Notice that the distance of C is only O(log n) but let us stress that locally testable codes with
very small distance (and even constant absolute Hamming distance) found their applications in [7].

Remark 3.5. Note that if C is a (q, ǫ)-strong LTC then C is in particular a ( qǫ ,
1
2)-LTC since a

tester (which has only one-sided error) for C can be sampled 1
ǫ times and reject if at least one of its

samples rejects. This implies query complexity q
ǫ and the soundness parameter is improved from ǫ

to 1
2 .
Thus if C is a (4m, 1

36⌈d/m⌉m)-strong LTC then it is a (36 · 4 · ⌈d/m⌉m, 12)-strong LTC.

In particular, an interesting range is when d,m = 2o(logn) and then ⌈d/m⌉m = o(n), i.e., the
query complexity of the tester of C is sublinear while the rejection probability is constant.

Remark 3.6. We were unable to resolve in this paper whether Theorem 3.3 holds even if “d-
neighboring” is not required, i.e., whether the following conjecture holds.

Conjecture 3.7. Let B ⊆ C⊥ such that span(B) = C⊥ and cwidth(B) ≤ m. Then
C is (4m, 1

poly(m) , 1,
1

poly(m))-strongly structured and thus locally testable.

3.3 A relation to the work of Lachish et al. [33]

We recall Conjecture 1.2 restated next. Throughout this paper we consider only deterministic space
complexity. Our model for measuring the space complexity of the algorithm is the standard Turing
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Machine model, where there is a read only input tape, and a work tape where the machine can
write. We only count the space used by the work tape. See [39] for the precise definitions.

Conjecture 1.2 (restated). For any function s(n) and a linear language L ∈ DSPACE (s(n)) it
holds that L is testable with 2O(s(n)) queries.

Now, every linear subspace Ln ⊆ F
n
2 can be described in terms of linear constraints. Intuitively,

without loss of generality, we can assume that the Turing Machine M that decides the language
L checks linear constraints, i.e., given x ∈ F

n
2 the machine M checks whether x ⊥ (Ln)

⊥. More
accurately, for some subset Sn ⊆ (Ln)

⊥ such that span(Sn) = Ln the machine M checks whether
x ⊥ Sn.

The question is which kind of linear constraints can be checked by deterministic Turing Machine
with space complexity s(n) = o(logn). While we don’t provide in this paper an answer on this
question, we would like to present some evidence in support of it. Notice that if a memory tape
is bounded to s(n) = o(log n) bits then the number of all possible contents on this tape is upper-
bounded by 2s(n) = o(n). In this way, this Turing Machine can “count” only up to 2s(n) = o(n).
In particular, even after the first 2s(n) = o(n) moves of M some content of the memory tape
will appear at least twice. Hence during the run of the machine M on a word we expect some
particular memory-contents to reappear many times. This kind of argument has been used to
prove “pumping” lemmas for regular and context free languages, and was a central observation
used to show limitations of sublogarithmic computations [34, 2, 3]. Notably, it was proved [2, 3]
that log n is a lower bound on the space complexity for the recognition of any deterministic non-
regular context free language. I.e., there are no non-regular deterministic context free languages
in NSPACE (o(log n))4. It is worth to stress that some non-regular deterministic context free
languages belongs to DSPACE (O(logn)), e.g., the Dyck-languages [27, 40] and the parenthesis-
languages [35, 36]. Hence there exists a natural distinction between DSPACE (O(logn)) and
DSPACE (o(log n)).

Informally, we assume that the linear constraints that can be checked by Turing Machine with
space complexity s(n) either have cyclic-width 2s(n) or should be periodic (like xor of all bits, or xor
of all even bits). Now, such periodic constraints should be either in the span of small cyclic-width
constraints, or quite different from any vector in the span of small cyclic-width constraints. We
formalize this as follows.

Let u, v ∈ F
n be vectors and m ∈ N be a positive integer such that m ≤ n. We say that u is

m-different from v if u|[m] 6= v|[m]. For a subset of vectors B1, B2 ⊆ F
n we say that B2 is m-different

from B1 if every u ∈ span(B2) \ {0n} is m-different from every v ∈ span(B1). In particular, this
means that for every u ∈ span(B2) \ {0

n} we have u|[m] 6= 0m.

Theorem 3.8 (Codes with small cyclic-width and different constraints are testable). Assume
C ⊆ F

n
2 is linear and let m = m(n), d = d(n) such that 0 < m, d = o(n). Assume that B1, B2 ⊆ C⊥

such that B1 is a d-neighboring subset, cwidth(B1) ≤ m, and B2 is m-different from B1. Assume
that span(B1 ∪B2) = C⊥.

Then C is a (4m, 16 ,
1

20m·(⌈d/m⌉) ,
1
10)-structured and by Lemma 2.11 is a (4m, 1

36·20m·⌈d/m⌉ ,
1
10)-

LTC.

The proof of Theorem 3.8 is postponed to Section 8. Similarly to Theorem 3.3 and Remark 3.6
it seems that the “d-neighboring” requirement is redundant, and the following statement should
hold.

4This statement was first proved for DSPACE (o(log n)) and then was extended to NSPACE (o(log n)).
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Conjecture 3.9. Assume C ⊆ F
n
2 is linear and let m = m(n) > 0. Assume that B1, B2 ⊆ C⊥ such

that cwidth(B1) ≤ m, and B2 is m-different from B1. Assume that span(B1 ∪B2) = C⊥. Then C
is (4m, 1

poly(m) ,
1

poly(m) ,Θ(1))-structured and thus locally testable.

If Conjecture 3.9 turns out to be true, then Conjecture 1.2 holds under the following conjecture.

Conjecture 3.10. If {Cn}n∈N ∈ DSPACE (s(n)), where s(n) = o(logn), then there exists

m(n) = 2O(s(n)) and for every n ∈ N there exist B1, B2 ⊆ C⊥ such that span(B1 ∪ B2) = C⊥,
cwidth(B1) ≤ m and B2 is m-different from B1.

Conjectures 3.9 and 3.10 now imply Conjecture 1.2.

Corollary 3.11. Under Conjectures 3.9 and 3.10, Conjecture 1.2 holds.

Proof. A linear language can be viewed as a family of linear codes {Cn}n∈N . If {Cn}n∈N ∈
DSPACE (s(n)), where s(n) = o(logn), then Conjectures 3.9 and 3.10 imply that for every n the
code Cn is (4m, 1

poly(m) ,
1

poly(m) ,Θ(1))-structured for m = 2O(s(n)) and by Lemma 2.11 is testable

with 2O(s(n)) queries.

4 Structured codes are LTCs — Proof of Lemma 2.11

To prove Lemma 2.11 we need the following definition.

Definition 4.1 (ǫ-bad set). Let C ⊆ F
n be a linear code and D be a distribution supported on

S ⊆ C⊥. Let i ∈ [n] such that D(NS(i)) > 0. For w ∈ F
n let Badi(w) = {u ∈ NS(i) | 〈u,w〉 6= 0}.

We say i is an ǫ-bad entry of w if Pr
u∼D

[u ∈ Badi(w) | i ∈ supp(u)] ≥ ǫ. Otherwise, i is called ǫ-good.

Similarly, let Bad(w, ǫ) denote the set of ǫ-bad entries of w.

Now we state Proposition 4.2 which will follows immediately from Definition 4.1.

Proposition 4.2. Let C ⊆ F
n be a code and let D be its associated distribution supported on

S ⊆ C⊥
≤q. Then if C is (q, ǫ, ρ, ρ′)-strongly structured and w ∈ F

n, then

Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2 ·
|Bad(w, ǫ)|

n
.

Moreover, if C is (q, ǫ, ρ, ρ′)-structured and w ∈ F
n such that |Bad(w, ǫ)| ≥ ρn, then

Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2 ·
|Bad(w, ǫ)|

n
.

Proof. By definition of Bad(w, ǫ) (Definition 4.1) we have

Pr
u∼D

[〈u,w〉 6= 0] ≥ Pr
u∼D

[〈u,w〉 6= 0 | supp(u) ∩ Bad(w, ǫ) 6= ∅] · Pr
u∼D

[supp(u) ∩ Bad(w, ǫ) 6= ∅] ≥

≥ ǫ · Pr
u∼D

[supp(u) ∩ Bad(w, ǫ) 6= ∅].

By the sampling property of Definition 2.5 and the fact that C is (strongly) structured it follows
that

Pr
u∼D

[supp(u) ∩Bw 6= ∅] ≥ ǫ ·
|Bad(w, ǫ)|

n
.

We conclude that Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2 ·
|Bad(w, ǫ)|

n
.
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We are ready to prove Lemma 2.11.

Proof of Lemma 2.11. Let S ⊆ C⊥
≤q and D be as guaranteed by the definition of (q, ǫ, ρ, ρ′)-

structured code (Definition 2.5) and let w ∈ F
n. Set J = Bad(w, ǫ). Note that the fact that

J is a set of ǫ-bad entries implies that for all i ∈ J there exists u ∈ S such that i ∈ supp(u).
For the first bullet of the lemma assume that δ(w,C) ≥ ρ′. We prove that Pr

u∼D
[〈u,w〉 6= 0] ≥ ρǫ2.

We claim that |J | ≥ ρn. To see this, assume by contradiction that |J | < ρn. We argue that
for all u ∈ S(−J) we have 〈u,w〉 = 0. To see this, let S′ = {u′ ∈ S | 〈u′, w〉 6= 0} and let u ∈ S(−J),

i.e., supp(u) ∩ J = ∅. We have
D(S′ ∩NS(i))

D(NS(i))
< ǫ for all i ∈ supp(u) since otherwise supp(u)

contains an ǫ-bad entry of w and supp(u) ∩ J 6= ∅. By assumption C is ǫ-redundant and hence
u ∈ span(S \ S′) and 〈u,w〉 = 0. Recall that |J | < ρn and C is ρ′-strictly characterized by S(−J).
Hence by Claim A.2 we have δ(w,C) < ρ′. Contradiction.

So |J | ≥ ρn. Thus Proposition 4.2 implies that

Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2 ·
|J |

n
≥ ǫ2ρ

and we are done.
For the second bullet of the lemma, assume now that C is (q, ǫ, ρ, ρ′)-strongly structured and

set J = Bad(w, ǫ) as above. If |J | ≥ ρn then by Proposition 4.2 we have Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2ρ.

Otherwise, |J | < ρn and C is
(

|J |
n · 1

ρ′

)

-characterized by S(−J). Then, by Claim A.2 we have

δ(w,C) ≤
(

|J |
n · 1

ρ′

)

< ρ
ρ′ and Pr

u∼D
[〈u,w〉 6= 0] ≥ ǫ2

|J |

n
≥ ǫ2 · ρ′ · δ(w,C).

Hence Pr
u∼D

[〈u,w〉 6= 0] ≥ ǫ2 ·min{ρ, ρ′} · δ(w,C) ≥ ǫ2 · ρ · ρ′ · δ(w,C).

Finally, notice that if C is t-smooth as a structured code, then the tester for C is also t-
smooth.

5 Smooth LTCs are structured — Proof of Lemma 2.12

We notice that if S is a multiset then NS(i) is a multiset and |NS(i)| counts the repetitions.

Overview of the proof. First, we state and prove Proposition 5.1. Informally, it says that
without loss of generality a tester for a smooth LTC C ⊆ F

n is a uniform distribution over a multiset
of size Θ(n) such that every dual codeword of this multiset has a small number of neighbor dual
codewords in this multiset.

The proof of Proposition 5.1 looks as follows. First, a tester for the linear code C ⊆ F
n is

sampled O(n) times to obtain a multiset of small weight dual codewords S. It turns out that
with high probability a uniform distribution over S is a tester for C. Let S′ ⊆ S be a subset of
dual codewords that contain all u ∈ S such that |Nu(S)| is large. Then we prove that with high
probability the set S′ is small. Finally, letting S∗ = (S \ S′) we argue that a uniform distribution
over S∗ is a tester for C and for every u ∈ S∗ it holds that |NS∗(u)| is small.

Then we prove Lemma 2.12, and in particular we prove that C is structured with respect to S∗

and the uniform distribution over S∗.
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Proposition 5.1. Let C ⊆ F
n be a (q, ǫ, ρ, t)-smooth LTC. Then there exists a multiset S∗ ⊆ C⊥

≤q

such that for all u ∈ S∗ we have |NS∗(u)| ≤ 120tq(log |F|)/ǫ2 and C has a (q, ǫ/6, ρ)-tester, which
is uniformly distributed over S∗. Moreover,

(20n(log |F|)/ǫ)(1− ǫ/3) ≤ |S∗| ≤ 20n(log |F|)/ǫ.

Proof. Let T be the assumed (q, ǫ, ρ, t)-smooth tester for C. Pick the multiset

S =
{

u1, . . . , u 20n(log |F|)
ǫ

}

, where each uj obtained by taking a sample from T . We know that

|S| = 20n(log F)
ǫ and for every uj ∈ S we have |uj | ≤ q. We argue that the uniform distribution over

the multiset S will be a (q, ǫ/2, ρ)-tester for C with probability at least 1− 1
|F|0.1n .

Fix any w ∈ F
n such that δ(w,C) ≥ ρ. We know that Pru∈S [〈u,w〉 6= 0] ≥ ǫ and hence

E[|{u ∈ S | 〈u,w〉 6= 0}|] ≥ ǫ|S|. Chernoff bound (Claim 5.2) implies that

Pr
[

|{u ∈ S | 〈u,w〉 6= 0}| ≤
ǫ

2
|S|

]

≤
1

20.25ǫ|S|/3
≤

1

|F|1.1n
.

Take the union bound over all w ∈ F
n such that δ(w,C) ≥ ρ to get that with probability at most

|F|n

|F|1.1n there exists a word w ∈ F
n, δ(w,C) ≥ ρ such that Pru∈S [〈u,w〉 6= 0] < ǫ/2. We conclude

that with probability at least 1 − 1
|F|0.1n we have that for every w ∈ F

n, δ(w,C) ≥ ρ it holds that

Pr
u∈US

[〈u,w〉 6= 0] ≥ ǫ/2, i.e., the uniform distribution over the multiset S is a (q, ǫ/2, ρ)-tester for

C.
Since C is a (q, ǫ, ρ, t)-smooth LTC it follows that for every i ∈ [n] we have

E[|{u ∈ S | i ∈ supp(u)}|] ≤ |S| ·
t

n
= 20t/ǫ.

For any u ∈ S let Xu be a random variable defined by Xu = |NS(u)|. We have

E[Xu] ≤ |S| · q ·
t

n
= 20tq(log |F|)/ǫ,

where the expectation is taken over the samplings of S. Markov’s inequality implies that

Pr
[

Xu > 120tq(log |F|)/ǫ2
]

< ǫ/6.

Let XS be a random variable defined by

XS =
∣

∣

{

u ∈ S | Xu > 120tq(log |F|)/ǫ2
}
∣

∣ .

Hence E[XS ] ≤ (ǫ/6)|S|. Markov’s inequality implies that

Pr[XS ≥ (ǫ/3)|S|] ≤
1

2
.

Let S′ =
{

u ∈ S | |NS(u)| ≥ 120tq(log |F|)/ǫ2
}

, note that S′ ⊆ S. We have |S′| ≤ ǫ|S|/3 with
probability at least 1

2 .

Hence with probability at least 1−
1

2
−

1

|F|0.1n
> 0 there exist S and S′ as required. Fix them

and let S∗ = S \ S′. Note that

20n(log |F|)

ǫ
· (1− ǫ/3) ≤ |S∗| ≤

20n(log |F|)

ǫ
.
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We know that for all u ∈ S∗ we have |NS∗(u)| ≤ 120tq(log |F|)/ǫ2. Moreover, for all w ∈ F
n

such that δ(w,C) ≥ ρ we have

Pr
u∈S∗

[〈u,w〉 6= 0] ≥ Pr
u∈S

[〈u,w〉 6= 0]− Pr
u∈S

[

u ∈ S′
]

= Pr
u∈S

[〈u,w〉 6= 0]−
|S′|

|S|
≥ ǫ/2− ǫ/3 = ǫ/6.

We conclude that the uniform distribution over the multiset S∗ is a (q, ǫ/6, ρ)-tester for C.

For the sake of completeness we state the particular version of Chernoff’s inequality that we
use.

Claim 5.2 (Chernoff Bound). If X =
∑m

i=1Xi is a sum of independent {0, 1}-valued random
variables, where Pr[Xi = 1] = γ, then

Pr[X < (1− σ)γm] ≤ exp(−
σ2γm

3
) and Pr[X > (1 + σ)γm] ≤ exp(−

σ2γm

3
).

Now we prove Lemma 2.12.

Proof of Lemma 2.12. Proposition 5.1 guarantees that there exists a multiset S ⊆ C⊥
≤q such that

for every u ∈ S we have |NS(u)| ≤
120tq(log |F|)

ǫ2
,

20n(log |F|)

ǫ
· (1− ǫ/3) ≤ |S| ≤

20n(log |F|)

ǫ
,

and for all w ∈ F
n, δ(w,C) ≥ ρ we have Pr

u∈US
[〈u,w〉 6= 0] ≥ ǫ/6. In particular, this implies that for

all i ∈ [n] we have |NS(i)| ≤ 120tq(log |F|)/ǫ2.

Hence if 〈u,w〉 6= 0 for u ∈ S then every i ∈ supp(u) is a
ǫ2

120tq(log |F|)
-bad entry of w because

u ∈ NS(u) and |NS(u)| ≤
120tq(log |F|)

ǫ2
. Thus C is

(

ǫ2

120tq(log |F|)

)

-redundant with respect to S

and D.

Let J ⊆ [n] such that |J | ≤
ǫ3

7 · 120tq(log |F|)
n. Then the number of words u ∈ S such that

supp(u) ∩ J 6= ∅ is at most

(

120tq(log |F|)/ǫ2
)

· |J | ≤ (ǫ/7) · n ≤ (ǫ/7) · |S|.

Then S(−J) is still a (q, ǫ/6 − ǫ/7, ρ)-tester for C because removing all words of S whose support

intersect J can reduce the rejection probability of the tester at most by
(ǫ/7) · |S|

|S|
= ǫ/7. That

means if w ⊥ S(−J) then δ(w,C) < ρ, i.e., Corollary A.3 implies that C is (2ρ)-characterized by
S(−J).

Furthermore, for every I ⊆ [n] such that ∀i ∈ I, ∃u ∈ S : i ∈ supp(u) we have

Pr
u∼D

[supp(u) ∩ I 6= ∅] ≥
ǫ2

120tq(log |F|)
·
1

q
·
|I|

n
.
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We conclude that C is (q,
ǫ2

120tq2(log |F|)
,

ǫ3

7 · 120tq(log |F|)
, 2ρ)-structured. Moreover, for every

j ∈ [n] we have

Pr
u∈US

[j ∈ supp(u)] ≤
120tq(log |F|)/ǫ2

n
.

6 Hadamard codes are strongly structured — Proof of Theorem
2.9

In this section we show that the family of Hadamard codes (cf. Definition 2.8) is strongly structured.
We thus set C ⊆ F

n
2 to be the Hadamard code and S = C⊥

3 . It is known that span(S) = C⊥

and ∆(C⊥) = 3, i.e., for all u1 6= u2 ∈ S it holds that | supp(u1) ∩ supp(u2)| ≤ 1. As a tester for
the Hadamard code we take the uniform distribution U over S, i.e., given an input word w ∈ F

n
2

the tester picks u ∈U S and accepts if and only if 〈u,w〉 = 0.

We know that |S| =

(

n
2

)

3
=

n(n− 1)

6
since every two different coordinates i1, i2 ∈ [n] determines

uniquely u ∈ S such that i1, i2 ∈ supp(u). Let us state and prove the following auxiliary claim.

Claim 6.1. For I ⊆ [n] and j ∈ I let A(j,I) =
{

u ∈ C⊥
3 | supp(u) ∩ I = {j}

}

and B(j,I) =
{

u ∈ C⊥
3 | j ∈ supp(u), | supp(u) ∩ I| ≥ 2

}

. Then,

• |A(j,{j})| =
n−1
2 ,

• |B(j,I)| ≤ |I| − 1, and

• |A(j,I)| = |A(j,{j})| − |B(j,I)| ≥
n−2|I|+1

2 .

Proof. Since ∆(C⊥) = 3 there are no u1 6= u2 ∈ C⊥
3 such that supp(u1) ∩ supp(u2) ≥ 2. For

every i1 6= i2 ∈ [n] there exists unique u ∈ C⊥
3 such that i1, i2 ∈ supp(u). Thus given j ∈ [n] we

have n − 1 options for j′ ∈ [n] \ {j} such that for some u ∈ C⊥
3 we have j, j′ ∈ supp(u). Since

every u ∈ C⊥
3 with supp(u) = {j, j′, j′′} was counted twice, once from j′ and once from j′′ we have

|A(j,{j})| = |
{

u ∈ C⊥
3 | j ∈ supp(u)

}

| = n−1
2 .

We have |B(j,I)| ≤ |I| − 1 because for every j′ ∈ I such that j′ 6= j we have only one u ∈ C⊥
3

with j, j′ ∈ supp(u). Hence
∣

∣A(j,I)

∣

∣ =
∣

∣A(j,{j})

∣

∣−
∣

∣B(j,I)

∣

∣ ≥ n−2|I|+1
2 .

Now we state Lemmas 6.2 and 6.3. Then we prove Theorem 2.9.

Lemma 6.2. It holds that C is 1
3 -redundant with respect to S and U .

Lemma 6.3. It holds that C is (16 , 1)-strongly stable with respect to S.

The proofs of Lemmas 6.2 and 6.3 appear in Sections 6.1 and 6.2. We are ready to prove
Theorem 2.9.
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Proof of Theorem 2.9. Recall that S = C⊥
3 . Lemma 6.2 says that C is 1

3 -redundant with respect
to S and U . Lemma 6.3 implies that C is (16 , 1)-strongly stable with respect to S. It holds that for
all I ⊆ [n] we have

Pr
u∼U

[supp(u) ∩ I 6= ∅] ≥
|I|

n
≥

1

3
·
|I|

n
.

Moreover, we claim that Hadamard is 3-smooth because for all j ∈ [n] we have

Pr
u∈US

[j ∈ supp(u)] =
|A(j,{j})|

|S|
=

(n− 1)/2

n(n− 1)/6
=

3

n
.

We conclude that Hadamard is (3, 13 ,
1
6 , 1)-strongly structured 3-smooth code.

6.1 Proof of Lemma 6.2

Recall that S = C⊥
3 and let us prove Lemma 6.2.

Proof of Lemma 6.2. Let u ∈ S. Let S′ ⊆ S such that for all j ∈ supp(u) we have |NS(j) ∩ S′| ≤
1
3 |NS(j)|. It is sufficient to prove that u ∈ span(S \ S′).

Recall that

NS(u) =
{

u′ ∈ C⊥
3 | supp(u) ∩ supp(u′) 6= ∅

}

=
{

u′ ∈ C⊥
3 | | supp(u) ∩ supp(u′)| = 1

}

∪ {u}.

Assume without loss of generality that supp(u) = {n− 2, n− 1, n}. For each a ∈ {0, 1, 2} let

Aa = NS(n− a) \ {u} = {v ∈ S | (n− a) ∈ supp(v), v 6= u}.

Claim 6.1 implies that |A0| = |A1| = |A2| =
n−1
2 − |{u}| = n−3

2 . Notice that A0, A1, A2 are disjoint
and A0 ∪A1 ∪A2 ∪ {u} = NS(u), i.e., A0, A1, A2, {u} is a partition of NS(u).

Let m = n−3
2 . We prove that the elements of A0, A1 and A2 can be ordered to satisfy the

following condition.

Condition 6.4. • A0 =
{

u
(0)
0 , u

(0)
1 , . . . , u

(0)
m

}

,

• A1 =
{

u
(1)
0 , u

(1)
1 , . . . , u

(1)
m

}

,

• A2 =
{

u
(2)
0 , u

(2)
1 , . . . , u

(2)
m

}

, and

• for all i ∈ [m] we have u = u
(i)
0 + u

(i)
1 + u

(i)
2 .

We argue that if there exists such an ordering then we are done. If u /∈ S′ then we are done
because u ∈ S \ S′ and hence u ∈ span(S \ S′). Otherwise u ∈ S′ and moreover, u ∈ NS(j) for all
j ∈ supp(u). We conclude that |Aa ∩S′| < 1

3 |Aa| for all a ∈ {0, 1, 2}. Hence |(A0 ∪A1 ∪A2)∩S′| <

|A0| and so, there exists i ∈ [m] such that u
(i)
0 , u

(i)
1 , u

(i)
2 /∈ S′, which implies that u ∈ span(S \ S′).

Now we prove that the elements of A0, A1 and A2 can be ordered as in Condition 6.4. Consider
bipartite undirected graph G = (L = A0, R = A1, E) where (u0, u1) ∈ E iff u0 ∈ A0, u1 ∈ A1 and
(u+ u0 + u1) ∈ A2). For V ⊆ A0 ∪ A1 let N(V ) be a set of neighbors of V in G. For v ∈ A0 ∪ A1

let deg(v) be a degree of v in G, i.e., deg(v) = |N({v})|.
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It is sufficient to show that for all v ∈ A0 ∪ A1 we have deg(v) = 2, because in this case for
all L0 ⊆ L it holds that |N(L0)| ≥ |L0|. This is true since the assumption that |N(L0)| < |L0|
for some L0 ⊆ L implies that for some v0 ∈ L0 and v1 ∈ N(L0) it holds that deg(v0) < deg(v1).
Contradiction. Now we use Hall’s Theorem (Theorem 6.5) to conclude that G has perfect matching.

We show that every node v ∈ A0 ∪ A1 has degree 2. Because of the symmetry it is sufficient
to show that deg(v) = 2 for all v ∈ A0. So, let v ∈ A0 and assume that supp(v) = {n, i1, i2},
where i1 6= i2 ∈ [n− 1]. Clearly, v has only one neighbor v′ ∈ A1 such that {i1, n− 1} ⊂ supp(v′)
and one neighbor v′′ ∈ A1 such that {i2, n− 1} ⊂ supp(v′′). Note that if v∗ ∈ A1 such that
supp(v∗) ∩ supp(v) = ∅ then u+ v + v∗ /∈ A2 and hence (v, v∗) /∈ E.

Consider the perfect matching that we have in G and for every u
(0)
i ∈ A0 let u

(1)
i ∈ A1 be

the “matched” node. Reorder the elements of A0 and A1 such that A0 =
{

u
(0)
0 , u

(0)
1 , ..., u

(0)
m

}

,

A1 =
{

u
(1)
0 , u

(1)
1 , ..., u

(1)
m

}

and for all i ∈ [m] we have that u
(0)
i is matched to u

(1)
i . Note that for all

i1 6= i2 ∈ [m] we have that u+u0(i1)+u1(i1), u+u0(i2)+u1(i2) ∈ A2 and u+u0(i1)+u1(i1) 6= u+u0(i2)+u1(i2).

Hence we can reorder the elements of A2 such that A2 =
{

u
(2)
0 , u

(2)
1 , ..., u

(2)
m

}

and for all i ∈ [m] we

have that u = u
(0)
i + u

(1)
i + u

(2)
i . The lemma follows.

For the sake of completeness we provide the Hall’s theorem.

Theorem 6.5 (Hall’s theorem). Let G = (L,R,E) be a bipartite undirected graph. Then perfect
matching exists if and only if ∀L0 ⊆ L we have |N(L0)| ≥ |L0|, where N(V ) = {u | ∃v ∈ V :
(u, v) ∈ E} is set of neighbors of V .

6.2 Proof of Lemma 6.3

Proof of Lemma 6.3. We prove that C is (16 , 1)-strongly stable with respect to S. Let I ⊂ [n] such

that |I| ≤ 1
6 ·n. We should prove that C is |I|

n -characterized by S(−I). By Claim A.2, it is sufficient
to show that for all w ∈ F

n
2 such that w ⊥ S(−I) it holds that w|[n]\I ∈ C|[n]\I .

Let w ∈ F
n
2 such that w ⊥ S(−I). We prove that w|[n]\I ∈ C|[n]\I , by showing the existence of

c ∈ C such that supp(w − c) ⊆ I and conclude that w|[n]\I = c|[n]\I ∈ C|[n]\I .

Note that if c ⊥ S then c ∈ (span(S))⊥ = (C⊥)
⊥
= C. Let I = {i1, . . . , im} and w0 = w. Note

that m ≤ n/6. We prove that it is possible to fix all bits of (w0)|I to get wm such that wm ⊥ S.
We prove this by induction on ij ∈ I. For the basis, recall that w0 ⊥ S(−I). Assume that we

have fixed the bits i1, . . . , ij−1 of w, obtaining wj−1 such that supp(w−wj−1) ⊆ {i1, . . . , ij−1} and
wj−1 ⊥ S(−{ij ,...,im}).

We prove that it is possible to fix the bit ij of wj−1, obtaining wj , such that wj ⊥ S(−{j+1,...,im}).
Let I ′ = {ij , . . . , im} and note that |I ′| ≤ |I| ≤ n/6.

Let J =
{

u ∈ C⊥
3 | supp(u) ∩ I ′ = {ij}

}

. Claim 6.1 implies that |J | ≥
n− 2|I ′|+ 1

2
. Similarly,

let J0 = {u ∈ J | 〈u,wj−1〉 = 0} and let J1 = {u ∈ J | 〈u,wj−1〉 6= 0}. We know that J0 ∩ J1 = ∅
and J0 ∪ J1 = J . So, either |J0| ≥ |J |/2 or |J | ≥ |J0|/2. Assume without loss of generality that
|J1| ≥ |J |/2, i.e.,

|J1| ≥
n− 2|I ′|+ 1

4
≥

n− 2|I|+ 1

4
> n/6.

If we have J = J1 then flip the jth bit of wj−1, obtaining wj such that 〈wj , u〉 = 0 for all
u ∈ S(−{j+1,...,im}).
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Hence assume that there exists u0 ∈ J0 such that 〈u0, wj−1〉 = 0. We show that there exist
u ∈ J1 and u′, u′′ ∈ S(−I′) such that u0 + u+ u′ + u′′ = 0. This results in a contradiction, because
〈u0, w〉 = 〈u′, w〉 = 〈u′′, w〉 = 0 and u0 + u+ u′ + u′′ = 0 but 〈u,w〉 6= 0.

Recall that we have u0 ∈ J0 and let supp(u0) = {ij , j
′, j′′} such that j′, j′′ /∈ I ′ and 〈u0, w〉 = 0.

We consider all vectors u ∈ J1. Note that |J1| > n/6. For u ∈ J1, supp(u) = {ij , j1, j2} we have
j1, j2 /∈ I ′. Every such u ∈ J1 with supp(u) = {ij , j1, j2} and u0 uniquely defines vector u′ ∈ S
such that j′, j1 ∈ supp(u′). Notice that the number of vectors u′ ∈ S such that j′ ∈ supp(u′) and
supp(u′) ∩ I ′ 6= ∅ is at most |I ′| ≤ n/6. We conclude that there exists u ∈ J1 with supp(u) =
{ij , j1, j2} and u′ ∈ S such that j′, j1 ∈ supp(u′) and supp(u′)∩ I ′ = ∅. This is true since j′ is fixed
and we have |J1| > |I ′|.

Let u′′ = u0 + u + u′ and thus u0 + u + u′ + u′′ = 0. We argue that u′′ ∈ S(−I′). To see
this note that supp(u0) = {ij , j

′, j′′}, supp(u) = {ij , j1, j2}, supp(u
′) ⊃ {j′, j1}, u

′ ∈ S(−I′) and
j1, j2, j

′, j′′ /∈ I ′. The Lemma follows.

7 Proof of Theorem 3.3

Let us start with an auxiliary definition of blocks. Without loss of generality assume that m|n. For
i ∈ [n/m] let us define the ith block by

blocki = {m · (i− 1) + 1, . . . ,m · (i− 1) + m}.

Note that these blocks provide a partition of coordinates in [n]. Notice that if cwidth(B) ≤ m
then for every u ∈ B we have supp(u) ⊆ blocki ∪ blocki+1 or supp(u) ⊆ block(n/m) ∪ block1, i.e.,
the support is included in some two subsequent blocks. This explains the intuition behind the
definition of block and why its size was chosen to be m.

Remark 7.1. In case n is not divisible by m, the size of the last block will be between m and 2m.
In particular, one can see that the above property holds as well as other statements in the rest of
the paper.

Definition 7.2 (Adjacent Blocks). Given I ⊆ [n] we let

blocks(I) = {i ∈ [n] | ∃j : i ∈ blockj, I ∩ blockj 6= ∅}.

For u ∈ C⊥, with some abuse of notation we let blocks(u) = blocks(supp(u)).
For j ∈ [n/m], if j < n/m we let NextBlock(blockj) = block(j+1) and otherwise (j = n/m) we

let NextBlock(blockj) = block1. Similarly, we define a previous block: PrevBlock(blockj) = blocki
iff NextBlock(blocki) = blockj.

We also define NextBlocks and PrevBlocks for a subset I ⊆ [n] by

NextBlocks(I) = {i ∈ [n] | ∃j1, j2 : i ∈ blockj2 , I ∩ blockj1 6= 0, blockj2 = NextBlock(blockj1)}

and

PrevBlocks(I) = {i ∈ [n] | ∃j1, j2 : i ∈ blockj2 , I ∩ blockj1 6= 0, blockj2 = PrevBlock(blockj1)}.

Let Adjacent(I) = blocks(I)∪NextBlocks(I)∪PrevBlocks(I). We define Adjacentd by induction
on d. We let Adjacent1(I) = Adjacent(I) and Adjacentd(I) = Adjacent(Adjacentd−1(I)).
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Now we define a subset S of small dual codewords. Let

S =
{

u ∈ C⊥
≤2m | ∃j : supp(u) ⊆ blockj ∪NextBlock(blockj)

}

.

Note that B ⊆ S and for all u ∈ S we have |u| ≤ 2m and cwidth(u) ≤ 2m.
As pointed out in Remark 7.1, if n is not divisible by m, then for all u ∈ S we have |u| ≤ 4m

and cwidth(u) ≤ 4m. This is the reason why we state Theorem 3.3 with “4m” and not with 2m.
However, for the convenience, in the rest of the proof we will think that all blocks have size m.

We will define a distribution D over S such that for every u ∈ S we have D(u) > 0. We define
the distribution D over S by defining the sampling of u ∈ S.

• pick random j ∈ [n/(2m)]

• pick random u ∈ (C|(blockj∪NextBlock(blockj)))
⊥.

Note that for all J ⊆ [n], J 6= ∅ it holds that C|J
⊥ 6= ∅ since 0|J | ∈ C|J

⊥.
The following claim is immediate.

Claim 7.3. Assume that B ⊆ C⊥ is d-neighboring with respect to C. Then for every u ∈ C⊥

we have u1, . . . , um ∈ B such that
m
∑

i=1

ui = u and for all i ∈ [m] it holds that supp(ui) ⊆

Adjacent⌈d/m⌉(supp(u)).

Proof. The proof follows since if ui is d-adjacent to u then supp(ui) ⊆ Adjacent⌈d/m⌉(supp(u)).

Let us state a couple of lemmas. Then we will prove Theorem 3.3.

Lemma 7.4. It holds that C is 1
6 -redundant with respect to S and D.

Lemma 7.5. It holds that C is (1, 1
m·(⌈d/m⌉))-strongly stable with respect to S and D.

The proofs of the Lemmas are postponed to Section 7.1. Now we prove Theorem 3.3.

Proof of Theorem 3.3. Lemma 7.4 implies that C is 1
6 -redundant with respect to S and D. Lemma

7.5 implies that C is
(

1, 1
m·(⌈d/m⌉)

)

-strongly stable.

Moreover, for all I ⊆ [n] such that ∀i ∈ I, ∃u ∈ S : i ∈ supp(u) we have

Pr
u∼D

[supp(u) ∩ I 6= ∅] ≥
1

6
·
|I|

n
.

Hence C is (4m, 16 , 1,
1

m·(⌈d/m⌉))-strongly structured with respect to S and D.

7.1 Proofs of Lemmas 7.4 and 7.5

Claim 7.6. Let w ∈ F
n
2 and u ∈ S such that 〈u,w〉 6= 0. Assume that J ⊆ [n] such that supp(u) ⊆

J . Let i ∈ supp(u). Then

∣

∣

∣

{

u′ ∈ C⊥ | supp(u′) ⊆ J, i ∈ supp(u′), 〈u′, w〉 6= 0
}
∣

∣

∣
≥

1

2
·
∣

∣

∣

{

u′ ∈ C⊥ | supp(u′) ⊆ J, i ∈ supp(u′)
}
∣

∣

∣
.
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Proof. Let us define the following subsets

C/∈,0 =
{

u′ ∈ C⊥ | supp(u′) ⊆ J, i /∈ supp(u′), 〈u′, w〉 = 0
}

C∈,0 =
{

u′ ∈ C⊥ | supp(u′) ⊆ J, i ∈ supp(u′), 〈u′, w〉 = 0
}

C/∈,6=0 =
{

u′ ∈ C⊥ | supp(u′) ⊆ J, i /∈ supp(u′), 〈u′, w〉 6= 0
}

and
C∈,6=0 =

{

u′ ∈ C⊥ | supp(u′) ⊆ J, i /∈ supp(u′), 〈u′, w〉 6= 0
}

.

In the rest of the Claim we prove that
∣

∣C/∈,0

∣

∣ = |C∈,6=0| and then we prove that
∣

∣C/∈,0

∣

∣ = |C∈,0|.
We conclude that |C∈,6=0| = |C∈,0|. This implies the Claim since

|C∈,6=0| = |
∣

∣

{

u′ ∈ S | supp(u′) ⊆ J, i ∈ supp(u′), 〈u′, w〉 6= 0
}∣

∣ ≥

1

2
· (|C∈,6=|+ |C∈,0|) =

1

2
·
∣

∣

∣

{

u′ ∈ C⊥ | supp(u′) ⊆ J, i ∈ supp(u′)
}
∣

∣

∣
.

Now, let us prove that |C/∈,0| = |C∈,6=0|. We know that P |J is a linear subspace, 0n ∈ C/∈,0 and
u ∈ C∈,6=0. We know that for every u′ ∈ C∈,6=0 we have u + u′ ∈ C/∈,0, and for every v′ ∈ C/∈,0 we
have u+ v′ ∈ C/∈,0. We conclude that |C/∈,0| = |C∈,6=0|.

Now, we prove that |C/∈,0| = |C∈,0|. If C∈,0 = ∅ we are done. Otherwise, assume that v ∈ C∈,0

and recall that 0n ∈ C/∈,0. We know that for all u′ ∈ C/∈,0 we have u′+v ∈ C∈,0 and for all v′ ∈ C∈,0

we have v + v′ ∈ C/∈,0. Thus |C/∈,0| = |C∈,0|.

We are ready to prove Lemma 7.4.

Proof of Lemma 7.4. Let w ∈ F
n
2 and u ∈ S. Let i ∈ supp(u). By Claim A.4, it is sufficient to

prove that if 〈u,w〉 6= 0 then

Pr
u′∼D

[

〈u′, w〉 6= 0 | i ∈ supp(u′)
]

≥
1

6
.

So, we assume that 〈u,w〉 6= 0. By definition ofD we know that supp(u) ⊆ blockj∪NextBlock(blockj)
for some j. Then i ∈ blockj ∪NextBlock(blockj).

If vector u′ is sampled according to D, then given that i ∈ supp(u′) with probability at least 1
3

we have supp(u′) ⊆ blockj ∪ NextBlock(blockj) since there are only three possible (not necessary
disjoint) events:

• i ∈ PrevBlock(blockj) ∪ blockj,

• i ∈ blockj ∪NextBlock(blockj),

• i ∈ NextBlock(blockj) ∪NextBlock(NextBlock(blockj));

and each one of pairs of blocks is chosen with the same probability.
Using the fact that supp(u′) ⊆ blockj ∪ NextBlock(blockj) and i ∈ blockj ∪ NextBlock(blockj),

by Claim 7.6 we have

Pr
u′∼D

[

〈u′, w〉 6= 0 | i ∈ supp(u′), supp(u′) ⊆ blockj ∪NextBlock(blockj)
]

≥
1

2
.
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Letting Blocks = blockj ∪NextBlock(blockj) we conclude that

Pr
u′∼D

[

〈u′, w〉 6= 0 | i ∈ supp(u′)
]

=

Pr
u′∼D

[

〈u′, w〉 6= 0 | i ∈ supp(u′), supp(u′) ⊆ Blocks
]

· Pr
u′∼D

[

supp(u′) ⊆ Blocks | i ∈ supp(u′)
]

≥

≥
1

2
·
1

3
=

1

6
.

Now we prove Lemma 7.5.

Proof of Lemma 7.5. Let I ⊆ [n] be any subset (intuitively, think that I is a set of bad bits). Let
J = Adjacent(⌈d/m⌉)(blocks(I)) and note that

|J | ≤ m · (⌈d/m⌉) · |I|,

because in the worst case every coordinate i ∈ I belongs to the separate block (of size m) and hence
|blocks(I)| ≤ |I| ·m. Thus

|Adjacent(⌈d/m⌉)(blocks(I))| ≤ (⌈d/m⌉) · |blocks(I)| ≤ |I| ·m · (⌈d/m⌉).

Let u ∈ C⊥ such that supp(u)∩ J = ∅. We prove that u ∈ spanS(−I). By Definition 3.2 (recall
that B ⊆ S is d-neighboring) and Claim 7.3, there exists u1, . . . , uk ∈ S such that u1+ . . .+uk = u
and supp(ui) ∩ I = ∅ for all i ∈ [k]. Thus (C⊥)(−J) ⊆ spanS(−I).

We showed that for every I ⊆ [n] there exists J ⊆ [n], |J | ≤ m · (⌈d/m⌉) · |I| such that
(C⊥)(−J) ⊆ spanS(−I). We conclude that C is (1, 1

m·(⌈d/m⌉))-strongly stable with respect to S and
D.

8 Proof of Theorem 3.8

Let C1 = span(B1)
⊥.

First of all, we consider the code C1 with regards to B1. The set of small weight dual codewords
will be defined by S ⊆ C⊥

≤4m and the distribution D over S, are defined exactly as in the proof of
Theorem 3.3.

It follows that C1 is 1
6 -redundant with regards to S and D (the proof is the same to the proof

of Lemma 7.4). Similarly to the proof of Theorem 7.4, for all I ⊆ [n] such that ∀i ∈ I, ∃u ∈ S : i ∈
supp(u) we have

Pr
u∼D

[supp(u) ∩ I 6= ∅] ≥
1

6
·
|I|

n
.

Let J = [m]. Now, we argue that C|[n]\J = (C1)|[n]\J .

By definition, ((C1)|[n]\J)
⊥ ⊆ (C|[n]\J)

⊥. It remains to show that (C|[n]\J)
⊥ ⊆ ((C1)|[n]\J)

⊥.

We know that for every u ∈ C⊥ \ span(B1) it holds that u = u1 + u2 for some u1 ∈ span(B1) and
u2 ∈ span(B2)\{0

n}. We have u1, u2 6= 0n. By definition, u2 is m-different from u1 and that means
supp(u) ∩ J 6= ∅.

We conclude that for every u′ ∈ (C|[n]\J)
⊥ there exists u ∈ C1

⊥ such that u|[n]\J = u′. Hence

(C|[n]\J)
⊥ ⊆ ((C1)|[n]\J)

⊥.
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Now we recall the proof of Lemma 7.5 to prove that C is ( 1
20m·(⌈d/m⌉) ,

1
10)-stable with regards

to S. Let I ⊆ [n] be any subset (intuitively, think that I is a set of bad bits). Assume that
|I| < 1

20m·(⌈d/m⌉) · n.

Let J = [m] ∪
(

Adjacent(⌈d/m⌉)(blocks(I))
)

(similarly to the proof of Lemma 7.5, Section 7)

and note that

|J | ≤ m+m · (⌈d/m⌉) · |I| ≤ 2m · (⌈d/m⌉) · |I| <
1

10
· n,

see the proof of Lemma 7.5 for the explanation.
By the proof of Lemma 7.5 and the fact that C|[n]\[m] = (C1)|[n]\[m], it follows that (C

⊥)(−J) ⊆
spanS(−I).

It follows that C is ( 1
20m·(⌈d/m⌉) ,

1
10)-stable with respect to S.
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A Auxiliary Claims

The proof of the next claim was implicit in [12, Claim 18].

Claim A.1. Let ρ > 0. Let V ⊆ F
n and such that for all v ∈ V we have |v| < ρn. Assume that

|
⋃

v∈V supp(v)| ≥ 2ρ. Then there exists w′ ∈ span(V ) such that ρn ≤ |w′| < 2ρn.

Proof. Let w1, . . . , ws be an arbitrary ordering of the elements of V . Let µ(ℓ) be the maximal
weight of an element in span(w1, . . . , wℓ). We have µ(1) = |w1| < ρn and µ(s) ≥ ρn because the

expected weight of a word in span(V ) is (exactly) |F|−1
|F| ·

∣

∣

⋃

w∈V (supp(w))
∣

∣ ≥ 1
2 · 2ρn. To see that

the expected weight of a word wexp ∈ span(V ) is as claimed note that wexp is picked by a random
linear combination of vectors in V , where each vector v ∈ V ia taken independently with probability
1 − 1

|F| . Hence if i ∈
⋃

w∈V (supp(w)) then i ∈ supp(wexp) with probability |F|−1
|F| ≥ 1

2 . Thus there

exist elements αi ∈ F such that
s

∑

i=1

αi · wi = wexp, where |wexp| ≥ ρn, i.e., µ(s) ≥ ρn.

Finally, we have µ(ℓ+1) < µ(ℓ)+ρn since for every i ∈ [s] we have |wi| < ρn. We conclude there
must exist ℓ for which ρn ≤ µ(ℓ) < 2ρn. Let w′ be a word of maximal weight in span(w1, . . . , wℓ).
We have that ρn ≤ |w′| < 2ρn.

Claim A.2. It holds that C ⊆ F
n is ρ-characterized (ρ-strictly characterized) by S if and only if

there exists J ′ ⊆ [n], |J ′| ≤ ρn (|J ′| < ρn) and for all w ⊥ S it holds that w|[n]\J ′ ∈ C|[n]\J ′ .

Proof. For the first direction, if C ⊆ F
n is ρ-characterized (ρ-strictly characterized) by S then,

by definition, there exists J ′ ⊆ [n], |J ′| ≤ ρn (|J ′| < ρn) such that |J ′| ≤ ρn (|J ′| < ρn) and
(C⊥)(−J ′) ⊆ span(S). This means that if w ⊥ S then w ⊥ (C⊥)(−J ′) and hence w|[n]\J ′ ∈ C|[n]\J ′ .

For the second direction, assume that there exists J ′ ⊆ [n], |J ′| ≤ ρn (|J ′| < ρn) and for all
w ∈ F

n such that w ⊥ S it holds that w|[n]\J ′ ∈ C|[n]\J ′ . We argue that (C⊥)(−J ′) ⊆ span(S), since
otherwise there exists w ∈ F

n such that w ⊥ S and w|[n]\J ′ /∈ C|[n]\J ′ . Hence C is ρ-characterized
(ρ-strictly characterized) by S.
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Let w ∈ F
n. We know that δ(w,C) ≤ ρ if and only if there exists J ′ ⊆ [n] such that |J ′| ≤ ρn

and w|[n]\J ′ ∈ (C)|[n]\J ′ .

Corollary A.3. Let C ⊆ F
n be a linear code and S ⊆ C⊥. Let ρ ≤ δ(C)/3.

• If C is ρ-characterized (ρ-strictly characterized) by S then for all w ∈ F
n such that w ⊥ S we

have δ(w,C) ≤ ρ (δ(w,C) < ρ).

• If for all w ∈ F
n such that w ⊥ S we have δ(w,C) < ρ then C is 2ρ-strictly characterized by

S.

Proof. The first bullet is straightforward. If C is ρ-characterized (ρ-strictly characterized) by S
then, by Claim A.2 there exists J ′ ⊆ [n], |J ′| ≤ ρn (|J ′| < ρn) and for all w ⊥ S it holds that
w|[n]\J ′ ∈ (C)|[n]\J ′ , i.e., δ(w,C) ≤ ρ (δ(w,C) < ρ).

For the second bullet, assume that for all w ∈ F
n such that w ⊥ S we have δ(w,C) < ρ. We argue

that there exists a subset J ′ ⊆ [n], |J ′| < 2ρn such that for all w ⊥ S we have w|[n]\J ′ ∈ (C)|[n]\J ′ .
We say that w is a coset leader if w has minimal weight in w + C = {w + c | c ∈ C}. Notice that

if w ∈ F
n is a coset leader then δ(w,C) = δ(w, 0n) = |w|

n .
Let J ′ = {i | i ∈ supp(w) such that w ∈ F

n is a coset leader and w ⊥ S}. By definition of
J ′ we know that for all w ⊥ S we have w|[n]\J ′ ∈ C|[n]\J ′ . To see this note that if w′ ∈ w + C is a
coset leader then w ⊥ S iff w′ ⊥ S and if w ⊥ S then w|[n]\supp(w′) ∈ C|[n]\supp(w′).

Let VJ ′ = {w ∈ F
n | w ⊥ S, w is a coset leader} and note that

⋃

w∈VJ′
supp(w) = J ′. Note also

that for all w ∈ VJ ′ we have |w| = n · δ(w, 0) ≤ ρn, because w is a coset leader. It is sufficient
to show that |J ′| < 2ρn. Assume the contradiction, i.e., |J ′| ≥ 2ρn. Claim A.1 implies that there
exists w′ ∈ span(VJ ′) such that ρn ≤ |w′| ≤ 2ρn. Recall that ρ ≤ δ(C)/3. Hence, δ(w′, 0n) ≥ ρ and
for all c ∈ C \ {0n} it holds that δ(w′, c) ≥ (|c| − |w′|)/n ≥ δ(C)− 2δ(C)/3 = δ(C)/3. We conclude
that δ(w′, C) ≥ ρ. But w′ ⊥ S, contradiction.

Claim A.4. Let C ⊆ F
n, S ⊆ C⊥ and D be a distribution over S. Then, C is ǫ-redundant with

respect to S and D if and only if the following condition holds. For all u ∈ S and w ∈ F
n if

〈u,w〉 6= 0 then there exists i ∈ supp(u) such that i is ǫ-bad with respect to S and D.

Proof. For the first direction assume that C is ǫ-redundant with respect to S and D. Let u ∈ S
and w ∈ F

n such that 〈u,w〉 6= 0. Let S′ = {u′ ∈ S | 〈u′, w〉 6= 0}. Assume by contradiction that
every i ∈ supp(u) is good. Then for every i ∈ supp(u) we have D(NS(i) ∩ S′) < ǫD(NS(i)) and
hence u ∈ span(S \ S′) with contradiction to the fact that for all u′ ∈ S \ S′ we have 〈u′, w〉 = 0
but 〈u,w〉 6= 0.

For the second direction, assume that for all u ∈ S and w ∈ F
n if 〈u,w〉 6= 0 then there

exists i ∈ supp(u) such that i is ǫ-bad. Assume S′ ⊆ S such that for every i ∈ supp(u) we have
D(NS(i) ∩ S′) < ǫD(NS(i)). We argue that u ∈ span(S \ S′) since otherwise there exists w ∈ F

n

such that w ⊥ (S \ S′), however 〈u′, w〉 6= 0 for some u′ ∈ S′. In this case, supp(u) has no ǫ-bad
index. Contradiction.
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