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Abstract

We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-
like Resolution. This game was previously described in a parameterized complexity context to show
lower bounds for parameterized formulas [BGL11] and for the classical pigeonhole principle [BGL10].
The main point of this note is to show that the asymmetric game in fact characterizes tree-like
Resolution proof size, i. e. in principle our proof method allows to always achieve the optimal lower
bounds. This is in contrast with previous techniques described in the literature. We also provide a
very intuitive information-theoretic interpretation of the game.

1 Introduction

Resolution is one of the best-known and most-studied proof systems. It was developed by Blake [Bla37],
Davis and Putnam [DP60], and Robinson [Rob65] and refutes unsatisfiable formulas in CNF by using
the single inference rule C∨x D∨¬x

C∨D . Due to its simplicity, Resolution is widely used in applications. In
fact, most modern SAT solvers employ subsystems of Resolution as their underlying mechanism. One
particularly important subsystem is tree-like Resolution where proofs are in the simple form of a tree,
i. e. each derived clause can be used at most once. When we focus on unsatisfiable formulas, tree-like
Resolution is equivalent to the execution of DLL algorithms and to decision trees for the search problem
(i. e. to find a falsified clause under a given assignment).

A number of techniques have been developed to understand the complexity of Resolution and its
fragments. Most notably, there is the size-width tradeoff [BSW01], the feasible interpolation technique
[Kra97] and several game-theoretic methods [PI00, Pud00]. All these techniques provide powerful tools
for showing lower bounds to the size (and sometimes width and space) of Resolution refutations. One
interesting question is how good these lower bounds are, i. e. if the techniques can be used to obtain
optimal bounds. One nice result in this direction is the characterization of tree-like Resolution space
by Esteban and Torán [ET03]. Their characterization uses the Prover-Delayer game devised by Pudlák
and Impagliazzo [PI00] which is a simple and elegant method to obtain bounds on the size of tree-like
Resolution refutations. But exactly for this characterization of Esteban and Torán, the game of Pudlák
and Impagliazzo does not yield optimal size bounds for tree-like Resolution refutations.

∗Research was supported by the grant “Limits of Theorem Proving” from the John Templeton Foundation and a DAAD
grant. Part of this work was done while the first author was visiting Sapienza University of Rome.
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Our contribution in this note is to explain a refined version of the Pudlák-Impagliazzo game, the
asymmetric Prover-Delayer game. This game has been used previously in Parameterized Resolution
[BGL11] and for the classical pigeonhole principle [BGL10]. Here we present a slightly simplified version
for classical tree-like Resolution and observe that our asymmetric game precisely characterizes tree-like
Resolution size. This result provides an interesting counterpart to the result of Esteban and Torán
[ET03] in that we now have elegant combinatorial characterizations of both tree-like Resolution space
and size.

The remaining part of this paper is organized as follows. In Section 2 we describe the asymmetric
Prover-Delayer game. Section 3 collects some facts on the correspondence between tree-like Resolution
refutations and boolean decision trees. Sections 4 and 5 then state the two directions of our charac-
terization of tree-like Resolution size by the asymmetric game. We conclude in Sections 6 and 7 with
a comparison to the symmetric game of Pudlák and Impagliazzo [PI00] and some applications of the
asymmetric game.

2 Asymmetric Prover-Delayer Games

The game starts with an unsatisfiable formula F in CNF, and it is played by two players called Prover
(female) and Delayer (male). The Delayer brags that he knows a satisfying assignment for F , and the
Prover wants to expose his lie. At each round of the game Prover asks Delayer for the value of one of
the variables, and she continues to query until a clause of F is falsified. In each round the Delayer scores
some points and indeed the objective of the Delayer is to maximize his score at the end of the game,
before being eventually exposed by the Prover.

Let F =
∧
j Cj be the CNF they play on. We say that “Cj(α) = b” when the partial assignment α

forces clause Cj to evaluate to b. We say that Cj(α) is undefined otherwise.
The game is played in rounds, and while the two players interact they build a partial assignment as

byproduct of their interaction. We denote by αi and si the partial assignment and the Delayer score at
the end of round i, respectively. At the beginning of the game α0 = ∅ and s0 = 0. At round i:

1. Prover asks for a variable x 6∈ dom(αi−1);

2. Delayer assigns two weights p0 and p1 to the two possible answers; the weights must satisfy:

p0 ≥ 0 p1 ≥ 0 p0 + p1 = 1. (1)

3. Prover chooses value b, and the status of the game is updated1:

αi := αi−1 ∪ {(x, b)} si := si−1 + log
1

pb
.

The game ends at the first round i such that Cj(αi) = 0 for some clause Cj . The final score of the
Delayer is si.

The game has been already used in the articles [BGL10, BGL11]. Here the game description is
simpler, in particular two details are different. The first one regards the weights p0 and p1. The previous
definition of the game separates the weight function and the Delayer strategy. Since both must be
carefully chosen for proving a lower bound, we can assume that the Delayer himself decides the value
of this function at each step of the game. The second difference is that in the previous definition the
Delayer was allowed to answer Prover’s query at the cost of not scoring anything in that round. In the
new formulation the Delayer can simulate this behavior by choosing either (0, 1) or (1, 0) as weights.

If Delayer chooses (1, 0) or (0, 1) then the Prover cannot choose the value corresponding to weight
0; that would give an infinite amount of points to Delayer, and would be suboptimal for the Prover
since she can always enforce a finite score. Therefore in the case of integer weights, Prover’s answer is
determined by Delayer, who in turn does not get any points in that round.

This observation justifies the small changes to the game definition given in [BGL10, BGL11]. It is
now more compact and elegant.

1we consistently manage the extreme cases by setting si =∞ whenever Prover chooses value b such that pb = 0
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3 Tree-Like Resolution and Decision Trees

This section collects some facts on the correspondence between tree-like Resolution and boolean decision
trees. All this material is known (see e. g. [BSIW04]), but we give precise statements with proofs for
completeness.

A decision tree for an unsatisfiable CNF F =
∧
i Ci is a binary tree where inner nodes are labeled

by variables of F and leaves a labeled by clauses from F . Each path from the root to a leaf in the tree
specifies a partial assignment. In addition, a decision tree for F must satisfy the condition that each
path from the root to a leaf falsifies the clause at the leaf. Therefore, a decision tree for F solves the
following search problem: given an assignment α ∈ {0, 1}n find i such that Ci is falsified by α.

It is a well known fact that a tree-like Resolution refutation of F can be thought of as a decision
tree for F . This follows by induction on the size of the refutation. If the size is 1 then the refutation is
just the empty clause, so Ci = � for some i and the search problem can be solved by the single vertex
decision tree labeled by i. If the tree is bigger, let x be the last variable on which the refutation resolves.
Consider the subtrees T0 and T1 of the refutation, inferring respectively x and ¬x. For b ∈ {0, 1} the
tree-like Resolution inference Tb can be restricted to a refutation of F �x=b. By the inductive hypothesis
the latter can be transformed into a decision tree Db which solves the search problem for F �x=b. Clearly,
the search problem for F is solved by a decision tree which queries x and if x = b it applies the decision
tree Db. In this transformation from tree-like refutations to decision trees

• each inferred clause corresponds to a query node;

• each Resolution inference on x corresponds to a query for x;

• each occurrence of an initial clause Ci corresponds to a leaf labeled by i;

• each consistent2 path from the root to a node in the decision tree corresponds to a partial assignment
which falsifies the corresponding clause in the refutation.

The above transformation implies the following lemma.

Lemma 1. Let F be an unsatisfiable CNF with a tree-like Resolution refutation T . Then there is a
decision tree with the same tree structure as T which solves the search problem for F .

Notice that the transformation can be reversed, even though it is not always possible to preserve
the exact tree structure since decision trees leave more room for sub-optimal choices with no equivalent
representation in Resolution (e.g. unreachable nodes, search problem solved by a strict subtree, falsified
clauses at an internal node). A tree-like Resolution refutation is called regular when in every path from
an initial clause to the empty clause, no variable is resolved twice.

Lemma 2. Consider an unsatisfiable formula F in CNF and a decision tree T for the search problem
on F . Then there is a tree-like regular Resolution refutation of F with tree structure T ′ such that T ′ is
embeddable in T .

Proof. We assume that T has no unreachable nodes, i.e. never queries the same variable twice. Otherwise
we remove the redundant queries and the corresponding unreachable subtrees. The new decision tree is
embeddable into T , so this assumption is without loss of generality.

To get the refutation we essentially take the tree and flip it over: we label nodes with clauses in such
a way that the clause labeling any internal node is deducible from the clauses labeling its children using
a Resolution step.

Let ρ be the unique minimal partial assignment reaching a node u. There is a unique maximal clause
D which is falsified by ρ. We label the node u with D. The root clause is the empty one by definition. If
u is an internal node with query variable x, the two child nodes correspond to assignments ρ ∪ {x = 0}
and ρ ∪ {x = 1}, respectively. Thus the labeling clauses are D ∨ x and D ∨ ¬x. If u is a leaf node
outputting index i for clause Ci, then D ⊇ Ci. This is clearly a regular tree-like refutation of the leaf
clauses with the same structure as T .

2if a path goes through two nodes which query the same variable it must take the same direction in both nodes.
Otherwise it does not correspond to a legal input of the decision tree.
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To obtain a proper refutation substitute each leaf clause D with an (arbitrary) initial clause Ci ⊆ D.
This substitution must be propagated towards the root: each clause is substituted by a subclause.
Consider the inference A∨x B∨¬x

C . The premises are mapped to A′ and B′ respectively. Either both
x ∈ A′ and ¬x ∈ B′ or one of them (say A′) does not contain variable x. In the former case C is
substituted with the resolution of A′ and B′, otherwise the inference tree of C is substituted by the one
of A′, reducing the length of the proof.

The two constructions explained above lead to the following remarkable correspondence.

Corollary 1. The smallest length of a tree-like Resolution refutation of an unsatisfiable CNF F has
exactly the same length as the shortest decision tree for the search problem on F .

4 Decision Trees as Prover Strategies

Given the above correspondence between tree-like Resolution and decision trees, we can now start to
explain our characterization of tree-like Resolution size by the asymmetric Prover-Delayer game. Loosely
speaking, we interpret the score functions as a way to define a distribution on the branching made in
the decision tree. Under this view the Delayer’s score at each step is just the entropy of the bit encoding
the corresponding choice, according to Delayer’s distribution. Since root-to-leaf paths are in bijection
with leaves, this process induces a distribution on the leaves. Hence the entropy collected on the path
is the entropy of the corresponding leaf choice. In this interpretation, the asymmetric Prover-Delayer
game becomes a challenge between a Prover, who wants to end the game giving up little entropy, and
Delayer, who wants to get a lot of it. This means that the average score of the Delayer estimates the
number of leaves in the tree. In our framework the decision tree determines Prover’s queries, and the
Delayer defines a distribution on paths.

The connection of this game to size of proofs in tree-like Resolution is given by the next theorem. A
version of this result for tree-like Parameterized Resolution appeared already in [BGL11].

Theorem 1. Let F be an unsatisfiable CNF. If F has a tree-like Resolution refutation of size at most
S, then there is a Prover strategy such that any Delayer gets at most logdS2 e points.

Proof. Let F be a contradiction using variables x1, . . . , xn. Choose any tree-like Resolution refutation
of F of size S and interpret it as a boolean decision tree T for the search problem on F , according to
Lemma 1. All internal vertices of T have two children, thus S = 2L − 1 where L = dS2 e is the number
of leaves of the tree.

The decision tree T completely specifies the query strategy for Prover: at the first step she will query
the variable labeling the root of T . Whatever decision is made regarding the value of the queried variable,
Prover moves to the root of the corresponding subtree and queries the variable which labels it. This
process induces a root-to-leaf walk on T , and such walks are in bijection with the set of leafs.

To completely specify Prover’s strategy we need to explain how Prover chooses the value of the
variable x asked at that round. The most natural thing to do is to choose the value randomly as follows:

x =

{
0 with probability p0

1 with probability p1,

where p0 and p1 are the weights determined by the Delayer.
In a game played between this randomized Prover and a specific Delayer D, we denote by qD,` the

probability of such a game to end at leaf `. We call πD this distribution on the leaves. To prove the
theorem the following observation is crucial:

Claim 1. If the game ends at leaf `, then Delayer D scores exactly log 1
qD,`

points.

Before proving this claim, we show that it implies the theorem. The expected score of Delayer D is∑
`

qD,` log
1

qD,`
= H(πD)
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which is the Shannon entropy of the distribution πD. The support of πD has size at most L, which
implies that H(πD) ≤ logL since the entropy is maximized by the uniform distribution. By fixing the
random choices of the Prover, we can force Delayer D to score at most logL points.

To prove Claim 1 consider a leaf ` and the unique path that reaches it. Without loss of generality we
assume that this path corresponds to the ordered sequence of assignments x1 = ε1, . . . , xm = εm. The
probability of reaching the leaf ` is

qD,` = q1q2 . . . qm

where qi is the probability of setting xi = εi conditioned on the previous choices. The score of the
corresponding game play is

m∑
i=1

log
1

qi
= log

1∏m
i=1 qi

= log
1

qD,`
.

This concludes the proof of the claim and the theorem.

The above theorem shows that lower bounds to the refutation size in tree-like Resolution can be
obtained by choosing an appropriate distribution for the Delayer.

5 Distributions as Delayer Strategies

So far we argued that the asymmetric Prover-Delayer game can be used to prove lower bounds for the
size of tree-like Resolution refutations, but we would like to know how good this lower bound method is.
Here we show that the method completely characterizes proof length, meaning that it is always possible
(in principle) to define a Delayer strategy such that the implied lower bound is almost equal to the proof
length. To be more precise this method characterizes the number of leaves in the shortest proof.

Theorem 2. Let F be an unsatisfiable CNF with shortest tree-like Resolution refutation of size S. Then
there is a Delayer strategy such that the Delayer scores at least log

⌈
S
2

⌉
points in any game on F against

any Prover.

Proof. We denote the number of leaves in the shortest tree-like refutation of a CNF F by L(F ), and we
denote by F �α formula F restricted by the partial assignment α.

Delayer assigns weights according to the following rules, depending on the partial assignment α
computed so far, and on the variable x 6∈ dom(α) queried by the Prover

p0 =
L(F �α,x=0)

L(F �α,x=0) + L(F �α,x=1)
and p1 =

L(F �α,x=1)

L(F �α,x=0) + L(F �α,x=1)
.

Let n be the number of variables of the formula F . By induction on n we show that the Delayer wins
at least logL(F ) points. For the base case the formula has zero variables and is unsatisfiable, thus it
contains the empty clause and L(F ) = 1. The Delayer always score at least zero points, since Delayer’s
score is always non negative. If n > 0 then two cases occur: either the formula already contains the
empty clause, and then the reasoning above applies; or the Prover queries a variable x and chooses a
value b. The score is log 1

pb
+ X where X is the score the Delayer wins in subsequent steps. By the

induction hypothesis X ≥ logL(F �x=b), thus the total score is at least

log
1

pb
+ logL(F �x=b) = log

(
L(F �x=0) + L(F �x=1)

L(F �x=b)

)
+ logL(F �x=b) =

log (L(F �x=0) + L(F �x=1)) ≥ logL(F ).

A refutation of size S has exactly
⌈
S
2

⌉
leaves, so the theorem is proved.

A comment on the previous proof is required. We already argued that the Delayer strategy defines
a distribution on the root-to-leaf walks in the tree induced by the Prover strategy. The above proof is
based on the fact that is is possible to define a distribution which is uniform on the leaves of the shortest
proof, and thus the entropy is exactly the logarithm of the size of the set of leaves (cf. Figure 1).

Combining Theorems 1 and 2 we obtain the following tight characterization.
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T0

T1

p0 = l0
l0+l1

p1 = l1
l0+l1

l0

l1

Figure 1: The proof tree structure can be used to give different weights to the branches. Here l0 and l1
are the number of leaves of the left and right subtree, respectively.

Corollary 2. For any unsatisfiable CNF F , the maximum score achievable in an Asymmetric Prover-

Delayer game by a Delayer is exactly log
⌈
ST (F )

2

⌉
where ST (F ) is the size of the shortest tree-like Reso-

lution refutation of F .

6 Comparison with the Symmetric Prover-Delayer Game

The Prover-Delayer game of Pudlák and Impagliazzo [PI00] can be seen as a special case of the game we
describe here, and will be called the symmetric Prover-Delayer game in this section. In the symmetric
game the Delayer has only two options: either he decides the value of the queried variable himself, or asks
the Prover to decide. In the former case he does not get any points, while in the latter he gets one point,
regardless of Prover’s choice. A moment’s thought is sufficient to realize that limiting the (asymmetric)
Delayer to choose the pair (p0, p1) among

{(
1
2 ,

1
2

)
, (0, 1), (1, 0)

}
yields exactly the symmetric game. If

Delayer chooses
(

1
2 ,

1
2

)
, then he gets one point whatever Prover decides. If Delayer chooses one of the

extremely unbalanced pairs we already argued that he forces Prover’s hand.
The symmetric game was also studied by Esteban and Torán [ET03], who prove that the tree-like

Resolution clause space complexity of a formula is exactly equal to the largest number of points achievable
by the Delayer in the symmetric game. The lower bound for proof length follows from the fact that a
formula with clause space complexity s requires proof length at least 2s (cf. [ET01]). This connection
with clause space complexity limits the strength of the symmetric method, since there are formulas for
which the above lower bound is not tight (e.g. the classical pigeonhole principle [IM99, DR01, BGL10]).
This is so because the clause space complexity of a formula F is s if and only if any proof tree for F
contains a complete binary tree of height s. The gap between the size of such a minor and the size of
the proof tree is exactly what the symmetric game fails to analyse. In contrast, Corollary 2 states that
the asymmetric game precisely characterizes the proof size.

7 Applications

In this last section we briefly describe some applications of the new characterization of tree-like Resolution
size. Instead of a real application, we start with a small “toy” example. Consider the formula

(x1 ∨ · · · ∨ xn) ∧ ¬x1 ∧ · · · ∧ ¬xn.

In the symmetric game, the Delayer will only earn 1 point (cf. Figure 2). This only yields a trivial
constant lower bound on the proof size. In contrast, the optimal Delayer in the asymmetric game will
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(a) Symmetric
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n
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Figure 2: The probability associated to each leaf in a symmetric 2(a) and an asymmetric 2(b) Prover-
Delayer game. In the symmetric game the Prover can end the game as soon as the Delayer gets one
point, while in the asymmetric game the Delayer always gets log(n+ 1) points.

earn exactly log(n+ 1) points when using the distribution shown in Figure 2. The formula is minimally
unsatisfiable and has exactly n+ 1 critical assignments, namely to set exactly one of the n variables to
1 or to set all of them to 0. To win the game, Prover has to identify one of these critical assignments.
And from an information-theoretic perspective, Prover needs exactly log(n + 1) bits to specify one of
these n+1 critical assignments. Consequently, the Delayer should earn exactly log(n+1) points. This is
easily verified. Let k be the number of rounds that Prover needs to win the game. Then Delayer scores
exactly

k−1∑
i=1

log
n+ 1− (i− 1)

n+ 1− i︸ ︷︷ ︸
for the first k − 1 0’s

+ log(n+ 1− (k − 1))︸ ︷︷ ︸
for the last round

= log
n+ 1

n+ 1− (k − 1)
+ log(n+ 1− (k − 1)) = log(n+ 1).

A more interesting example is the famous pigeonhole principle (PHP). Its complexity in Resolution
was first determined by Haken’s seminal exponential lower bound [Hak85]. However, in tree-like Resolu-
tion the complexity of PHP is indeed 2θ(n logn) as shown independently by Iwama and Miyazaki [IM99]
and Dantchev and Riis [DR01]. The paper [BGL11] provides an elegant proof of this optimal n! lower
bound for PHP via the asymmetric Prover-Delayer game. In contrast, the symmetric game only yields
a lower bound of 2Ω(n), because the smallest tree-like Resolution refutations of PHP only contain full
binary trees of height n.

Another application is provided by Parameterized Resolution, introduced in [DMS11]. In this context,
proof trees are again very unbalanced and the symmetric game does not yield any non-trivial lower
bounds. Using the asymmetric game, the paper [BGL11] shows tight tree-like lower bounds for: the
parameterized pigeonhole principle; a parameterized version of the total ordering principle; and for
Clique formulas in random graphs.
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