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Abstract. The advice complexity of an online problem describes the additional information
both necessary and sufficient for online algorithms to compute solutions of a certain quality. In
this model, an oracle inspects the input before it is processed by an online algorithm. Depending
on the input string, the oracle prepares an advice bit string that is accessed sequentially by the
algorithm. The number of advice bits that are read to achieve some specific solution quality can
then serve as a fine-grained complexity measure. The main contribution of this paper is to study
a powerful method for proving lower bounds on the number of advice bits necessary. To this end,
we consider the string guessing problem as a generic online problem and show a lower bound
on the number of advice bits needed to obtain a good solution. We use special reductions from
string guessing to improve the best known lower bound for the online set cover problem and to
give a lower bound on the advice complexity of the online maximum clique problem.

1 Introduction

Numerous computational problems work in so-called online environments, i.e., frameworks
where the input arrives piecewise in successive time steps. An online algorithm has to answer
every such piece by a part of the final output without knowing anything about the future
requests (i. e, the rest of the input). In 1985, Sleator and Tarjan introduced the competitive
ratio as a tool to measure the quality of such algorithms [21]. For an introduction to online
computation and competitive analysis, we refer to the standard literature, e.g., [3].

In this paper, we study the model of computing with advice to analyze how much information
is necessary and sufficient to enable online algorithms to improve over purely deterministic
strategies. The idea is to consider an oracle that sees the whole input in advance and writes
binary information about this input onto an advice tape that may, at runtime, be accessed
by the online algorithm. The idea of online computation with advice was introduced in [11].
Revised versions of this model were simultaneously introduced in [5,15] and [12]. We follow
the most general and exact model from [15] in this paper. The advice complexity was studied
for various online problems in, e.g., [2,4,5,6,7,9,12,13,16,17,20].

Definition 1 (Online Algorithm with Advice [5,15]). Let I = (z1,...,x,) be an input
of an online minimization problem. An online algorithm A with advice computes the output
sequence A?(I) = (y1,...,yn) such that y; is computed from ¢,x1,...,x;, where ¢ is the
content of the advice tape, i.e., an infinite binary sequence. For some output sequence o,
cost(0) denotes the cost of 0. An online algorithm A is c-competitive with advice complexity
b(n) if there is some non-negative constant « such that, for every n and for each input sequence
I of length at most n, there is some ¢ such that cost(A?(I)) < ¢ - cost(Opt(I)) 4+ a and at
most the first b(n) bits of ¢ have been accessed during the computation of A®(I). Here, Opt (1)
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denotes an optimal solution for I. If a = 0, then A is called strictly c-competitive. Moreover, A
1s optimal if it is strictly 1-competitive. The definition for mazimization problems is analogous.

The concept of advice complexity enables us to perform a much more fine-grained analysis
of the hardness of online problems than using the classical competitive analysis. We are
especially interested in lower bounds on the advice complexity. Such lower bounds not only tell
us something about the information content [15] of online problems, but they also carry over
to a randomized setting where they imply lower bounds on the number of random decisions
needed to compute a good solution [16]. However, similar to most other computing models,
also lower bounds on the advice complexity are hard to prove. Thus, it is desirable to have
some generic proof methods to establish lower bounds. In this paper, we approach this goal by
considering a generic online problem and showing how to transfer lower bounds on its advice
complexity to lower bounds for other online problems.

1.1 Owur Contribution and Related Work

We study the string guessing problem with respect to its advice complexity in Section 2. This
problem is shown to be generic with respect to proving lower bounds on the advice complexity.
Here, a string of length n over an alphabet of size ¢ has to be guessed symbol by symbol.
More specifically, we define two versions of the problem where, in the first case, the algorithm
gets immediate feedback which decisions would have been correct up to the current time step,
whereas, in the second case, this feedback is not supplied. First, we prove a lower bound on the
advice necessary to achieve some specific number of correct guesses for both versions. Second,
we analyze an upper bound on the size of the advice depending on both n and gq.

Employing this result, we use reductions from the string guessing problem as a technique
to prove lower bounds for other well-studied online problems. It seems to be a promising
approach to take further steps in this direction and develop general methods to prove lower
bounds on the advice complexity. Our first application, stated in Section 3, deals with an
online version of the set cover problem as introduced in [1]. We show how to use the results
on the string guessing problem to give a lower bound that closes an exponential gap between
the lower and upper bounds given in [17]. Second, in Section 4, we study an online version of
the maximum clique problem where the vertices of the graph arrive consecutively. In every
time step, an online algorithm has to decide whether the current vertex is part of the solution
or not. We give a lower bound on the number of necessary advice bits that is linear in the
number of vertices.

Note that Emek et al. [12] followed a similar approach to prove a lower bound on the
advice complexity of randomized online algorithms with advice for metrical task systems. They
defined a problem called generalized matching pennies (GMP), which is basically our string
guessing problem with known history, but with a different, somewhat artificial cost function.
This cost function depends on a parameter 7 > 0 such that any online algorithm for GMP
pays at least 1/7 in every time step. Any reduction from GMP depends on the concrete choice
of 7. Moreover, their proof method only gives meaningful results for a number b of advice bits
per time step that is bounded by 1 < b < %logz q, whereas our results cover the complete
range 0 < b <log, q. (Note that log, ¢ advice bits per time step obviously allow an algorithm
to be optimal.) In particular, our model also works for b € o(1). Additionally, it allows to
prove lower bounds for any alphabet size ¢ > 2 and for any desired competitive ratio, whereas
their lower bounds are limited to alphabets of size at least 4 and competitive ratios strictly



less than 2. Overall, our string guessing problem offers a more general, uniform, easy-to-use
technique to prove lower bounds on the advice complexity of online problems.

2 The String Guessing Problem

In many online problems, the question arises whether knowing the history, i. e., the parts of
an optimal solution that correspond to the input known at a specific time step, has an effect
on the additional information necessary to achieve a certain competitive ratio. We deal with
this question studying a very generic online problem, namely the string guessing problem. In
the first variant, the algorithm has to guess a character from some fixed alphabet, then, in
the next step, it is told what would have been the correct answer and is asked for the next
character. In the second variant, the algorithm also has to guess character by character, but
it gets no feedback about whether its answer was correct or not until the very end of the
request sequence. In both cases, the length n of the string is given as the first request and the
algorithm then has to guess n characters step by step.

In what follows, the Hamming distance between two strings of the same length denotes
the number of positions at which these two strings differ. Let us begin by defining the two
variants of the string guessing problem formally.

Definition 2 (String Guessing with Known History). The string guessing problem
with known history over an alphabet X of size ¢ > 2 (¢-SGKH) is the following online
minimization problem. The input I = (n,dy,da,...,d,) consists of a natural number n and the
characters dy,da, ..., d, € X, that are revealed one by one. The online algorithm A computes
the output sequence A(I) = y1y2 ... Yn, where y; = f(n,dy,...,di—1) € X, for some computable
function f. The algorithm is not required to respond with any output in the last time step.
The cost of a solution A(I) is the number of wrongly guessed characters, i. e., the Hamming
distance Ham(d, A(I)) between d = dids . . .d, and A(I).

Definition 3 (String Guessing with Unknown History). The string guessing problem
with unknown history over an alphabet X' of size ¢ > 2 (¢-SGUH) is the following online
minimization problem. The input I = (n,?,?7,...,?7,d) consists of the input size n in the first
request, n — 1 subsequent requests “?7” carrying no extra information, and the correct string
d=dy...d, € X" In each of the first n time steps, the online algorithm A is required to
output one character from X, forming the output sequence A(I) = y1ya ... Yyn. As above, the
algorithm is not required to respond with any output in the last time step, where the string d
is revealed. The cost of a solution A(I) is again the Hamming distance between d and A(I).

For simplicity, we sometimes speak about the input string d = dids . .. d,, when we mean
the input sequence I = (n,dy,ds,...,dy) or I = (n,7,?7,...,7,d) with n = |d|. Also, we write
A(d) instead of A(I). Since the cost of an optimal solution for any string guessing instance is
always 0, it is not meaningful to consider the competitive ratio as a measure for these problems.
We therefore restrict our analysis to the number of errors produced by an algorithm. Our goal
is to minimize this number.

It is easy to see that, for every deterministic online algorithm without advice, there is an
input string of length n such that the algorithm produces n errors. This holds for any alphabet
of arbitrary size ¢ > 2. To see this, consider an adversary Adv that, in each time step, produces
an input character «; differing from the deterministic output y; = f(n,aq,...,a;—1) of the
algorithm. Clearly, no deterministic online algorithm gains anything by knowing the history.



Considering online algorithms with advice that produce optimal solutions, we easily see
that each such algorithm needs to read at least [nlogyq| advice bits to be optimal on
any input of length n, even in the case of known history: Assume an optimal algorithm
A reads m < [nlogsy q] advice bits. There are ¢ possible different input strings, but only
om < glnlogzql—1 ~ gnlogza — n different advice strings. Thus, at least two different input
strings get the same advice. There is one position where these two strings differ for the first
time. The algorithm A makes a deterministic decision in the corresponding time step that
is optimal for at most one of the two solutions and Adv can always choose the other one. A
matching upper bound, even in the case of ¢-SGUH, can be achieved by simply enumerating
all possible inputs and encoding the index of the concrete instance using [nlogsy ¢| advice bits.

On the other hand, a constant amount of advice can already help to guess a linear number
of characters correctly, even without considering the history.

Observation 1 There is an online algorithm for -SGUH that guesses at least [n/q| positions
correctly on any input string of size n using [logy q| advice bits.

Proof. In every input string of length n over an alphabet of size ¢, at least one character z
occurs at least [n/q] times, and it can be specified by the oracle using [logs ¢| bits. An online
algorithm that outputs z in every step guesses at least [n/q] positions correctly. O

In the remainder of this section, we estimate the number of advice bits necessary and
sufficient to obtain a specific cost.

2.1 Lower Bounds

First, we show a lower bound on the number of advice bits necessary to guarantee that there
is at most a specific number of wrong answers for g-SGUH. Consider an online algorithm A
using b advice bits. This can be seen as a collection of 2° different deterministic algorithms [17].
As all inputs look the same on the first n requests, the behavior of these algorithms can only
depend on the advice.

For each of the ¢™ possible inputs, the oracle can choose between 2° different algorithms,
each of which produces a fixed output string. The oracle has to select a set of 2° such strings,
which we call center strings, in such a way that the maximum distance of any input string
to the nearest of these center strings is minimized. This is exactly the task of constructing a
so-called covering code. A covering code K, (n,r) over an alphabet X' of size ¢ of the strings of
length n with radius r is defined as a set of codewords (elements of X™) with the property that
every string in Y™ has a distance of at most r to at least one codeword in K,(n,r). For an
overview of covering codes, we recommend [8]. The minimum size of a covering code K4(n,r)
gives us the number of different advice strings we need to make sure that the worst-case error
over all inputs for ¢-SGUH is at most r.

To get a simple lower bound on the size of a covering code Ky(n,r), we consider the
Hamming balls of radius r around the center strings. A Hamming ball of radius r around a
string s in X™ consists of all strings ¢ with Hamming distance Ham(s, ) < r. Due to symmetry!

! The ¢™ strings of length n over an alphabet of size g can be seen as the vertices of a g-ary hypercube, which
is known to be vertex-symmetric.



of the hypercube, the size of a Hamming ball of radius r around some string s does not depend
on s. Thus, we denote it by

Volg(n,r) = Z; (7;) (q — 1)

To make sure that no error greater than r occurs for any input string, the number b of necessary
advice bits has to satisfy the condition

q" < 2% -Vol,(n,r). (1)
Let

Hy(p) = plog,(q — 1) — plog,p — (1 — p)log,(1 — p)

denote the g-ary entropy function, for 0 < p < 1. With this, Vol,(n,r) can be estimated as
follows.

Lemma 1 (Guruswami et al. [14]). Let p€ R, ¢ € N>, 0 < p < 1 —1/q. For sufficiently
large n, we obtain Voly(n,pn) < qHa(e)n, 0

An easy calculation immediately yields

n (1-p)n
Vol (n pn) < qu(P)n — <ql>p (1> 5 (2)
L p 1—-p '

This observation leads to the following lower bound for ¢-SGUH.
Theorem 1. Consider an input string of length n for -SGUH, for some n € N. The mini-

mum number of advice bits for any online algorithm that is correct in more than an characters,
forl/g<a<1,is

1—
(1 + (1 — a)log, (?) + alog, oz) nlogy, ¢ = (1 — Hy(1 — a))nlog,q.

Proof. Guessing at least an characters correctly means there can be at most (1 — a)n errors.
We define o/ = 1 — a and substitute r by a/n. Then we know from (1) that each algorithm
that guarantees to make less than o'n errors uses at least b advice bits, where b satisfies

@ < Vol,(n, a'n)

b = "L ST

To give a lower bound on b, we apply (2), which yields

q" g—1 a'n 1 (1-a)n
— <
w< () ()

’ a'n ,
2b2qn'( @ > ‘(1_041)(1—@)”

q—1

/

bZn'log2q+o/n-log2< a 1> + (1 —a)n-logy(1 —a)
q_

/

b> n-log2q+a'n-log2q-logq< > +(1— O/)n'logQQ'logq(l —O/)

b> <1+o/logq<

«
qg—1

/

[

- 1> + (1 —a')log,(1 - o/)) n - logy q.



We now resubstitute o/ by 1 — a and obtain

1—
b > (1 + (1 — a)log, <a> + alog, a) nlogs, q.

qg—1
Thus, we have established a lower bound on b to guarantee at least an correct characters or,
in other words, a maximal number of o/n errors. O

The above argument heavily relies on the fact that, in case of ¢-SGUH, the output of
a deterministic algorithm is unambiguously determined by the given advice. In the case of
¢-SGKH, this is no longer true. A deterministic algorithm might base its output on the history
and thus might output different strings while reading the same advice. In the following we

show that, despite of this complication, the same lower bound as in Theorem 1 also holds for
q-SGKH.

Fig. 1. The tree T;, representing all input instances for ¢ = 2.

For the analysis, we use the g-ary tree T,, of depth n as a representation of the set X"
of all input strings of length n over the alphabet X (see Fig. 1). For 0 < i < ¢"™ — 1, the
leaf v(o ;) represents the ith string in lexicographic order in 2™ and every inner vertex v, ;,
for 1 < h < n, represents all 2" strings of the leaves of the subtree rooted in U(h)- Let A be
an online algorithm for ¢-SGKH that uses at most b advice bits for any input instance of
length n. Due to the pigeonhole principle, at least one advice string is used for at least [¢"/ 2b}
different input instances. For a given advice string ¢ of length b, we now take a closer look at
the set Zy of input strings for which A gets the advice string ¢. The algorithm A is not able to
distinguish between any two strings in Zy at the beginning of the computation. However, this
situation may change during the computation since A gets the additional information of what
would have been the correct output in every time step so far.

We now investigate the maximal cardinality of Zs such that A can guarantee that the
maximal number of errors is r. We can view every computation of an online algorithm as
a path in T,, from the root down to a leaf. In every time step, the algorithm decides which
subtree to enter. In the following step, it is revealed which direction would have been correct.
If instances in more than one subtree of some vertex are represented by the given advice, the
algorithm cannot know which subtree is correct.

For any vertex v in T, let F'(v) denote the maximal number of errors the adversary Adv
can enforce in the remaining input string inside the subtree rooted at v, in addition to the
errors already made on the way from the root to v. Moreover, let ¥: N x N — N be a function
such that ¥ (h,r) measures how many strings in Z, can at most be represented by a vertex



at depth h such that the enforceable number of errors is at most r. We are interested in the
function ¥ (n,r) which gives us the desired lower bound and can be computed as follows.

Lemma 2. For 0 <r < h <n, we have

T

U(h,r)=> (’Z) (g —1)" = Vol,(h, 7).

=0

Proof. The function F' can be computed recursively as follows. Let v € V' be a vertex in T,
such that the subtree rooted at v contains at least one vertex that corresponds to a string
from Zy and max{F(u) | u is a child of v} = m. Then,

(3)

F(v) m+ 1 if there are at least two children u, w with F(w) = m,
v) =
m else.

To prove (3), we distinguish two cases. In the first case, there are two or more subtrees with
the same maximal value of F'. In the second case, there is exactly one subtree with a maximal
number of errors.

Case 1. There are at least two children u and w of v with F(u) = F(w) = m. Thus, it does
not matter which subtree the algorithm chooses, because Adv will choose another subtree
with a maximal number of errors and thus enforce one error in the current time step as
well as the m errors in the corresponding subtree.

Case 2. There is exactly one child u of v with F(u) = m and, for all other children w of v,
F(w) < m. The algorithm should choose the subtree rooted at u and accept m errors.
Otherwise, Adv would choose the subtree rooted at u and thus enforce one error in the
current time step and overall m + 1 errors in the subtree rooted in v.

This proves (3). We now show that the function ¥(h,r) satisfies the recurrence relation

W( ’0) =1, (4)
@(h,h) = ¢", and (5)
U(h,r)=¥(h—1,r)+(¢—1)-¥(h—1,7r—1), for 0 <7 < h. (6)

To prove (4), assume two input strings are represented by two leaves in T},. These two
leaves have a lowest common ancestor v(g j), with 1 < g < h. When the algorithm reaches vy ;,
it has to choose one of the ¢ successors. It does not matter which subtree the deterministic
algorithm takes, Adv can always choose another one, i. e., another possible input string, and
hence enforce one error. Thus, ¥(h,0) = 1.

If h errors are allowed, it obviously does not matter what the algorithm does at depth h
because, in the worst case, the algorithm makes one error per step and thus at most h errors
in total. In other words, a subtree at depth h with h errors allowed can represent ¢" strings,
i.e., W(h,h) = q¢", proving (5).

Additionally, we know from (3) that, for a vertex v at depth h with at most r enforceable
errors, the maximal number of errors in all ¢ subtrees of v cannot be larger than r. Furthermore,
we know that no two subtrees can have an error of r. To maximize the number of errors
in the subtree rooted at v, one child is assigned r errors and all others r — 1 errors. The



maximal number of instances represented by a tree of depth A when r errors are allowed is
thus ¥(h,r) =¥ (h—1,r)+ (¢ —1)-¥(h — 1,7 — 1), which proves (6).

Using this recurrence, we are now able to prove the claim of this lemma by induction on A.
We already know that ¥(1,0) = 1 = 30 (D) (g— 1) and #(1,1) = ¢ = 3 () (g - 1)".
Now we prove the statement for h > 1 and O <r<h.

As induction hypothesis, assume that ¥(h,r) = >\, ( )(g — 1)*. Note that ¥(h+1,r) =
@(h,r) 4 (g —1)-@(h,r — 1) holds due to (6) and recall that (}) + (,",) = ("H) We get

U(h+1,r)=¥(h,r)+(¢q—1)-¥(h,r—1)

)

g—1)" +z; <}Z> (q—1)" +§ (?) (¢ —1)"*!

=0

1=

h
0

r r—1
h h
( )(q — 1)+ (g—1) E < ) (¢ —1)"  (by the induction hypothesis)
0 =0

T s

o=+ 3 (a3 ()

(o)
(o)
(B2 (()+( 20 o
("

(

" 1>(q—1)°+i;<hj1>(q—1)i

r

I IR

- (3
=0

It follows that
h+1
h+1 .
U(h+1,h+1)= — 1)t = ¢!
aetnan =3 ("7,

where the last equation holds due to the binomial theorem.
With this, the claim follows for all values of ¥(h + 1,7), for 0 <r < h+ 1. O

From Lemma 2 for h = n together with Theorem 1, we immediately get the following lower
bound on the advice complexity for ¢-SGKH. Note that this result coincides with the above
lower bound for ¢-SGUH.

Theorem 2. Consider an input string of length n for ¢-SGKH, for some n € N. The
minimum number of advice bits for any online algorithm that is correct in more than an
characters, for 1/qg < a <1, is

1—
<1 + (1 — a)log, (q—?) + alog, a) nlogy, ¢ = (1 — Hy(1 — o)) nlog,q. 0

For ¢ = 2, i.e., for the bit string guessing problem, we get the following result.



Corollary 1. Consider as input a bit string of length n for 2-SGKH. Every deterministic
algorithm that can guarantee to be correct in more than an bits, for 1/2 < a < 1, needs to
read at least

(14 (1 —a)logy(l —a)+ alogya)n

many advice bits. a

2.2 Upper Bounds

To give an upper bound on the advice complexity of ¢-SGUH on strings of length n with at
most r errors, we analyze the minimal size of a covering code of length n with radius r.

Lemma 3 (Moser and Scheder [19]). Let n € N>% g € N>'.» € N. Over any alphabet of
size q, there is a covering code of length n with radius r of size at most

n-lng-q" -
Voly(n,r) |

To estimate an upper bound on the length of the advice string that is sufficient to guarantee
a certain number of correct characters, we need a lower bound on the volume of the Hamming
ball of radius r.

Lemma 4. Let p€ R, ¢ € N>!, 0 < p <1—1/q, such that pn € N. For sufficiently large n,
Volq(n, pn) > qu(P)'”*% Iqu(Q")'

Proof. We know from [18] that

<”> > L o,
pn/) — /8np(l — p)

It follows that

onn:pnn — 1) n\ o awns L omp)n n
Vol =32 ()0 =102 () o= 172 e 20 (g 1y

Together with the simple fact that 2H2®)7 . (g — 1P = ¢l we get

qu(p)'n qu(p)-n

\/Snp(l—lv)Z van ¢

Now we are ready to prove an upper bound on the number of advice bits sufficient to
guarantee more than an correctly guessed characters.

H,;(p)%—% 10gq(2n)' 0

Vol,(n,pn) >

Theorem 3. Consider an input of length n for -SGUH, for some n € N. There is an online
algorithm that is correct in more than an characters, for 1/q < a < 1, and needs at most

3 1
(1 1,0 = ) nlogy + 5 g+ o) +

many advice bits.



Proof. Guessing at least an characters correctly means there can be at most o/n errors for
o/ =1 — a. To guarantee that there are at most o’n errors, we need to cover the strings of
X" with Hamming balls of radius at most o'n. We know from Lemma 3 that there is such a
covering with at most

n-lng-q"

Voly(n, a'n)
balls, which leads to an algorithm that can guarantee that there are at most a/n errors and
that uses b advice bits such that b is the smallest integer satisfying

. Inq . qn
ob > | DR T T
- {Volq(n,a’n)—‘ (7)

From Lemma 4, we know that

- o'n (1—-a')n
Vol,(n,a'n) > qu(a/)'”*%lqu(zn) @ (q 1) <1> L

Ol/

Thus, it is sufficient for b to satisfy

n-lng-q" _ qg—1 oa'n 1 (1-a')n 1
20b - o 1—ao Von

’ a'n ,
= 20 > (a1> ~(1—o/)(l_a)n'\/Zn-n'lnq'q"
q—
a/
= bZa'n~log2( 1>+(1—a')n-log2(1—o/)

1
+g logs(2n) + logy n + logy(Ing) 4+ n - logy g

/

— bZO/n-long-logq( a

= 1> + (1 —a')n-logy q - log, (1 — o)

1 1
+ 3 + 510g2n+ logy n 4 logy(Ing) + n - log, ¢

= bz(l—i-o/logq(

/

q—1> + (1 —a')log,(1 - o/)) n -logy q

3 1
+ 3 logy n + logy(Ing) + 3

We now resubstitute o/ by 1 — a and finally get

a

1- 3 1
b> <1 + (1 — «a)log, <q—1> + alog, a> nlog, q + Eloan—l—logQ(lnq) + 5

Since we wanted to find the minimum value for b such that (7) is satisfied, we choose

1-— 3 1
b= [(1 + (1 — a)log, (q_?) —|—alogqa> nlogy q + iloan—l—logQ(lnq) + 2—‘ .

Hence, we now have an upper bound on the number b of advice bits necessary for an algorithm
to guarantee at least an correctly guessed characters. a

10



For the special case of bit strings, we get the following result.

Corollary 2. Consider as input a bit string of length n for 2-SGUH. There is an online
algorithm reading at most

3 1
[(1 + (1 —a)logy (1 — a) + alogya)n + 3 logyn + 5 + logy(In 2)—‘
advice bits and that is correct in more than an bits, for 1/2 < a < 1. O

3 The Online Set Cover Problem

In this section, we study the advice complexity of the unweighted online set cover problem,
which was introduced in [1] and is defined as follows.

Definition 4 (Online Set Cover Problem). Let X = {1,...,n} be a ground set of size n,
X' C X a set of requests, and S C P(X) a set family of size m. Without loss of generality, no
set in S 1is the subset of another set in S. The set X and the family S are known beforehand,
but the elements of X' arrive one by one in consecutive time steps. Thus, each permutation
of X' corresponds to one instance of the online set cover problem (SETCOVER). Any subset
{S1,...,Sk} of S such that Ule S; D X' is a feasible solution for such an instance. The aim
s to minimize k, i. e., to use as few sets as possible. An online algorithm solves SETCOVER if,
immediately after each yet uncovered request j, it specifies a set S; € S such that j € S;.

First, we observe that there is a reduction from ¢-SGKH to SETCOVER.

Theorem 4. Assume an online algorithm A solves SETCOVER with b advice bits making at
most r errors, 1. e., choosing at most r sets more than an optimal algorithm. Then, there is an
online algorithm B that solves the string guessing problem with known history with b advice
bits and at most v errors.

Proof. First, we show how to transform an instance Ig for ¢-SGKH over an alphabet X
of size ¢ into an instance I4 for SETCOVER. Let the considered instance for ¢-SGKH be
Ip = (k,dq,...,dy). Hence, the input string d = d; ...d; has length k. We give the set X
and the family S, which are known to the SETCOVER algorithm, depending on k and X.
We set X = {X; | tisa string over X' of length at most k}. Hence, X contains Zf:o ¢ =
(¢"t1 —1)/(q — 1) elements. Furthermore, S = {tr(s) | s = s1...5; € X*}, where tr(s) = {X; |
tis a prefix of s} = {X\, X5, Xo1505 -+, Xs1...5,, } 18 the transformation of the string s and A
denotes the empty string. Each set tr(s) contains k + 1 elements, and S consists of ¢* sets.

It remains to show that, in each time step j, we can transform the jth request of the
q-SGKH instance into a request of the SETCOVER instance, and can also transform the output
of a SETCOVER algorithm A into an output of a ¢-SGKH algorithm B such that the following
condition is satisfied: If A uses b advice bits and makes at most r errors, then B also uses only
b advice bits and makes at most r errors.

The request for B in time step 2 < j < n + 1 consists of the character d;_;. Hence, by
time step j, algorithm B is aware of the first j — 1 characters d; ...d;_1 of the correct string.
Then, the element that is requested to be covered by the SETCOVER algorithm A in time step
7 will be Xdl...dj,l- Note that by this, A is implicitly informed about which character would
have been the right choice in time step j — 1. The element Xg, 4, , might already be covered,
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namely if A already chose a set .S; = tr(s) for some string s with prefix d; ...d;_1 in one of the

previous time steps. If it is not yet covered, A has to choose a set containing Xy, 4

] now.
Aj—1

Since every set S; corresponds to a certain string s € X*, the choice of a set containing element
Xd,...d;_, corresponds to guessing all the remaining characters of the string d, in particular
the character d;. If, in time step j, A chooses a set S; containing the element Xdl...dj,lyw the
string guessing algorithm B will output the character y; as its guess for the jth character of d.

If A has made an error in time step j — 1, it has picked a set containing Xg, .4, .y, ;>
some y;_1 # d;j_1. This error will be noticed by A in time step j, when it gets the request
Xdy...d;_,- It now has to pick one set to cover this element. If A did not make an error in time
step j — 1, it has picked a set containing Xg, 4 In time step j, the request sent to A is

. jfgdjfl .
exactly this element X4, 4 Because it is already covered, no additional set has to be
chosen.

for

j—2dj—1-

Now let us consider the number of errors of the string guessing algorithm B. If the output
of A in time step j — 1 is a set containing Xdy...d;_oy;_,» B guesses the character d;_; to be
Yj—1 in time step j — 1. If and only if X4, 4, ,y,_, is the request for A in the next time step,
it holds that d;_; = y;—1. So, B guesses the (j — 1)th character correctly if and only if the
SETCOVER algorithm A did not make an error in time step j — 1 and therefore does not have
to pick another set in time step j.

All in all, we have shown that the string guessing algorithm B makes an error in time
step j if and only if the SETCOVER algorithm A makes an error in time step j. O

The reduction above helps us to establish a lower bound on the advice complexity of
SETCOVER. First, we show that it is equally hard to guess a percentage of a characters over
one string of length rk as to guess the same percentage over r strings of length k over an
alphabet of the same size. We start by formally defining the problem of guessing r strings of
size k.

Definition 5 ((g,¢,k)-Multiple String Guessing with Known History). The (q,/,k)-
multiple string guessing problem with known history over an alphabet X' of size ¢ > 2 ((q, ¢, k)-
MuLTiISGKH for short) is to solve ¢ instances I1,...,I; of -SGKH of length k over an
alphabet of size q. The input I is the concatenation of I, ..., I;. The cost of a solution A(I) is the
sum of the costs on the ¢ consecutive ¢-SGKH instances, i. e., cost(A(I)) = Zle cost(A(L;)).

The following lemma states that as many advice bits are necessary to correctly guess
alk characters of a string of length ¢k over an alphabet of size ¢ as to correctly guess afk
characters of an instance for (g, ¢, k)-MULTISGKH.

Lemma 5. Assume an online algorithm A solves (q, ¢, k)-MULTISGKH with b advice bits and
makes r errors. Then there is also an online algorithm B for ¢-SGKH on strings of length £k
using b advice bits and making r errors.

Proof. Consider a ¢-SGKH instance of length ¢k. The first k requests of this instance get
mapped to the k characters of the first string of a (g, ¢, k)-MULTISGKH instance, and so on.
Then, the decisions of an algorithm A for (¢, ¢, k)-MULTISGKH can directly be used by an
algorithm B for ¢-SGKH on the corresponding positions. It is obvious that B makes an error
if and only if A makes an error. O

12



Theorem 5. Let ¢ € N22. For any k € N2! and any c € R>, ¢ < 1+ k(1 — 1/q), every
c-competitive online algorithm for SETCOVER needs to read

c—1 c—1 k—c+1 k—c+1 k -logs q
b>(1+——-1 -1 . .
> (105 o () + o e ()

c—1 k -logs q
()

or

c—1 c—1 kE—c+1 E—c+1\\ k-(g—1)-logyq
>(1+-5—" § :
v (1 iy tom () + e () ) G e

c—1\\ k-(g—1)-logyq
~(1-m () )

advice bits, depending on whether we measure in m = |S| or in n = |X]|.

Proof. To prove the claim, we give a reduction from (q, ¢, k)-MULTISGKH. Consider a set
{s1,...,8¢} of £ strings of length k each over an alphabet of size ¢ and the corresponding
instance I = (Ig,,...,Is,) of (¢, %, k)-MULTISGKH. We use the construction from the proof of
Theorem 4 to construct £ SETCOVER instances (X, S;) from I, such that the sets X; (and
thus also the set families S;) are pairwise disjoint. For each I5,, we also construct a sequence
I ;j of requests for SETCOVER using the transformation from the proof of Theorem 4. Then

we join these subinstances to get a SETCOVER instance (X, S) by setting X = Ule X; and
S= Ule S;. The order of the requests in the SETCOVER instance follows an arbitrary order
of the Iy, say Is,, Isy, ..., Is,.

The constructed SETCOVER instance has an optimal solution of size ¢ since every subin-
stance has a solution of size 1 and all subinstances are disjoint. The size of the ground set
is (¢"*1 —1)/(q — 1) - £ = n and the size of the set family is ¢* - £ = m. We know from
Theorem 4 that, for each algorithm for SETCOVER that reads b advice bits and makes r errors,
there is an algorithm B for ¢-SGKH using the same advice and making the same number
of errors. Consider an algorithm A for the constructed SETCOVER instance that defines ¢
algorithms Ay, ..., A, for instances of length k. Each of these algorithms corresponds to one
particular subinstance (X, S;) of SETCOVER. Since these subinstances are disjoint, for any
algorithm A; that makes r; errors while using b; advice bits, there is an algorithm B; using
b; advice bits that makes the same number of errors for the string s; of the given instance
of (¢, ¢, k)-MULTISGKH. Thus, in total, the number of errors A makes is the same as the
number of errors made by some algorithm B for the whole (g, ¢, k)-MULTISGKH instance. Due
to Lemma 5, there is an algorithm C that makes r errors while reading b advice bits for any
instance of ¢-SGKH.

The competitive ratio achieved by A is thus

0+ (1—a) lk
c—+(éf0—1+u—ayh
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hence @ =1 — (¢ — 1)/k, where a denotes the fraction of correct answers. Since we assume
¢ <1+ k(1—1/q), which implies 1/q < a, we can directly apply Theorem 2 yielding that

c—1 c—1 k—c+1 k—c+1
> - - - . .
o> (1 (5 Jom (=) + (5 om0 ) vt
—(1—Hq<cgl>)-£k-log2q

advice bits are necessary to be c-competitive. To measure in |S| = m and in |X| = n, we
calculate £ = m/q*, and £ = (¢ — 1) - n/(¢"**' — 1), and the claim follows. O

From Lemma 5, we know that guessing a string of length ¢ is as hard as guessing ¢ strings
of length 1. Thus, setting k = 1 and ¢ = 2 (i.e., we consider 2-SGKH), Theorem 5 gives the
following result, where ¢ = n/3 = m/2 in the above proof.

Corollary 3. For ¢ < 1.5, any c-competitive online algorithm for SETCOVER needs to read
b> (14 (c—1)logy(c— 1) + (2 — ¢) logy(2 — c))g
or
m
b>(1+ (c—1)logy(c—1)+ (2 —c)logy(2 —¢)) B}
advice bits, respectively. O
Fig. 2 shows lower bounds that are obtained using Theorem 5 for £ = 1 and different

values of q.

0.4 T
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0.25 - i

02 B

0.1 |- 1

Number of advice bits per time step b/n

0.05 - R

0 I 1 I N
1 1.2 1.4 1.6 1.8 2

Competitive ratio ¢

Fig. 2. The number of advice bits necessary per time step for the online set cover problem.

Note that, in [17], a lower bound on achieving a constant competitive ratio was shown that
is merely logarithmic in m. Thus, Theorem 5 yields an exponential improvement over the best
previously known result.
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4 The Online Maximum Clique Problem

In this section, we analyze the online mazimum clique problem [10]. Here, in every time step,
a vertex of a graph is given together with all edges to vertices that were already revealed in
previous steps, and an online algorithm A has to decide whether the newly revealed vertex
becomes part of the solution.

For giving a reasonable cost function, we briefly give some considerations. First, assume
the input graph G has a maximum clique of size n and the algorithm finds a clique of size
n — 1. Then, intuitively, the cost of the solution should be n — 1, irrespective of how many
vertices of the found clique are also part of a largest clique in G. On the other hand, assume
the algorithm selects a vertex that is not connected to any vertex revealed afterwards. Unless
this is the only vertex A takes, A does not output a clique (i. e., its solution is not feasible). To
avoid this, it should be allowed to give an output where not all selected vertices are part of
a clique, different to the situation in [10]. Even if A gives an output in which many vertices
form a large or even a maximum clique, but one additional vertex is selected, the output is no
clique, but very close to a relatively good or even optimal solution. Thus, this solution should
have almost optimal cost. Then again, we should clearly prevent the algorithm from simply
selecting all vertices that are given. For an output A(7), we therefore consider not only its size,
but also the maximum clique Cy(py in the graph G,y restricted to the selected vertices A([).
Then, the solution becomes better the larger the maximum clique in Gy(z) is, and it becomes
worse as more vertices are selected that are not part of Cy(y). All in all, we propose the cost
function given in the following definition.

Definition 6 (Online Maximum Clique Problem). The online maximum clique problem
(MAXCLIQUE) is the following online problem. The input is a graph G = (V, E) and the goal
is to find a clique C' CV in G of maximum size. In each time step i, one vertex v; € V is
revealed together with all edges {{v;,v;} € E'| j <1}, and an online algorithm A has to decide
whether v; € C or not. Let A(I) be the set of vertices selected by A, and let Cy(py be a mazimum
clique in the graph Gyy. The cost function is defined by cost(A(1)) = |Cy(p)|*/IA(1)].

Clearly, for the optimal solution Opt([) of a graph with a maximum clique Cyp, we have

|Copt|

t(0pt(1)) = | Cont| = |C
cost(0pt(])) opt(1)] |Copt| = [Copt,
thus, the competitive ratio of A on [ is

_ cost(0pt([)) _ |A(D)| ) |COPt"
cost(A(I)) ICanl 1Cu)l

In other words, the quality of the output of A is given by the product of the two ratios
|A(L)|/|Cy(py| and |Copt|/|Cy(pyl- The first ratio measures how many useless vertices A has taken
and the second ratio measures how many correct vertices A has not taken.

In order to give a lower bound on the advice complexity of MAXCLIQUE, we use our results
for 2-SGKH. To this end, we investigate the following subclass of instances, where every
instance corresponds to a particular bit string. Let s = s1s2... 5,/ be a bit string of length n’,
for some n’ € N. We construct an input instance Iy for MAXCLIQUE corresponding to s as
follows. Consider the graph Gy, = (V(I;), E(Is)) with n = 2n’ + 2 vertices. Let

V(Ls) = {0(1,0)s V(1,1)5 - - = » V' +1,0)5 Vn/+1,1) }
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and let V'(Is) = {vgs,) | 1 < i < n'} be the set of the n’ vertices that correspond to the
string s. Moreover, let

E(IS) = {{v(i,si)av(j,k)} ’ 1<i<j< nlv k€ {07 1}}
U {{v’v(n’—i-l,O)}a {vvv(n’—i-l,l)} |ve V/(Is)} U {{U(n’—i-l,O)vv(n’—i-l,l)}}'

Clearly, the vertices from V’(I;) plus the vertices v(,11,9) and v(y41,1) form a unique
optimal solution for I of size n’ 4 2. Although the vertices v(; ) and v(; ) are revealed
separately (and after each vertex, the algorithm has to respond immediately), for the analysis,
we combine them into one pair. After the first pair is revealed, the vertices of the second pair

(v(2,0), V(2,1)) are given, and so on. An example for the string s = 00101 of length 5 is given in
Fig. 3.

Fig. 3. Example of the graph Goo1o1-

Assume that A knows that one vertex of each pair is part of the optimal solution. Then,
we can see MAXCLIQUE as guessing one vertex per pair. Similar to guessing a string s, also
when trying to find the correct vertex in a pair (v(; ), v(;,1)) in G1,, the correct decision can
only depend on the input known so far, the history, and the given advice. However, in general,
an algorithm has four options for every pair that is revealed, which are to take only the first
vertex, only the second one, both, or none. As a next step, we show that, for any online
algorithm with advice, it is the best strategy to take both vertices of any pair for which no
advice is used. In this way, we derive an upper bound on the cost of any online algorithm for
MAXCLIQUE that uses at most b advice bits.

Lemma 6. Let B denote a best online algorithm with advice for 2-SGKH that reads b advice
bits, and let s be any 2-SGKH instance of length n’. Let the number of bits of s that B guesses
correctly be at most an’, where 0 < « < 1. Then, no online algorithm A for the corresponding
MAXCLIQUE instance I, reads b advice bits and achieves

(an’ + (1 — a)n/ +2)?
an’ +2(1 —a)n’ +2

cost(A(lg)) >

Furthermore, an online algorithm A* that correctly guesses the same pairs as A and takes both
vertices for all remaining pairs satisfies cost(A*(Is)) > cost(A(Is)).

Proof. First we prove by a reduction from the string guessing problem that no algorithm
for MAXCLIQUE can correctly guess more than an’ pairs when using at most b advice bits.
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Consider any algorithm A for MAXCLIQUE such that &n' is the number of pairs (v(; 0y, v(; 1))
of vertices in Gy, that A guessed correctly. For the sake of a contradiction, suppose & > « and
consider the following reduction to solve 2-SGKH with an’ correctly guessed bits. Every time
step in 2-SGKH can be transformed into two time steps of MAXCLIQUE as described above.
We then create an online algorithm A’ for 2-SGKH as follows. According to the output of A in
the two time steps that are associated with one pair, A’ gives the output 0 if A takes the first
vertex and 1 otherwise. Thus, A’ is an online algorithm with advice for 2-SGKH that guesses
more than an’ bits correctly while using b advice bits and that is hence strictly better than B,
which is a contradiction to our assumption.

It follows that & < . We may thus assume that A guesses at most an’ pairs correctly
for MAXCLIQUE, which is, by the above reasoning, the best A can do. Additionally, we may
assume that A also knows where these an’ pairs lie in the instance I,. For the rest of the
(1 — a)n’ requests, suppose that A takes, for a fraction of 8, both vertices of the corresponding
pair, for a fraction of v, the wrong one, and, for the remainder, no vertex at all. Thus, A
outputs a solution of size an’ +2 +2(1 — a)Bn/ 4 (1 — a)yn', while Gy(;,) has a clique Cyz,)
of size an’ + 2 + (1 — a)Bn/, yielding

(an’ +2+ (1 — a)Bn’)?

cost(A(ls)) = an’ +24 (1 —a)(28+v)n'

We immediately observe that this term does not depend on the number of pairs for which A
chooses no vertex and that it decreases with increasing v. We therefore set v to 0 and verify
that the remaining term increases with 3. To this end, let us substitute X = an’ + 2 and
Y = (1 — a)n’ and consider the function

(an' +2+ (1 -a)Bn’)> (X +YP)’

f(ﬁ): an/+2+(1_a)2/8n’ - X+2Y,8
Since
B 2
() = YXHYHX +2VP) 2V (X +V)

(X 1 2YpB)2

is positive for all values of o and S between 0 and 1, we may set 5 to 1. In other words, the
best algorithm A* that makes the right decisions on exactly the same set of pairs as A takes
both vertices for all remaining pairs. O

In order to give a lower bound on the advice complexity, we analyze an online algorithm
with advice that gets a sufficiently large number of advice bits to know an pairs and, following
Lemma 6, takes both vertices for all unknown positions. Using our results from Section 2, we
can prove the following theorem.

Theorem 6. Any (c — €)-competitive online algorithm A for MAXCLIQUE needs at least

n—2 n—2

(14 (c—1)logy(c— 1)+ (2 —¢)logy(2 — ¢)) 5 =(1— Hy(c—1)) 5

advice bits, for any 1 < ¢ < 1.5 and e > 0.
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Proof. Let n' = (n —2)/2. As above, assume that A reads a sufficiently large number of advice
bits to correctly guess an’ pairs. In order to give a lower bound, we again assume that A also
knows where these an’ pairs lie in the instance and that, according to Lemma 6, A takes both
vertices for all pairs where the corresponding bit is unknown. Thus,

(an' +2+ (1—a)n’)?  n?+2n/+4 _n’+2+$
an’ +2+2(1—a)n/ 20/ —an’ +2 2—a+ 2’

cost(A(I)) =

For the competitive ratio, we therefore get

cost(Opt(I)) (W' +2)2—a+2)  2n/(2-a) 2 -«
- - 1 > 1= 7, 4
COSt(A<I)) n/+2+? n/+2+m 1+W+W

For any o and any € > 0, we have

2—-—«
c> % >2—a—c¢,
for all sufficiently large n’. In other words, A has to guess at least an’ characters correctly
to achieve a competitive ratio of 2 — a — . Using Corollary 1, we get a lower bound on the
number of advice bits necessary to achieve a competitive ratio of ¢ of

(14 (1= (2—0¢))logy(l = (2 —c)) + (2 — ) logy(2 — ¢)) 0’

_|_
(14 (c—1)logy(c—1) + (2 — ¢)logy(2 — ¢)) n
(1+

(= 1)logy(e— 1) + (2 — ) logy(2 — ) ™

O

Note that, without advice, an online algorithm for MAXCLIQUE can achieve a competitive
ratio of (n’ +2)/((n' +2)%/(2n' +2)) = (2n’ +2)/(n/ + 2) ~ 2 by just taking every vertex.
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