
The String Guessing Problem as a Method to Prove
Lower Bounds on the Advice Complexity?

Hans-Joachim Böckenhauer1, Juraj Hromkovič1, Dennis Komm1,
Sacha Krug1, Jasmin Smula1, and Andreas Sprock1

Department of Computer Science, ETH Zurich, Switzerland
{hjb,juraj.hromkovic,dennis.komm,sacha.krug,jasmin.smula,andreas.sprock}@inf.ethz.ch

Abstract. The advice complexity of an online problem describes the additional information
both necessary and sufficient for online algorithms to compute solutions of a certain quality. In
this model, an oracle inspects the input before it is processed by an online algorithm. Depending
on the input string, the oracle prepares an advice bit string that may be accessed sequentially by
the algorithm. The number of advice bits that are read to achieve some specific competitive ratio
can then serve as a fine-grained complexity measure. The main contribution of this paper is to
develop a new, powerful method to prove lower bounds on the number of advice bits necessary.
To this end, we introduce the string guessing problem as a generic online problem and show a
lower bound on the number of advice bits needed to obtain a small competitive ratio. We develop
special reductions from string guessing to give a lower bound on the advice complexity of the
online maximum clique problem and to improve the best known lower bound for the online set
cover problem.

1 Introduction

Numerous computational problems work in so-called online environments, i. e., frameworks
where the input arrives piecewise in successive time steps. An online algorithm has to answer
every such piece by a part of the final output without knowing anything about the future
requests (i. e., the rest of the input). In 1985, Sleator and Tarjan introduced the competitive
ratio as a tool to measure the quality of such algorithms [19]. For an introduction to online
computation and competitive analysis, we refer to the standard literature [3].

In this paper, we study the model of computing with advice to analyze how much informa-
tion is necessary and sufficient to enable online algorithms to improve over purely deterministic
strategies. The idea is to consider an oracle that sees the whole input in advance and writes
binary information about this input onto an advice tape that may, at runtime, be accessed
by the online algorithm. The idea of online computation with advice was introduced in [9].
Revised versions of this model were simultaneously introduced in [5, 13] and [10]. We follow
the most general and exact model from [13] in this paper. The advice complexity was studied
for various online problems in, e. g., [2, 4, 5, 6, 10,11,14,15,18].

Definition 1 (Online Algorithm with Advice [5,13]). Let I = (x1, . . . , xn) be an input
of an online minimization problem. An online algorithm A with advice computes the output
sequence Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the
content of the advice tape, i. e., an infinite binary sequence. For some output sequence o,
cost(o) denotes the cost of o. A is c-competitive with advice complexity b(n) if there exists
some non-negative constant α such that, for every n and every input sequence I of length at
most n, there exists some φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α and at most the first

? This paper is partially funded by the SNF grant 200021–141089.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 162 (2012)

b(n) bits of φ have been accessed during the computation of Aφ(I). Here, Opt(I) denotes an
optimal solution for I. If α = 0, then A is called strictly c-competitive. A is optimal if it is
strictly 1-competitive. The definition for maximization problems is analogous.

The concept of advice complexity enables us to perform a much more fine-grained analysis
of the hardness of online problems than using the classical competitive analysis. We are
especially interested in lower bounds on the advice complexity. Such lower bounds do not
only tell us something about the information content [13] of online problems, but they also
carry over to a randomized setting where they imply lower bounds on the number of random
decisions needed to compute a good solution [14]. However, as with the majority of computing
models, lower bounds on the advice complexity are hard to prove. Thus, it is desirable to
have some generic proof methods to establish lower bounds. In this paper, we take a first step
towards this goal by introducing a generic online problem and showing how to transfer lower
bounds on its advice complexity to lower bounds for other online problems.

1.1 Our Contribution

In this paper, we study the string guessing problem with respect to its advice complexity
(Section 2). This problem is shown to be generic with respect to proving lower bounds on the
advice complexity. Here, a string of length n over an alphabet of size q has to be guessed.
More specifically, we define two versions of the problem. In the first case, the algorithm gets
immediate feedback about which decisions would have been correct up to the current time
step. In the second case, this feedback is not supplied. First, we prove a lower bound on the
advice necessary to achieve some specific number of correct guesses for both versions. We
show that the extra information of knowing the history does not help a lot for this class of
problems. Additionally, we analyze the size of the advice depending on both n and q.

Employing this result, we use the string guessing problem as a technique to prove lower
bounds for other well-studied online problems. It seems to be a promising approach to use
string guessing this way to show the hardness of further online problems.

Our first application, stated in Section 3, deals with an online version of the maximum
clique problem where the vertices of the underlying graph arrive consecutively. In every time
step, the online algorithm has to decide whether the current vertex is part of the solution
or not. We give a lower bound on the number of advice bits necessary that is linear in the
number of vertices. Second, in Section 4, we deal with an online version of the set cover
problem introduced in [1]. We show how to use the results on the string guessing problem to
give a lower bound that closes an exponential gap between the lower and upper bounds given
in [15].

2 The String Guessing Problem

In many online problems, the question arises whether knowing the history, i. e., the parts of
an optimal solution that correspond to the input known at a specific time step, has an effect
on the additional information necessary to achieve a certain competitive ratio. We compare
these two scenarios on a very generic online problem, namely the string guessing problem. In
the first variant, the algorithm has to guess a character from some fixed alphabet, then, in
the next step, it is told what would have been the correct answer and is asked for the next
character. In the second variant, the algorithm also has to guess character by character, but

2

it gets no feedback about whether its answer was correct or not, until the very end of the
request sequence. In both cases, the length n of the string is given as the first request and
the algorithm then has to guess n characters step by step.

In what follows, the Hamming distance between two strings of length n over an alphabet
of arbitrary size denotes the number of positions at which these two strings differ. Let us
begin by defining the two variants of the string guessing problem formally.

Definition 2 (String Guessing with Known History). The string guessing problem
with known history over an alphabet Σ of size q ≥ 2 (q-SGKH) is the following online
problem. The input I = (n, d1, d2, . . . , dn) consists of a natural number n and the characters
d1, d2, . . . , dn, di ∈ Σ, that are revealed one by one. The online algorithm A computes the
output sequence A(I) = y1y2 . . . yn, where yi = f(n, d1, . . . , di−1) ∈ Σ, for some computable
function f . The cost of a solution A(I) is the number of wrongly guessed characters, i. e., the
Hamming distance Ham(d, A(I)) between A(I) and d = d1d2 . . . dn.

Definition 3 (String Guessing with Unknown History). The string guessing problem
with unknown history over an alphabet Σ of size q ≥ 2 (q-SGUH) is the following online
problem. The input I = (n, ?2, ?3, . . . , ?n, d), for d = d1, . . . , dn ∈ Σn, consists of the input
size n in the first request and n − 1 subsequent requests “ ?” carrying no extra information.
In each of the first n time steps, the online algorithm A is required to output one character
from Σ, forming the output sequence A(I) = y1y2 . . . yn. In the last request, the string d is
revealed. The algorithm is not required to respond with any output in this time step. The cost
of a solution A(I) is again the Hamming distance between A(I) and d.

For simplicity, we sometimes speak about the input string d = d1d2 . . . dn when we mean
the input sequence I = (n, d1, d2, . . . , dn) or I = (n, ?2, ?3, . . . , ?n, d) with n = |d|. Also, we
write A(d) instead of A(I).

Since the cost of an optimal solution for any string guessing instance is always 0, it is not
meaningful to consider the competitive ratio as a measure for these problems. We therefore
restrict our analysis to the number of errors produced by an algorithm. Our goal is to minimize
this number.

It is easy to see that, for every online algorithm without advice, there is an input string of
length n such that the algorithm produces n errors. This holds for any alphabet of arbitrary
size q ≥ 2. To see this, consider an adversary Adv that, in each time step, produces an input
character αi differing from the deterministic output yi = f(n, α1, . . . , αi−1) of the algorithm.
Clearly, no deterministic online algorithm gains anything by knowing the history.

Considering online algorithms with advice that produce optimal solutions, we easily see
that each such algorithm needs to read at least dn log2 qe advice bits to be optimal on any
input of length n, even in the case of q-SGKH: Assume an optimal algorithm A reads
m < dn log2 qe advice bits. There are qn possible different input strings, but only 2m ≤
2dn log2 qe−1 < 2n log2 q = qn different advice strings. Thus, at least two different input strings
d = d1d2 . . . dn and d′ = d′1d

′
2 . . . d

′
n of length n get the same advice. There is one position

in the string where d and d′ differ for the first time. The algorithm A makes a deterministic
decision in the corresponding time step that is optimal for at most one of the two solutions
and Adv can always choose the other one. A matching upper bound, even in the case of q-
SGUH, can be achieved by simply enumerating all possible inputs and encoding the index of
the concrete input using dn log2 qe advice bits.

3

On the other hand, a constant amount of advice can already help to guess a linear number
of characters correctly, even without considering the history.

Observation 1 There is an online algorithm for q-SGUH that guesses at least dn/qe posi-
tions correctly on an input string of size n using dlog2 qe advice bits.

Proof. In every input string of length n over an alphabet of size q, there is at least one
character z that occurs at least dn/qe times, and it can be specified by the oracle using
dlog2 qe bits. An online algorithm that outputs z in every time step guesses at least dn/qe
positions correctly. ut

In the remainder of this section, we estimate the number of advice bits necessary and
sufficient to reach a specific cost.

2.1 Lower Bounds

First, we investigate a lower bound on the number of advice bits necessary to guarantee at
most a specific number of wrong answers for q-SGUH. Consider an online algorithm using b
advice bits. This can be seen as a collection of 2b different deterministic algorithms [15]. Since
all possible inputs look the same on the first n requests, the behavior of these algorithms can
only depend on the advice.

For each of the qn possible inputs, the oracle can choose between 2b different algorithms,
each of which produces a fixed output string. The oracle has to construct a set of 2b such
strings, which we call center strings, in such a way that the maximum distance of any input
string to the nearest of these center strings is minimized. This is exactly the task of con-
structing a so-called covering code. A covering code Kq(n, r) for an alphabet Σ of size q of
the strings of length n with radius r is defined as a set of codewords (elements of Σn) with
the property that every string in Σn has a distance smaller than or equal to r to at least
one codeword in Kq(n, r). For an overview of covering codes, we recommend [7]. Thus, the
minimum size of a covering code Kq(n, r) gives us the number of different advice strings we
need to make sure that the worst-case error over all inputs for q-SGUH is at most r.

To get a simple lower bound on the size of a covering code Kq(n, r), we consider the
Hamming balls of radius r around the center strings. A Hamming ball of radius r around
a string s in Σn consists of all strings t with Ham(s, t) ≤ r. Due to the symmetry of the
hypercube, the size of a Hamming ball of radius r around some string s does not depend on s.
Thus, we denote it by Volq(n, r). The number b of advice bits needed to make sure that no
error greater than r occurs for any input string has to satisfy the condition

2b ·Volq(n, r) ≥ qn. (1)

The volume of a Hamming ball is given by

Volq(n, r) =

r∑
i=0

(
n

i

)
(q − 1)i (2)

and can be estimated as follows.

Lemma 1 (Guruswami et al. [12]). Let p ∈ R, 0 < p ≤ 1− 1/q. For sufficiently large n,
we obtain Volq(n, pn) ≤ qHq(p)n, where Hq(p) = p logq(q− 1)− p logq p− (1− p) logq(1− p) is
the q-ary entropy function. ut

4

An easy calculation immediately yields

Volq(n, pn) ≤ qHq(p)n =

(
q − 1

p

)pn(1

1− p

)(1−p)n
. (3)

This observation leads to the following lower bound for q-SGUH.

Theorem 1. Consider an input string of length n for q-SGUH, for some n ∈ N. The mini-
mum number of advice bits for any online algorithm that can guarantee to be correct in more
than αn characters, for 1/q ≤ α < 1, is(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log2 q = (1−Hq(1− α))n log2 q.

Proof. Guessing at least αn characters correctly means there can be at most (1−α)n errors.
We know from (1) and (2) that, in order to guarantee that the algorithm makes less than
r errors, we need at least b advice bits such that

qn

2b
≤

r∑
i=0

(
n

i

)
(q − 1)i.

To give a lower bound on b, we define α′ = 1−α, substitute r by α′n and, together with (3),
we get

qn

2b
≤

α′n∑
i=0

(
n

i

)
(q − 1)i ≤

(
q − 1

α′

)α′n(1

1− α′

)(1−α′)n
.

After taking the logarithm to base q on both sides, we get

n− logq 2b ≤ α′n logq

(
(q − 1)n

α′n

)
+ (n− α′n) logq

(
n

n− α′n

)
⇐⇒ −b logq 2 ≤ −α′n logq(α

′n) + α′n logq(q − 1) + α′n logq(n− α′n)− n
− n logq(n− α′n) + n logq n

⇐⇒ b logq 2 ≥ α′n(logq(α
′n)− logq(q − 1)− logq(n− α′n))

+ n(1 + logq(n− α′n)− logq n)

⇐⇒ b ≥
(
1 + α′ logq(α

′n) + (1− α′) logq(n− α′n)− logq n

−α′ logq(q − 1)
)
n log2 q.

We now resubstitute α′ by 1− α and finally obtain

b ≥ (1 + (1− α) logq((1− α)n) + (1− (1− α)) logq(n− (1− α)n)− logq n

− (1− α) logq(q − 1))n log2 q

≥ (1 + (1− α) logq(1− α) + (1− α) logq n+ α logq(αn)− logq n

− (1− α) logq(q − 1))n log2 q

≥
(
1 + (1− α) logq(1− α) + α logq α− (1− α) logq(q − 1)

)
n log2 q

≥
(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log2 q.

Thus, we have established a lower bound on b to guarantee at least αn correct characters or,
in other words, a maximal number of α′n errors. ut

5

0

00 0

0

0

0

1111

1

1 1

v(n,0)

v(n−1,0) v(n−1,1)

v(n−2,0) v(n−2,1) v(n−2,2) v(n−2,3)

v(n−3,0) v(n−3,1) v(n−3,2) v(n−3,3) v(n−3,4) v(n−3,5) v(n−3,6) v(n−3,7)

Fig. 1. Binary tree Tn representing all input instances of size n for q = 2.

The above argument heavily relies on the fact that, in case of q-SGUH, the output of a
deterministic algorithm is unambiguously determined by the given advice. In the case of q-
SGKH, this is no longer true. A deterministic algorithm might base its output on the history
and thus might output different strings while reading the same advice. In the following we
show that, despite this complication, the same lower bound as in Theorem 1 also holds for
q-SGKH.

For the analysis, we use the q-ary tree Tn of depth n as a representation of the set Σn

of all input strings of length n over the alphabet Σ (see Figure 1). For 0 ≤ i ≤ qn − 1, the
leaf v(0,i) represents the ith string in lexicographic order in Σn and every inner vertex v(h,i)
represents all 2h strings of the leaves of the subtree rooted at v(h,i).

Let A be an online algorithm for q-SGKH that uses at most b advice bits for any input
instance of length n. Due to the pigeonhole principle, at least one advice string is used for
at least dqn/2be different input instances. For a given advice string s of length b, we now
take a closer look at the set Is of input strings for which A gets the advice string s. The
algorithm A is not able to distinguish between any two strings in Is at the beginning of the
computation. However, this situation can change during the computation since A gets the
additional information of what would have been the correct output in every time step.

For the analysis, we investigate the maximal cardinality of Is such that A can guarantee
that the maximal number of errors is r. We can view every computation of an online algorithm
as a path in Tn from the root down to a leaf. In every time step, the algorithm decides which
subtree to enter. In the following step, it is revealed which direction would have been correct.
If instances in more than one subtree of some vertex are represented by the given advice, the
algorithm cannot know which subtree is correct.

For any vertex v in Tn, let F (v) denote the maximal number of errors the adversary Adv

can enforce in the partial input string inside the subtree rooted at v, in addition to the errors
already made on the way from the root to v. Moreover, let Φ : N × N → N be a function
such that Φ(h, r) measures how many strings in Is can at most be represented by a vertex
at depth h such that the enforceable number of errors is at most r. We are interested in the
value Φ(n, r) which gives us the desired lower bound. The function Φ(h, r) can be computed
as stated by the following lemma.

6

Lemma 2. For 0 ≤ h ≤ n and 0 ≤ r ≤ h,

Φ(h, r) =

r∑
i=0

(
h

i

)
(q − 1)i = Volq(h, r).

Proof. The function F can be computed recursively as follows. Let v ∈ V be a vertex in Tn
such that the subtree rooted at v contains at least one vertex that corresponds to a string
from Is and max{F (u) | u is a child of v} = m. Then,

F (v) =

{
m+ 1 if there are at least two children u,w of v with F (u) = F (w) = m,

m else.
(4)

To prove (4), we distinguish two cases. In the first case, there are two or more subtrees with
the same maximal value of F . In the second case, there is exactly one subtree with a maximal
number of errors.

Case 1. There are at least two children u and w of v with F (u) = F (w) = m. Thus, it does
not matter which subtree the algorithm chooses, because Adv will choose another subtree
with a maximal number of errors and thus enforce one error in the current time step as
well as the m errors in the corresponding subtree.

Case 2. There is exactly one child u of v with F (u) = m and, for all other children w of v,
F (w) < m. The algorithm should choose the subtree rooted at u and accept m errors.
Otherwise, Adv would choose the subtree rooted at u and thus enforce one error in the
current time step and overall m+ 1 errors in the subtree rooted at v.

This proves (4). We now show that the function Φ(h, r) satisfies the recurrence relation

Φ(h, 0) = 1, (5)

Φ(h, h) = qh, and (6)

Φ(h, r) = Φ(h− 1, r) + (q − 1) · Φ(h− 1, r − 1), for 0 < r < h. (7)

To prove (5), assume there are two input strings represented by two leaves in Th. These
two leaves have a lowest common ancestor v(g,j), with 1 ≤ g ≤ h. When the algorithm
reaches v(g,j), it has to choose one of the q successors. It does not matter which subtree the
deterministic algorithm takes, Adv can always choose another one, i. e., another possible input
string, and hence enforce one error. Thus, Φ(h, 0) = 1.

It is obvious that, if there are h errors allowed, it does not matter what the algorithm
does at depth h because, in the worst case, the algorithm makes one error per step and thus
at most h errors in total. In other words, a subtree at depth h with h errors allowed can
represent qh strings, i. e., Φ(h, h) = qh, proving (6).

Additionally, we know from (4) that, for a vertex v at depth h with a at most r enforce-
able errors, the maximal number of errors in all q subtrees of v cannot be larger than r.
Furthermore, we know that no two subtrees can contain r errors. To maximize the number
of errors in the subtree rooted at v, one child is assigned r errors and all others r − 1 errors.
The maximal number of instances represented by a tree of depth h when r errors are allowed
is thus Φ(h, r) = Φ(h− 1, r) + (q − 1) · Φ(h− 1, r − 1), which proves (7).

Using this recurrence, we are now able to prove the claim of the lemma by induction on h.
We already know that Φ(1, 0) = 1 =

∑0
i=0

(
1
i

)
(q − 1)i and Φ(1, 1) = q =

∑1
i=0

(
1
i

)
(q − 1)i.

Now we prove the statement for h > 1 and 0 ≤ r ≤ h.

7

As induction hypothesis, assume that Φ(h, r) =
∑r

i=0

(
h
i

)
(q − 1)i. Note that Φ(h+ 1, r) =

Φ(h, r) + (q − 1) · Φ(h, r − 1) holds due to (7) and recall that
(
n
k

)
+
(
n
k−1
)

=
(
n+1
k

)
. We get

Φ(h+ 1, r) = Φ(h, r) + (q − 1) · Φ(h, r − 1)

=

r∑
i=0

(
h

i

)
(q − 1)i + (q − 1)

r−1∑
i=0

(
h

i

)
(q − 1)i (by the induction hypothesis)

=

(
h

0

)
(q − 1)0 +

r∑
i=1

(
h

i

)
(q − 1)i +

r−1∑
i=0

(
h

i

)
(q − 1)i+1

=

(
h

0

)
(q − 1)0 +

r∑
i=1

(
h

i

)
(q − 1)i +

r∑
i=1

(
h

i− 1

)
(q − 1)i

=

(
h

0

)
(q − 1)0 +

r∑
i=1

((
h

i

)
+

(
h

i− 1

))
(q − 1)i

=

(
h+ 1

0

)
(q − 1)0 +

r∑
i=1

(
h+ 1

i

)
(q − 1)i

=
r∑
i=0

(
h+ 1

i

)
(q − 1)i.

It follows that

Φ(h+ 1, h+ 1) =
h+1∑
i=0

(
h+ 1

i

)
(q − 1)i = qh+1,

where the last equation holds due to the binomial theorem.

With this, the claim follows for all values of Φ(h+ 1, r), for 0 ≤ r ≤ h+ 1. ut

From Lemma 2 for h = n together with Theorem 1, we immediately get the same lower
bound on the advice complexity for q-SGKH, which we formulate in the following theorem.

Theorem 2. Consider an input string of length n for q-SGKH, for some n ∈ N. The mini-
mum number of advice bits for any online algorithm that can guarantee to be correct in more
than αn characters, for 1/q ≤ α < 1, is(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log2 q = (1−Hq(1− α))n log2 q. ut

Let us give the following corollary for the bit string guessing problem (i. e., for q = 2).

Corollary 1. Consider as input a bit string of length n for 2-SGKH. Every deterministic
algorithm that can guarantee to be correct in more than αn bits, for 1/2 ≤ α < 1, needs to
read at least

(1 + (1− α) log2(1− α) + α log2α)n

many advice bits. ut

8

2.2 Upper Bounds

To give an upper bound on the advice complexity of q-SGUH on strings of length n with at
most r errors, we analyze the minimal size of a covering code of length n with radius r.

Lemma 3 (Moser and Scheder [17]). Let n ∈ N>0, q ∈ N>1, r ∈ N. On any alphabet Σ
of size q, there is a covering code of length n with radius r of size at most⌈

n · ln q · qn

Volq(n, r)

⌉
. ut

To estimate an upper bound on the advice to guarantee a certain number of correct
characters, we need a lower bound on the volume of the Hamming ball of a given radius r.

Lemma 4. Let p ∈ R, 0 ≤ p ≤ 1− 1/q, such that pn ∈ N. For sufficiently large n,

Volq(n, pn) ≥ qHq(p)·n− 1
2
logq(2n).

Proof. We know from [16] that(
n

pn

)
≥ 1√

8np(1− p)
· 2H2(p)·n.

It follows that

Volq(n, pn) =

pn∑
i=0

(
n

i

)
(q − 1)i ≥

(
n

pn

)
· (q − 1)pn ≥ 1√

8np(1− p)
· 2H2(p)·n · (q − 1)pn.

Together with the simple fact that 2H2(p)·n · (q − 1)pn = qHq(p)·n, we get

Volq(n, pn) ≥ qHq(p)·n√
8np(1− p)

≥ qHq(p)·n
√

2n
= qHq(p)·n− 1

2
logq(2n)

which finishes the proof. ut

Now we are ready to prove an upper bound on the number of advice bits sufficient to
guarantee more than αn correctly guessed characters.

Theorem 3. Consider an input of length n for q-SGUH, for some n ∈ N. There is an online
algorithm that is correct in more than αn characters, for 1/q ≤ α < 1, and needs at most

d(1−Hq(1− α))n log2 q + 3 log2 n/2 + log2(ln q) + 1/2e

many advice bits.

Proof. Guessing at least αn characters correctly means there can be at most α′n errors, for
α′ = 1 − α. To guarantee that there are at most α′n errors, we need to cover the strings of
Σn with Hamming balls of radius at most α′n. We know from Lemma 3 that there is such a
covering with at most ⌈

n · ln q · qn

Volq(n, α′n)

⌉
9

balls.

Such a covering leads to an algorithm that can guarantee that there are at most α′n errors
and that uses b advice bits such that b is the smallest integer satisfying

2b ≥
⌈
n · ln q · qn

Volq(n, α′n)

⌉
. (8)

From Lemma 4, we know that

Volq(n, α
′n) ≥ qHq(α′)·n− 1

2
logq(2n)

(3)
=

(
q − 1

α′

)α′n(1

1− α′

)(1−α′)n
· 1√

2n
.

Thus, it is sufficient for b to satisfy

n · ln q · qn

2b
≤
(
q − 1

α′

)α′n(1

1− α′

)(1−α′)n
· 1√

2n
.

After taking the logarithm to base q on both sides, we get

logq n+ n+ logq(ln q)− logq

(
2b
)
≤ α′n logq

(
(q − 1)n

α′n

)
+ (n− α′n) logq

(
n

n− α′n

)
− 1

2
logq(2n)

which is equivalent to

−b logq 2 ≤ −α′n logq(α
′n) + α′n logq(q − 1) + α′n logq(n− α′n)− n

− n logq(n− α′n) + n logq n−
1

2
logq(2n)− logq(ln q)− logq n.

Dividing by − logq 2 yields

b ≥ (1 + α′ logq(α
′n) + (1− α′) logq(n− α′n)− logq n− α′ logq(q − 1))n log2 q

+
1

2
log2(2n) + log2(ln q) + log2 n

=
(
1 + α′ logq α

′ + (1− α′) logq(1− α′)− α′ logq(q − 1)
)
n log2 q +

1

2
log2(n)

+ log2(ln q) +
1

2
+ log2 n

=
(
1 + α′ logq α

′ + (1− α′) logq(1− α′)− α′ logq(q − 1)
)
n log2 q

+
3

2
log2 n+ log2(ln q) +

1

2

=

(
1 + α′ logq

(
α′

q − 1

)
+ (1− α′) logq(1− α′)

)
n log2 q +

3

2
log2 n+ log2(ln q) +

1

2
.

We now resubstitute α′ by 1− α and finally get

b ≥
(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log2 q +

3

2
log2 n+ log2(ln q) +

1

2
.

10

Since we wanted to find the minimum value for b such that (8) is satisfied, we choose

b =

⌈(
1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log2 q +

3

2
log2 n+ log2(ln q) +

1

2

⌉
.

Hence, we now have an upper bound on the number b of advice bits necessary for an algorithm
to guarantee more than αn correctly guessed characters. ut

For the special case of bit strings, we get the following result.

Corollary 2. Consider as input a bit string of length n for 2-SGUH. There is an online
algorithm reading at most⌈

(1 + (1− α) log2 (1− α) + α log2 α)n+
3

2
log2 n+

1

2
+ log2(ln 2)

⌉
advice bits and that is correct in more than αn bits, for 1/2 ≤ α < 1. ut

3 The Online Maximum Clique Problem

In this section, we analyze the online maximum clique problem (MaxClique, see [8]). In
MaxClique, in every time step, a vertex is given together with all edges to vertices that
were already revealed in previous steps, and an online algorithm A has to decide whether the
newly revealed vertex becomes part of the solution or not.

For giving a reasonable cost function, we briefly give some considerations. First, assume
there is a maximum clique of size n in the input graph G and the algorithm finds a clique of
size n− 1. Then, intuitively, the cost of the solution should be n− 1 irrespective of how many
vertices of the found clique are also part of the largest clique in G. On the other hand, assume
the algorithm selects a vertex that is not connected to any vertex revealed afterwards. Unless
this is the only vertex A takes, A does not output a clique (i. e., its solution is not feasible).
To avoid this, it should be allowed to give an output where, different to the situation in [8],
not all selected vertices are part of a clique. Even if A gives an output in which many vertices
form a large or even a maximum clique, but one additional vertex is selected, the output is
no clique, but very close to a relatively good or even optimal solution. Thus, this solution
should have almost optimal cost. Then again, we should clearly prevent the algorithm from
simply selecting all vertices that are given.

Therefore, we consider, for an output A(I), the maximum clique CA(I) in the graph GA(I)

restricted to the selected vertices A(I). Then, the solution becomes better the larger the
maximum clique in GA(I) is, and it becomes worse as more vertices are selected that are not
part of CA(I). All in all, we propose the cost function given in the following definition.

Definition 4. The online maximum clique problem (MaxClique) is the following online
problem. The input is a graph G = (V,E) and the goal is to find a clique C ⊆ V in G of
maximum size. In each time step i, one vertex vi ∈ V is revealed together with all edges
{{vi, vj} ∈ E | j < i}, and the online algorithm A has to decide whether vi ∈ C or not. Let
A(I) be the set of vertices selected by A and let CA(I) be a maximum clique in the graph GA(I).

The cost function is defined by cost(A(I)) =
∣∣CA(I)

∣∣2 / |A(I)|.

11

Fig. 2. Example of the graph G00101.

Clearly, for the optimal solution Opt(I) of a graph with a maximum clique Copt, we have

cost(Opt(I)) =
|Copt|
|Opt(I)|

· |Copt| = |Copt|.

Thus, the competitive ratio c of A on I can be computed as

c =
cost(Opt(I))

cost(A(I))
=
|A(I)|
|CA(I)|

· |Copt|
|CA(I)|

.

In other words, the quality of the algorithm is given by the product of the two ratios
|A(I)|/|CA(I)| and |Copt|/|CA(I)|. The first ratio measures how many useless vertices the al-
gorithm has taken and the second ratio measures how many correct vertices the algorithm
did not take.

In order to give a lower bound on the advice complexity of MaxClique, we use our
results for 2-SGKH. To this end, we investigate the following subclass of instances, where
every instance corresponds to a particular bit string. Let s = s1s2 . . . sn′ be a bit string of
length n′, for some n′ ∈ N. We construct an input instance Is for MaxClique corresponding
to s as follows. Consider the graph GIs = (V (Is), E(Is)) with n = 2n′ + 2 vertices. Let

V (Is) = {v(1,0), v(1,1), v(2,0), v(2,1), . . . , v(n′+1,0), v(n′+1,1)}

and let V ′(Is) = {v(i,si) | 1 ≤ i ≤ n′} be the set of the n′ vertices that correspond to the
string s. Moreover,

E(Is) = {{v(i,si), v(j,k)} | 1 ≤ i < j ≤ n′, k ∈ {0, 1}}
∪ {{v, v(n′+1,0)}, {v, v(n′+1,1)} | v ∈ V ′(Is)} ∪ {{v(n′+1,0), v(n′+1,1)}}.

Clearly, the vertices from V ′(Is) plus the vertices v(n′+1,0) and v(n′+1,1) form a unique
optimal solution for Is of size n′ + 2. Although the vertices v(i,0) and v(i,1) are revealed
separately (and after each vertex, the algorithm has to respond immediately), for the analysis,
we combine them to a pair. After the first pair is revealed, the vertices of the second pair
(v(2,0), v(2,1)) are given and so on. An example for the string s = 00101 of length 5 is given in
Figure 2.

Assume that A knows that one vertex of each pair is part of the optimal solution. Then, we
can see MaxClique as guessing one vertex per pair. Similar to guessing a string s, also when

12

trying to find the correct vertex in a pair (v(i,0), v(i,1)) in GIs , the correct decision can only
depend on the input known so far, the history, and the given advice. However, in general, an
algorithm has four options for every pair that is revealed, which are to take the first vertex,
the second one, both, or none. As a next step, we show that, for any online algorithm with
advice, it is the best strategy to take both vertices of any pair for which no advice is used.
In this way, we derive an upper bound on the cost of any online algorithm for MaxClique
that uses at most b advice bits.

Lemma 5. Let s be an instance for 2-SGKH of length n′ and let B be the best online algorithm
for 2-SGKH that reads b advice bits. Let the number of bits that B guesses correctly be at most
αn′ where 0 ≤ α ≤ 1. Then, there is no online algorithm A for a corresponding MaxClique
instance Is that reads b advice bits with

cost(A(Is)) >
(αn+ 2 + (1− α)n′)2

αn′ + 2 + 2(1− α)n′
.

Furthermore, an online algorithm A∗ that correctly guesses the same pairs as A and takes both
vertices for all remaining pairs satisfies cost(A∗(Is)) ≥ cost(A(Is)).

Proof. First we prove by a reduction from the string guessing problem that no algorithm
for MaxClique can correctly guess more than αn′ pairs when using at most b advice bits.
Consider any algorithm A for MaxClique such that α̃n′ is the number of pairs (v(i,0), v(i,1))
of vertices in GIs that A guessed correctly. For the sake of a contradiction, suppose α̃ > α
and consider the following reduction to solve 2-SGKH with α̃n′ correctly guessed bits. Every
time step in 2-SGKH can be transformed into two time steps of MaxClique by the above
transformation. We then create an online algorithm A′ for 2-SGKH as follows. According to
the output of A in the two time steps that are associated with one pair, A′ gives the output
0 if A takes the first vertex and 1 otherwise. Thus, A′ is an online algorithm with advice for
2-SGKH that guesses more than αn′ bits correctly while using b advice bits and that is hence
strictly better than B, which is a contradiction to our assumption.

It follows that α̃ ≤ α. We may thus assume that A guesses exactly αn′ pairs correctly
for MaxClique, which is, by the above reasoning, the best A can do. Additionally, we may
assume that A also knows where these αn′ pairs lie in the instance Is. For the rest of the
(1−α)n′ requests, suppose that A takes, for a fraction of β, both vertices of the corresponding
pair, for a fraction of γ the wrong one, and, for the remainder, no vertex at all. Thus, A
outputs a solution of size αn′ + 2 + 2(1− α)βn′ + (1− α)γn′ while there is a clique CA(Is) in
GA(Is) of size αn′ + 2 + (1− α)βn′ yielding

cost(A(Is)) =
(αn′ + 2 + (1− α)βn′)2

αn′ + 2 + (1− α)(2β + γ)n′
.

We immediately observe that this term does not depend on the number of pairs for which A

chooses no vertex and that it decreases with increasing γ. We therefore set γ to 0 and verify
that the remaining term increases with β. To this end, let us substitute X = αn′ + 2 and
Y = (1− α)n′ and consider the function

f(β) =
(αn′ + 2 + (1− α)βn′)2

αn′ + 2 + (1− α)2βn′
=

(X + Y β)2

X + 2Y β
.

13

Since

f ′(β) =
2Y (X + Y β)(X + 2Y β)− 2Y (X + Y β)2

(X + 2Y β)2

is positive for all values of α and β between 0 and 1, we may set β to 1. In other words, the
best algorithm A∗ that makes the right decisions on exactly the same set of pairs as A takes
both vertices for all remaining pairs. ut

In order to give a lower bound on the advice complexity, we analyze an online algorithm
with advice that gets a sufficiently large number of advice bits to know αn pairs and, following
Lemma 5, takes both vertices for all unknown positions. Using our results from Section 2 we
can prove the following theorem.

Theorem 4. Any (c− ε)-competitive online algorithm A for MaxClique needs at least

(1 + (c− 1) log2(c− 1) + (2− c) log2(2− c))
n− 2

2
= (1−H2(c− 1))

n− 2

2

advice bits, for any 1 < c ≤ 1.5 and ε > 0.

Proof. Let n′ = (n−2)/2. As above, assume that A reads a sufficiently large number of advice
bits to correctly guess αn′ pairs. In order to give a lower bound, we again assume that A also
knows where these αn′ pairs lie in the instance and that, according to Lemma 5, A takes both
vertices for all pairs where the corresponding bit is unknown. Thus,

cost(A(I)) =
(αn′ + 2 + (1− α)n′)2

αn′ + 2 + 2(1− α)n′
=
n′2 + 2n′ + 4

2n′ − αn′ + 2
=
n′ + 2 + 4

n′

2− α+ 2
n′
.

For the competitive ratio, we therefore get

c =
cost(Opt(I))

cost(A(I))
=

(n′ + 2)(2− α+ 2
n′)

n′ + 2 + 4
n′

>
n′(2− α)

n′ + 2 + 4
n′

=
(2− α)

1 + 2
n′ + 4

n′2
.

For any α and any ε > 0, we have

c ≥ (2− α)

1 + 2
n′ + 4

n′2
≥ (2− α− ε),

for all sufficiently large n′. In other words, A has to guess at least αn′ characters correctly to
reach a competitive ratio of 2−α−ε. Using Corollary 1, we get a lower bound on the number
of advice bits necessary to reach a competitive ratio of c of

(1 + (1− (2− c)) log2(1− (2− c)) + (2− c) log2(2− c))n′

= (1 + (c− 1) log2(c− 1) + (2− c) log2(2− c))n′

= (1 + (c− 1) log2(c− 1) + (2− c) log2(2− c))
n− 2

2

as we claimed. ut

Note that, without advice, an online algorithm for MaxClique can reach a competitive
ratio of (n′ + 2)/((n′ + 2)2/(2n′ + 2)) = (2n′ + 2)/(n′ + 2) ≈ 2 by just taking every vertex.

14

4 The Online Set Cover Problem

In this section, we study the advice complexity of SetCover. The (unweighted) online set
cover problem, introduced in [1], is defined as follows.

Definition 5 (Online Set Cover Problem). Given a ground set X = {1, 2, . . . , n} of size
n, a set of requests X ′ ⊆ X, and a set family S ⊆ P(X) of size m, a feasible solution for the
online set cover problem (SetCover) is any subset {S1, . . . , Sk} of S such that

⋃k
i=1 Si ⊇ X ′.

We may assume, without loss of generality, that no set in S is the subset of another set in
S. The aim is to minimize k, i. e., to use as few sets as possible. The set X and the family
S are known beforehand, but the elements of X ′ arrive successively one by one in consecutive
time steps. An online algorithm A solves SetCover if, immediately after each yet uncovered
request j, it specifies a set Si ∈ S such that j ∈ Si.

We now use our results from Section 2 to give a lower bound on the advice necessary
to achieve a specific competitive ratio that improves over the best known lower bounds in
both |X| and |S|. More specifically, in [15], a lower bound on achieving a competitive ratio
of c was shown that is merely logarithmic in m. The following results yield an exponential
improvement.

Theorem 5. Assume that there is an algorithm A that solves SetCover with b advice bits
making at most r errors, i. e., choosing at most r sets more than an optimal algorithm. Then
there also is an algorithm B that solves the string guessing problem with known history with b
advice bits and at most r errors.

Proof. First, we show how an instance IB for q-SGKH over an alphabet Σ of size q can be
transformed into an instance IA for SetCover. Let the considered instance for q-SGKH be
IB = (k, d1, . . . , dk). Hence, the input string d = d1 . . . dk has length k. We give the set X and
the family S, which are known to the SetCover algorithm, depending on k and Σ: X = {Xt |
t is a string over Σ of length at most k}. Hence, X contains

∑k
i=0 q

i = qk+1 − 1 elements.
Furthermore, S = {tr(s) | s = s1 . . . sk ∈ Σk}, where tr(s) = {Xt | t is a prefix of s} =
{Xλ, Xs1 , Xs1s2 , . . . , Xs1...sk} is the transformation of the string s and λ denotes the empty
string. Each set tr(s) contains k + 1 elements, and S consists of qk sets.

It remains to show that, in each time step j, we can transform the jth request of the q-
SGKH instance into a request of the SetCover instance, and can also transform the output
of a SetCover algorithm A into an output of a q-SGKH algorithm B such that the following
condition is satisfied: If A uses b advice bits and makes at most r errors, then B also uses at
most b advice bits and makes at most r errors.

The request for B in time step 2 ≤ j ≤ n + 1 consists of the character dj−1. Hence, by
time step j, algorithm B is aware of the first j − 1 characters d1 . . . dj−1 of the correct string.
Then, the element that is requested to be covered by the SetCover algorithm A in time
step j will be Xd1...dj−1

. Note that by this, A is implicitly informed about which character
would have been the right choice in time step j − 1. The element Xd1...dj−1

might already be
covered, namely if A already chose a set Si = tr(s) for some string s with prefix d1 . . . dj−1
in one of the previous time steps. If it is not covered yet, A has to choose a set containing
Xd1...dj−1

now. Since every set Si corresponds to a certain string s ∈ Σk, the choice of a
set containing element Xd1...dj−1

corresponds to guessing all the remaining characters of the
string d, in particular the character dj . If, in time step j, A chooses a set Si containing the

15

element Xd1...dj−1yj , the string guessing algorithm B will output the character yj as its guess
for the jth character of d.

If A has made an error in time step j − 1, this means that it has picked a set containing
Xd1...dj−2yj−1

for some yj−1 6= dj−1. This error will be noticed by A in time step j, when it gets
the request Xd1...dj−1

. It now has to pick one set to cover this element. If A did not make an
error in time step j−1, it has picked a set containing Xd1...dj−2dj−1

. In time step j, the request
sent to A is exactly this element Xd1...dj−2dj−1

. Because it is already covered, no additional set
has to be chosen.

Now let us consider the number of errors of the string guessing algorithm B. If the output
of A in time step j − 1 is a set containing Xd1...dj−2yj−1

, B guesses the character dj−1 to be
yj−1 in time step j − 1. If and only if Xd1...dj−2yj−1

is the request for A in the next time step,
it holds that dj−1 = yj−1. So, B guesses the (j − 1)th character correctly if and only if the
SetCover algorithm A did not make an error in time step j − 1 and therefore does not have
to pick another set in time step j.

All in all, we have shown that the string guessing algorithm B makes an error in time
step j if and only if the SetCover algorithm A makes an error in time step j. ut

The reduction above helps us to establish a lower bound on the advice complexity of
SetCover for higher competitive ratios. First, we show that it is equally hard to guess a
percentage of α characters over one string of length rk as to guess the same percentage over
r strings of length k over an alphabet of the same size. We start with formally defining the
problem of guessing r strings of size k.

Definition 6 ((q,r,k)-Multiple String Guessing with Known History). The (q,r,k)-
multiple string guessing problem with known history over an alphabetΣ of size q ≥ 2 ((q, r, k)-
MultSGKH for short) is to solve r instances I1, . . . , Ir of q-SGKH of length k over an
alphabet of size q. The input is I = I1 ◦ · · · ◦ Ir, where Ii = (k, d(i,1), . . . , d(i,k)) is a q-SGKH
instance. The cost of a solution A(I) is the sum of the costs of the r q-SGKH instances, i. e.,
cost(A(I)) =

∑r
i=1 cost(A(Ii)).

The following lemma states that as many advice bits are necessary for correctly guessing
αrk characters of a string of length rk over an alphabet of size q as for correctly guessing αrk
characters of a (q, r, k)-MultSGKH instance.

Lemma 6. Assume that there is an algorithm A solving (q, r, k)-MultSGKH with b advice
bits and making ρ errors. Then there also is an algorithm B for q-SGKH on strings of length
rk using b advice bits and making the same number of errors.

Proof. Consider a q-SGKH instance of length rk. The first k requests of this instance get
mapped to the k characters of the first string of a (q, r, k)-MultSGKH instance, and so on.
Then, the decisions of an algorithm A for (q, r, k)-MultSGKH can directly be used by an
algorithm B for q-SGKH on the corresponding positions. It is obvious that B makes an error
if and only if A makes an error. ut

Theorem 6. For any c ∈ R≥1 and any k ∈ N>c−1, every online algorithm with advice for
SetCover that is c-competitive needs to read at least(

1 +

(
c− 1

k

)
logq

(
c− 1

k(q − 1)

)
+

(
k − c+ 1

k

)
logq

(
k − c+ 1

k

))
k · log2 q

qk
·m or

16

(
1 +

(
c− 1

k

)
logq

(
c− 1

k(q − 1)

)
+

(
k − c+ 1

k

)
logq

(
k − c+ 1

k

))
k · (q − 1) · log2 q

qk+1 − 1
· n

advice bits, where n = |X| and m = |S|, for any q ∈ N≥2.

Proof. We show how to transform any (q, r, k)-MultSGKH instance into a SetCover in-
stance such that, if there is an algorithm A solving SetCover with b advice bits and making
ρ errors, then there also is an algorithm B for (q, r, k)-MultSGKH using the same amount
of advice and making the same number of errors.

Consider a set {s1, . . . , sr} of r strings of length k each over an alphabet of size q and the
corresponding instance I = (Is1 , . . . , Isr) of (q, r, k)-MultSGKH. We use the construction
from the proof of Theorem 5 to construct r SetCover instances (Xj ,Sj) from Isj such that
the sets Xj (and thus also the set families Sj) are pairwise disjoint. For each Isj , we also
construct a sequence I ′sj of requests for SetCover using the transformation from the proof
of Theorem 5. Then we join these subinstances to get a SetCover instance (X,S) by setting
X =

⋃r
i=1Xi and S =

⋃r
i=1 Si. The order of the requests in the SetCover instance follows

an arbitrary order of the Isj , say Is1 , Is2 , . . . , Isr .
The constructed SetCover instance has an optimal solution of size r since every subin-

stance has a solution of size 1 and all subinstances are disjoint. The size of the ground set

is qk+1−1
q−1 · r = n and the size of the set family is qk · r = m. We know from Theorem 5

that, for each algorithm for SetCover that reads b advice bits and makes ρ errors, there is
an algorithm B for q-SGKH using the same advice and making the same number of errors.
Consider an algorithm for the constructed SetCover instance. The algorithm A defines r
algorithms A1, . . . , Ar for instances of length k. Each of these algorithms corresponds to one
particular subinstance (Xj ,Sj) of SetCover. Since these subinstances are disjoint, for any
algorithm Aj that makes ρj errors while using bj advice bits, there is an algorithm Bj using
bj advice bits that makes the same number of errors for the string sj of the given instance of
(q, r, k)-MultSGKH. Thus, in the sum, the number of errors A makes is the same as some
algorithm B makes for the whole instance of (q, r, k)-MultSGKH. Next, employing Lemma 6,
there is an algorithm C that makes ρ errors while reading b bits of advice for any instance of
q-SGKH.

The competitive ratio c that is reached by A is thus

c =
r + (1− α) · rk

r
= 1 + (1− α) · k,

hence α = 1− c−1
k .

Therefore, we can directly apply Theorem 2 for α = 1− (c− 1)/k yielding that at least(
1 +

(
c− 1

k

)
logq

(
c− 1

k(q − 1)

)
+

(
k − c+ 1

k

)
logq

(
k − c+ 1

k

))
· rk log2 q

advice bits are necessary to be c-competitive. To measure in |S| = m and |X| = n, we calculate

r = k
qk
·m = k·(q−1)

qk+1−1 · n, and finally get(
1 +

(
c− 1

k

)
logq

(
c− 1

k(q − 1)

)
+

(
k − c+ 1

k

)
logq

(
k − c+ 1

k

))
k · log2 q

qk
·m or

(
1 +

(
c− 1

k

)
logq

(
c− 1

k(q − 1)

)
+

(
k − c+ 1

k

)
logq

(
k − c+ 1

k

))
k · (q − 1) · log2 q

qk+1 − 1
· n. ut

17

Acknowledgments

The authors would like to thank Richard Královič for enlightening discussions.

References

1. N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover problem. SIAM Journal
on Computing, 39(2):361–370, 2009.

2. P. Bianchi, H.-J. Böckenhauer, J. Hromkovič, and L. Keller. Online coloring of bipartite graphs with and
without advice. In Proc. of COCOON 2012, LNCS 7434, pp. 519–530. Springer, 2012.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press,
1998.

4. H.-J. Böckenhauer, D. Komm, R. Královič, and R. Královič. On the advice complexity of the k-server
problem. In Proc. of ICALP 2011, LNCS 6755, pp. 207–218. Springer, 2011.

5. H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On the advice complexity of
online problems. In Proc. of ISAAC 2009, LNCS 5878, pages 331–340. Springer, 2011.

6. H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith. On the advice complexity of the knapsack
problem. In Proc. of LATIN 2012, LNCS 7256, pp. 61–72. Springer, 2012.

7. G. Cohnen, I. Honkala, S. Litsyn, and A. Lobstein. Covering Codes. Elsevier, 1997.
8. M. Demange, X. Paradon, and V. Th. Paschos. On-Line Maximum-Order Induced Hereditary Subgraph

Problems. In Proc. of SOFSEM 2000, LNCS 1963, pp. 327–335. Springer, 2000.
9. S. Dobrev, R. Královič, and D. Pardubská. How much information about the future is needed? In Proc. of

SOFSEM 2008, LNCS 4910, pp. 247–258. Springer, 2008.
10. Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice. Theoretical Computer

Science, 412(24):2642–2656, 2011.
11. M. Forǐsek, L. Keller, and M. Steinová. Advice complexity of online coloring for paths. In Proc. of

LATA 2012, LNCS 7183, pp. 228–239. Springer, 2012.
12. V. Guruswami, A. Rudra, and M. Sudan. Essential Coding Theory. Draft available at

http://www.cse.buffalo.edu/∼atri/courses/coding-theory/book/, 2012.
13. J. Hromkovič, R. Královič, and R. Královič. Information complexity of online problems. In Proc. of

MFCS 2010, LNCS 6281, pages 24–36. Springer, 2010.
14. D. Komm and R. Královič. Advice complexity and barely random algorithms. RAIRO ITA 45(2):249–267,

2011.
15. D. Komm, R. Královič, and T. Mömke. On the advice complexity of the set cover problem. In Proc. of

CSR 2012, LNCS 7353, pages 241–252. Springer, 2012.
16. F. J. MacWilliams, N. J. A. Sloane. The Theory of Error-Correcting Codes, Second Edition, North-Holland

Publishing Company, 1978.
17. R. Moser, D. Scheder. A full derandomization of Schöning’s k-SAT algorithm. In Proc. of STOC 2011,

pp. 245–252. ACM, 2011.
18. M. Renault and A. Rosén. On online algorithms with advice for the k-server problem. In Proc. of

WAOA 2012, LNCS 7164, pp. 198–210. Springer, 2012.
19. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of

the ACM, 28(2):202–208, 1985.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

