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Abstract

We consider the task of compression of information when the source of the information and
the destination do not agree on the prior, i.e., the distribution from which the information
is being generated. This setting was considered previously by Kalai et al. (ICS 2011) who
suggested that this was a natural model for human communication, and e�cient schemes for
compression here could give insights into the behavior of natural languages. Kalai et al. gave
a compression scheme with nearly optimal performance, assuming the source and destination
share some uniform randomness. In this work we explore the need for this randomness, and
give some non-trivial upper bounds on the deterministic communication complexity for this
problem. In the process we introduce a new family of structured graphs of constant fractional
chromatic number whose (integral) chromatic number turns out to be a key component in the
analysis of the communication complexity. We provide some non-trivial upper bounds on the
chromatic number of these graphs to get our upper bound, while using lower bounds on variants
of these graphs to prove lower bounds for some natural approaches to solve the communication
complexity question. Tight analysis of communication complexity of our problems and the
chromatic number of the underlying graphs remains open.

Keywords: Source coding, communication complexity, graph coloring

1 Introduction

The following example illustrates the questions studied in this paper: Suppose Alice and Bob have
a ranking of a set U of N elements, say, movies. Specifically Alice’s rank function is A : [N ] ! U
and Bob’s rank function is B : [N ] ! U where [N ] = {1, . . . , N} and A and B are bijections
with A(i) naming the ith ranked movie in Alice’s ranking. Suppose further that Alice and Bob
know that their rankings are “close”, specifically for every x 2 U , |A�1(x) � B�1(x)|  2. How
many bits does Alice have to send to Bob so that Bob knows her top-ranked movie, i.e., A(1)?
On the one hand Bob knows A(1) is one of the three element set S

1

= {B(1), B(2), B(3)} and so
the information-content from his point of view is bounded by log

2

3 bits. Indeed this leads to a
randomized communication scheme, with Alice and Bob sharing common randomness with O(1)
bits of communication. However the deterministic communication complexity of the question is
not as easily settled. Part of the reason is that Alice doesn’t know S

1

and so has to “guess” it to
communicate A(1). Still she is not clueless: She knows it is contained in T

2

= {A(1), . . . , A(5)}
and perhaps this can help her communicate A(1) e�ciently to Bob. The question of interest to us
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in this work is: Can Alice communicate A(1) to Bob with a number of bits that is independent of
N? (Unfortunately, we do not answer this question, though we do give a non-trivial upper bound.
We will elaborate on this later.)

The question above is a prototypical example of “communication amid uncertainty”, where the
communicating players have fairly good information about each other (in the example above Alice
and Bob know each others ranking of each movie to within ±2), but are not sure of each other’s
information and do not have a common-ground to base communication on. One way to proceed
in such settings is for the players to communicate enough information to agree on a common prior
and then to use classical compression; but this would be excessively wasteful for, say, a one-time
communication. One could hope for a direct solution which aims to establish communication
without requiring agreement on the prior, and indeed this was the question studied by Kalai et
al. [5]. Kalai et al. argue that this models many natural forms of communication among humans
where humans are uncertain about each other’s contexts, but try to communicate e�ciently despite
the lack of a perfect common basis, or without trying to first agree on the prior. They argue
in particular that this leads to certain phenomena in natural communication systems (natural
language) that are not seen in carefully designed communication systems (where perfect agreement
on the prior can be assumed).

The specific problem they consider is the following. Suppose Alice wishes to communicate a
message m 2 U to Bob, where Alice is operating under the belief that the message is chosen
according to the probability distribution P on U . Bob on the other hand operates under the
belief that the messages are chosen according to a distribution Q on U . Both players are aware
that their distributions may not be identical but operate under the “knowledge” that their dis-
tributions are close. Specifically, we say that P and Q are �-close if for all m 2 U , we have
log

2

P (m)/Q(m), log
2

Q(m)/P (m)  �. (We use this to also define our distance between distribu-
tions: The distance between P and Q, denoted �(P,Q), is defined to be the minimum � such that
P and Q are �-close.) The question Kalai et al. investigate is: What is the expected number of
bits, under distribution P , that Alice has to send to Bob so that Bob can recover the message. (We
note that similar questions, in the interactive setting, were also studied in the works of Harsha et
al. [4] and of Braverman and Rao [1], though their motivations were quite di↵erent. Both works
focus on the setting when sender and receiver have di↵erent priors and are trying to generate a
random variable that is maximally correlated under their priors. In our case the sender gets a
concrete message from its prior and wishes to communicate it. The focus in both works is on ran-
domized solutions that get the communication complexity down to the minimum possible amount,
whereas our thrust is to use less (or no) randomness at the expense of slightly larger communication
complexity.)

Without any knowledge of P and Q, it is still trivial for Alice to communicate m with logN bits.
On the other hand, if � = 0 (and so Alice and Bob have P = Q), then standard compression can
communicate this information with H(P ) + O(1) bits (where H(P ) =

P

m2U P (m) log
2

(1/P (m))
denotes the binary entropy of P ) which may be much smaller than logN . Kalai et al. show that
if Alice and Bob share some common random bits, then they can communicate with each other
with H(P ) + 2� + O(1) bits. This gives a graceful degradation of performance when � > 0, and
indeed in many natural instances of communication where � may be large (say 50), this gives a
very e�cient communication mechanism amid large amounts of uncertainty.

The assumption that Alice and Bob share a common random string is however a major one, and
is unclear how to achieve it in “nature”. This assumption a↵ects the solution both technically and
conceptually. We discuss the technical implication first. Technically, this assumption is not made
to alleviate computational complexity considerations, but is rather to overcome a fundamental
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challenge. The randomness is independent of P and Q and so e↵ectively manages to convert a
solution that works for most pairs of Alice and Bob (or rather their beliefs P and Q) to one that
works for every pair P and Q, with high probability over the randomness. Unfortunately, any
attempt to fix the random string leads back to a solution that only works for most pairs of beliefs
(P,Q) (over any distribution over the beliefs), but not one that works for every pair. Thus the
technical question that remains open is: “Is there a single solution that will work for every choice
of P and Q with performance roughly that of Kalai et al.?”

We now return to the conceptual implications of the assumption of shared perfect randomness.
In terms of the motivating phenomenon of “natural communication among humans”, Kalai et al.
suggest the presence of a common dictionary (of say English) as presenting such shared randomness.
They do point out, however, that the assumption that such a dictionary is a random string is mainly
a convenient technical assumption, rather than an empirically justifiable one. In particular, the
assumption that our beliefs are independent of the dictionary is not easy to justify. Indeed the
contrary may well be true: Our dictionary may well be strongly influenced by our beliefs. Thus one
could ask - can one weaken the assumption on the shared randomness to some much weaker notion
of shared context? Our work explores this question and gives some partial answers, while also
highlighting some intriguing communication complexity/graph-theoretic questions that are raised
by this line of work.

1.1 Formal definitions and main results

We start by defining the notion of an “uncertain compression scheme”.
We let {0, 1}⇤ denote the set of all finite length binary strings. For x 2 {0, 1}⇤, let |x| denote

its length. Throughout U , the set of all messages, will be a finite set of size N . Let P(U) denote
the space of all probability distributions over U .

Definition 1.1 ((Basic) Uncertain Compression Scheme). For positive real � an Uncertain
Compression Scheme (UCS) for distance � over the universe U is given by a pair of E :
P(U) ⇥ U ! {0, 1}⇤ and D : P(U) ⇥ {0, 1}⇤ ! U that satisfy the following correctness condi-
tion: For every pair of distributions P,Q 2 P(U) that are �-close and for every m 2 U , we have
D(Q,E(P,m)) = m. The performance of a UCS (E,D) is given by the function L : P(U) ! <+,
where L(P ) = Em PU [|E(P,m)|], i.e., the expected length of the encoding under the distribution
P . We refer to such a scheme as a (�, L)-UCS.

In English, the definition above explicitly provides the distribution as input to the encoding and
decoding schemes, and expect the schemes to work correctly even if the distributions used by the
encoder and decoder are not the same, as long as they are �-close to each other. While in general
we would like compression schemes which work for all possible distributions P,Q that are within
� of each other, and with no error (as expected in the definition above), some of our schemes are
weaker and work with some error, or only for some class of distributions. We define such general
UCS’s below.

Definition 1.2 ((General) Uncertain Compression Scheme). For positive real � (for distance),
✏ 2 [0, 1] (for error), a class of distributions F ✓ P, and performance function L : F ! <+

a (�, ✏,F , L)-Uncertain Compression Scheme (UCS) over the universe U is given by a pair of
E : F ⇥ U ! {0, 1}⇤ [ {?} and D : F ⇥ {0, 1}⇤ [ {?} ! U [ {?} that satisfy the following
conditions:

1. For every pair of distributions P,Q 2 F that are �-close and for every m 2 U , it is the case
that if E(P,m) 6= ? then D(Q,E(P,m)) = m. Furthermore D(?) = ?.
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2. Prm PU [E(P,m) = ?]  ✏.

3. For every P 2 F , we have Em PU [|E(P,m)|]  L(P ).

Note that we do not distinguish the two definitions above by name, but rather just by the
number of parameters. So if the number of parameters is just two, then it is assumed that there is
no error, and the performance holds for all distributions.

We note that the definitions above only covers deterministic compression schemes. A compres-
sion scheme with shared randomness can be defined analogously, but we don’t do so here. We
also stress that the choice of P and Q is “worst-case” within the family F (as formalized by the
universal quantifier in the correctness condition). There are no assumptions that F is small (has
only finitely many elements), which tends to be the setting for universal compression. Similarly,
we do not consider a sequence of messages that need to be transmitted: Rather, we are considering
one-shot communication with no assumptions on the distributions P and Q, other than that they
are from F and �-close.

We recall that Kalai et al. present a (�, H(P ) + 2� + c)-UCS (with shared randomness) for
some constant c  3. We give two deterministic schemes in this paper, both having complexity
depending on N , but both using substantially less than logN bits.

Theorem 1.3. For every � � 0, there exists a (�, O(H(P ) +�+ log logN))-UCS, i.e., a deter-
ministic universal compression scheme that works for all pairs P,Q that are within distance � of
each other, and where the expected length of encoding is at most O(H(P ) +�+ log logN).

The dependence on N of this scheme is non-trivial and thus may even be reasonable in “natural
circumstances”. However it is not clear if such a dependency on N is necessary. Motivated by the
quest to understand the dependence on N more closely, we explore schemes whose performance
is not necessarily linear in H(P ). Simultaneously we relax our schemes to allow them to “drop”
messages with ✏ probability. We note that if we don’t do the latter, then the former is not really a
relaxation: Any error-free scheme with superlinear dependence on H(P ) can be converted to one
with linear dependence on H(P ) by a simple reduction (see Lemma 3.14).

Our next theorem gives a scheme that is weaker than the one from Theorem 1.3 in its dependence
on the entropy H(P ) and in that it errs with non-zero probability. But it does achieve significantly
better dependence on N .

Theorem 1.4. For every ✏ > 0 and � � 0 there exists a (�, ✏,P(U), exp (H(p)/✏+� log⇤N))-
UCS, i.e., the scheme has error probability at most ✏, it works for all pairs of distributions P,Q
within distance � and the expected length of the encoding is at most exp (H(p)/✏+� log⇤N).

In the above the notation exp(x) denotes a function of the form cx for some universal constant
c, and log⇤N denotes the minimum integer i such log(i)N  1 and log(i) is the logarithm function
iterated i times.

An alternate way to get around the barrier of Lemma 3.14, which insists that schemes must
have linear dependence on H(P ) or make some error, is to have schemes that do not work for
all possible pairs of distributions P and Q. As it turns out the scheme from Theorem 1.4 does
have this behavior for many natural distributions. In Theorem 3.8 we show that our scheme from
Theorem 1.4 works without error and with same performance as long as P (or Q) are close to a
“flat distribution” (uniform over a subset), or a geometric distribution, or a binomial distribution.
We stress that the scheme is not particularly carefully tailored to the class of distributions (though
of course the encodings and decodings do depend on the distributions), but naturally adapts to
being error-free for the above classes.
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1.2 Techniques: Graph Coloring

While the most natural framework for studying our problem is as a question of communication
complexity of a relational problem (as in [6]), this turns out not to be the most useful for studying
the deterministic communication complexity. Indeed, as pointed out earlier, the modern stress in
communication complexity is often on designing and understanding the limits of protocols that are
interactive and use shared randomness, while in our case the thrust in the opposite direction.

It turns out our questions are naturally also captured as graph-coloring questions. Furthermore
such questions (or related ones) have been studied in the literature on distributed computing in
the attempt color graphs in a local distributed manner. In particular, the work of Linial [7] shows
that a “local” algorithm for 3-coloring a cycle, due to Cole and Vishkin [2], implies that a large
“high-degree graph” is 3-colorable. The ideas of Cole and Vishkin [2] and Linial [7] turn out to be
quite useful in our context. Our work abstracts some of these techniques, and extends them to get
combinatorial results, which we then convert to e�cient compression schemes.

Uncertainty graphs and Chromatic number We start by defining a class of structured
combinatorial graphs whose chromatic number turns out to be central to our problems. Let [N ] =
{1, . . . , N}. Let SN denote the set of all permutations on N elements, i.e., the set of all bijections
from [N ] to itself. For ⇡,� 2 SN , let �(⇡,�) = maxi2[N ]

|⇡�1(i)� ��1(i)|.
Definition 1.5 (Uncertainty graphs). For integer N, ` the uncertainty graph UN,` has as elements
of SN as its vertices, with ⇡  � if (1) ⇡(1) 6= �(1) and �(⇡,�)  `.

It turns out that the chromatic number of the uncertainty graphs have a close connection to
uncertain communication schemes. Roughly these graphs emerge from a very restricted version
of the communication problem, where the distributions P and Q are geometric distributions (giv-
ing probability proportional to ��⇡

�1
(i) and ���

�1
(i) to the element i 2 [N ]. It follows that if

�(⇡,�) is small, then P and Q are close to each other. Furthermore, for simplicity these graphs
only consider the case that the message is the element with maximal probability under P . To
understand how the chromatic number plays a role, fix a receiver with distribution Q and consider
two possible senders P and P 0 that could communicate with this receiver. Consider coloring P
and P 0 by E(P, argmaxm{P (m)}) and E(P 0, argmaxm{P 0(m)}) respectively. This would lead to
distinct colors on pairs P and P 0 that are too close to each other, provided their messages, i.e.,
argmaxm{P (m)} and argmaxm{P 0(m)} are di↵erent. This exactly corresponds to adjacency in our
graph: the underlying permutations ⇡ and � are close, and the top ranked elements are di↵erent.

The results of Kalai et al. imply that the “fractional chromatic number” of UN,` is bounded
by O(`).1 The (integral) chromatic number on the other hand does not immediately seem to be
bounded as a function of ` alone. The implication of the low fractional chromatic number is that
the chromatic number of UN,` is at most O(`N logN), but this is worse that the naive upper bound
of N , which can be obtained by setting the color of ⇡ to be ⇡�1(1). (By definition of adjacency this
is a valid coloring.) Our main technical contribution is in obtaining some non-trivial upper bounds
on the chromatic number of this graph.

To derive our upper bounds, we look at “coarsened” versions of the graph UN,`. For positive
integer k, we say that ⇡ : [k]! [N ] is a k-subpermutation if ⇡ is injective. We let SN,k denoted the
set of all k-subpermutations on [N ]. For k0 � k, we say subpermutation ⇡ : [k] ! [N ] extends the

1The fractional chromatic number of a graph G is the smallest positive real w such that there exists a collection
of independent sets I1, . . . , It in G with weights w1, . . . , wt such that

Pt
j=1 wj = w and for every vertex u 2 V (G) it

is the case that
P

j:Ij3u wj � 1.
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subpermutation � : [k0]! [N ] if �(i) = ⇡(i) for all i 2 [k]. For k-subpermutations ⇡ and �, we let
�(⇡,�) = min⇡0,�0

extending ⇡,�{�(⇡0,�0)}.
Definition 1.6 (Restricted Uncertainty graphs). For integers N, ` and k the k-restricted uncer-
tainty graph UN,`,k has elements of SN,k as its vertices, with ⇡  � if (1) ⇡(1) 6= �(1) and
�(⇡,�)  `.

Note that UN,`,N = UN,`. We derive our upper bounds on the chromatic number of UN,` by
giving non-trivial upper bounds on the chromatic number of UN,`,k.

Lemma 1.7. 1. For every k  k0, �(UN,`,k0)  �(UN,`,k).

2. For every N, `, �(UN,`,2`)  O(`2 logN).

3. For every N , ` and k that is an integral multiple of `, we have �(UN,`,k)  O(2k log(k/`)N).

4. For every N , ` and k that is an integral multiple of `, we have �(UN,`,k) � log(2k/`)(N/`)).

As an immediate application we get the following theorem.

Theorem 1.8. For every N and `, we have �(UN,`)  O
�

min{`2 logN, 2` log
⇤ N}�.

Unfortunately, the lower bound from Part (4) of Lemma 1.7 goes to 0 as k ! N and so we don’t
get a growing function of N as a lower bound. However, it does rule out most natural strategies
for coloring U , and shows limitations of the intuition that suggests U may be colorable with f(`)
colors independent of N . This is so since the intuition as well most natural strategies only use
the top O(`) ranking elements of a permutation ⇡ to determine its color; and such strategies are
inherently limited. In particular, it shows that there is no hope to extend the methods of Kalai et
al. in a simple way to get a deterministic UCS.

Organization of this paper. We start with the analysis of the chromatic number in Section 2.
We then use the methods to build uncertain compression schemes in Section 3.

2 Uncertainty Graphs

We start with some elementary material in Section 2.1 that already allows us to prove Parts (1) and
(2) of Lemma 1.7. The lower bound mentioned in Part (4) of Lemma 1.7 follows also relatively easily
from a result of Linial [7] and we show this in Section 2.2. Our main contribution, in Section 2.3,
gives the upper bound from Part (3) of Lemma 1.7.

2.1 Preliminaries

We recall the concept of a homomorphism of graphs: For graph G = (V,E) and G0 = (V 0, E0), we
say that � : V ! V 0 is a homomorphism from G to G0 if (u, v) 2 E ) (�(u),�(v)) 2 E0. We say
G is homomorphic to G0 if there exists a homomorphism from G to G0.

Proposition 2.1. For every N , ` � 1 and k0  k  N , the k-restricted uncertainty graph UN,`,k is
homomorphic to the k0-restricted uncertainty graph UN,`,k0.

Proof. We construct the homomorphism � from UN,`,k to UN,`,k0 as follows: For ⇡ =
h⇡(1), . . . ,⇡(k)i 2 SN,k let �(⇡) = h⇡(1), . . . ,⇡(k0)i 2 SN,k0 . From the definitions it follows that
this is a homomorphism.
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Proposition 2.2. . For every G and G0 such that G is homomorphic to G0, we have �(G)  �(G0).

Proof. Follows from the composability of homomorphisms and the fact that G is k-colorable if and
only if it is homomorphic to Kk, the complete graph on k vertices.

Part (1) of Lemma 1.7 follows immediately from Propositions 2.1 and 2.2.

Proposition 2.3. For every N, `, and k � `+ 1 the fractional chromatic number of the restricted
uncertainty graph UN,`,k is at most 4`.

Proof. For every function f : [N ] ! [2`] we associate the set If = {⇡ 2 SN,k|f(⇡(1)) =
1 and f(⇡(j)) 6= 1 8 j 2 {2, . . . , `+ 1}}.

We claim that If is an independent set of UN,`,k for every f . To see this consider an edge (⇡,�)
and suppose ⇡ 2 If . Then �(1) 2 {⇡(2), . . . ,⇡(`+ 1)} and so f(�(1)) 6= 1 and so � 62 If .

Next we note that for every ⇡, the probability that ⇡ 2 If for f chosen uniformly at random is
1/(2`) · (1� 1/(2`))` � 1/(4`).

Thus if we give each If a weight of 4`/(2`)N , then we have that the weight of independent sets
containing any given vertex ⇡ is at least one, while the sum of all weights is 4`, thus yielding the
claimed bound on the fractional chromatic number.

The following is a well-known connection between fractional chromatic number and chromatic
number.

Proposition 2.4. For every graph G, �(G)  �f (G) · ln |V (G)|.
We are now ready to prove part (2) of Lemma 1.7.

Lemma 2.5. �(UN,`)  �(UN,`,`+1

))  4`(`+ 1) lnN

Proof. The first inequality follows from Propositions 2.1 and 2.2. The second one follows from
Proposition 2.4 and 2.3 and the fact that UN,`,`+1

has at most N `+1 vertices.

2.2 Lower Bound on Chromatic Number

We now prove Part (4) of Lemma 1.7 giving a lower bound on �(UN,`,k). We use a lower bound on
a somewhat related family of graphs due to Linial [7].

Definition 2.6 (Shift graphs). For integers N and k < N , we say that ⇡ 2 SN,k is a left shift of
� 2 SN,k if ⇡(i) = �(i+ 1) for i 2 [k � 1] and ⇡(k) 6= �(1). We say ⇡ is a right shift of � if � is a
left shift of ⇡, and we say ⇡ is a shift of � if ⇡ is a left shift or a right shift of �. For integers N
and k, the shift graph SN,k is given by V (SN,k) = SN,k with (⇡,�) 2 E(SN,k) if ⇡ is a shift of �.

Theorem 2.7 (Linial [7, Proof of Theorem 2.1]). For every odd k, �(SN,k) � log(k�1)N .

(We note that the notation in [7] is somewhat di↵erent: The graph SN,k is denoted BN,t for
t = (k � 1)/2 in [7].)

We show that the uncertainty graphs contain a subgraph isomorphic to the shift graph. This
gives us our lower bound on the chromatic number of uncertainty graphs.

Lemma 2.8. For every N , ` and k that is an integral multiple of `, we have �(UN,`,k) �
(log(d2k/`e)(N/`)).
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Proof. First without loss of generality we only consider the case of even `. Then we reduce to the
case ` = 2, by considering only those permutations ⇡ which fix ⇡(i) = i if `/2 does not divide
i. This still leaves us with 2N/` unfixed elements and subpermutations from S

2N/`,2k/ell that are
within distance 2 of each other are within distance ` when mapped back to SN,k.

So we assume ` = 2 and show that UN,2,k contains a subgraph isomorphic to the shift graph
SN,k. Consider the map � from V (SN,k) to V (UN,2,k) which send ⇡ = h⇡(1), . . . ,⇡(k)i to �(⇡) =
� = h�(1), . . . ,�(k)i as follows: Let t = bk/2c. Then �(2i) = ⇡(t + i) and �(2i + 1) = ⇡(t � i)
�(t + i) = ⇡(2i) and �(t � i) = ⇡(2i + 1). It is easy to verify that the map is a bijection and if ⇡
and ⇡0 are shifts of each other, then �(⇡) and �(⇡0) are within distance 2 of each other. It follows
that UN,2,k contains a copy of SN,k and so �(UN,2,k) � �(SN,k) � log(k�1)N .

2.3 Upper Bound on Chromatic Number

In this section we give an upper bound on the chromatic number of the uncertainty graphs. We first
describe our strategy. Fix N and `. Now for every k, we know that there is a homomorphism from
UN,`,k to UN,`,k�1. However we note that if we jump from UN,`,k to UN,`,k�` then the homomorphism
has an even nicer property. To describe this property, we introduce a new parameter associated with
the homomorphism from UN,`,k to UN,`,k�`. Let us denote this homomorphism �k. For ⇡ 2 SN,k let
dk(⇡) = |{�k(�) | (⇡,�) 2 E(UN,`,k)}|. Note that dk(⇡) is independent of ⇡ and so we just denote
it dk. We note first that dk is small.

Recall that �k : SN,k ! SN,k�` and maps ⇡ : [k] ! [N ] to ⇡0 : [k � `] ! [N ] by setting
⇡0(i) = ⇡(i).

Claim 2.9. For every k, dk  (2`+ 1)k.

Proof. Let (�,⇡) 2 E(UN,`,k) then �(�,⇡)  `. In particular for every i 2 [k � `], we have there
exists j(i) 2 {�`, . . . , `} such that �(i) = ⇡(i+j(i)). Thus the sequence j(1), . . . , j(k�`) completely
specifies �k(�). Since the number of such sequences is at most (2`+ 1)k�`, we get our claim.

The next lemma shows that a homomorphism with a small d-value yields especially good col-
orings.

Lemma 2.10. Let � be a homomorphism from G to H and let c = �(H) and d =
maxv2V (G)

|{�(w) | (v, w) 2 E(G)}|. Then �(G)  2d(d+ 1) log c = O(d2 log c).

Proof. For integers t and M , we start by building a small family of hash functions H =
{h

1

, . . . , hM} ✓ {h : [c] ! [t]} with the property that for every subset S ✓ [c], with |S|  d,
and for every i 2 [c]� S, there exists j 2 [M ] such that hj(i) 62 {hj(i0)|i0 2 S}.

Given such a hash family, we claim there is a coloring of G with t · M colors. To get such a
coloring, let �0 be a coloring of H with colors [c]. Now, consider v 2 V (G) and let Sv = {�0(�(w)) |
(w, v) 2 E(H)}. By the definition of d, we have |Sv|  d. Also since �0 is a coloring of H
and � is a homomorphism, we have �0(�(v)) 62 Sv. Thus by the property of H, we have that
there exists a j = j(v) such that hj(�0(�(v)) 62 {hj(i0)|i0 2 Sv}. We let the coloring � of G be
�(v) = (j(v), hj(v)(�

0(�(v))}. Syntactically it is clear that this is a t ·M coloring of G. To see it
is valid, consider (v, w) 2 E(G). If j(v) 6= j(w) then we are done. Else, suppose j(v) = j(w) = j.
Then by definition of Sv we have �0(�(w)) 2 Sv and so hj(�0(v)) 6= hj(�0(w)) 2 {hj(i)|i 2 Sv}, and
thus �(v) 6= �(w) as desired.

To conclude we need to give an upper bound on t and M .

Claim 2.11. There exists such a hash family with t  2d and M  log(cd+1).
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Proof. The proof is an elementary probabilistic method argument. Let t = 2d. We pick members
of H at uniformly at random from {h : [c] ! [t]}. Fix a set S with |S|  d and i 2 [c] � S. Say
that h separates i from S if h(i) 62 {h(i0)|i0 2 S}. The probability that a random h separates i
from S is at least 1/2 and the probability that there does not exist h 2 H separating i from S is
at most 2�M . The probability that there exists S and i 2 [c] � S such that there does not exist
h 2 H separating i from S is strictly less than cd+1 · 2�M . It follows that if M = log cd+1 then such
a family H exists.

The lemma follows.

We are now ready to prove Part (3) of Lemma 1.7, restated below.

Lemma 2.12. There exists a constant c such that for every N, `, k, we have �(UN,`,k) 
2ck log ` log(b(k�1)/`c�1)N .

Proof. We prove the lemma by induction on k. For notational simplicity assume k � 1 is a
multiple of `. For k  ` the lemma is immediate from the fact that �(UN,`,1)  N . As-
sume the lemma is true for k � `. Then, by Lemma 2.10 we have that for �(UN,`,k) 
2dk(dk + 1) · log(�(UN,`,k�`))  4d2k log�(UN,`,k�`). By Claim 2.9, dk  (2` + 1)k  (4`)k and

so for �(UN,`,k)  4(4`)2k log(2c(k�`) log ` log(k�`�1)/ell N  2ck log ` log(k�1)/`)N for a suitably large
c.

3 Uncertain Communication

We now convert some of the methods from the previous section into schemes for uncertain com-
pression. In Section 3.1 we derive a simple compression scheme based on the relationship between
fractional chromatic number and chromatic number from Section 2.1. We then use the “nested
series of homomorphisms” from Section 2.3 to derive a second compression scheme in Section 3.2.
The compression scheme of Section 3.2 can make errors with positive probability and has a non-
linear dependence on entropy. In Section 3.3 we show that for some natural distributions, this
scheme is error-free. In Section 3.4 we show how an error-free scheme working for all distributions
woould automatically have linear dependence on the entropy, suggesting some of the weaknesses in
Section 3.2 are necessary.

3.1 A simple, zero-error compression scheme

Our first construction uses the notion of an isolating hash family. For positive integers `, N and
m 2 [N ] and S ✓ [N ] � {m}, we say that a function h : [N ] ! {0, 1}` isolates m from S if
h(m) 62 {h(m0)|m0 2 S}. We say that a hash family H` = {h

1,`, . . . , hM,`} is (N, `)-isolating if for
every S ✓ [N ] with |S|  2`�1, and for every m 2 [N ] � S, there exists j = j(m,S) such that

hj,`(m) 62 hj,`(S)
4
= {hj,`(m0)|m0 2 S}.

We note first that small isolating families exist and then give a compression scheme based on
small isolating families.

Lemma 3.1. For every ` and N , there exists an (N, `)-isolating family of size at most 2` · logN .

Proof. The proof is straightforward application of the probabilistic method. We pick H =
{h

1

, . . . , hM} by picking hi uniformly and independently from the set of all functions from [N ]
to {0, 1}`. Fix m 62 S ✓ [N ]. The probability that a randomly chosen h isolates m from S is at
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least 1/2. Thus the probability that some hi in H does not isolate m from S is at most 2�M .
Taking the union bound over all m,S we find that the probability that H does not isolate some m
from S is at most N2

`
/2M . We conclude that M  2` · logN su�ces for the existence of such a

H.

We are now ready to describe our encoding and decoding schemes.
Encoding: Given m,P let S = {m0 2 [N ] \ {m} | P (m0) � P (m)/22�} and let ` = log

2

1/P (m) +
2�. Let H be an (N, `)-isolating family of size M and let H = {h

1,`, . . . , hM,`}. Now let j 2 [M ]
be such that hj,`(m) 62 {hj,`(m0) | m0 2 S}. The encoding E(P,m) is defined to be (j, hj,`(m)).

Decoding: Given Q and y = (j, z) 2 Z+ ⇥ {0, 1}⇤, let ` = |z| and let m̂ =
argmaxm2[N ]:hj,`(m)=z{Q(m)}. The decoding of the pair Q, y) is given by D(Q, y) = m̂.

Our next proposition verifies the correctness of the compression scheme.

Proposition 3.2. For every pair of distributions P , Q such that �(P,Q)  �, and for every
message m 2 [N ], it is the case that D(Q,E(P,m)) = m.

Proof. Fix P , Q and m such that �(P,Q)  �. Let E(m,P ) = (j, z) with ` = |z| and let
D((j, z), Q) = m̂. We will show that m̂ = m. By definition of E, we have hj,`(m) = z and by
definition of D we have hj,`(m̂) = z. Thus, by the condition that m̂ maximizes probability under
Q of messages satisfying hj,`(m0) = z, we have Q(m̂) � Q(m). Since the distance of P and Q is
at most �, we have P (m)  Q(m)2� and P (m̂) � Q(m̂)/2�. Combining the inequalities we get
P (m̂) � P (m)/22�. Now let S = {m0 2 [N ]� {m} | P (m0) � P (m)/22�}. We have m̂ 2 S [ {m}.
But by definition of j, we have hj,`(m) 62 {hj,`(m0)|m0 2 S} and since hj,`(m) = hj,`(m̂), we must
have m = m̂.

Finally we analyze the performance of our scheme.

Lemma 3.3. The expected length of the encoding E is O(H(P ) +�+ log logN).

Proof. Fix m 2 S. Then we have `  1 + log 1/P (m) + 2� and M  (2` logN). Thus, the length
of E(P,m) is at most 2`+ log logN = O(log 1/P (m) +�+ log logN). Taking expectation over m
drawn from P , we have the expected length of the encoding is at most O(H(P )+�+log logN).

Theorem 1.3 follows immediately from Proposition 3.2 and Lemma 3.3.

3.2 Compression with error in the low entropy setting

Our compression for the low entropy setting (with better dependence on N) relies on an extension
of our coloring scheme for the uncertainty graphs. We describe this extension in the next section
and then use that to present our compression scheme afterwards.

3.2.1 Compression for chains

We start with some terminology. We say that a finite sequence of sets A
0

, . . . , Ak with Ai ✓ N is
a chain in [N ] if |A

0

| = 1 and Ai ✓ Ai+1

for every i. We say that w is the leader of the chain if
A

0

= {w}. We use Chain(N) to denote the set of all chains in [N ].
In this section we will show how to compress the leader of a chain so that it is unambiguous

relative to “nearby” chains. This is in the spirit of the coloring of uncertainty graphs. Indeed vertices
of the uncertainty graph UN,`,k correspond to chains with the vertex h⇡(1), . . . ,⇡(k)i corresponding
to the chain A with A

0

= {⇡(1)} and Ai = {⇡(1), . . . ,⇡(` · i)} for i � 1. The compressing scheme
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will thus be similar to the coloring scheme, however there are two distinguishing factors: We will
want to compress some chains more than others - a notion that would correspond to asking some
vertices to use small colors while allowing others to use larger ones. Furthermore our chains will
now grow arbitrarily fast (and not just in steps of 1 or more generally `). We now describe the
precise problem.

For a chain A = hA
0

, . . . , Aki we say the length of the chain, denoted lgt(A), is the parameter
k. We use sz(A) denote the size of the final set |Ak|. For a chain A of length at least i, we let Ai

denote its prefix of length i, i.e., Ai = hA0

, . . . , Aii.
For chain A = hA

0

, . . . , Aki and chain B = hB
0

, . . . , Bk�di, we say B is within distance d from
A if for all i 2 {0, ..., k � d}, Ai�d ✓ Bi ✓ Ai+d (where we consider sets with negative index to be
the empty set). We denote the set of all chains that are within d distance from A by Sd(A). Our
goal next is to compress the leader of chains so that the length of the compression is small as a
function of sz(A), while it remains unambiguous to chains that are nearby.

Lemma 3.4. There exists a coloring scheme Col : Z+ ⇥ Chain(N) ! Z+ with the following
properties:

1. If lgt(A) � 2k, then for every s � sz(A
2k), Col(s,A2k)  26(s+1) log(k)N .

2. Let A and A0 be chains of the same length, with lgt(A) � 2k and of size at most s. Then, if
S1(A) \ S1(A0) 6= ; and A

0

6= A0
0

, then Col(s,A
2k) 6= Col(s,A0

2k).

Proof. Let ck,s = 26(s+1) log(k)N . Fix s � sz(A). We now describe a coloring scheme of a chain
A

2k with ck,s colors, using induction on k.
For the base case k = 0, Let w be the leader of A. Then A

0

gets the color Col(s,A
0

) = w, so
clearly Col(s,A

0

)  N = log(0)N .
For k � 1, let ` = 2.5s and let H be an (`, ck�1,s)-isolating family (where isolating families

were defined as in Section 3.1). By Lemma 3.1 such a family of size M = 2` log ck�1,s exists, so

let H = {hi}Mi=1

. Let T = {B|lgt(B) = 2k � 2,B 2 S2(A
2k),Col(s,B) 6= Col(s,A

2k�2)}. Let
j 2 [2` log ck�1,s] be such that hj (Col(s,A

2k�2)) 6= hj (Col(s,B)) for all B 2 T . With these
definitions in place, we define Col(s,A

2k) to be (j, hj (Col(s,A
2k�2))). We verify below that this is

a “small” coloring and a valid one.
Let us identify the set [2` log ck�1,s] ⇥ {0, 1}` with

⇥

22` log ck�1,s
⇤

. The bound on ck,s follows
from the fact that

22` log ck�1,s

 25s log
⇣

26(s+1) log(k�1)N
⌘

 25s
⇣

6(s+ 1) + log(k)N
⌘

 26(s+1) log(k)N,

where the final inequality follows from the fact that 2s · 26 � 6(s+1) which is true for every s � 0.
We now verify that the coloring satisfies the requirement in Part (2) of the lemma statement,

i.e., that for chains A and A0 of the same length and size at most s, if their prefixes have the
same colors, then they have the same leader. Again we proceed by induction on k. Assume
Col(s,A

2k) = Col(s,A0
2k).

For k = 0, by assumption we have Col(s,A
0

) = Col(s,A0
0

). But by definition Col(s,A
0

) = w
where w is the leader of A

0

. It follows thus that w is also the leader of A0
0

as claimed.
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Now consider k � 1. Let Col(s,A
2k) = (j, hj(Col(s,A

2k�2))) and Col(s,A0
2k) =

(j0, hj0(Col(s,A0
2k�2))). Since Col(s,A0

2k) = Col(s,A
2k), we have j = j0. Moreover,

hj(Col(s,A
2k�2)) = hj(Col(s,A0

2k�2)).
We now show that A0

2k�2 2 S2(A
2k). Let B 2 S1(A) \ S1(A0) and consider its prefix

hB
0

, . . . , B
2k�1i. So, for every i 2 {0, ..., 2k � 1}

Ai�1 ✓ Bi ✓ Ai+1

and A0i�1 ✓ Bi ✓ A0i+1

.

In other words, for all i 2 {0, ..., 2k � 2}
Ai�2 ✓ Bi�1 ✓ A0i ✓ Bi+1

✓ Ai+2

,

Hence A0
2k�2 2 S2(A

2k).
From our choice of j, hj(Col(s,A

2k�2)) = hj(Col(s,A0
2k�2)) for A0

2k�2 2 S2(A
2k) only if

Col(s,A0
2k�2) = Col(s,A

2k�2). For conclusion, A2k�2 and A0
2k�2 are both chains of size at most s

of the same length, and have the same color. From the induction hypothesis they have the same
leader.

3.2.2 The Compression Scheme

We are now ready to define our final compression scheme.
Encoding: Given m,P define r = b� logP (m)c and f = 2 blog⇤Nc � 1. Further define the

chain A of length f as follows. A
0

= {m} and Ak = {m0 2 [N ] | | log 1/P (m0)� r|  �+ 1} (so
that Ak is the set of messages of probability roughly P (m) with the di↵erence in logarithms being
at most (k + 1)�+ 1). Let s = sz(A). The encoding E

low

(P,m) = E(P,m) is

E(P,m) =

(

(s, r,Col (s,A)) if s  2
H(P )

✏
+2� log

⇤ N+1

? otherwise.

(We assume that s and r above are encoded in some prefix-free encoding, so that the receiver can
separate the three parts.)

Decoding: The decoding function D
low

(Q, y) = D(Q, y) works as follows: If y = ?
then the decoder outputs ?. Else let y = (s, r, c) and let f = 2blog⇤Nc � 1. Let B =
hB

0

, . . . , Bf�1i be as follows: B
0

= {w} such that | log 1/Q(w) � r|  � + 1. For k � 1,
Bk = {m0 | | log 1/Q(m/)� r|  (k + 1)�+ 1}. Find a chain A0 with the following properties:
B 2 S1(A0), lgt(A0) = f , sz(A0)  s and Col(s,A0) = c. Let m̂ be the leader of A0. The decoding
D(Q, y) is set to be m̂.

We first analyze the correctness of the decoder.

Lemma 3.5. For every pair of distributions P , Q such that �(P,Q)  � and for every message
m 2 [N ] such that E

low

(P,m) 6= ?, it holds that D
low

(Q,E
low

(P,m)) = m.

Proof. Fix P 2 P([N ]) and a message m 2 [N ] such that E
low

(P,m) 6= ?. The following claims
will show that the decoding process is well defined (and then correctness will be essentially be
immediate).

Claim 3.6. There exists w 2 [N ] such that | log 1/Q(w)� r|  �+ 1.

Proof. By our choice of r, we have | log 1/P (m) � r|  1. Now using �(P,Q)  �, we have
| log 1/P (m)� log 1/Q(m)|  �, and so | log 1/Q(m)� r|  �+ 1. So w = m gives an element in
[N ] with the desired property.

12



Thus the chain B is now well-defined. It remains to show that there exists a chain A0 satisfying
the required properties. The next claim shows that B 2 S1(A), therefore A is a candidate for the
role of A0.
Claim 3.7. B 2 S1(A) .

Proof. The proof follows easily from our choice of A, B and the fact that P and Q are �-close. Let
k 2 {0, ..., f � 1}. We need to show that Bk is sandwiched between Ak�1 and Ak+1

.
First, We will show that Bk ✓ Ak+1

. When k = 0, we need to show that w 2 A
1

. Indeed,

| log 1/Q(w)� r|  �+ 1

) | log 1/P (w)� r|  2�+ 1

) w 2 A
1

.

Now consider 1  k  f � 1. We have,

Bk =
�

m0 2 [N ] | | log 1/Q(m0)� r|  (k + 1)�+ 1
 

✓ �

m0 2 [N ] | | log 1/P (m0)� r|  (k + 2)�+ 1
 

= Ak+1

.

This shows that Bk ✓ Ak+1

. Next we show that Ak�1 ✓ Bk, for 2  k  f � 1. We have

Ak�1 =
�

m0 2 [N ] | | log 1/P (m0)� r|  k�+ 1
 

✓ �

m0 2 [N ] | | log 1/Q(m0)� r|  (k + 1)�+ 1
 

= Bk .

The case where k = 1 and w 2 B
1

was proved in Claim 3.6. So we are done.

To conclude, the decoder can find a chain A0 such that sz(A0)  s, lgt(A0) = lgt(A), Col(s,A0) =
Col(s,A) and there exists a chain B 2 S1(A0) \ S1(A). From Lemma 3.4 the leader of A0 is m as
required.

We are now ready to prove Theorem 1.4.

Proof. We now estimate the probability that the encoder will fail. Fix some probability P and a

message m such that E(P,m) = ?. We will first show that P (m)  2�
H(P )

✏ . Later, we will bound
the probability that “m has such small probability” by ✏.

Consider the chain A = hA
0

, . . . , Af i as defined by the encoder. In this case, the size of

the largest set, |Af |, is more then the threshold T = 2
H(P )

✏
+2� log

⇤ N+1. So, there is some ele-
ment m0 2 Af such that P (m0)  1

T . By our choice of Af , P (m0) � 2�b� logP (m)c�(f+1)��1 �
P (m)2�2� log

⇤ N�1. Calculating,

1

T
� P (m)2�2� log

⇤ N�1 ) P (m)  22� log

⇤ N+1

T
= 2�

H(P )
✏

Therefore, we can bound the failure probability by the probability that P (m)  2�
H(P )

✏ . Using

the fact that Em P [N ]

h

log 1

P (m)

i

= H(P ), we deduce the following by Markov’s inequality,

Pr
m P [N ]

h

P (m)  2�
H(P )

✏

i

= Pr
m P [N ]



log
1

P (m)
� H(P )

✏

�

 ✏
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We will finish the proof by bounding the performance of the scheme. To this end consider a
distribution P and a message m 2 [N ] such that E(P,m) 6= ? (i.e sz(A)  T ). The encoder sends
r = b� logP (m)c, s = sz(A) and Col(s,A). We first analyze the contribution of sending r to the

performance. Because log |r| = O
⇣

log( 1

P (m)

)
⌘

, the accepted length of sending r in a prefix-free

encoding is at most O
⇣

Em P [N ]

log( 1

P (m)

)
⌘

= O (H(P )).

Now we analyze the length of (s,Col(s,A)) . By Lemma 3.4:

C(s,A)  26(s+1) log(f)N = 2O(s)

Hence, the length of (s,Col(s,A)) is at most

O(log s) + logC(s,A) = O(s) = 2
H(P )

✏
+2� log

⇤ n+O(1) .

Thus, from the linearity of expectations, it follow that the total performance is at most

2
H(P )

✏
+2� log

⇤ n+O(1).

3.3 Error-free Compression for Natural Distributions

In this section we will show that for a large class of natural distributions, the above scheme is error
free. We start by describing the natural distributions we can capture.

We say that a distribution P 2 P([N ]) is flat it there exists a set S ✓ [N ] such that P is
uniform on S. The distribution is called geometric if there exists parameter ↵ 2 (0, 1) and a
permutation ⇡ on [N ] such that for all k 2 [N � 1] it holds that P (⇡(k + 1)) = ↵P (⇡(k)). We call
P binomial if there exists a parameter p 2 (0, 1) and a permutation ⇡ on [N ] such that 8k 2 [N ],
P (⇡(k)) =

�N
k

�

pk(1� p)n�k. The sets of all flat, geometric and binomial distributions over [N ] are
denoted by FlatN , GeoN and BinN respectively.

The following theorem shows that the scheme (E
low

, D
low

) performs well without error on all of
the above natural distributions. Moreover, this theorem is stable in the sense that the guarantee
on the performance holds even if a distribution is only close to one of the above-mentioned natural
distributions.

Theorem 3.8. Let F , FlatN [ GeoN [ BinN and L(P ) , 2H(P ) d� log⇤Ne. Then the scheme
(E

low

, D
low

) (with ✏ set to 0) is a (�, 0,F , O (L(P )))-UCS. Moreover, if P 2 P([N ]) is � log⇤N -
close to a distribution P̃ 2 F then the performance of the scheme on P is Em PU [|E(P,m)|] =
O
⇣

L(P̃ )
⌘

.

We prove the theorem above by identifying a broad condition on distributions, which we call
the capacity, and showing that the performance of our scheme is good if the capacity is small. We
define this notion next, show that it is small for the distributions under consideration in Lemma 3.9
next, and finally bound the performance as a function of the capacity in Lemma 3.10 afterwards,
thus leading to a proof of Theorem 3.8.

Let P 2 P([N ]) be a distribution and let S ✓ [N ] be its support. We say that U ✓ S is a unit
set of P if for any two elements m

1

,m
2

2 U the distance |logP (m
1

)� logP (m
2

)|  1. We define
the capacity of P , denoted by C (P ), to be the minimal c 2 < such that the size of every unit set
of P is bounded by 2c.

Later, we will prove the next lemma, showing that for the previously discussed distributions,
the capacity is roughly the entropy.
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Lemma 3.9. Let P 2 FlatN [GeoN [ BinN . Then C (P )  H(P ) +O(1).

Theorem 3.8 follows immediately from Lemma 3.9 combined with the following lemma.

Lemma 3.10. For every P (E
low

, D
low

) (with respect to ✏ = 0) is a
�

�, O
�

log (H(P )) + 2C (P ) d� log⇤Ne�� scheme. Moreover, if P is � log⇤N close to a dis-

tribution P̃ , then the performance of the scheme on P is O
⇣

log (H(P )) + 2C (

˜P ) d� log⇤Ne
⌘

.

Proof. When setting ✏ = 0, the encoder never outputs ?. Lemma 3.5 already implies the correctness
of the scheme. The only remaining task is to analyze the performance of the scheme.

Recall, the output of the encoder has three components: r, s and C(s,A). From linearity of
expectation it su�ces to analyze the expected length of each component separately.

For a given word m 2 [N ], the first component is r =
j

log 1

P (m)

k

. Its length is |r| =

O(log log 1

P (m)

). Using the concavity of the function log we can bound the expectation of |r|
as follows:

E



log log
1

P (m)

�

 log

✓

E



log
1

P (m)

�◆

= log (H(P )) .

Now consider the chain A with size s and length f = log⇤(N)�O(1) as define by the encoder.
The second component is the size s. Clearly, |s| = O(log s).

The third component is C(s,A). By Lemma 3.4, C(s,A) = exp(s) so |C(s,A)| = O(s).
Hence the expected length of the last two components is bounded by O(s). Let P̃ 2 P([N ]) be

a distribution that is � log⇤N -close to P . To achieve the results it is enough to show that the size

s of the chain A associated with P and m is bounded by O
⇣

2C (

˜P ) d� log⇤Ne
⌘

.

The size s = sz(A) is the size of the following set,

A =
�

m0 2 [N ] | ��log 1/P (m0)� r
�

�  2 b� log⇤Nc+ 1
 

.

We will show that this set can be covered by O(d� log⇤Ne) unit sets of P̃ . This will yield an upper

bound on s of O
⇣

2C (

˜P ) d� log⇤Ne
⌘

as required.

Let k = 3 d� log⇤Ne+ 1. Define U�k, ...., Uk�1 as

Ui =
n

m0 | i  r + log P̃ (m0)  i+ 1
o

.

Clearly the Uis are unit sets of P̃ . Moreover, their union is the set

k�1
[

i=�k
Ui =

n

m0 |
�

�

�

log 1/P̃ (m0)� r
�

�

�

 3 d� log⇤Ne+ 1
o

.

Let m0 2 A. It remains to verify that m0 2 Sk�1
i=�k Ui. Indeed,

�

�

�

log 1/P̃ (m0)� r
�

�

�

 �

�1/ logP (m0)� r
�

�+� log⇤N 
 3 d� log⇤Ne+ 1 .

Therefore, |A| P |Ui| = O
⇣

2C (

˜P ) d� log⇤Ne
⌘

as required.

To complete the proof of Theorem 3.8, we will prove Lemma 3.9. The proof follows immediately
from the next three claims.
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Claim 3.11. Let P 2 FlatN . Then C (P )  H(P ).

Proof. Let S ✓ [N ] be the support of P . Clearly, H(P ) = log |S|. For every U ✓ S that is a unit
set of P ,

|U |  |S| = 2H(P ) .

Thus, C (P )  H(P ).

Claim 3.12. Let P 2 GeoN . Then C (P )  H(P ) +O(1).

Proof. Let ↵ 2 (0, 1) be such that for all k 2 [N � 1], P (k + 1) = ↵P (k). We will assume that
↵N < 1

2

. Otherwise,
H(P ) � log(N)� 1 � C (P )� 1 ,

and we are done.
Let U be the maximal unit set of P , i.e |U | = u = 2C (P ). Let k 2 U be the element with the

highest probability in U . From maximality of U we can assume that U = {k, k + 1, ..., k + u� 1}.
Calculating,

1 � |logP (k)� logP (k + u� 1)| = (u� 1) log
1

↵

Therefore, u = 1

log

1
↵

+1 = O( 1

1�↵). To achieve the result it is enough to show that 1

1�↵  2H(P )+O(1),

i.e H(P ) � log 1

1�↵ �O(1). Calculating the entropy, indeed,

H(P ) = log

✓

1� ↵N

1� ↵

◆

+

✓

1�N↵N�1

1� ↵N

◆

↵ log
1

↵
+

✓

1� ↵N�1

1� ↵N

◆

↵2 · log
1

↵

1� ↵
� log

✓

1

1� ↵

◆

�O(1) ,

as required.

Claim 3.13. Let P 2 BinN . Then C (P )  H(P ) +O(1).

Proof. Let p 2 (0, 1) be such that P (k) =
�N
k

�

pk(1� p)n�k. Let U be a unit set of P with size 2C (P ).
We will partition the codewords in [N ] into three regions and bound the number of codewords from
each region in U . The regions are:

1. {k 2 [N ] | k > pN +
p
pN},

2. {k 2 [N ] | k < pN �ppN � 1}
3. and {k 2 [N ] | pN �ppN � 1  k  pN +

p
pN}.

We will show that in any region, the number of elements from the region in U is bounded by
O(
p
pN). This will yield a total bound of |U | = O(

p
pN). The entropy of P is H(P ) =

1

2

log (2⇡eNp(1� p)). Therefore
p
pN = 2H(P )+O(1) and the result follows.

First we consider elements k from the first region. Let u
1

be the number of words in U from
this region. In this case

P (k + 1)

P (k)
=

� N
k+1

�

pk+1(1� p)N�(k+1)

�N
k

�

pk(1� p)N�k
=

(N � k)

(k + 1)
· p

1� p
 (N � k)

k
· p

1� p
=

✓

N

k
� 1

◆

· p

1� p


✓

N

pN +
p
pN
� 1

◆

· p

1� p
 1� 1p

pN + 1
.
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In a similar way to the proof of Claim 3.12, we can conclude that u
1

is bounded by O(
p
pN +1) =

O(
p
pN)
Now consider element k in the second region, similarly:

P (k + 1)

P (k)
=

(N � k)

(k + 1)
· p

1� p
� N � (k + 1)

k + 1
· p

1� p
=

✓

N

k + 1
� 1

◆

· p

1� p

�
✓

N

pN �ppN � 1

◆

· p

1� p
� 1 +

1p
pN

.

Therefore u
2

, the number of elements from the second region in U , is bounded by O(
p
pN)

Clearly ,u
3

, the number of elements from U in the last region, is bounded by the size of the
region. So u

3

= O(
p
pn).

Combining the above, we get

2C (P ) = |U | =
3

X

i=1

ui = O (
p
pn) = 2H(P )+O(1)

as required.

3.4 Dependence of communication on entropy

In the previous sections we gave a scheme with performance that is exponential in the entropy. This
scheme is error-free for some natural distributions and had positive error for general distributions.
The next lemma shows that if we cannot find a scheme with performance that are linear in the
entropy, then any scheme that we will find must have positive error for some distributions.

Lemma 3.14. For every non-decreasing function L : <+ ! <+ there exists a constant c = cL
such that the following holds: If there exists (�, L(H(P )))-UCS for some � > 0, then there exists
a (�, c · (1 +H(P )))-UCS.

Proof. We will prove the lemma for c = L(3) + 2. Let (E,D) be the (�, L(H(P ))-UCS. We will
construct a UCS (E0, D0) that has the required performance.

For every distribution P 2 P([N ]) and real number M > 1, we introduce a notion of an M -
concentrated version of P , denote PM , to be: PM (1) = 1 � 1/M + (1/M) · P (1) and PM (i) =
(1/M) · P (i) for i > 1. So PM is mostly focussed on a single point and so has small entropy, but it
provides enough variability to capture the variation of P . In what follows, we will apply (E,D) to
the distributions PM and QM for an appropriate choice of M , chosen to reduce the entropy of PM

to be a constant and this will give the schemes E0 and D0.

The new scheme (E0, D0): On input P 2 P([N ]) and m 2 [N ], E0(P,m) is computed as follows:
Let M = dH(P )e. Then E0(P,m) = (M,E(PM ,m)).

On input Q and received string y0 = (M, y) the decoding D0(Q, y0) = D(QM , y).
In what follows we argue that this is a valid zero-error UCS for uncertainty parameter �, with

performance c ·H(P ). We start by proving its validity.

Claim 3.15. For every pair P,Q 2 P([N ]) such that �(P,Q)  �, and for every m 2 [N ] we have
D0(Q,E0(P,m)) = m.
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Proof. Fix M = dH(P )e. Since E0(P,m) = E(PM ,m) and D0(Q, (M, y)) = D(QM , y), it su�ces
to prove that PM and DM are �-close, since then we can use the correctness of (E,D) on PM and
QM to conclude D(QM , E(PM ,m)) = m. Below we verify that PM and QM are �-close.

First we consider m 2 [N ]\{1}. For such m we have PM (m) = 1

MP (m) and QM (m) = 1

MQ(m)
and so PM (m)/QM (m) = P (m)/Q(m). So | logPM (m)/QM (m)| = | logP (m)/Q(m)|  �.

Now, consider m = 1. In this case PM (m) =
�

M�1
M

�

+
�

1

M

� ·P (1) and QM (m) =
�

M�1
M

�

+
�

1

M

� ·
Q(1). Assume P (1) � Q(1) (the other case is similar) and so 0  logP (1)/Q(1)  �. On the one
hand we have PM (1) � QM (1) and on the other hand we have PM (1)/QM (1)  P (1)/Q(1) (which
holds for every M > 0). It follows that 0  logPM (1)/QM (1)  logP (1)/Q(1)  �.

It follows that �(PM , QM )  � and the claim follows.

It remains to analyze the performance of the scheme.

Claim 3.16. For every distribution P 2 P([N ]), we have E
h

|E0m⇠P [N ]

(P,m)|
i

 c ·H(P ).

Proof. Recall that the encoding of m 2 [N ] is the pair (M,E(PM (m)) where M = dH(P )e. It
follows that the first part the encoding is always of length at most 2 · (1 + logH(P )) (allowing for
prefix free encodings and rounding up of H(P ) to its ceiling). We crudely bound the above by
2(1 +H(P )).

We turn to the length of the second part, i.e., E(PM (m)). We first show that

E
⇥|Em⇠P [N ]

(PM ,m)|⇤  M · E
h

|Em⇠PM
[N ]

(PM ,m)|
i

. We then bound E
h

|Em⇠PM
[N ]

(PM ,m)|
i

by L(3) thus giving us that total expected length of the encoding Em⇠P [|E0(P,m)|]  (L(3) + 2) ·
(1 +H(P )) = c(1 +H(P )).

We start by showing the first step. We have

Em⇠PM
[N ]

[|E(PM ,m)|]

=
1

M
Em⇠P [N ]

[|E(PM ,m)|] +
✓

1� 1

M

◆

Em⇠P [N ]

[|E(PM , 1)|]

� 1

M
Em⇠P [N ]

[|E(PM ,m)|] .
It follows that Em⇠P [N ]

[|E(PM ,m)|] MEm⇠PM
[N ]

[|E(PM ,m)|] as asserted.
By the performance of E on PM , we have Em⇠PM

[N ]

[|E(PM ,m)|]  L(H(PM )). So it su�ces

to show H(PM )  3. This is straightforward from the definition of PM and the choice of M . We
have

H(PM ) =
X

m2[N ]

PM (m) log 1/PM (m)

 (1� 1/M) log 1/PM (1) + (1/M) ·
X

m2[N ]

P (m) logM/P (m)

 1 + 1/M · (H(P ) + logM)

(Using PM (1) � 1/2 if M � 2 and 1� 1/M = 0 otherwise.)

 1 + 1 + logM/M

 3

as required.
The claim follows and so does the lemma.
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