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Abstract

In FOCS 2001, Barak, Goldreich, Goldwasser and Lindell conjectured that the existence
of ZAPs, introduced by Dwork and Naor in FOCS 2000, could lead to the design of a zero-
knowledge proof system that is secure against both resetting provers and resetting verifiers.
Their conjecture has been proven true by Deng, Goyal and Sahai in FOCS 2009 where both
ZAPs and collision-resistant hash functions (CRHFs, for short) play a fundamental role.

In this paper, we present a new technique that allows us to prove that simultaneously
resettable zero knowledge can be achieved by relying on CRHFs only. Our construction there-
fore goes beyond the conjecture of Barak et al. bypassing the (demanding) use of ZAPs, that
in turn require double enhanced trapdoor permutations (DTPs, for short). More specifically,
we present the following results:

1. We construct the first resettably-sound resettable witness indistinguishable (rsrWI, for
short) argument for NP based on CRHFs. Our construction exploits a new technique
that we call “soundness upgrade”. In order to upgrade stand-alone soundness to reset-
table soundness, we use the lower bound proved by Rosen in CRYPTO 2000 on the round
complexity of black-box concurrent zero knowledge. Moreover our rsrWI argument is an
argument of knowledge (AoK, for short).

2. As an application of the above result, we obtain the main theorem of this work: we
prove (constructively) the existence of an argument system that is both resettable zero
knowledge and resettably sound under the sole assumption that CRHFs exist.

Our results improve the state-of-the-art, and, perhaps even more importantly, provide a
novel tool for the design of resettably-secure protocols. We also show a novel way to use
protocol lower bounds in constructive protocol design.

Keywords: Proof Systems, Resettable WI/ZK/Soundness.

1 Introduction

Reset attacks, in the context of interactive proofs [GMR85], were introduced by Canetti, Gol-
dreich, Goldwasser, and Micali [CGGM00]. Launching a reset attack on a machine B means
that the adversary A can interact with B many times, each time resetting B to its initial state
and forcing B to use the same random coins. Essentially, this is equivalent to A having access
to many identical copies of B, i.e., all with same initial configuration and random tape; A can
interact with these copies in an arbitrary manner.

These attacks are often easy to launch, particularly when the devices do not have an un-
detachable power supply such as a smart card or an RFID chip. Due to both theoretical and
practical importance, reset attacks have received considerable attention.

Reset attacks are difficult to protect against. As shown in [CGGM00], with appropriate
modeling, security against reset attacks implies security against “concurrent” attacks [DNS98].
Many important cryptographic protocols have been designed that retain some form of “secu-
rity” against reset attacks, for example: zero-knowledge interactive proofs [CGGM00, BGGL01,
MR01a, MR01b, BLV03, ZDLZ03, CPV04a, CPV04b, APV05, BLV06, YZ07, DL07, VV09,
DGS09, DFG+11, BOV12, COSV12, GOVW12, SV12, BP12], identification schemes [BFGM01,
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BPSV08, COSV12], secure computation [GS08, GM11, GKOV12], and public-key encryption
[Yil10].

In this paper, we continue the study of reset attacks in proof systems, and in particular
we focus on the simultaneous resettability conjecture of Barak, Goldreich, Goldwasser and Lin-
dell [BGGL01], that we will refer to as the BGGL conjecture:

“Do languages outside of BPP have resettably-sound arguments that are resettable zero-knowledge?
Some hope for an affirmative resolution of the above question is provided by the fact that some
level of resettable security for both parties does seem to be achievable” (i.e., Zaps).

The BGGL conjecture stresses that the existence of ZAPs, introduced by Dwork and Naor [DN00,
DN07], that are rsrWI proofs gives hope to finally obtain a resettably-sound resettable zero-
knowledge (rsrZK, for short) argument. Without ZAPs, it was known how to protect one-side
only from reset attacks, namely: prover’s protection only through resettable zero knowledge ar-
guments (rZK, for short) and verifier’s protection only through resettably-sound zero-knowledge
arguments (rsZK, for short).

The BGGL conjecture has been shown to be true in the recent result of Deng, Goyal and
Sahai, [DGS09], where simultaneous resettability is achieved for NP under the assumption that
CRHFs and ZAPs [DN00] exist. The former assumption is due to the use of non-black-box
techniques, extending the previous work of Barak [Bar01] under standard security (here we ignore
the controversial non-standard “knowledge of exponent” assumption and other variations that
deviate from the standard notion of computational-complexity based security).

One of the key building blocks in [DGS09] consists in proving that a given statement is true
by means of a proof system that is both resettably sound and resettable witness indistinguishable.
ZAPs [DN00] are the only proof systems that satisfy such a security guarantee with respect to
reset attacks. ZAPs can be constructed under the existence of NIZK proofs for NP [FLS90],
therefore by relying on DTPs (see [Gol11]). In contrast, rZK arguments [CGGM00] and rsZK
arguments can be constructed for all NP by assuming the sole existence of CRHFs.

A few weeks ago, an alternative construction for one-sided resettability, namely rsZK argu-
ments based on oblivious transfer has been presented in [BP12] (recall that oblivious transfer can
be based either on enhanced trapdoor permutations or homomorphic encryption, in contrast to
CRHFs that do not require a trapdoor). In contrast, our paper aims at simultaneous resettability.

1.1 Difficulties and the Power of ZAPs

Designing a zero-knowledge protocol that is secure against reset attacks requires to address the
following issues: 1) The simulator must have an advantage over a malicious resetting prover,
therefore the simulator must be non-black-box. 2) There must be a proof of soundness that does
not just rely (e.g., it could rely on information-theoretic techniques) on rewinding the malicious
prover as a black box. Indeed the same could be exploited by the adversarial verifier that can
reset the honest prover in order to gain information to break resettable witness indistinguishability
(rWI, for short) or rZK.

The approach of Canetti et al. for rZK. The construction of [CGGM00] overcomes the
latter issue by immunizing the prover from resets of the adversarial verifier and relying on uncon-
ditional soundness (i.e., to prove soundness there is no reduction that uses the malicious prover
as a black box). More specifically, the paradigm proposed by [CGGM00] to design rZK proofs,
consists in requiring the verifier to commit to all its next messages when the protocol starts. This
special message is referred to as the “determining message”. Later on the verifier will just open
round by round what he committed in the determining message. Therefore the malicious verifier
V ∗ does not obtain any advantage in rewinding the prover unless the determining message is
changed. The case in which V ∗ resets the prover and changes the determining message is not
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an issue. Indeed, [CGGM00] shows that the prover can simply use a pseudo-random function
(PRF, for short) on input the determining message, in order to determine the randomness to be
used later. This basically means that such a reset of V ∗ that corresponds to a new determining
message produces a computationally independent new session. This protects the zero-knowledge
property against reset attacks. However even though soundness can still be proved by using
information-theoretic arguments (i.e., unconditional soundness) there is no protection against a
resetting prover P ∗. The problem is that the honest verifier is stuck with the determining message
and thus a resetting prover can take advantage of it. For instance P ∗ could just run the very
same code of the simulator that in [CGGM00] in a black-box fashion simply rewinds the verifier.
Thus protocol of [CGGM00] is clearly not resettably sound.

The approach of [BGGL01] for rsWI/rsZK. The construction of rsWI/rsZK given in [BGGL01]
takes the opposite direction, and relies on the fact that in contrast to the construction of [CGGM00],
all messages of the verifier are computationally unrelated to each other. This makes useless the
resetting capabilities of P ∗ and can be implemented by asking the verifier to use a PRF on in-
put the transcript so far. More specifically, [BGGL01] shows a transformation that on input
a constant-round public-coin witness-indistinguishable (WI, for short)/zero-knowledge (ZK, for
short) argument (e.g., Blum’s protocol [Blu86]/Barak’s protocol [Bar01]) outputs a new protocol.
In the new protocol the prover is untouched and the verifier uses a PRF on input the tran-
script so far instead of public coins. Informally, resettable soundness follows from the fact that
messages played before the reset are (computationally) independent (and thus useless for P ∗) of
messages played after the reset1. Instead, the WI/ZK of the original protocol is preserved in the
transformed protocol because whatever the new adversarial verifier can do on the transformed
protocol, could also be done on the original protocol. At the same time their construction gives
a lot of freedom to a resetting verifier since it can reset the prover and change any message in
the transcript. This can be typically used to reset the prover and break the WI/ZK property, for
instance extracting a witness. The protocol of [BGGL01] is clearly not rWI/rZK.

Interaction is Achilles’ heel w.r.t. simultaneous resets. As just explained, both [BGGL01]
and [CGGM00] are easy to attack through simultaneous resets. The reason is that the main ideas
of both papers work on one side only, and make those protocols completely vulnerable with
respect to attacks from the other side. This seems to be an evident limitation of interactive
protocols which makes (at a first glance) the use of ZAPs unavoidable. That is, it appears that
through careful protocol design (i.e., a verifier that commits from the beginning, or a completely
uncommitted verifier) and relying on special forms of zero knowledge (i.e., non-black-box zero
knowledge) and special forms of soundness (i.e., unconditional soundness) it seems that protection
from reset attacks is achievable on one side only, unless ZAPs are deployed.

Thus, given the evident difficulties in achieving security under simultaneous resettability, the
BGGL conjecture heavily relied on the fact that ZAPs are already secure (but in the WI sense
only) against resets on both sides. The reason why the above difficulties do not apply to ZAPs
is that ZAPs are essentially non-interactive, and thus resets against ZAP players are useless.
Therefore by relying on the existence of such extremely powerful proof systems one might be able
to make sure that both techniques of [CGGM00] and of [BGGL01] can co-exist in one protocol
only, protecting the weaknesses of [CGGM00] and [BGGL01] through some use of ZAPs. This
was precisely exploited in the important result of [DGS09], where the technique of [CGGM00]
is combined in a non-trivial way with the one of [BGGL01] by critically using ZAPs, previous
rewinding techniques and a new non-black-box technique.

1This is actually true only combined with the constant-round requirement that forces the existence of at least
one long message played by the verifier and that is critical for soundness.
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In [DGS09] there is a sort of determining message for the prover too. Indeed, the prover
commits to the randomness to be used in its next messages. In order to make simulation possible,
the [DGS09] protocol allows a prover/simulator to deviate from the committed messages (and
thus to exploit rewinds) only when the statement is true (i.e., “x ∈ L”) or a certain trapdoor
theorem is true. The simulator manages to make that trapdoor theorem true by using knowledge
of the code of the adversarial verifier. Notice that this approach gives resettable soundness since
P ∗ wants to prove a false statement and does not know the code of the verifier. Therefore during
the attack of P ∗ both conditions are not satisfied and thus resets are useless. The simulator
instead will make use of the code of the verifier to make true the trapdoor theorem, and then can
also take advantage of rewindings, since it can (in contrast to P ∗) deviate from the committed
randomness. However the strategy of [DGS09] does not work by just applying the above idea
to [CGGM00] and [BGGL01]. Indeed, the above technique needs a subprotocol that allows to
prove that at least one among some theorems (e.g., “the played message is consistent with the
committed randomness”, “x ∈ L”, “the trapdoor theorem is true”) is true, in a setting where both
parties (if corrupted) can have reset capabilities. Again having an interactive protocol for this task
is considered an important open problem. Fortunately [DGS09] can rely on the non-interactive
power of ZAPs that are therefore proof systems resilient to reset attacks in both directions and
remain witness indistinguishable (WI, for short) only, therefore rsrWI. WI is precisely what was
needed in [DGS09] in order to make indistinguishable the case in which the code of the adversary
is exploited by the simulator that makes the trapdoor theorem true, from the case where a honest
prover plays in the experiment that therefore includes a false trapdoor theorem.

The cost of ZAPs and the open problem. As already explained, the whole approach
of [DGS09] relies on ZAPs, that being (essentially) non-interactive WI proof systems that are
resilient to reset attacks. However the same fact that they are (essentially) non-interactive makes
them hard to construct. Indeed, so far we can construct ZAPs from NIZK by only relying on
very strong complexity-theoretic assumptions with trapdoors, such as DTPs.

From the above discussion, an important open question is therefore the existence of WI/ZK ar-
guments resilient to simultaneous reset attacks without relying on ZAPs, therefore implementable
under less demanding computational assumptions. In turn, another central open problem is the
study of the minimal complexity assumptions to achieve protocols that are secure with respect
to reset attack in both directions.

1.2 Our Contribution

In this paper we shed light on the above open question by proving that under the sole assumption
of the existence of CRHFs, one can construct a rsrZK argument for NP. Surprisingly, this goes
beyond the BGGL conjecture and we achieve this by introducing a new technique to defeat reset
attacks in interactive protocols. In addition, our method allows us to remove ZAPs from the
previous work of [DGS09].

Obtaining the above main result goes through a sequence of three steps that are also of interest
(and improve previous works) in their own right, as we explain below.

Soundness upgrade. The first step that we achieve is the main technical contribution of this
work: we show a transformation from stand-alone soundness to resettable soundness in a more
general setting than the one of [BGGL01] as we describe below. In [BGGL01] it is showed how
to convert any constant-round public-coin argument system into a resettably-sound argument
system preserving the round complexity, the WI/ZK and AoK properties, under the assumptions
that one-way functions exist. The existence of a BGGL-like transformation for private-coin
protocols based on CRHFs only is an open problem. We remove the “public-coin” producing
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a new transformation that as input only needs a WI/rWI protocol with at most 7 rounds2. Our
transformed protocol will be resettably-sound, however will have polynomial round complexity.
The technique that we use for this result is new and could have other applications. Indeed, in
our transformation the honest verifier will run the adversary of concurrent zero knowledge shown
in [Ros00] where Rosen proved that black-box concurrent zero knowledge can not be achieved in
7 rounds. The new transformation can be applied to (any) 7-round AoK in order to obtain a
resettably-sound AoK, preserving WI/rWI.

Our technique shows how to use a lower bound on the round complexity of black-box con-
current zero-knowledge to actually design another WI/rWI protocol with very strong security
guarantees.

rsrWI for NP from CRHFs. The second step consists of designing a 7-round rWIAoK
from CRHFs. To obtain this result we carefully use Blum’s protocol [Blu86] and Barak’s pro-
tocol [Bar01] along with the Lapidot and Shamir protocol [LS90]. The resulting construction
is a 7-round rWIAoK and can therefore be used as input to our new transformation, therefore
obtaining the first rsrWIAoK based on CRHFs only.

rsrZK arguments from CRHFs. The third step produces the main claim of this paper. We
show a rsrZKAoK under the sole assumption that CRHFs exist, thus improving the recent work
of [DGS09]. To obtain this result we start from the protocol of [DGS09] and replace the ZAP
with the rsrWIAoK based on CRHFs. We can not obtain the desired claim directly since there
is another important issue to address. ZAPs are proof systems, while what we obtained using
CRHFs is an AoK. Therefore after replacing ZAPs in the protocol of [DGS09] with a rsrWI
argument of knowledge we must also add proper reductions to the security proof of [DGS09] in
order to state the main claim.

We stress that all our constructions do not impose any a priori bound on the number of resets
and we follow the standard modeling also used in [DGS09].

2 Definitions and Tools

The definitions of rZK and rWI can be found in [CGGM00] and in Appendix A.3. The definitions
of rsZK, rsWI, rsAoK, can be found in [BGGL01] and in Appendix A.4. The definitions of rsrWI
(resp., rsrZK) simply consists in requiring both rWI (resp., rZK) and rsWI (resp., rsZK) hold for
the same proof system. The definition of a universal argument can be found in [BG02] and in
Appendix A.5. The definition of a ZAP can be found in [DN00].

3 Technical Overview

We now give a technical overview of our techniques and results explaining in details all main
ideas. In Section 4, Section 5 and Section 6 we prove formally all our claims.

We now proceed backward compared to the description given in the Section 1.

From ZAPs to rsrWIAoK. We start by considering the rsrZK construction of [DGS09]. We
notice that their construction critically relies on the use of ZAPs (and thus of NIZK, which in
turn involves the use of DTPs). A more careful analysis of [DGS09] however reveals that their

2In fact it is plausible that our technique can be extended to a super-constant number of rounds, still below
Ω̃(logn) rounds. We did not further investigate this possibility as 7 rounds are sufficient for our application, i.e.,
rsrZK from CRHFs.
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construction still works by replacing ZAPs with any rsrWI proof systems3. Additionally, we
observe that the security proof of [DGS09] can be updated by adding some reductions so that the
rsrWI proof can be replaced by any rsrWIAoK. The details of the above discussion can be found
in Section 6 where we show how to replace in [DGS09] the use of ZAPs by any rsrWIAoK still
obtaining a rsrZK argument systems (actually we do even better since we obtain a rsrZKAoK).
In light of this, the main technical problem, consists in constructing a rsrWIAoK from CRHFs
only.

In order to construct a rsrWIAoK from CRHFs, we notice that resettable soundness was
achieved in [BGGL01] by transforming any constant-round public-coin ZK/WI argument into
a rsZK/rsWI argument with the same round complexity. However, to obtain a rsrWIAoK, we
would need to apply the [BGGL01] transformation to a rWIAoK. Unfortunately, regardless of the
round complexity, we do not know how to construct a public-coin rWIAoK from CRHFs (the only
known constructions are ZAPs and require DTPs), and therefore we can not use the [BGGL01]
transformation to obtain a rsrWIAoK relying on CRHFs only.

The above discussion implies that we need a completely new technique that indeed will be
the main technical contribution of this work. We will propose a new transformation that adds
resettable soundness to any (i.e., even private coins) 7-round rWIAoK.

Therefore there are two results that we describe next: a) our new transformation, and b) a
7-round rWIAoK.

7-round rWIAoK. We construct a 7-round rWIAoK by considering the following steps. Take
Blum’s protocol [Blu86] for Hamiltonicity. It consists of the following 3 rounds: 1) commitments
of permuted adjacency matrixes, 2) random challenge, and 3) opening of some of the committed
bits in the matrixes according to the challenge.

The first update that we make consists in applying the CGGM transformation [CGGM00] to
the above protocol, asking the verifier to commit to the challenge first, with a statistically hiding
commitment and asking the prover to use a PRF on input the above commitment. This produces
a 5 round rWI proof system, where in the 4-th round the verifier opens the committed challenge,
therefore sending both the challenge and the associated decommitment information.

The second update, following [BGGL01], consists in replacing the above decommitment infor-
mation with a
resettably-sound statistical ZK argument of knowledge using CRHFs [PR05a]. In this AoK the
verifier proves knowledge of the associated decommitment information. The resulting protocol is
a constant-round rWIAoK.

While the above protocol is constant round, the actual number of rounds is higher than 7.
We then parallelize subprotocols and make use of the Lapidot and Shamir [LS90] Hamiltonicity
proof system to reorganize all involved messages into a 7-round protocol. Along the way, this will
produce a 6-round public-coin statistical ZKAoK, and a 6-round statistical rsZKAoK.

Soundness upgrade. Let (PrWI, VrWI) be the above 7-round protocol. We use in the novel
(and constructive) way the lower bound for 7-round concurrent zero knowledge of [Ros00] to
produce a new protocol that is also resettably sound. Recall that in [Ros00], the lower bound is
proved by showing an adversarial verifier V ∗rWI that opens a polynomial number of sessions using
a specific scheduling. It is proved in [Ros00] that (assuming the language is non-trivial) a black-
box simulator can succeed in generating an indistinguishable transcript only if at some point it
manages to prove one of the sessions (either in the main thread of the simulation where the final
transcript is constructed, or during some sessions played in other threads due to rewindings which
messages will not appear in the final transcript) in straight line.

3Because of difficulties to protect an interactive protocol from reset attacks in both directions, the only rsrWI
proof that we know is (essentially) non-interactive, i.e., ZAPs.
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Our transformation produces a protocol π = (Pπ, Vπ) where the honest verifier Vπ plays
precisely as adversarial strategy of concurrent verifier V ∗rWI in [Ros00], therefore a protocol session
will include several sub-sessions scheduled according to the strategy of V ∗rWI, and the prover PrWI
has to convince VrWI in all sub-sessions in order to convince Vπ.

There is a technical issue to discuss here. V ∗rWI in [Ros00] uses a t-wise independent hash
function in order to guarantee that the randomness used after a rewind is independent of the
randomness used before the rewind (unless the prefix of the session is identical). Since the proof
of [Ros00] aims at showing that for any black-box simulator there exists a V ∗rWI such that the
simulator is forced to complete at least one sub-session in straight line, the value t of the t-
wise independent hash function can be based on the running time of the simulator. This choice
guarantees that the simulator can not get advantage from relations among re-started sub-sessions.
Indeed V ∗rWI by using sufficient randomness and the t-wise independent hash function will play the
re-started sub-sessions as perfectly independent sub-sessions. Unfortunately our transformation
can not follow this convenient tool used by [Ros00] since in our case we must show a protocol
that works against any resetting prover. Therefore we first have to fix Vπ = V ∗rWI which in turn
implies that we have first to fix some value t. But once t is fixed, there always exists a malicious
prover P ∗π that starts more than t sub-sessions and manages to predict the randomness of V ∗rWI
inside Vπ, therefore violating the resettable soundness of π. We will therefore ask Vπ to run V ∗rWI
but using a PRF instead of a t-wise independent hash function. This of course will require an
additional delicate argument in the proof of resettable soundness that reduces a successful P ∗π to
a forgery for the PRF. In the following discussion when referring to V ∗rWI we will actually refer
to the adversarial verifier of [Ros00] but replacing the t-wise independent hash function with a
PRF.

Now, notice that when by contradiction P ∗π is successful for a false theorem “x ∈ L”, it succeeds
to prove that false theorem in a session of π, which means in all played sub-sessions. In particular
such sub-sessions include the completed sub-sessions played in the main thread (appearing in the
final transcript that makes P ∗π successful) and other threads generated by resets (that are then
discarded by P ∗π when producing a successful transcript).

As discussed before regarding the black-box simulator, the analysis of [Ros00] already proves
that if P ∗π can do so, then it will at some point solve a sub-session in straight-line. This sub-session
will play a crucial role in the proof of resettable soundness. Indeed, we will run the extractor
of the rWIAoK (PrWI, VrWI) on this sub-session. The reason this is critical is that if we run the
extractor in a different sub-session, then P ∗π by resetting Vπ would reset also the extractor which
means that P ∗π can actually distinguish a run with the extractor inside Vπ with respect to a run
with V ∗rWI only inside Vπ. Then P ∗π would abort the experiment. In our proof, since the extraction
will be played in that special (i.e., straight-line) sub-session, P ∗π will not deviate its behavior and
extraction will be possible. Notice moreover that the extraction procedure will require to use
pure randomness instead of the previously mentioned PRF used by honest verifier Vπ. This will
be addressed in our hybrid arguments.

It is easy to see that the transformation preserves rWI since rWI of (PrWI, VrWI) already
assumes that V ∗rWI can ask for the execution of many sessions for any scheduling of its choice, and
the transformation to π is therefore safe with respect to such attacks. 4

4We finally notice that our approach might also work without the restriction of (PrWI, VrWI) to be a 7-round
protocol, as long as the round complexity does not reach the lower bound for black-box concurrent ZK proved
in [CKPR01]. This would require to address some additional issues. Indeed in this case the adversarial verifier
of [CKPR01] V ∗rWI would not complete all sub-sessions and thus Vπ should not expect all sub-sessions completed.
The reason is that the proof of [CKPR01] in contrast to the one of [Ros00] critically relies on an aborting adversarial
verifier V ∗rWI. When included in our transformation, this verifier might give an additional advantage to P ∗π that
can take advantage of some transcripts with many aborts. We did not further investigate on this, since the
transformation based on the lower bound of [Ros00] is sufficient to prove our main theorem.

7



4 Soundness Upgrade

In Fig. 1 we show our rsrWIAoK π = (Pπ, Vπ). It uses k executions of a 7-round rWIAoK
πrWI = (PrWI, VrWI). We denote the i-th message of PrWI (resp., VrWI) in a sub-session of π by PrWIi
(resp., VrWIi). The picture shows 8 messages for such a subprotocol but the 8-th round is just the
final output of the verifier that is shown as a message for convenience only. The scheduling of the
k sub-sessions is established recursively according to a variable m which value changes at each
recursion. The initial value of m is k. The randomness used by Vπ in each of the k sub-sessions is
obtained by using a PRF on input the sequence of messages sent by the prover in the execution of
π until the first round of the sub-session. Vπ aborts if in any moment there is an invalid message
from Pπ or if there is a VrWI4 =“reject”.

1 2
m

logm
m

logm
+1 2·m

logm
+1 m

P rWI1 ⇒
V rWI1

P rWI2

⇐⇒
⇒⇐⇒ · · ·

⇒⇐⇒

R m
logm

⇐⇒· · ·⇐⇒
V rWI2

P rWI3

⇐⇒

Rm−2· m
logm

⇐⇒⇐
· · ·⇐⇒⇐

V rWI3

P rWI4

⇐⇒
V rWI4 ⇐

Figure 1: The execution of protocol πrWI between a prover PrWI and a verifier VrWI.

Theorem 1 The argument system (Pπ, Vπ) described above is a resettably-sound resettable wit-
ness indistinguishable argument of knowledge.

Proof . Towards proving resettable soundness of π, we start making use of Lemma 11 of [Ros00].
There, it is proved that according to the scheduling of V ∗rWI, if a simulator has always to rewind
a sub-session to have a non-negligible probability of completing it successfully, then the running
time of the simulator is superpolynomial. This holds because according to the scheduling, the
total work that the simulator would do is described by the following recursion:

W (m) ≥ min{ m

logm
W (

m

logm
), 2W (m− 2

m

logm
)}

and therefore W (k) = k
Ω( log k

log log k
)
.
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Notice that we can not apply this analysis to P ∗π since the protocol π does not perfectly
correspond to the execution of k sub-sessions of (PrWI, VrWI) with the scheduling established by
V ∗rWI. Indeed, in π we have introduced a PRF to replace the use of the t-wise independent hash
function, and thus Vπ does not behave as V ∗rWI. We now apply the analysis to a different verifier
V t
π , and then we will consider the case of Vπ.

Let t be the max number of steps of P ∗π before stopping. Consider a PPT machine V t
π that

activates P ∗π and answers to its queries by emulating the honest verifier Vπ, with the following
exception: each time Vπ queries the PRF with a new input, the actual output that will be used
by V t

π is the output of a t-wise independent hash function mapping poly(k)-bit long sequences to
the number of random bits needed in one execution of VrWI.

The above behavior of V t
π is by inspection identical to the one of the successful adversarial

verifier V ∗rWI of (PrWI, VrWI).
We define the session-prefix of a sub-session (PrWI, VrWI) of π as the entire transcript of mes-

sages in the view of Vπ until the first round of that sub-session. Notice that a reset can force
the verifier to play again the same sub-session with a different session-prefix. The use of the t-
wise independent hash function makes completely independent these two executions of the same
sub-session.

We can now claim that P ∗π can convince V t
π on an instance x with non-negligible probability

only if during the execution of the experiment started by V t
π there is at least one sub-session for

a given session-prefix that has been completed successfully in straight line.

Lemma 1 Assume that V t
π accepts for some x the proof given by P ∗π with non-negligible prob-

ability. Then there is at least one sub-session with a session-prefix q that has been successfully
completed on common input x with a transcript (PrWI1,VrWI1,. . . ,PrWI4,VrWI4) and in the whole
experiment V t

π played in that sub-session with session-prefix q those 4 messages only.

Proof . Assume by contradiction that the claim does not hold. Therefore we have that for
every different session-prefix of each sub-session, there always is an index i ∈ {1, 2, 3, 4} such that
P ∗π received two messages VrWIi. By construction, we know that in order to get the second VrWIi,
P ∗π has to complete again all sub-sessions in between PrWIi and VrWIi, and they are all played with
a different session-prefix.

Therefore as explained above, following the analysis of [Ros00], we have that the running time

of P ∗π is at least k
Ω( log k

log log k
)
, which is a contradiction since P ∗π is PPT.

Consider now a PPT machine V rand
π that emulates the honest verifier Vπ to P ∗π in the exper-

iment of resettable soundness, with the following exception: each time Vπ queries the PRF with
a new input, then the actual output that will be used by V rand

π is purely random.

Lemma 2 Assume that V rand
π accepts for some x the proof given P ∗π with non-negligible prob-

ability. Then there is at least one sub-session with a session-prefix q that has been successfully
completed on common input x with a transcript (PrWI1,VrWI1,. . . ,PrWI4,VrWI4) and in the whole
experiment V rand

π played in that sub-session with session-prefix q those 4 messages only.

Proof . Notice that V t
π uses a t-wise independent hash function and the function is queried

less than t times. Therefore it holds that V t
π and V rand

π coincide since they consist in replacing in
Vπ the output of each new invocation of the PRF with a new random string. Since by Lemma 1
the claim holds for V t

π , we have that it holds for V rand
π too.

We say that an extractor is canonical if it first runs as a honest verifier to obtain the statements
proven successfully, and then it outputs witnesses for those statements. We now prove that there
exists a canonical extractor Erand

π for the instances proved by P ∗π to V rand
π .

Lemma 3 There exists a canonical extractor Erand
π that except with negligible probability, outputs

pairs (x,w) so that:
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1. x is distributed identically to the instances proved in the above execution of P ∗π with V rand
π ;

2. w is a legal NP witness for x.

Proof . Erand
π simply runs the code of V rand

π with P ∗π . During interaction, for every instance x
successfully proved by P ∗π , Erand

π stores the session-prefixes of the straight-line sub-sessions. Next,
for each such session-prefix, sequentially, Erand

π runs the extractor ErWI of the rWIAoK (PrWI, VrWI)
and obtains an output w. Obviously the extractor is applied to an augmented machine in order
to consider also the remaining part of the execution of P ∗π with Erand

π . Finally Erand
π outputs pairs

(x,w) corresponding respectively to the instances successfully proved by P ∗π during the execution
with V rand

π and the associated NP witnesses obtained by the extractor associated to (PrWI, VrWI).
Since by construction Erand

π runs the code of V rand
π , we have that the first of the two claims of

the lemma is satisfied perfectly. The second claim is satisfied unless the extractor of (PrWI, VrWI)
fails. However, by the AoK property of (PrWI, VrWI), and by using the union bound, we have that
the probability that for some x proved to V rand

π , the extractor Erand
π fails is negligible.

We finally observe that Erand
π is canonical since it first runs the honest verifier, and then

extract from statements proved successfully to the honest verifier.
We can now conclude the proof of resettable soundness, by showing that if P ∗π is successful in

proving with non-negligible probability a false instance x to Vπ, then we can break the pseudo-
random function. Indeed, the difference between Vπ and V rand

π lies precisely in the use of a PRF
instead of pure randomness. The reduction will be based on two arguments. The first argument
is that even in the game with Vπ, P ∗π will be straight-line in a sub-session, otherwise it will be
immediately clear that from this efficiently observable fact one can construct an adversary that
breaks the PRF. It could still be possible that P ∗π proves a false statement when playing with
Vπ but plays true statements only when playing with V rand

π . In this case the above analysis does
not reach any contradiction. However we can tackle this with a second argument. The second
argument is that on the theorems proved by P ∗π we can apply again the extractor of the πrWI
since there always is a straight-line execution of a sub-session. However since the instance is
false, the extractor will certainly fail. The failure of the extractor (that instead works fine in the
experiment with V rand

π ) gives again an efficiently observable fact that can be used to construct
an adversary that breaks the PRF. We now proceed more formally.

We first prove that the successful PPT P ∗π when playing with Vπ and proving a statement it
must succeed in at least one sub-session with a given session-prefix in straight line, including the
case of a false statement.

Lemma 4 Assume that Vπ accepts for some x the proof given P ∗π with non-negligible probability.
Then there is at least one sub-session with a session-prefix q that has been successfully completed
on common input x with a transcript (PrWI1,VrWI1,. . . ,PrWI4,VrWI4) and in the whole experiment
Vπ played in that sub-session with session-prefix q those 4 messages only.

Proof . Suppose by contradiction that the claim does not hold. We show an adversary V
O(·)
π that

is successful in breaking the pseudorandom function PRF distinguishing whether the oracle O(·)
implements a random function or a PRF. Notice that the difference between Vπ and V rand

π consists
in the use of a PRF in the former and of pure randomness in the latter. However observe that the
reset attack of P ∗π consists possibly in running the verifier with s(k) different randomnesses, also
rewinding each execution with a given randomness. Therefore we have that Vπ has a different
randomness that will be used as seed in different PRFs. We will use hybrid arguments in order
to concentrate on one PRF only. We will use the word “incarnation” to mean an execution on a
given randomness of the verifier selected among the s(k) available randomnesses.

Let V
i,O(·)
π be the adversary that will run as Vπ in the first i incarnations and as V rand

π in the

remaining ones. By definition, V
0,O(·)
π is precisely V rand

π and V
s(k),O(·)
π is precisely Vπ.

10



The goal of Lemma 4 is to prove that the very same statement proved in Lemma 3 with

respect to V rand
π = V

0,O(·)
π also holds with respect to Vπ = V

s(k),O(·)
π . We therefore proceed by

running hybrid arguments. We claim that if that statement holds for V
i,O(·)
π then it holds for

V
i+1,O(·)
π . Assume by contradiction that this is not the case. Consider V

O(·)
π that runs with P ∗π

in the experiment of resettable soundness as follows. It emulates Vπ in the first i incarnations,
emulates V rand

π in the last s(n)− (i+ 1) incarnations, while in the (i+ 1)-th incarnation it works
as follow: each time Vπ queries the PRF with a new input, then the actual output that will be

used by V
O(·)
π is the output of O(·). It is clear that when O(·) is a pure random function then

the resulting experiment corresponds to the execution of V
i,O(·)
π . If instead O(·) is a PRF, then

the resulting experiment corresponds to the execution of V
i+1,O(·)
π . Therefore by the security of

the PRF, and the fact that in the execution with V
i,O(·)
π there is at least a sub-session that is

solved in straight-line, we have that the same holds with V
i+1,O(·)
π . Therefore the claim holds for

Vπ = V
s(k),O(·)
π .

We have proved that a PPT adversary P ∗π can succeed in proving an instance to Vπ only if
there is at least a given session-prefix so that the corresponding sub-session is solved in straight
line.

Similarly to Erand
π , consider now the canonical extractor E

prf
π that simply runs the code

of Vπ with P ∗π . During the interaction, for every instance x successfully proved by P ∗π , E
prf
π

stores the session-prefixes of the straight-line sub-sessions. Next, for each such session-prefix,
sequentially, E

prf
π runs the extractor ErWI associated to πrWI. Obviously the extractor is applied

to an augmented machine in order to consider also the remaining part of the execution of P ∗π
with E

prf
π . Clearly, we have that the extractor ErWI will always fail since the statement is false

and thus there is no witness that can be extracted.
We can therefore extend the code of the adversary V

O(·)
π discussed in the proof of Lemma 4, so

that once the straight-line executions are known, it can apply the extractor ErWI associated to πrWI
one-by-one to all proved statements and see whether it is always successful or not. Notice that

when O(·) is running a random function, we have that V
O(·)
π is behaving identically to V

i,O(·)
π , and

thus by Lemma 2 and Lemma 3 the witnesses are successfully extracted. Instead, when O(·) runs

a pseudorandom function, we have that V
O(·)
π is behaving identically to V

i+1,O(·)
π with a follow

up use of ErWI, and we have just proved that in this case extraction can not be always successful.

Therefore V
O(·)
π can distinguish the actual function used by O(·). This is a contradiction that

concludes the proof of Theorem 1.

5 7-Round Resettable WI

In this section we show a 7-round rWIAoK for NP.
We start by recalling in Fig. 2 the relation Rsim introduced by Barak [Bar01, Bar04]. We also

consider the construction given by Pass and Rosen in [PR05b, PR08] that achieved public-coin
constant-round statistical ZKAoK from CRHFs, on top of Barak’s techniques.

In our notation, SHComhcom is the 2nd round of a statistically hiding commitment scheme,
where the first round consists in selecting a function hcom from family of CRHFs Hk mapping
{0, 1}∗ to {0, 1}k.

Fig. 2 shows an oversimplified relation that would base the security of our protocol on collision-
resistant against “slightly” superpolynomial-sized circuits. As discussed in [BG02, Bar04, PR05b],
in order to prove security by relying on standard CRHFs, the actual relation should also in-
clude an error-correcting code ECC (with constant distance and with polynomial-time encod-
ing and decoding) and the condition c = SHComhcom(h(Π), s) should be replaced by c =
SHComhcom(h(ECC(Π)), s). However in order to simplify the notation we will omit this from
our discussion.

11



Instance: (hcom, h, c, r) ∈ Hk ×Hk × {0, 1}k × {0, 1}poly(k).
Witness: Π ∈ {0, 1}∗, y ∈ {0, 1}∗ and s ∈ {0, 1}3k.
Relation: Rsim((hcom, h, c, r), (Π, y, s)) = 1 if and only if :

1. |y| ≤ |r| − k.
2. c = SHComhcom

(h(Π), s).
3. Π(y) = r within T (n) steps.

Figure 2: The NTIME(T (k)) relation Rsim.

In Fig. 3 we show the special universal argument πsUA = (PsUA, VsUA) presented in [PR05b].
It consists of two parts. First, PsUA and VsUA play the 4-round public-coin universal argument
πUA = (PUA, VUA) of Barak and Goldreich [BG02] with the following change: the two messages of
PUA are committed through a statistically hiding commitment scheme. We denote such 4 rounds
as sUA1, . . . , sUA4. We stress here that sUA1 consists in randomly selecting an hash function in a
family of CRHFs. Then PsUA and VsUA play a statistical WIAoK where PsUA proves knowledge
of either x ∈ L or of openings of the two above commitments so that the 4 messages of the
underlying universal argument πUA would be accepted by VUA. This is typically achieved by
using the 3-round WI proof of knowledge (PoK, for short) for Hamiltonicity of Blum [Blu86]
πBL = (PBL, VBL), in a 4-round implementation so that first the verifier sends hcom and then
the 3 rounds are played with PBL that commits by means of SHComhcom . We denote such a
4-round WIAoK as πsWI = (PsWI, VsWI) and in Fig. 3 we name the corresponding 4 messages as
sUA5, . . . , sUA8. This special universal argument is proven in [PR05b, PR08] to be statistical WI
and is beneficial to then obtain a constant-round public-coin statistical ZKAoK.

Common Input: x ∈ {0, 1}k, an instance (hcom, h, c, r) for Rsim.

Stage 1 (Encrypted UARG):

sUA1 : VsUA → PsUA: Send α
R← {0, 1}k.

sUA2 : PsUA → VsUA: Send β̂ = SHComhcom
(0k, s0).

sUA3 : VsUA → PsUA: Send γ
R← {0, 1}k.

sUA4 : PsUA → VsUA: Send δ̂ = SHComhcom(0k, s1).
Stage 2 (Body of the proof):

sUA5, sUA6, sUA7, sUA8 : PsUA ⇔ VsUA: 4-round statistical WIAoK (PsWI, VsWI) proving the OR
of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.

2. ∃(β, δ, s1, s2) s.t. β̂ = SHComhcom(β, s1), δ̂ = SHComhcom(δ, s2), (α, β, γ, δ) is an
accepting transcript for (PUA, VUA) proving statement Rsim((hcom, h, c, r), (Π, y, s)) = 1.

Figure 3: Statistical UA πsUA = (PsUA, VsUA).

In Fig. 4 we show the construction5 of Pass and Rosen [PR05b, PR08] of a public-coin constant-
round statistical ZKAoK for NP. It consists of using Barak’s protocol with the exception of
committing through a statistically hiding commitment scheme, and of using the special universal
argument described in Fig. 3. Putting all pieces together, the total round complexity is 10.

We now show our 6-round public-coin statistical ZKAoK π′zk = (P ′zk, V
′
zk) that only consist

5We actually show a simplification of their construction since they also implemented a two-slot technique in
order to achieve non-malleability.
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Common Input: x ∈ {0, 1}k.

Stage 0 (Set-up):

Vzk → Pzk: Send h
R← HK , hcom

R← HK .
Stage 1 (Preamble):

Pzk → Vzk: Send c = SHComhcom(0k, s).

Vzk → Pzk: Send r
R← {0, 1}3k.

Stage 2 (Body of the proof):
Pzk ⇔ Vzk: special universal argument (PsUA, VsUA) proving the OR of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃(Π, y, s) s.t. Rsim((hcom, h, c, r), (Π, y, s)) = 1.

Figure 4: ZKAoK πzk = (Pzk, Vzk).

in implementing differently the protocol of Fig. 4, making use of the Hamiltonicity proof system
due to Lapidot and Shamir [LS90]. The special property of the proof system of [LS90] is that the
actual statement to be proved and its witness are needed only when playing the last round. For
more details, see Appendix B.

Previous rounds only need the size of the statement. It can be implemented as a 4-round
statistical WIAoK, where the first round as for Blum’s protocol, just consists in selecting the
function from the family of CRHFs in order to let the prover sends a statistically hiding commit-
ment. We will denote by LS1, . . . , LS4 the four rounds of such a special statistical WIAoK, and it
will be used to prove the same statement proved in Stage 2 of Fig. 3.

Another crucial property of our π′zk is that the actual statement to be proven needs to be
known only when playing the 4-th round (i.e., ZK4 in Fig. 5), while the first 3 rounds only need
the size of the statement.

The protocol is depicted in Fig. 5.

Common Input: x ∈ {0, 1}k.

ZK1 : V ′zk → P ′zk: Send h
R← HK , hcom

R← HK .

ZK2 : P ′zk → V ′zk: Send c = SHComhcom(0k, s).

ZK3 : V ′zk → P ′zk: Send r
R← {0, 1}3k, run sUA1, LS1.

ZK4 : P ′zk → V ′zk: Run sUA2, LS2.
ZK5 : V ′zk → P ′zk: Run sUA3, LS3.
ZK6 : P ′zk → V ′zk: Run sUA4, LS4.

Figure 5: 6-Round ZKAoK π′zk = (P ′zk, V
′
zk).

Lemma 5 Assuming the existence of a family of CRHFs, there exists a 6-round public-coin
statistical ZKAoK for NP. Moreover the first 3 rounds only need the size of the statement.

Proof . Consider the protocol depicted in Fig 5. First of all, notice that all ingredients can
be constructed by only relying on CRHFs. Then, notice that the protocol is just a different
implementation of the tools used by the protocol of Pass and Rosen shown in Fig. 4, with the
exception of playing subprotocols in parallel rather then sequentially. However, by inspection
each round of the protocol can be played by all involved parties (i.e., prover, verifier, simulator,
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extractor) including adversaries to be used in the reductions of security proofs. All the analysis
of [PR05a] applies untouched. Therefore, the claim holds.

Lemma 6 Assuming the existence of a family of CRHFs, there exists a 6-round rsZKAoK for
NP. Moreover the first 3 rounds only need the size of the statement.

Proof . By observing that the transformation of [BGGL01] on input π′zk will produce the desired
6-round rsZKAoK for NP we have that the claim holds.

The above Lemma 6 will now be used to construct a 7-round rWIAoK πrWI = (PrWI, VrWI) for
NP. The construction can be found in Fig. 6. Let π′′zk = (P ′′π , V

′′
π ) be the 6-round rsZKAoK

obtained from Lemma 6, and let rsZK1, . . . , rsZK6 be the corresponding 6 rounds.
πrWI will use π′′zk and a special implementation of Blum’s Hamiltonicity protocol for the

statement “x ∈ L” that we describe now. Blum’s protocol is a 3-round WIPoK for NP, and the
3 rounds are computed as follows: 1) the prover commits to k permuted adjacency matrixes; 2)
the verifier sends a k-bit random string; 3) the prover opens some of the committed bits and shows
some permutations according to the received k-bit string. A central idea of our construction is
to use the technique of [CGGM00] to make Blum’s protocol a rWI proof, and then the technique
of [BGGL01] to make it an argument of knowledge. More in details, following the paradigm
of [CGGM00], we ask the verifier VrWI to commit, by means of a statistically hiding commitment,
to the k-bit challenge. This commitment is sent before the prover PrWI commits to permuted
adjacency matrixes. The commitment of the k-bit challenge will be opened by VrWI after that
PrWI commits to permuted adjacency matrixes. Moreover PrWI will use a PRF on input the
commitment of the challenge sent by VrWI in order to establish the randomness to be used in
the next message. This is the paradigm of [CGGM00] that transforms Blum’s protocol making
it secure against resets of the adversarial verifier. Indeed as proved already in [CGGM00], the
resulting protocol is a rWI proof system. The statistically hiding commitment of the challenge
will add two rounds to the original 3 rounds of Blum’s protocol. Let us denote by BL1, . . . , BL5

the resulting 5 rounds of this rWI proof system. We then use the technique of [BGGL01] to make
this protocol an argument of knowledge with a (necessarily) non-black-box extractor. Indeed we
change BL4 and instead of sending the challenge and the decommitment information corresponding
to the commitment played in BL2, we will ask VrWI to send the challenge only. Let us assume that
in the original round BL4 the message sent consisted of a pair (u, v) corresponding to challenge
and decommitment information. We define BL′4 as u only, while v will be part of the witness to
be used in a statistical rsZKAoK where the verifier VrWI proves knowledge of the decommitment
information v. We implement the rsZKAoK with π′′zk, and we denote by rsZK1, . . . , rsZK6 the
corresponding messages.

Common Input: x ∈ {0, 1}k.

PrWI → VrWI: Run BL1, rsZK1.
VrWI → PrWI: Run BL2, rsZK2.
PrWI → VrWI: Run BL3, rsZK3.
VrWI → V ′rWI: Run BL′4, rsZK4.
PrWI → P ′rWI: Run rsZK5.
VrWI → V ′rWI: Run rsZK6.
PrWI → P ′rWI: Run BL5.

Figure 6: 7-round rWIAoK πrWI = (PrWI, VrWI).
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Theorem 2 Assuming the existence of a family of CRHFs, there exists a 7-round rWIAoK for
NP.

Proof . The proof of this theorem is by inspection. Indeed our protocol is only a special imple-
mentation (achieving a better round complexity) of the protocol already given in [BGGL01].

6 Simultaneously Resettable ZK

In this section we prove the main theorem of this work, namely: CRHFs imply the existence
of a rsrZKAoK for NP. Therefore not only we go beyond the BGGL conjecture, (surprisingly
removing the need of ZAPs and thus highly improving on the computational assumptions for
simultaneously resettable zero knowledge), but we also give an argument of knowledge. This is
important both for applications that rely on knowledge of the witness (e.g., identification schemes)
and to prove security of larger protocols that will use our rsrZKAoK as subprotocol.

We rely on the rsrZK argument system of [DGS09]. In the following discussion we will however
refer to their full version [GS08].

By inspection, it is immediate to see that the security proofs of the construction of [GS08] when
referring to a ZAP6 relies only on the fact that a ZAP is a rsrWI proof (i.e., unconditionally sound)
system. Therefore, any (even interactive) rsrWI proof system can replace the ZAP in [DGS09]
to obtain a rsrZK argument. Still we can not just replace the ZAP with a rsrWIAoK because
the security proof of [DGS09] uses the unconditional soundness of the ZAP. Therefore while a
rsrWI proof system can safely replace a ZAP, the use of a rsrWIAoK might require some changes.
Fortunately we can show that the protocol of [DGS09] is still a rsrZK argument when a rsrWIAoK
is used instead of ZAPs. Indeed, we show that whatever was proved in [DGS09, GS08] relying on
the unconditional security of the ZAP can be proved here by using the computational resettable
soundness property of our rsrWIAoK.

Theorem 3 of [GS08]. In the proof of Theorem 3 of [GS08] (see last part of page 17), the
soundness of their construction is proved in a hybrid model. Their proof assumes by contradiction
that an adversarial prover P ∗ can prove a false statement “x ∈ L” with noticeable probability ε.
In turn, this implies that P ∗ will successfully complete a ZAP proving “x ∈ L∨ trap = Com(1)”.
They show that it is still noticeable the probability that P ∗ manages to convince the verifier for
the same false statement “x ∈ L” even when the verifier sets trap = Com(0). This means that
P ∗ is proving with noticeable probability a false statement “x ∈ L ∨ trap = Com(1)”. They
conclude that this contradicts the resettable soundness of the ZAP.

Notice that when the ZAP is replaced by a rsrWIAoK πrWI there is no issue in the above
proof. Indeed, instead of relying on unconditional resettable soundness, it is standard to show a
reduction that reduces P ∗ to an adversary P ∗rWI of πrWI.

Lemma 3 of [GS08]. Experiment 2 in the proof of Lemma 3 of [GS08], similarly to Theorem
3 above, uses the unconditional resettable soundness of the ZAP. They claim that V ∗ can not
deviate from the committed randomness (property 3 of a prover-admissible proof system) since
V ∗ has to prove with a ZAP that either the played messages are consistent with the committed
randomness or trap = Com(1). Since it is already known (by a resettably-sound ZK argument
previously given by the verifier) that trap = Com(0), we have that the statement of the ZAP
is false. Therefore the unconditional soundness of the ZAP guarantees that the verifier did not
deviate from the committed randomness.

6For simplicity here we just say ZAP to refer to the implementation of a ZAP that is resettably secure. In [DGS09,
GS08] this is named rZAP.
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Again, when the ZAP is replaced by a rsrWIAoK there is no issue in the above proof. Indeed,
instead of relying on unconditional resettable soundness, it is standard to show a reduction that
reduces P ∗ to an adversary P ∗rWI.

Theorem 5 of [GS08]. This theorem is the dual of the above Lemma 3. Indeed it is now
a successful adversarial prover P ∗ that gives a ZAP proving consistency of the played messages
with respect to the committed randomness or that “x ∈ L”. Since “x ∈ L” must be false7, we
have by the unconditional soundness of the ZAP that P ∗ can not deviate from the committed
randomness.

Again, as explained in the previous cases, the proof goes through also when the ZAP is
replaced by a rsrWIAoK.

The formal claim. The previous discussion shows that the argument system of [DGS09] is still
secure under simultaneous reset attacks when our rsrWIAoK πrWI replaces their ZAPs. We finally
notice that their protocol ended with a ZAP proving “x ∈ L∨ trap = Com(1)”. By replacing this
ZAP with a rsrWIAoK we have that the resulting argument system is an argument of knowledge.
Indeed the extractor ErWI can be applied to the augmented machine consisting of P ∗ and the
honest verifier behavior with the exception of this run of πrWI from which extraction is desired.

Putting all pieces together, we have proven the following claim.

Theorem 3 If there exists a family of CRHFs, then there exists (constructively) a rsrZKAoK
for NP.
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A Definitions

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1. We
will call such a w a valid witness for x ∈ L. A negligible function ν(k) is a non-negative function
such that for any constant c < 0 and for all sufficiently large k, ν(k) < kc. We will call a positive
function overwhelming if it can be described as 1 − ν for some negligible function nu. We will
denote by Probr[ X ] the probability of an event X over coins r.
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Indistinguishability.

Definition 1 Two ensembles of distributions X = {Xk} and Y = {Yk} ranging over {0, 1}poly(k)

are computationally indistinguishable if for any polynomial-sized circuit D there exists a negligible
function ν such that∣∣Prob[ α← Xs : D(s, α) = 1 ]− Prob[ α← Ys : D(s, α) = 1 ]

∣∣ < ν(k).

A.1 Commitment Schemes

We now give a definition for several statistically hiding commitment schemes. For readability
we will use “for all m” to mean any possible message m of length polynomial in the security
parameter.

Definition 2 (Gen,SHComhcom ,SHVerhcom) is a statistically hiding commitment scheme if:

- efficiency: Gen, SHComhcom and SHVerhcom are polynomial-time algorithms;

- completeness: for all m it holds that Prob[hcom ← Gen(1k); (com, dec)← SHComhcom(hcom,m) :
SHVerhcom(hcom,com, dec,m) = 1] = 1;

- binding: for any polynomial-time algorithm committer∗ there is a negligible function ν
such that for all sufficiently large k it holds that:

Prob[hcom ← Gen(1k); (com,m0,m1, dec0, dec1)← committer∗(hcom) :

m0 6= m1 and SHVerhcom(hcom,com, dec0,m0) = SHVerhcom(hcom,com, dec1,m1) = 1] ≤
ν(k);

- hiding: for any algorithm receiver∗ there is a negligible function ν such that for all

m0,m1 where |m0| = |m1| and all sufficiently large k it holds that Prob
[
(hcom, aux) ←

receiver(1k); b← {0, 1}; (com, dec)← SHComhcom(hcom,mb) : b← receiver∗(com, aux)
]
≤

1
2 + ν(k).

When hcom is clear from context, we often say “m, dec is a valid opening for com” to mean
that SHVerhcom(hcom,com, dec,m) = 1.

Collision-resistant hash functions. We will use hash functions as defined below.

Definition 3 Let H = {hα} be an efficiently sampleable hash function ensemble where hα :
{0, 1}∗ → {0, 1}α. We say that H is collision-resistant against polynomial size circuits if for
every (non-uniform) polynomial-size circuit family {Ak}k∈N , for all positive constants c, and all
sufficiently large n, it holds that

Prob[ α
R→ {0, 1}n : Ak(α) = (x, x′) ∧ hα(x) = hα(x′) ] < k−c.

Pairwise-independent hash functions. We will make use of a family of pairwise-independent
hash functions.

Definition 4 A family of functions H = {h : {0, 1}n → {0, 1}m } is said to be pairwise-
independent iff ∀x 6= x′ ∈ {0, 1}n ∀y, y′ ∈ {0, 1}m,

Pr
h←H

[
h(x) = y ∧ h(x′) = y′

]
= 2−2m.

Theorem 4 Let F be a finite field. Then the family of functions H = ha,b : F → F a,b∈F where
ha,b = ax+ b is pairwise independent.
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A.2 Proof Systems

An interactive argument system for a language L is a pair of probabilistic polynomial time algo-
rithms (P, V ), satisfying the requirements of completeness and soundness. Completeness requires
that for any x ∈ L, at the end of the interaction between P and V , V rejects with negligible
probability. Soundness requires that for any x 6∈ L, for any probabilistic polynomial time P ∗, at
the end of the interaction between P ∗ and V , V accepts with negligible probability. We assume
that when V accepts it outputs 1 and 0 otherwise. The output of V when playing with a machine
P ′ on common input x will be denoted by 〈P ′, V 〉(x).

Definition 5 A proof system for the language L, is a pair of interactive Turing machines (P, V )
running on common input x such that:
• Efficiency: V is PPT. When P receives as input an NP witness w for x ∈ L , then P is

PPT too.
• Completeness: There exists a negligible function ν(·) such that for every pair (x,w) such

that RL(x,w) = 1,
Prob[ 〈P (w), V 〉(x) = 1 ] ≥ 1− ν(|x|).

• Soundness: For every x 6∈ L and for every interactive Turing machine P ∗ there exists a
negligible function ν(·) such that

Prob[ 〈P ∗, V 〉(x) = 1 ] < ν(|x|).

In the above definition we can relax the soundness requirement by considering P ∗ as PPT.
In this case, we say that (P, V ) is an argument system.

We denote by view
P (w)
V ∗(x,z) the view (i.e., its private coins and the received messages) of V ∗

during an interaction with P (w) on common input x and auxiliary input z.

Zero knowledge. We start with the classical definition of zero knowledge.

Definition 6 Let (P, V ) be an interactive argument system for a language L. We say that (P, V )
is zero knowledge if, for any probabilistic polynomial-time adversary V ∗ receiving an auxiliary
input z, there exists a probabilistic polynomial-time algorithm SV ∗ such for all pairs (x,w) ∈ RL
the ensembles {viewP (w)

V ∗(x,z)} and {SV ∗(x, z)} are computationally indistinguishable.

Arguments of knowledge. We use the following variant of the definition of arguments of
knowledge, presented in [PR05b].

Definition 7 (Argument of Knowledge) Let (P, V ) be an interactive argument system for
the language L with witness relation RL. We say that (P, V ) is an argument of knowledge if
there exists a polynomial q(·) and a probabilistic oracle machine E, such that for every probabilistic
polynomial time interactive machine P ∗, for every x ∈ L, and every y, r ∈ {0, 1}∗, the following
properties hold:

1. The expected number of steps taken by E is bounded by

q(|x|)
Prω[〈P ∗x,y,r, V (x;ω)〉 = 1]

2. The machine E with oracle access to P ∗x,y,r outputs a solution w ∈ RL(x) with probability
at least 1− negl(|x|).

Here P ∗x,y,r denotes the (deterministic) machine P ∗ with common input fixed to x, auxiliary input
fixed to y, and random tape fixed to r. The machine E is called a (knowledge) extractor.
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A.3 Resettable Zero Knowledge and Witness Indistinguishability

Definition 8 Let (P, V ) be an interactive proof or argument system for a language L, t =
poly(k), x̄ = x1, . . . , xt be a sequence of common inputs and w̄ = w1, . . . , wt the correspond-
ing witnesses (i.e., (xi, wi) ∈ RL) for i = 1, . . . , t. We say that a PPT V ∗ is a resetting verifier
if it concurrently interacts with an unbounded number of independent copies of P by choosing for
each interaction the value i so that the common input will be xi ∈ x̄, and the prover will use
witness wi, and choosing j so that the prover will use rj as randomness, with i, j ∈ {1, . . . , t}.
The scheduling or the messages to be sent in the different interactions with P are freely decided
by V ∗. Moreover we say that the transcript of such interactions consist of the common inputs
x̄ and the sequence of prover and verifier messages exchanged during the interactions. We refer

to view
P (w̄)
V ∗(x̄,z) as the random variable describing the content of the random tape of V ∗ and the

transcript of the interactions between P and V ∗, where z is an auxiliary input received by V ∗.

We use V ∗P (i,j,y) to denote the next message played by P when running on input (xi, wi) and
randomness rj , and when receiving messages ȳ = (y1, . . . , yt) (i.e., yi is the i-th message that V ∗

sends to P in this given interaction) from a resetting verifier V ∗.

Definition 9 Let (P, V ) be an interactive argument system for a language L. We say that
〈P, V 〉 is resettable zero knowledge if, for any PPT resetting verifier V ∗ there exists a probabilistic

polynomial-time algorithm SV ∗ such that the for all pairs (x̄, w̄) ∈ RL the ensembles {viewP (w̄)
V ∗(x̄,z)}

and {SV ∗(x̄, z)} are computationally indistinguishable.

Witness indistinguishability. The notion of witness-indistinguishability applies to interactive
arguments forNP languages and requires that no information is revealed to any possibly malicious
(but efficient) verifier about which witness is being used during the execution of the argument.

Definition 10 Let L be a language in NP and RL be the corresponding relation. An interactive
argument (P, V ) for L is witness indistinguishable if for every verifier V ∗, every pair (w0, w1)
such that (x,w0) ∈ RL and (x,w1) ∈ RL and every auxiliary input z, the following ensembles are
computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.

We now define resettable witness indistinguishability.

Definition 11 Let L be a language in NP and RL be the corresponding relation. An interactive
argument 〈P, V 〉 for L is resettable witness indistinguishable if for every PPT resetting verifier
V ∗ every t = poly(k), and every pair (w̄0 = (w0

1, . . . , w
0
t ), w̄

1 = (w1
1, . . . , w

1
t )) such that (xi, w

0
i ) ∈

RL and (xi, w
1
i ) ∈ RL for i = 1, . . . , t, and any auxiliary input z, the following ensembles are

computationally indistinguishable:

{viewP (w̄0)
V ∗(x̄,z)} and {viewP (w̄1)

V ∗(x̄,z)}.

A construction of a constant-round rWI proof for NP under the assumption that 2-round
perfectly hiding commitment schemes exist is shown in [CGGM00]. It can also be based on
CRHFs. In [DN00], a construction of 2-round resettable WI based on NIZK proofs has been
shown, and then in [GOS06], a non-interactive rWI proof has been shown by relying on some
number-theoretic assumptions.
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A.4 Resettably Sound Arguments

Definition 12 ([BGGL01]) A resetting attack of an adversarial prover P ∗ on a resettable
verifier V ∗, is defined by the following two-step random process, indexed by a security parameter
n.

1. Uniformly select and fix t = poly(k) random-tapes, denoted r1, . . . , rt, for V resulting in
deterministic strategies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α), where x ∈ {0, 1}n

and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

2. On input 1k, machine P ∗ is allowed to initiate poly(k)-many interactions with the V (j)(x)s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}k and j ∈ [t],
thus defining V (j)(x), and conducts a complete session with it.

Let P and V be some pair of interactive machines, and suppose that V is implementable in
probabilistic polynomial-time. We say that (P, V ) is a resettably-sound argument system for L
if the following two conditions hold:

1. Resettable-Completeness: Consider a polynomial-size resetting attack, and suppose that in
some session, after selecting an incarnation V (j)(x), the attacker follows the strategy P .
Then, if x ∈ L then V (j)(x) rejects with negligible probability.

2. Resettable-Soundness: For every polynomial-size resetting attack, the probability that in
some session the corresponding V (j)(x) has accepted and x 6∈ L is negligible.

In [BGGL01], the authors present a transformation that achieves the following result.

Lemma 7 ([BGGL01]) Let L ∈ NP and RL be a corresponding witness relation. Let (P, V )
be a constant-round, public-coin argument of knowledge for R. Then (P, V ) can be transformed
into (P ′, V ′), such that:

1. (P ′, V ′) is a resettably-sound argument for L. Furthermore, (P ′, V ′) is a resettably-sound
argument of knowledge for RL.

2. If (P, V ) is witness-indistinguishable, then so is (P ′, V ′).

3. If (P, V ) is zero-knowledge, then so is (P ′, V ′).

Knowledge extraction in the resettably-sound model is defined in [BGGL01] as follows:

Definition 13 Let RL ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation for an NP-language L = {x :
∃w such that (x,w) ∈ RL}. We say (P, V ) is resettably-sound argument of knowledge for R if,

1. (P, V ) is resettably-sound argument for L, and,

2. for every polynomial q, there exists a probabilistic expected polynomial-time oracle machine
E such that for every resetting attack P ∗ of size q(k), the probability that EP

∗
(1k) outputs

a witness for the input selected in the last session is at most negligibly smaller than the
probability that P ∗ convinces V in the last session.
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A.5 Universal Arguments

A universal argument is an interactive argument of knowledge from proving membership in
Ntime(T (k)) for a super-polynomial function T . We give now the formal definitions, as pre-
sented in [BG02].

Definition 14 Given a description of a Turing machine M , two strings x,w and a number t we
say that (〈M,x, t〉, w) ∈ RU if M accepts (x,w) within t steps. Moreover, we define TM (x,w) to
be the number of steps made by M on input (x,w).

Definition 15 Let T : N → N be a super-polynomial function. We say that a pair (〈M,x, t〉, w)

is in R
T (k)
U if (〈M,x, t〉, w) ∈ RU and t ≤ T (|〈M,x, t〉|). Moreover we define L

T (k)
U = L(R

T (k)
U ).

Definition 16 A universal-argument system is a pair 〈P, V 〉 such that:
1. Efficiency: V is a probabilistic polynomial-time algorithm.
2. Completeness: For every (〈M,x, t〉, w) ∈ Ru,Prob[ outV 〈P (〈M,x, t〉, w), V (〈M,x, t〉)〉 =
1 ] = 1. Moreover, there exists a polynomial p such that P (w), on common input (M,x, t)
runs in at most p(TM (x,w)) ≤ p(t) steps.

3. Soundness: For every polynomial-size circuit family {P ∗k }k∈N and every string y =
〈M,x, t〉 ∈ {0, 1}k\LU , it holds that Prob[ outV 〈P ∗(y), V (y)〉 = 1 ] < µ(k) where µ : N →
[0, 1] is a negligible function.

4. Weak Proof of knowledge: For every positive polynomial p there exists a positive
polynomial p′ and a probabilistic polynomial-time oracle machine E, called the extractor,
such that the following holds. For every polynomial-size circuit family {P ′k}k∈N , and every
sufficiently long y = 〈M,x, t〉 ∈ {0, 1}∗, if Prob[ outV 〈P ∗(y), V (y)〉 = 1 ] ≥ 1/p(|y|) then

Prob[ ∃w = w1 · · ·wt ∈ RU (y) s.t. ∀i ∈ {1, . . . , t}, EP
′
k

r (y, i) = wi ] ≥ 1/p′(|y|),

where RU (y) is defined as {w : (y, w) ∈ RU} and E
P ′k
r (·, ·) denotes the function defined by

setting E’s random tape equal to r and giving Er oracle access to P ′k.

We will use the following result by [BG02, BG08], building on techniques in [Bar01]. (A proof
for it is divided in [BG02, BG08] among the proofs of Theorem 1.1, Lemma 4.2 and Lemma 4.3.)

Theorem 5 ([BG02, BG08]) Suppose there exists an hash function ensemble that is collision-
resistant against polynomial-size circuits. Then there exists a universal argument system with the
following property:

1. The system is constant-round and public-coin.
2. The system is witness indistinguishable.

Furthermore, for every ε > 0, there exists such a system with total communication complexity of
mε, where m is the instance length.

B Special 3-Round WIPoK [LS90]

In the following we describe the 3-round WIPoK protocol for the NP-complete language graph
Hamiltonicity (HC), provided by Lapidot and Shamir in [LS90], and we will refer to this con-
struction as LS protocol. The reason why this construction is special, is that only the size of
the statement need to be known before the last round. The actual statement can therefore be
decided during the execution of a larger protocol, and this is very important when one aims at
optimizing the overall round complexity.

We now show the protocol assuming that the instance G is known from the beginning, and
we discuss later why its knowledge can be postponed to the very last round.
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LS protocol consists of k parallel executions (with the same input G) of the following
protocol:

Inputs: VLS, PLS have as input a graph G, PLS has as auxiliary input a witness w ∈ RHC(G).
Let k be the number of vertexes of G. G is represented by a k × k adjacency matrix
GMatrix where GMatrix[i][j] = 1 if there exists an edge between vertexes i and j in G.
A non-edge position i, j is a pair of vertexes that are not connected in G and for which
GMatrix[i][j] = 0.

LS1 (PLS → VLS): PLS picks a random k-vertex cycle graph C and commits bit-by-bit to the
corresponding adjacency matrix using a statistically binding commitment scheme.

LS2 (VLS → PLS): VLS responds with a randomly chosen bit b.

LS3 (PLS → VLS):

• if b = 0, PLS opens all the commitments, showing that the matrix committed in step
LS1 is actually an k-vertex cycle.

• if b = 1, PLS sends a permutation π mapping the vertex of C in G. Then it opens the
commitment of the adjacency matrix of C corresponding to the non-edges of the graph
G.

• VLS accepts if and only if all k sessions are accepting.

LS protocol has the following properties:

WI: The protocol enjoys witness indistinguishability. Indeed, the single execution is zero-
knowledge which implies WI and is preserved under parallel and concurrent composition.

Proof of knowledge: Getting the answer for both b = 0 and b = 1 allows the extraction of the
cycle. The reason is the following. For b = 0 one gets the random cycle C. Then for b = 1
one gets the permutation mapping the random cycle in the actual cycle w that is given to
PLS at the beginning (or before the last message of) the protocol.

Knowledge of statement/witness is required only in Step LS3: The crucial property is that
the first step is independent of the witness and the theorem, since it only requires the sam-
pling of a random k-cycle (k is the size of the theorem and must be known in advance).
The witness and theorem are used only in the last Step LS3.
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