
How powerful are the DDH hard groups?

Periklis A. Papakonstantinou∗ Charles W. Rackoff† Yevgeniy Vahlis‡

Abstract

The question whether Identity-Based Encryption (IBE) can be based on the Decisional Diffie-
Hellman (DDH) assumption is one of the most prominent questions in Cryptography related to
DDH. We study limitations on the use of the DDH assumption in cryptographic constructions,
and show that it is impossible to construct a secure Identity-Based Encryption system using, in
a black box way, only the DDH (or similar) assumption about a group. Our impossibility result
is set in the generic groups model, where we describe an attack on any IBE construction that
relies on oracle access to the group operation of randomly labelled group elements – a model
that formalizes naturally DDH hardness.

The vast majority of existing separation results typically give separation from general prim-
itives, whereas we separate a primitive from a class of number theoretic hardness assumptions.
Accordingly, we face challenges in creating an attack algorithm that will work against construc-
tions which leverage the underlying algebraic structure of the group. In fact, we know that
this algebraic structure is powerful enough to provide generic constructions for several powerful
primitives including oblivious transfer and chosen ciphertext secure public-key cryptosystems
(note that an IBE generalizes such systems). Technically, we explore statistical properties of
the group algebra associated with a DDH oracle, which can be of independent interest.

1 Introduction

In 1998 Dan Boneh [Bon98] surveyed the Decisional Diffie-Hellman problem; the survey begins with
the proclamation:

“The Decision Diffie-Hellman assumption DDH is a gold mine.”

Boneh’s statement captured the excitement surrounding a recent spade of seminal works realized
from the DDH assumption, including efficient pseudo-random functions [NR04] and efficient chosen-
ciphertext encryption [CS98].

In the last fourteen years, the cryptography landscape has changed drastically. The emergence
of pairing-based cryptography (and more recently lattices) has provided elegant and efficient con-
structions for several cryptosystems not even known to be feasible fourteen years ago. Some of
the most prominent examples include Identity-Based Encryption (IBE) [BF01, Coc01, Sha84] and
Homomorphic Encryption [Gen09].

While the excitement over this new frontier of results is well justified, we will explore if these
new number theoretic techniques are actually required or whether we might be able to build such

∗ITCS/IIIS, Tsinghua University, Beijing, PRC
†Dept. of Computer Science, University of Toronto, Toronto, ON, Canada
‡AT & T Security Research Center, New York City, NY, USA

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2012)

systems from the 1998 “gold mine” of DDH hard groups (e.g., groups of prime order with no
efficiently computable bilinear map). Studying the feasibility of cryptography based on DDH hard
groups is conceptually an important direction. First, solutions of a positive nature would give
new candidate constructions under different hardness assumptions. It is possible (relative to the
current state of knowledge) that there exist attacks on bilinear maps or lattice systems, but none
against certain DDH groups1. Moreover, candidates for DDH hard groups have been scrutinized
for relatively long periods of time, potentially increasing our confidence in them. Finally, there is
a strong argument that knowing both the possibilities and limitations of DDH hard groups will
deepen our fundamental understanding of the cryptographic systems in question. For instance, it is
conceivable that a separation through a generic attack against a DDH-based system could provide
new insights for existing systems.

We consider constructions of cryptographic primitives based on DDH hard groups that do not
exploit any non-generic (or non-black-box) property of the group. Technically, we prove our results
in the Generic Groups Model (GGM) of Shoup [Sho97], which has been criticized as too strong
for proving positive results [KM07] (here we show a negative result). Our result rules out secure
constructions for the whole class of generic constructions, which reflect almost all known uses of
these types of DDH hard groups.

Our exploration on the limitations of DDH begins with Identity-Based Encryption (IBE), which
is a public-key system where a user can encrypt to any other recipient knowing just the system’s
public parameters as well as a recipient’s identity string. IBE is a natural case study due both to
the fact that many of the more advanced crypto primitives imply its existence and the fact that
there exist pairing-based [BF01], factoring-based [Coc01], and lattice-based [GPV08] solutions.
Indeed, the recent success in building IBE schemes from a diverse set of number theoretic hardness
assumptions might give us hope that IBE systems might be realizable from DDH hard groups.

Our Result We show that it is impossible2 to securely build IBE generically from a DDH hard
group; i.e. when we are given black-box access to the operation of a randomly labelled prime order
group. One implication is that in some sense we rule out every IBE construction that doesn’t take
advantage of any special non-generic property of the group in question.

We prove our result in the generic group model (GGM). Shoup formalized the GGM as a model
of computation where the group elements are random by a random embedding of Zp := Z/pZ, p ∈
Z, into a finite set of strings; i.e. a group element is both a string and has algebraic meaning. The
definition of this model is given in Section 2. Informally, an algorithm in this model makes queries
to an oracle realizing the group operation, as induced by the embedding of Zp. An algorithm in
the GGM, or generic algorithm, is computationally unbounded and the resource we measure is the
number of oracle queries. Each query involves group elements that are either in the input or they
appear as answers to previous queries. For example, if g, h are group elements (encoded as strings)
listed on the input, one possible query is g + h; we assume that these are additive groups. The
main point is that since the group element (g+ h) is a random string; intuitively, the only relation
among group elements an attack algorithm can test is equality among group elements.

Several hardness assumptions, which intuitively rely on the fact that the presented group ele-

1Several bilinear map assumptions are actually strictly stronger than assuming the existence of DDH hard groups.
For instance, Decisional Bilinear Diffie-Hellman relies on the target group of the bilinear map to be DDH hard.

2Our result can also be stated as it is commonly the case for fully black-box separations [RTV04]. Given the
nature of our result, it seems more intuitive to state it in terms of oracle queries.

2

ments look random, can be shown to hold in the GGM. This includes the Decisional Diffie Hellman
(DDH) assumption, which states that: there is a family of additive groups {Gn} of prime order
pn that when presented in an appropriate encoding then the distribution of (a · g, b · g, (ab) · g) is
computationally indistinguishable from (a ·g, b ·g, c ·g) for randomly chosen a, b, c ∈ {0, . . . , pn−1},
where pn and the generator are also given to the distinguisher. Additionally, we show that in the
GGM model we can break even a weak variant of semantic security of every IBE, which in particular
separates in the black-box sense IBE from DDH.

A remark on black-box separations A black-box separation between two cryptographic prim-
itives A and B is performed in a constructive way; loosely speaking, a so-called fully black-box
separation is performed in an oracle (the black-box) setting, where what matters is the number
of oracle queries. In this setting we show that A exists but B does not. Such a result can be
understood as an impossibility result in reducing (in a black-box sense) the security of primitive B
to A. It is worth noting that such impossibility results rule out only oracle (black-box) construc-
tions. Often, such an oracle has a complex description fine tuned to allow one to break every B
but still construct A. We stress that our separation result is with respect to a natural oracle that
has been used, with the exception of [CDK+12, DHT12], for positive results. In that sense, our
work is similar in flavor to the original work of Impagliazzo and Rudich [IR89]. Furthermore, the
Generic Groups Model is the model which precisely formalizes the intuition (i.e. the labels of group
elements look random) about the hardness of DDH. As such, the techniques developed here can be
of independent interest.

What’s new? The main challenge in proving an impossibility result in the generic groups set-
ting, as opposed to random oracles or trapdoor permutations, stems from the algebraic structure
imposed on the random strings. In principle, an impossibility result in the GGM should employ
new techniques, since, for example, in the GGM model Public Key Encryption exists (e.g. El-
Gamal, Cramer-Shoup [CS98]), whereas there is no black-box PKE construction in the Random
Oracle model [IR89]. Furthermore, although DDH yields a trapdoor permutation, there are DDH-
based constructions where no such construction is known from generic trapdoors. For example, the
Cramer-Shoup public key system ([GMM07] makes a step towards separating DDH from generic
trapdoors), and in leakage resilient cryptography [ADVW12]. In principle, things are more involved
than just what the above examples suggest. There are very subtle technical challenges raised by
the algebraic structure of the oracle in an IBE GGM-based system, exhibited by examples that go
beyond the purpose of this exposition. Here is the intuitive reason that makes an attack against an
IBE system possible in the GGM. Take any IBE system that makes non-trivial use of its keys and
start observing the keys associated with each identity. After a while there are non-trivial algebraic
relations that necessarily hold between these secret keys. A key technical step of our contribution
is to identify these relations as linear relations (or better: affine) over appropriate vector spaces.
This tells us that:

Generic use of DDH hardness relies on a “linear use of the group”. Contrast this to
bilinear pairings hardness that in practice make “non-linear use” of the group.

Our Attack Intuition We begin by giving an informal description of an IBE in the Generic
Groups Model. Then, we sketch out a “first pass” attack algorithm. We put things in context
by presenting this attack algorithm, which reflects some of our intuitive ideas of capturing linear

3

relations in the secret key. Our eventual adversary will need to be much more complex and consists
of multiple phases. Sketches about the reasons why the additional phases are needed are given in
Sections 3 and 4.

Informally, an IBE system consists of four algorithms: Setup, Key-generation, Encoding and
Decoding algorithm. All four algorithms have access to the same randomly chosen group oracle O.
Each algorithm’s input and output is a string w together with a list of group elements g1, . . . , gm.
For consistency with the vector space notation all groups in this paper are additive. Each oracle
query is a formal sum of the group elements in its input; e.g. 2g1 + 3g4 (note that this is only with
polynomial loss in the number of queries compared to Shoup’s definition of the GGM). The oracle
answers by valuating this to a group element. Setup creates the public parameters consisting of the
master public key PP and the master private key MSK. Every algorithm (potentially) has access
to PP, whereas only the Key-generation has access to MSK. The Key-generation issues for every
identity ID a secret key SKID. Encryption is done using PP and ID, and decryption using SKID.
We consider a weak form of semantic security (which makes an impossibility result stronger) where
the adversary chooses a polynomial number of identities, for which he sees the secret keys, and a
challenge identity ID∗ distinct from the ones he chose before. Then, the adversary is presented with
a ciphertext C∗ to decrypt, where C∗ is the encryption of a single bit. We say that the adversary
wins if he decrypts correctly with polynomially many oracle queries and sufficient probability.

Our First Pass Attack: Suppose that each algorithm in the IBE system makes ≤ n queries. Choose
ID∗ = IDn+1 and n identities ID1, . . . , IDn, and get SKID1 , . . . ,SKIDn and the encryption C∗ of a
random bit for ID∗. Then, for each identity the adversary encrypts and decrypts (say just once) a
random bit, and it records all the query-answer pairs to the oracle. That is, a (query,answer) pair
is of the form (

∑
i aigi, g). After this sampling phase construct a hybrid (random) group oracle

Ofake and an MSKfake consistent with (i) the recorded query-answer pairs, and (ii) PP, and simulate
Setup and Key-generation to obtain SKID∗,fake and use them to decrypt C∗. By “consistent” we
mean that it is consistent with respect to the actually constructed outputs, but also consistent with
respect to any affine algebraic relations that can be deduced by the equalities between two distinct
queries with the same oracle answer (see below for more details).

In the computation of a generic algorithm every newly presented group element is presented
with its label, which by definition of the GGM is a random string. We wish to formalize the
intuition that an adversary can only learn equality relations among distinct queries which evaluate
to the same group elements. The main point is that at the same time this is roughly all algorithms
of the IBE themselves can “learn” as well. For example, if at some point of the execution we have
queries O(2g1 + 3g2) 7→ u and O(g1 + 5g2) 7→ u then an adversary that inspects this execution may
infer that 2g1 + 3g2 − (g1 + 5g2) = g1 − 2g2 corresponds to the identity of the group. Recall that
the kernel of a linear map forms a vector space. In our case this vector space of “equality vectors”
gives us a way3 of expressing queries to a “fake oracle” as linear combinations of elements of the
given group elements (one degenerate case is when we can find the discrete logarithms of all group
elements gi).

Although it doesn’t work for all IBEs, our first pass attacker can break some natural candidate
IBE systems. For instance, suppose that the master secret key consists of random exponents (recall

3Consider all possible rewritings (affine relations) of the formal sums in the queries given this vector space of
equality relations. At a high level, this is all that both the adversary and the IBE algorithms can learn about the
“syntax” of the exposed algebraic relations in the oracle. A fake oracle emulates answers of the actual oracle by
creating a consistent hybrid and by making up “semantics” (discrete logarithms) which are correctly distributed.

4

though that the group is additive) a1, . . . , an ∈ Zp for a group of order p and the public parameters
consist of group elements h1, . . . , hn where hi = ai · g, where g is a fixed generator which for
simplicity we can fix to 1. Now, consider any publicly computable function F (ID) = cID,1, . . . , cID,n
where cID,i ∈ Zp. A natural IBE strategy would be to choose an F so that the secret key for user ID
is of the form ΣicID,i · ai. To encrypt to a given identity one can form an ElGamal type ciphertext
as
(
sg,Σi(s · cID,i) · hi

)
.

For any such hash function F and whenever we have a set S of more than n identities, the
secret key of one of these identities can be expressed as a linear combination of the secret keys of
the other identities. While our attack is not geared to this exact system, it will naturally discover
with non-negligible probability such relationships.

To obtain our full result that will attack any generic algorithm we will need to describe a
significantly more complex attack algorithm that works against every IBE system. Given the
conceptual complexity of the problem our attack consists of two independent steps. First, we
reduce the security of the general IBE system to an IBE system with no group elements in the
individual secret keys. Second, we perform an attack to the restricted system. Each of these steps
is technically subtle.

Related Work In [IR89] Impagliazzo and Rudich introduced an approach for showing the impos-
sibility of basing one cryptographic primitive on another in a black box manner. In that seminal
paper they prove a separation between one-way permutations and secure key-agreement. Since
then a large body of research has followed their basic methodology. We provide a survey of the
most relevant results, and recommend reading [RTV04] for a more complete overview. Prior to
our paper, there are two innovative works showing negative results in GGM: Dodis et al [DHT12]
show the uninstantiability of the RSA Full Domain Hash signature scheme when the representation
of the RSA is in the GGM, and Cramer et al [CDK+12] show that a generalization of DDH is
stronger than DDH. Part of our work is given in the PhD thesis [Pap10] containing the reduction
presented in Section 3. Note that these results hold also for the more abstract/weaker model, where
no explicit description of the group element is given, introduced by Maurer [Mau05]. In [BPR+08],
Boneh et al show an impossibility of secure black box constructions of IBE from trapdoor permu-
tations. The techniques and subtleties that arise in [BPR+08] are largely orthogonal to what we
encounter in the current work due to the fact that trapdoor permutations have a very different al-
gebraic structure. Our theorem is about GGM, it uses fundamentally new techniques (see “What’s
new?” above for a technical discussion); roughly speaking, the group structure allows to extend
the “communication” among the parts of the IBE system in substantial ways that before weren’t
possible. Our novelty is in starting with a (generic model of) a number theoretic assumption; this
provides several new challenges since we need to attack any construction that might try to leverage
this algebraic structure. We also hope that our work will lead to other new explorations of the
limits of DDH hard groups. For example, one interesting question is whether short signatures can
be built in the standard model from such groups.

In [GKM+00] Gertner et al show that public key encryption and Oblivious Transfer are incom-
parable under black-box reductions. They also show that trapdoor permutations cannot be con-
structed in a black-box way from public key encryption, or from trapdoor functions. In [GMR01]
Gertner et al show that there is no black-box reduction from poly-to-one trapdoor functions to
semantically secure public key encryption. Intuitively, [GMR01] shows that public key encryption
is weaker than trapdoor functions because the latter allows the recovery of the complete input of

5

the encryption algorithm, including the randomness. In [GGKT05] Gennaro et al show limits on
the efficiency of cryptographic primitives constructed in a black-box way from basic tools such as
one-way permutations, and trapdoor permutations. In [GMM07] Gertner et al prove that chosen
ciphertext secure public key encryption cannot be constructed in a black-box way from semantically
secure public key encryption (under some restrictions). In [Vah10] Vahlis showed new limitations
on the uses of trapdoor permutations.

Of a slightly different flavor are the separations of [HHRS07, Sim98] that involve collision finding
oracles, and [HH09] which is a very general impossibility result that establishes limitations of a very
large class of assumptions.

The concept of identity-based encryption was proposed by Shamir [Sha84]. Several years later
Boneh and Franklin [BF01, BF03] and Cocks [Coc01] independently gave two different constructions
respectively based on bilinear groups and the quadratic residuosity problem, both in the random
oracle model. Following their work different standard model constructions of IBE systems were
given [BB04a, BB04b, CHK03, Gen06, Wat05]. More recently multiple lattice-based constructions
have emerged [ABB10a, ABB10b, CHKP10, GPV08]. Altogether there are IBE constructions
based on factoring-type assumptions, bilinear groups, and lattices, but nothing related to DDH
hard groups.

2 Preliminaries

Linear algebra We shall assume familiarity with basic concepts from linear algebra (see e.g.
[Lan87]). We denote matrices by capital bold letters, e.g. A, and vectors by lower case bold
letters, e.g. v. Every group is in additive notation; i.e. if G is a group of order p, then for g ∈ G,
c ∈ Zp we write cg (rather than gc), where cg = g + · · ·+ g︸ ︷︷ ︸

c times

. In our constructions and analyses

we often consider formal sums of group elements with coefficients in Zp, i.e. vectors in Zp[G]. For
a formal sum a ∈ Zp[G] with zero coefficients outside g = {g1, . . . , gn}, t = {t1, . . . , tm} ⊆ G we
write a = a(g) + a(t) to denote separately its gi’s and ti’s component. For R ⊆ Zp[G] and X ⊆ G,

R(X) def
=
{
q(X) | q ∈ R

}
.

The Generic Groups Model The Generic Groups Model provides an algorithm with oracle
access to a “perfectly secure” finite cyclic group of order N , by encoding each group element,
through an encoding function, as a random string of length n ≈ logN . The following definition is
equivalent, up to a polynomial number of queries, to Shoup’s [Sho97] original definition.

Definition 1 (Generic Groups Model). Let p ∈ Z+ be a prime. Let S ⊆ {0, 1}O(log p) such that
|S| ≥ p. Let σ : Zp ↪→ S be an injection, and let G be the group induced on Im(σ) by addition
in Zp. The function σ is called an encoding function for Zp. Zp[G] denotes the set of formal
sums with coefficients from Zp over G. We define O : Zp[G] → G, where O(α1g1 + · · · + αpgp) =
α1g1 +G · · ·+G αpgp, where the RHS denotes the evaluation of the formal sum to a group element.
When there is no ambiguity we write + instead of +G.

A generic algorithm A is a probabilistic algorithm (or with randomness in its input) that takes
inputs and produces outputs of the form (w, g1, . . . , gk) ∈

(
{0, 1}∗×Gk

)
for an arbitrary k ∈ N. A is

given access to O restricted to sums that have non-zero coefficients only for the elements g1, . . . , gk.

6

To allow meaningful computations every generic algorithm is given in its input a generator 1, where

for simplicity 1
def
= σ(1).

Note that generic algorithms can treat g ∈ G both as a string and as a group element. In fact,
this factors in the technical complication of our attack.

Additional Notation We now describe several notational conventions that we adopt throughout
the paper.

Query transcripts. For a generic algorithm A we use the notation TA (the input to A will be
clear from context) to denote the set of pairs (q, g) ∈ Zp[G] × G, also denoted as q 7→ g, where q
is a query that was asked during the computation of A, and g = O(q).

Discrete logarithms. Given an encoding function σ, an oracle query q ∈ Zp[G] has a corre-

sponding discrete logarithm value under σ: if q = a1g1 + · · · + apgp then we denote dlogσ(q)
def
=

a1σ
−1(g1) + · · ·+ apσ

−1(gp) with addition over Zp, and omit σ from the subscript when there is no

ambiguity. Given a set Q ⊆ Zp[G] we extend the notation dlogσ(Q)
def
=
⋃

q∈Q {dlogσ(q)}. Similarly,

for a set T of query-answer pairs, we define dlogσ(T)
def
=
⋃

(q,g)∈T {dlogσ(q)}.

Partial encoding functions. Let T be a set of query-answer pairs. We say that T defines a
partial encoding function σT if σT is the function of the smallest domain for which σT (q) is defined
for all mappings {q 7→ g} ∈ T , where there exists a unique set X ⊆ Zp such that for all encoding
functions σ, dlogσ(T) = X, and σ(1) = 1. We also say that dlogσT (q) is well-defined if for every

g ∈ S which appears in q with a non-zero coefficient, σ−1T (g) is defined.

Basis replacement. Given a query q ∈ Zp[G], and a set of mappings (query-answer pairs)
T , we write CHBT (q) to denote the following iterative transformation: (i) initially q′ ← q, (ii)
repeat the following for each {u 7→ g} ∈ T : let ag be the coefficient of g′ in the formal sum q; set
q′ ← q′ − agg + agu.

Observe that oracle valuations are stable/invariant and independent of the order of rewritings,
under this change of base operation, when T contains query transcripts from the same oracle.
Intuitively, this operation makes a “best effort” to express a query made over group elements on
which we do not have oracle access to group elements where we currently do have oracle access.

Vector space of zero sums. Given a set T of query-answer pairs, we define Eq(T) to be the set
of all equality relations between group elements that can be derived from T . Specifically,

Eq(T)
def
= span

{
q− q′|∃g ∈ G s.t. q 7→ g,q′ 7→ g ∈ T

}
Identity Based Encryption An IBE system consists of four probabilistic algorithms
(Setup,KeyGen,Enc,Dec). In our case an IBE system also specifies a set ID of valid identities,
and p,m, n ∈ N, where p is a prime and ε ∈ (1/2, 1] as part of its description, and the algorithms
are generic with group size p, where p is at most exponentially bigger than n. Each IBE algorithm
makes at most m queries in a single execution, n determines the number of random bits and output
lengths, and ε determines the level of correctness; i.e. a correctly encrypted ciphertext is decrypted
correctly with probability ≥ ε.

The functionality of each algorithm is as follows: algorithm Setup(MSK) takes as input a master
secret key MSK ∈ {0, 1}n; it outputs public parameters PP = (wpp, g1, . . . , gm) where wpp ∈ {0, 1}∗

7

and g1, . . . , gm ∈ G. Algorithm KeyGen(MSK, ID) is deterministic, and it takes as input the master
secret key MSK, and an identity ID ∈ ID. It outputs the private key SKID = (wID, z1, . . . , zm) for
identity ID. The encryption algorithm Enc(PP, ID, b; r) encrypts a bit b for a given identity ID using
public parameters PP and randomness r ∈ {0, 1}n; it outputs a ciphertext C = (wc, t1, . . . , tm).
The decryption algorithm Dec(SKID, C) decrypts a ciphertext C using the private key SKID and is
deterministic. Note that making the algorithm K deterministic does not restrict the type of IBE
constructions that our results cover since any secure IBE with a randomized K can be converted
into a secure IBE with a deterministic K by applying a pseudo-random function to the identity in
order to obtain (pseudo) random bits for K.

An IBE system must satisfy the following correctness property, for correctness parameter ε: for
every ID ∈ {0, 1}n, b ∈ {0, 1}

Pr

 PP← Setup(MSK),
SKID ← KeyGen(MSK, ID),
C ←R Enc(PP, ID, b)

; Dec(SKID, C) = b

 ≥ ε
Definition of Security For security we use a weakened version of the IBE semantic security,
which is defined in [BF03]. The weak semantic security is defined using a game in which the
attacker starts by choosing a polynomially long (in n) sequence of identities for which it wishes
to obtain private keys, along with the challenge identity that it is going to try and break. This
is done even before the adversary is given the public parameters. The adversary is then given
the public parameters, a sequence of private keys for the above identities (except the challenge
identity), and an encryption of a random bit for the challenge identity using the public parameters.
More precisely, weak semantic IBE security is defined using a game between a challenger and an
adversary A in which both parties are given a security parameter λ.

Setup: The adversary submits a challenge identity ID∗, and a sequence of identities ID1, . . . , IDl

where l where l(·) is some polynomial.

Private Keys: The challenger chooses at random MSK ∈ {0, 1}n. It then computes PP ←
Setup(MSK), and SKi ← KeyGen(1λ,MSK, IDi) for 1 ≤ i ≤ l. The tuple (PP, SK1, . . . ,SKl)
is given to the adversary.

Challenge: The challenger chooses at random r ∈ {0, 1}n, b ∈ {0, 1}. It then computes C∗ ←
Enc(PP, ID, b; r), and C∗ is given to the adversary.

Guess: The adversary outputs a guess b′ ∈ {0, 1}, and wins if b′ = b.

We define the advantage of the adversary A in attacking the scheme E as AdvE,A
def
=
∣∣Pr[b = b′]− 1

2

∣∣.
The probability is over the random bits used by the challenger and the adversary.

3 Eliminating Group Elements From Individual Private Keys

The impossibility is shown in two steps. Here we present the first step, where we show that every
IBE in the Generic Groups Model can be converted to one that does not have any group elements
in the private keys issued to the individual identities. This happens with a subconstant loss in

8

correctness. In Section 4 we show how to attack a not-perfectly-correct4 IBE restricted not to have
group elements in the private keys.

Theorem 1. Let IBE be an IBE with parameters (n,m, ε), then RIBE obtained from IBE through
the transformation in Section 3.1 is an IBE with parameters (n,′m′, ε − 1/poly(n)), where n′ and
m′ are polynomials in n and m respectively.

Converting the key generation algorithm Let us consider the significance of group elements
in individual private keys. Let us denote by g1, . . . , gm the group elements in the master public
key, by t1, . . . , tm the group elements in a ciphertext that is encrypted to an identity ID, and by
z1, . . . , zm the elements in a secret key SKID of identity ID. Now, the encryption and decryption
algorithms can use their oracles to generate formal sums of the group elements g1, . . . , gm and
z1, . . . , zm respectively. As we already discussed in the introduction, intuitively the only queries
that are useful for security are pairs of queries (q, q̂) where q is asked by the encryption algorithm,
q̂ is asked by the decryption algorithm, and O(q) = O(q̂). If we break up each query into the
components that correspond to the different sets of group elements (constant term, gi’s, ti’s, and
zi’s):

q = q(1) + q(g) and q̂ = q̂(1) + q̂(t) + q̂(z)

we obtain the relation q̂(z) = q(1)−q̂(1)+q(g)−q̂(t), where q(1) = a1 for some a ∈ Zp. We would like
to express each group element zi in the secret key SKID as a formal sum of other group elements that
are available to the decryption. Let us examine what these elements are: the decryption algorithm
has access, in addition to the group elements in SKID, to the group elements ti in ciphertext that
is being decrypted. Without loss of generality assume that Dec has access to the group elements
gi from the public key. We can now attempt to convert any KeyGen algorithm that produces keys
that contain group elements into a new algorithm KeyGen′ that outputs only a string: KeyGen′

will first simulate KeyGen to obtain SKID (which may contain group elements). It will then encrypt
and decrypt a random bit many times, using SKID for decryption, and observe which relations of
the above form appear.

The above relation seemingly allows us to express formal sums of zi as a combination of gi’s and
ti’s. The trouble is that unlike the gi’s that are fixed in the global public key, the group elements ti
in the ciphertext can be different during each decryption. Therefore, the more encryptions we do the
more the ti’s. Also, learning relations between zi’s and the ti’s for one ciphertext can be completely
useless for decrypting others. In the above (oversimplified) description, KeyGen′ generated the
ciphertexts to be decrypted on its own, and can observe the oracle queries that are made by Enc.
Consequently, for each group element ti in the ciphertext, KeyGen′ observes at least one query qi
of the form qi = q

(1)
i + q

(g)
i such that O(qi) = ti. This allows us to express each ti as a formal sum

of gi’s, which in turn allows us to convert any relation of the form q̂(z) = q(1)− q̂(1) + q(g)− q̂(t) to
one that describes q̂(z) as a formal sum of gi’s only by replacing q̂(t) with the appropriate formal
sum of gi’s.

Let us now go back to our modified key generation algorithm KeyGen′. Let T be the set of all
formal sums q(z) for which we learn an equal formal sum of gi’s during the repeated encryption-
decryption process. Now, consider a new formal sum q̂(z). If q̂(z) ∈ Eq(T) then we already know

4Note that even if the original IBE is perfectly correct, since perfect correctness is lost in the transformation our
attack in Section 4 should necessarily work against ε-correct IBEs.

9

how to express q̂(z) as a formal sum of gi’s. On the other hand, the event q̂(z) 6∈ Eq(T) can
only occur m times, where m is the number of group elements in the key SKID (and therefore
the dimension of Eq(T)). Therefore, relying on the dimension of Eq(T) (which is exponentially
smaller than the order of the group), and by sampling the number of repetitions of the simulated
encryption-decryption from mc times we obtain that in the “actual” encryption and decryption
the probability that a linearly independent q̂(z) appears is at most 1/mc−1. Therefore, after this
simulation the new key-generation algorithm outputs T instead of the group elements, in the hope
that all algebraic relations useful to the decryption algorithm are already there. That is, now the
secret key of ID is now just a string containing the description of the set T .

The modified decryption algorithm The following is a high level overview of the decryption
algorithm, which is the most involved part of the transformation. To decrypt using just the table
T instead of the group elements zi, we change the decryption algorithm as follows. The new
decryption algorithm simulates Dec, and let q = q(1)+q(z)+q(t) be a query. If q(z) ∈ Eq(T)(z) then
using elementary linear algebra we can syntactically replace the zi’s and construct a semantically
equivalent (i.e. same discrete logarithm) one, q̂ = q̂(1) + q̂(g) + q(t). The difficulty occurs when
q(z) 6∈ Eq(T)(z). One thing we could try to do is to respond with a random element from S. This
works only when there is no query q′ that was asked before and such that O(q) = O(q′) (there are
interesting examples showing that such q′ can exist). Therefore, before responding with a random
element we make sure that there is no equivalent5 query that can already be inferred from T .
Dealing with this notion of equivalence is the bulk of the transformation and its analysis.

3.1 The Transformation

Let IBE = 〈Setup,KeyGen,Enc,Dec〉 be an IBE in the generic group model with parameters
p,m, n, ε. Let c ∈ N be a constant to be determined later. We construct an IBE RIBE =
〈Setup′,KeyGen′,Enc′,Dec′〉 as follows:

Setup′(MSK): Run PP = (wPP, g1, . . . , gm)← Setup(MSK) and output PP.

KeyGen′(MSK, ID): Run
SKID = (wID, z1, . . . , zm) ← KeyGen(MSK, ID). For sufficiently large constant c > 0, ran-
domly choose k ∈ {nc, . . . , 2nc} and construct a table T ∈ (Zp[G]×G)kn mapping queries to
answers whose entries are from the following procedure. Repeat the following k times:

1. Choose a random b ∈R {0, 1} and compute
(C, TEnc) ←R Enc(PP, ID, b) where C = (wc, t1, . . . , tm). Record in T all query-answer
pairs asked by Enc by setting T ← T∪TEnc. Note that TEnc contains only mappings of the
form {a01 + a1g1 + · · ·+ amgm 7→ t}, the coefficients of all elements except 1, g1, . . . , gm
are zero.

2. Run Dec(SKID, C), and let qdec,1, . . . ,qdec,n be the queries asked during this computa-
tion. For each 1 ≤ i ≤ n let q′dec,i ← CHBTEnc

(qdec,i). For intuition: this transformation
is to express each group element tj from the ciphertext as a combination of gj ’s (which
are elements of the public key).

5A prior query that should have the same answer as current one.

10

Add the entries (q′dec,i,O(q′dec,i)) to T . Note that each q′dec,i has non-zero coefficients
only for the group elements (1, g1, . . . , gn, z1, . . . , zn).

Output SK′ID = (wID, T, z̄) ∈ {0, 1}∗ where z̄ is a concatenation of the elements z1, . . . , zm as
strings.

Enc′(PP, ID, b): Run C ←R Enc(PP, ID, b) and output C.

Dec′(SK′ID, C): Let SK′ID be (wID, T, z̄). Create an empty table T ′ with the same structure as
T (T ′ will be modified during the computation of Dec′). Set SKID = (wID, z̄) and simulate
Dec(SKID, C) as follows. For each oracle query q = q(1) + q(z) + q(t) asked by Dec informally
we proceed as follows: either (i) determine that an equivalent query was asked before, and
use the previous answer, or (ii) use T to represent q(z) as a sum of gi’s, and then use O to
evaluate the modified query. Formally, first let R = Eq(T ∪ T ′) be the set of all equality
relations among zi’s and gi’s deduced from T ∪ T ′. Note that R contains linear combinations
of the form e = q1 + q(z) + q(g) such that O(e) = 0. To answer a query q = q1 + q(z) + q(t)

where

q(z) =
m∑
i=1

bizi and q(t) =
m∑
i=1

citi

proceed as follows:

Step 1: If q(z) ∈ span(R(z)), let {ce | e ∈ R} be coefficients such that q(z) =
∑

e∈R cee
(z). Set

q̂ = q −
∑

e∈R cee. Note that the subtracted value is equal to zero. The modified query q̂

is of the form q̂ = q̂(1) + q̂(g) + q(t) (the coefficients of the group elements zi are all zero).
Therefore, to answer q, query α← O(q̂) and answer q with α.

Step 2: If there is no way to express q(z) as a combination of gi’s then check whether a query
equivalent to q was asked before, where equivalence is defined as follows: for every query

qold ∈ T ′ ∪ T check if q(z) ∈ q
(z)
old + span(R(z)). If so, let {ce ; e ∈ R} be coefficients such that

q(z) = q
(z)
old +

∑
e∈R cee

(z). Check if

O(q(1) + q(t))
?
= O

(
q
(1)
old + q

(g)
old + q

(t)
old +

∑
e∈R

ce(e(1) + e(g))

)
(1)

and if both checks succeeded, answer q with g where {qold 7→ g} ∈ T ′ ∪ T .

Step 3: Finally, if the above procedure fails, choose s ∈R S, add the entry {q 7→ s} to T ′, and
return s.

Output: when the simulation of Dec concludes, output whatever Dec outputs.

It is not hard to see why the above transformation preserves the security of the IBE system.
In what follows we bound the loss in the correctness by formalizing the intuition preceding this
transformation, i.e. show why the performed tests in the above transformation are necessary and
sufficient.

11

3.2 Analysis of the reduction of the security of IBE to RIBE

We prove theorem 1. Security is straightforward, and follows from the fact that KeyGen′ uses
KeyGen as a black box. Consequently, given an adversary Adv that breaks WSS security of RIBE ,
we can obtain an adversary Adv′ for IBE by simulating Adv. To answer a private key query made
by Adv for ID, Adv′ first queries KeyGen to obtain SKID, and then simulates KeyGen′. We omit
the details, and focus on the correctness in the remainder of the section. We prove the following
theorem:

Remark: Throughout the analysis we assume that p, the order of the group, is larger than any
polynomial in n. We treat the case where p is a polynomial separately in the obvious way. That
is, query all the elements of the group. This way, we can compute the discrete logarithms of all
elements. Given that we know the whole oracle we can exhaustively check off-line (i.e. after we
learn the entire oracle) the possible bits and random strings for Enc.

Notational remark: The zi’s group elements depend on the ID. Throughout, this proof we
denote by zi the zi’s which are relevant to the challenge identity which we fix.

The crux of the proof is in showing that Dec′ is mostly successful in answering oracle queries
asked by Dec. The argument proceeds in two parts. First, we show that whenever a query is
answered according to steps 1 or 2, the answer is determined by previous queries, and that Dec′

provides the correct answer. Second, we show that when a query is answered according to step
3, then with high probability the answer is undetermined by previous queries, and is in fact close
to being uniformly distributed in S. To formalize this we shall consider the following distribution
defined for each ID:

DID
def
=


MSK←R {0, 1}n; b0 ←R {0, 1}; (PP, Tsetup)← Setup(MSK);
(SKID, Tkg)← KeyGen(MSK, ID); (SK′ID, T

′
kg)←R KeyGen′(SKID, ID);

(C, Tenc)←R Enc(PP, ID, b0); (b, Tdec)←R Dec(SKID, C);


Recall that the correctness guarantee of IBE is that PrDID

[b = b0] ≥ ε for all ID. We also define
a distribution D′ to be the same as D with the following exception:

(b, Tdec)←R Dec(SKID, C) is replaced by (b, T ′dec)←R Dec′(SK′ID, C)

where query-answer map T ′dec contains the queries asked by the simulated Dec, and the simulated
answers given by Dec′ to these queries. Note that the sample spaces of D and D′ are identical (as
sets). In our analysis we show that D and D′ are similar by arguing that the two distributions are
close if we restrict our attention to the first i queries in Tdec and T ′dec.

To further facilitate the comparison of D and D′ we define an intermediate distribution D0 that
is the same as D with the following exception: the encoding function σ is generated “on the fly”
according to the following rules:

1. All the queries asked during the computation of Setup, KeyGen, KeyGen′, and Enc are
answered as before. Namely, to answer query q, let T be the set6 of all query-answer pairs
that appeared before q. If dlogσT (q) is defined, q is answered by σT (dlogσT (q)). Otherwise,
an element g is chosen randomly from S \ Im(σT), and q is answered with g.

6Note that this T is not the same as the T in the description of RIBE .

12

2. For each query q asked by Dec during its simulation by Dec′, if dlogσT (q) is not defined,

and for all qold ∈ T , q(z) 6∈ q
(z)
old + span(R(z)), an element g is chosen randomly from S, and

q is answered with g. Note that here σT may become not 1-1 (thus, not a valid encoding
function).

The conceptual difference between D and D0 is that in D0 two queries with distinct discrete
logarithms may receive the same answer if that answer happens to be chosen randomly twice from
S. Notice also that this type of collision can occur in D′ when queries are answered according to
step 3 of Dec′. We shall argue that, barring such collisions, D and D0 are identical with significant
probability.

Claim 1. Let R = Eq(T ′kg), and let Rdec = Eq(T ′kg ∪ Tenc ∪ CHBTenc(Tdec)). Then,

Pr[Rdec 6⊆ span(R)] ≤ 1

nc

Proof. The claim is shown by a dimension argument. Let V be the vector space of all sums of the
form q(1) + q(z) + q(g). There are exactly n coordinates in q(z) and q(g), so dim(V) = 2n+ 1. Let
Ti be the set of queries and answers recorded in T during iteration i in KeyGen′. Recall that in
each iteration a random bit is encrypted and decrypted, and all the queries that are asked in the
process are recorded in T . We now observe that the process of encrypting and decrypting the bit b
in D is identical to a single round of the repetitive sampling in KeyGen′, and so the set Tenc ∪ Tdec
has the same distribution as each of the sets Ti. It is therefore sufficient to find the probability of
the event newk = {Rk+1 6⊆ span(Rnc ∪ · · · ∪R2nc)}, where k ∈R

{
nc, . . . , 2n2c

}
.

Note that for all i, R1 ∪ · · · ∪Ri ⊆ V and that newk implies dim(R1 ∪ · · · ∪Rk+1) > dim(R1 ∪
· · · ∪Rk). Since dim(V) = 2n+ 1, there may be at most that many indices i for which newi occurs.
Consequently, by choosing k randomly, we hit such an i with probability at most 2n+1

n2c . That is,
Pr[newk] ≤ 1

nc .

Claim 2. Fix an encoding function σ, and values MSK,PP,SKID, and let Sδ be the set of x ∈ Zp
such that

Pr

[
x ∈ dlog(Tenc ∪ Tdec) ;

(C, Tenc)←R Enc(PP, ID, b0)
(b, Tdec)←R Dec(SKID, C)

]
≥ δ

Then, Pr[S1/nc−1 ⊆ dlog(T)] ≥ 1 − n/en where the random variable T is the table constructed by
KeyGen′(SKID, ID).

Proof. We start with a counting argument to show that there are at most n/δ elements in Sδ.
Let Y be the set of strings {(b, renc, rdec)} where b is the bit to be encrypted, and renc and
rdec are the randomness used by Enc and Dec respectively. For each y ∈ T let dlog(y) :=
dlog(Tenc ∪ Tdec) (note that dlog(y) is a set notation) where Tenc and Tdec are the query-answer
sets generated by Enc(PP, ID, b; renc) and Dec(SKID, C; rdec). Then, on the one hand we have
|Y | ≥ | {y ∈ Y |dlog(y) ∩ Sδ 6= ∅} |. On the other hand, for each x ∈ Sδ, there are at least δ|Y |
values y such that x ∈ dlog(y), and for each y it holds that |dlog(y)| ≤ n. Consequently, we obtain

|Y | ≥ | {y ∈ Y |dlog(y) ∩ Sδ 6= ∅} | ≥ δ|Y | · |Sδ|/n

and so n/δ ≥ |Sδ|. Now, consider the first nc iterations of the loop in KeyGen′. For each x ∈ S1/nc−1

we have Pr[x 6∈ dlog(T)] ≤ (1− 1/nc−1)n
c ≤ 1/en. Applying the union bound for all such x we get

Pr[S1/nc−1 6⊆ dlog(T)] ≤ n/en.

13

Lemma 1. Let δ ←R D, let R = Eq(T ′kg), and let q1, . . . ,qn be the queries in Tdec. For each
1 ≤ i ≤ n let

Fi = {dlog(qi) ∈ dlog(Tsetup ∪ Tkg ∪ Tenc ∪ Tdec,i−1)}

E1,i =
{

q
(z)
i ∈ span(R(z))

}
E2,i =

{
∃q ∈ T ′i−1 s.t. q

(z)
i ∈ q(z) + span

(
R(z)

)
and dlog(qi) = dlog(q)

}
and faili = F1,i ∧ ¬(E1,i ∨ E2,i). Then, Pr[faili] ≤ n

en + 1
nc + 6n

nc−1 .

Proof. We consider the following subcases of Fi separately: F1,i = {dlog(qi) ∈ dlog(Tsetup ∪ Tkg)},
F2,i = {dlog(qi) ∈ dlog(Tenc)}, and F3,i = {dlog(qi) ∈ dlog(Tdec,i−1)}. Then Fi = F1,i ∪ F2,i ∪ F3,i.

Case 1: event F1,i occurs. Fix W = dlog(Tsetup ∪ Tkg), and consider any y ∈W , and let S = Snc−1

be the set defined in Claim 2. Then we can write

Pr[dlog(qi) ∈W ∧ ¬E2,i] =
∑
y∈W

Pr[dlog(qi) = y ∧ ¬E2,i]

=
∑

y∈W∩S
Pr[dlog(qi) = y ∧ ¬E2,i] +

∑
y∈W\S

Pr[dlog(qi) = y ∧ ¬E2,i]

≤
∑

y∈W∩S
Pr[dlog(qi) = y ∧ ¬E2,i] +

2n

nc−1
(2)

Where the last inequality follows from the definition of S and the fact that |W | ≤ 2n. Let us now
focus on the remaining probability. For the moment we only consider y ∈ W . We can therefore
restrict out attention to an event ¬E′2,i where Pr[¬E′2,i] ≥ Pr[¬E2,i], and ¬E′2,i is defined as the
union of the following two events:

B = {y 6∈ dlog(T)} and B′ =
{
∃q ∈ T s.t. dlog(q) = y and q

(z)
i 6∈ q(z) + span(R(z))

}
Since y ∈ S, we get from Claim 2 that Pr[B] ≤ n/en. To bound the probability of event B′ note

that q
(z)
i 6∈ q(z) + span(R(z)) implies qi − q 6∈ span(R). However, since dlog(qi) = dlog(q) we have

that qi − q ∈ Rdec. Therefore, by Claim 1, Pr[B′] ≤ 1
nc . Getting back to our calculation of (2) we

get:

Pr[dlog(qi) ∈W ∧ ¬E2,i] ≤
∑

y∈W∩S
Pr[dlog(qi) = y ∧ (B ∨B′)] +

2n

nc−1
(3)

≤ n

en
+

1

nc
+

2n

nc−1
(4)

Case 2: event F2,i occurs. In this case we have dlog(qi) ∈ dlog(Tenc). Let q ∈ Tenc be a query
such that dlog(q) = dlog(qi). Then qi − q ∈ Rdec, and by Claim 1, Pr[qi − q 6∈ span(R)] ≤ 2n

nc−1 .

The following is a crucial point in the argument: recall that for all q ∈ Tenc, q(z) = 0. Therefore,

qi − q ∈ span(R) implies q
(z)
i ∈ span(R(z)). Consequently, we get

Pr[dlog(qi) ∈ dlog(Tenc) ∧ ¬E1,i] ≤
2n

nc−1
(5)

14

Case 3: event F3,i occurs. In this case we have dlog(qi) ∈ dlog(Tdec,i−1). First, suppose that
dlog(qi) ∈ dlog(T ′i−1), and let q ∈ T ′i−1 such that dlog(qi) = dlog(q). This implies that qi −
q ∈ Rdec, and therefore ¬E1,i holds only if qi − q 6∈ span(R). Second, suppose that dlog(qi) ∈
dlog(T ′dec,i−1) \ dlog(T ′i−1). Then, by definition of T ′i−1, either q

(z)
i ∈ span(R(z)) (the part of the

query that involves zi’s can be rewritten as a combination of gi’s), or there is a query q ∈ T ′i−1 and

coefficients {ce ; e ∈ R} such that q(z) = q
(z)
old +

∑
e∈R cee

(z) and equality (1) from Dec′ holds. But
this implies

O(qi) = O(q
(1)
i + q

(z)
i + q

(t)
i) = O(q

(1)
i + q

(t)
i + q

(z)
old +

∑
e∈R

cee
(z)) (6)

= O(q
(1)
old + q

(g)
old + q

(t)
old +

∑
e∈R

ce(e(1) + e(g)) + q
(z)
old +

∑
e∈R

cee
(z)) (7)

= O(q
(1)
old + q

(g)
old + q

(t)
old + q

(z)
old) = O(q) (8)

Equality (7) holds because condition (1) from Dec′ holds. The first equality in (8) holds because
for all e ∈ span(R), O(e) = 0 and because O is linear. We have shown dlog(qi) = dlog(q), but this
contradicts our assumption that dlog(qi) 6∈ dlog(T ′i−1). Thus, we have:

Pr[(dlog(qi) ∈ dlog(Tdec,i−1)) ∧ ¬(E1,i ∨ E2,i)] ≤
2n

nc−1
(9)

Combining (4), (5), and (9) we get: Pr[faili] ≤ n
en + 1

nc + 6n
nc−1 .

Lemma 2. Let E be any event in the sample space supp(D) ∪ supp(D0). Then,

| Pr
δ←RD

[δ ∈ E]− Pr
δ←RD0

[δ ∈ E]| ≤ 4n/p

Proof. We use a coupling argument to show that D and D0 are close. Consider the following
alternative method for generating distribution D. Run the process for sampling from D0. If at any
point during the computation of Dec an assignment σ(dlog(qi))←R S is performed, and

dlog(qi) ∈ dlog(Tsetup ∪ Tkg ∪ T ′kg ∪ Tenc ∪ Tdec,i−1) (10)

holds, then resample σ(dlog(qi)) ←R S until (10) no longer holds. That is, instead of keeping the
first sampled value, we keep sampling random strings in S until no collision occurs. Since the only
difference between D0 and D is that the answer to qi in D is random among all values that do not
cause a collision, it is clear that this alternate procedure generates exactly distribution D.

Now we run the procedure for generating D0 and the alternate procedure for D in a coupled
manner up to the first query qi for which (10) holds. Then, conditioned on (10) never occurring, E
occurs in D0 if and only if it occurs in D. Let F be the event that (10) holds at some point during
the generation of D. Then we obtain Prδ←RD[δ ∈ E|¬F] = Prδ←RD0 [δ ∈ E|¬F], and

Pr
δ←RD

[δ ∈ E] = Pr
δ←RD

[δ ∈ E|F] Pr[F] + Pr
δ←RD

[δ ∈ E|¬F] Pr[¬F]

= Pr
δ←RD

[δ ∈ E|F] Pr[F] + Pr
δ←RD0

[δ ∈ E]− Pr
δ←RD0

[δ ∈ E|F] Pr[F]

= Pr[F]

(
Pr

δ←RD
[δ ∈ E|F]− Pr

δ←RD0

[δ ∈ E|F]

)
+ Pr
δ←RD0

[δ ∈ E]

which immediately implies the conclusion.

15

Lemma 3. Let E be any event in the sample space supp(D0) ∪ supp(D′). Then,

| Pr
δ←RD0

[δ ∈ E]− Pr
δ←RD′

[δ ∈ E]| ≤ 1/nc/2

Proof. Again, we apply a coupling argument to show that D0 and D′ are close. Consider the
following alternative way of generating distribution D0. Proceed as D′ up to the first query i of the
simulated Dec for which the event faili = Fi∧¬(E1,i∨E2,i) occurs. If faili has occurred then answer
query qj for j ≥ i (that is, including query qi) as follows: if Fj occurs then reply σ(dlog(qj)).

To show that this procedure generates D0 we must argue that (i) unless faili occurs for some i,
the algorithm Dec′ always replies with σ(dlog(qj)) for all 1 ≤ j ≤ n where Fj occurs, and (ii) when
Fj and E1,j do not hold, Dec′ replies with a random element of S.

We first show property (i): consider an index j for which Fj occurs, and yet faili has not occurred
for 1 ≤ i ≤ j. This means that either E1,j or E2,j must also occur. We deal with each case
separately.

Case 1: E1,j occurs. Then q
(z)
j ∈ span(R(z)) so there exist d1, . . . , dl such that q

(z)
j =∑l

i=1 die
(z)
i . Consider a new query q̂ = qj −

∑l
i=1 diei. Then we have

dlog(q̂) = dlog(qj)− dlog(d1e1 + · · ·+ dlel) = dlog(qj) and

q̂(z) = q
(z)
j − (d1e

(z)
1 + · · ·+ dle

(z)
l) = 0

In this case Dec′ follows step 1 by querying α← O(q̂), and returning α = σ(dlog(q̂)) as the answer
to qj .

Case 2: E2,j occurs. Then, there is a query q ∈ T ′j−1 such that q
(z)
i ∈ q + span(R(z)) and

dlog(qj) = dlog(q). Then, there exist d1, . . . , dl such that q
(z)
j = q(z) +

∑l
i=1 die

(z)
i . We can then

write

O(qj) = O

(
q
(1)
j + q(z) +

l∑
i=1

die
(z)
i + q

(t)
j

)
and O(q) = O

(
q(1) + q(z) +

l∑
i=1

die
(z)
i + q(g) + q(t)

)
(11)

Using the fact that dlog(qj) = dlog(q) we get O(qj) = O(q) which together with (11) implies

O(q
(1)
j + q

(t)
j) = O(q(1) + q(g) + q(t)). Therefore, all the conditions of step 2 in Dec′ hold and

the query is answered with g where {q 7→ g} ∈ T ′j−1. Assuming that all queries prior to qj were
answered correctly we get g = σ(dlog(q)) = σ(dlog(qj)).

To show property (ii) we must argue that when Fj and E1,j do not hold Dec′ will not enter step
2, and will proceed to answer the query according to step 3. Clearly if E1,j does not hold the
algorithm will not enter step 1. Suppose that Dec′ answers qj according to step 2. Then there

exists a query q ∈ T ′j−1, and linear combination of ei’s such that q
(z)
j = q(z) +

∑l
i=1 die

(z)
i , and

condition (1) holds. However, in this case (11) implies that Fj must hold, a contradiction.
To conclude the proof consider running the procedure for generating D′ and the alternative

procedure for D0 in a coupled manner until the first i for which faili occurs. At that point each
procedure continues on its own. Clearly, if faili does not occur for any i then event E occurs
in D0 if and only if it occurs in D′. From Lemma 1 and Lemma 2 we know that for each i,
PrD′ [F1,i∧¬(E1,i∨E2,i)] ≤ n

en + 1
nc + 6n

nc−1 +4n/p. Applying the union bound we obtain PrD′ [fail1∨
· · · ∨ failn] ≤ n

en + 1
nc + 6n

nc−1 + 4n/p ≤ 1
nc−3 ≤ 1

nc/2 . The conclusion follows.

16

4 The Attack on Restricted IBE

We describe an attack on any Identity Based Encryption scheme where individual private keys do
not contain any group elements. Our adversary recovers the plaintext of a challenge ciphertext
with a probability that is close to the correctness guarantee of the restricted IBE.

Theorem 2. Let RIBE = 〈Setup,KeyGen,Enc,Dec〉 be a restricted IBE with parameters p,m, n, ε.
Then, for every c > 0 and sufficiently large n, there exists an adversary which breaks the security
of the RIBE with poly(m,n) oracle queries and advantage ε− 1

2 −
1
nc .

Our adversary is determined by the parameters c1, c2, c3, c4, which when set to c1 = c2 = c4 =
c+ 3 and c3 = 2c+ 4 yield the theorem.

Sampling procedures We use the following two sampling procedures. The first procedure
SampleED(PP, ID,SKID), where ED stands for Enc-Dec, samples query transcripts by encrypting
and decrypting many random bits: for 1 ≤ i ≤ nc4 choose bi ∈R {0, 1}; ri ←R Rand(Enc), where
Rand(Enc) denotes a uniformly random string of the appropriate length for Enc; compute Ci ←R

Enc(PP, ID, bi; ri); and compute Dec(SKID, Ci). Let Tenc be the set of query-answer pairs that
appear during all the encryptions. For each query q = q(1)+q(g)+q(t) of the decryption algorithm,
let q̂ = CHBTenc(q

(t)). Add the entry {q̂ 7→ O(q)} to a set Tdec. The output of SampleED is
((b1, r1), . . . , (bnc4 , rnc4), Tenc, Tdec). Note that we do not include the ciphertexts in the output
because they are determined by bi, ri, and the query-answer pairs recorded in Tenc and Tdec. In the
second sampling procedure SampleEnc(PP, ID) we only sample the encryption: choose b ∈R {0, 1};
r ←R Rand(Enc); and compute C ←R Enc(PP, ID, b; r). Let Tenc be the set of queries and answers
that appear during the encryption. The output of SampleEnc is (b, r, Tenc).

Initialize. Randomly choose k1, k2 ∈R

{
n2c, . . . , 2n2c

}
, let l = k1 + k2, ID∗, ID1, . . . , IDl ∈R ID.

Submit ID∗ as the challenge identity, and ID1, . . . , IDk1 as the identities for which the ad-
versary wishes to obtain private keys. Note that the adversary requests private keys only
for the first k1 identities among the l that were chosen. The adversary is then given public
parameters PP = (wPP, g1, . . . , gm), private keys SKi ∈ {0, 1}n for IDi, 1 ≤ i ≤ l, and a
challenge ciphertext C∗.

Step 1: Learning linear relations among public key group elements.
For each 1 ≤ i ≤ k1, run SampleED(PP, IDi, SKi)
to obtain a tuple

γ(i) = ((b
(i)
1 , r

(i)
1), . . . , (b

(i)
nc4 , r

(i)
nc4), T

(i)
enc, T

(i)
dec).

Step 2: Learning frequently accessed elements of Zp. For each k1 + 1 ≤ i ≤ l, run

SampleEnc(PP, IDi) to obtain a tuple δ(i) = (b(i), r(i), T
(i)
enc).

Step 3: Generating a fake private key for ID∗. Choose k3 ∈R

{
n2c, . . . , 2n2c

}
, and repeat

the following online and offline phases k3 times. For consistency with previous steps we index
each repetition with l + 1 ≤ j ≤ l + k3:

Offline phase j (note that the numbering of the phases starts from l + 1). Let view be
the view of the adversary at this point. The view includes the public key PP, the identities
ID1, . . . , IDl, ID∗, the k1 many outputs of SampleED and the k2 many outputs of SampleEnc,

17

and the sets
(T

(l+1)
enc , T

(l+1)
dec), . . . , (T

(j−1)
enc , T

(j−1)
dec) that are defined in the phase below.

We define a distribution D on master secret keys and transcripts of Setup and KeyGen as
follows. For every (α, β) ∈ {0, 1}n × (Zp[G]× S)2m we set

Pr[(α, β)]
def
= Pr

 MSK = α,
Tsetup ∪ Tkg︸ ︷︷ ︸

T

= β;
MSK ∈R {0, 1}n,

(PP, Tsetup)← Setup(MSK),
(SK∗, Tkg)← KeyGen(MSK, ID∗)

∣∣∣∣∣∣ view


and sample (MSK, T) ←R D. Note that here PP, MSK, SK∗ denote the sampled (“fake”)
world. Let σT be the partial encoding function defined by T ; and note that this σT is well-
defined. We now generate a private key for ID∗ by evaluating KeyGen(MSK, ID∗). Note that
all the queries asked by KeyGen can be answered using Tkg. Let SK∗ be the output of the
simulated KeyGen.

Online phase j. Initialize an empty set T
(j)
dec of query answer pairs. Choose b1, . . . , bnc4 ∈R

{0, 1}, and compute (Ci, Tenc,i)←R Enc(PP, ID∗, bi). Let

T
(j)
enc =

⋃nc4

i=1 Tenc,i be the set of all query-answer pairs that appear during the generation
of C1, . . . , Cnc4 . Then, simulate Dec(SK∗, Ci) for 1 ≤ i ≤ nc4 as follows. For each oracle
query q during decryption of Ci, let q̂ = CHBTenc,i(q). The modified query is of the form

q̂ = q̂(1) + q̂(g). If σT (dlog(q̂)) is defined, respond to q with σT (dlog(q̂)). Otherwise, query

the actual oracle, and respond with O(q). In both cases, add the pair (q̂,O(q)) to T
(j)
dec.

Note that all the oracle queries of KeyGen are of the form q = a1 for some a ∈ Zp. Therefore,
the adversary can determine whether σT (q) is defined by checking if σT (a) is defined. Clearly,
this will no longer be true in the next phase, when we attempt to decrypt the challenge
ciphertext.

Step 4: Preparing to decrypt the challenge. Perform another iteration of the offline and on-
line phases of step 3 with the exception that in the online phase, only nc4 − 1 ciphertexts
are encrypted and decrypted. Let T step4

dec be the set of query-answer pairs constructed during
decryption. We think of the last encryption of the online phase to be the actual encryption
that generated the challenge ciphertext C∗.

Step 5: The decryption procedure. Recall that in RIBE the SK’s do not contain any group
elements. To decrypt the challenge ciphertext the adversary simulates Dec(SK∗, C∗) (where
SK∗ is the private key generated in step 4), and answers oracle queries as follows: let
q = q(1)+q(g)+q(t) be a query. The adversary queries the oracle to obtain α = O(q). If there
exists a query q′ such that {q′ 7→ α} ∈ T step4

dec , then the adversary responds to q with σT (q′),
if it is defined, and with α otherwise. Finally, the adversary outputs what Dec outputs.

5 Overview of the analysis of the attack

We will show that our adversary succeeds in decrypting the challenge ciphertext with probability
arbitrarily close to the correctness probability of the IBE. The full details of this argument are
complex. We start by presenting a high level, complete, description of our analysis, whereas the
actual proof is given in Section 6.

18

The strategy of our adversary can be summarized as follows: the adversary first performs various
operations to learn information about the encoding function σ, to which he has access through the
oracle O. The adversary then constructs, in an offline manner (without accessing the oracle), a
partial encoding function σT which is consistent with what the adversary has learned about σ, and
a master secret key MSK. Note that σT is defined only on a small subset of Zp (just enough to
compute Setup(MSK) without making any queries to the actual oracle), and most likely disagrees
with the actual encoding function on some elements in that subset. Similarly, the master secret
key MSK generated by the adversary is only consistent with adversary’s view, but may very well
be different from the actual master secret key that was used by the challenger.

After choosing σT and MSK our adversary should be viewed as trying to generate a private key
for ID∗, and then decrypting the challenge ciphertext, using an encoding function σ̂ which overlays
σT on top of σ. Although we will not refer to σ̂ directly in the formal part of our analysis, we shall
use it in the current (informal) part to illustrate the difficulties and pitfalls that we must avoid.
More specifically, the encoding function that the adversary attempts to present to KeyGen and
Dec is defined as σ̂(x) = σT (x) for all x ∈ Zp on which σT is defined, and σ̂(x) = σ(x) for all the
remaining inputs. Before proceeding, we note that σ̂ may contain collisions (i.e. x 6= y such that
σ̂(x) = σ̂(y)), and is therefore not a valid encoding function. However, such collisions are extremely
unlikely to be discovered, and we shall ignore them in this informal description of our analysis.

To show that our adversary succeeds with high probability it suffices to show three things: (i)
the adversary successfully simulates KeyGen and Dec using σ̂ (we will explain why this is non-trivial
in a moment), (ii) the challenge ciphertext is generated by the challenger using σ. Thus, we must
show that for all queries asked by the encryption algorithm during the generation of the challenge
ciphertext, σ̂ and σ are identical. Finally, we must show that (iii) the distribution of the view of
the decryption algorithm during its simulation by the adversary is close to the view it would have if
all values were generated honestly by a party that knows the entire correct encoding function and
the actual master secret key. The last property requires the first two to hold (but needs additional
treatment), and also relies on the correctness property of the IBE. We next informally describe how
our adversary achieves each of the above three properties.

Exposing an alternate encoding function σ̂. Let us first consider the computation of
KeyGen(MSK, ID∗) during step 4. The only group element given to KeyGen as input is the iden-
tity 1. Therefore, for all oracle queries q = a1 asked by KeyGen, we have dlogσT (q) = dlogσ(q).
Therefore, all we need is to observe that our adversary responds with σT (a) when it is defined, and
with σ(a) otherwise.

The case of decryption is much more complex. One difficulty stems from the fact that now oracle
queries are of the form q = q(1) + q(g) + q(t), where ti are the group elements in the ciphertext.
The problem is that even though each ti was generated by Enc as a linear combination of the group
elements in the public key (the gi’s), the adversary does not know these linear combinations since
the encryption was computed by the challenger, and so is unable to compute dlogσT (q) (recall that
dlogσT (·) is defined only for g ∈ S ∩ Im(σT)).

To address this problem, in Step 5, we first query the actual oracle on q to obtain a value α,
and then check if we have already seen α as an answer to an oracle query in the past. Since for all
past encryption-decryption computations we know how to represent the ti’s as linear combinations
of gi’s, if we find such a combination that maps to α we are able to check whether σT (q) is defined,
and give the correct answer. If we haven’t seen α as an answer to a query then, unless a new linearly
independent equality could be discovered during the encryption-decryption of the challenge, σT (q)

19

is undefined, and it is safe to respond with the newly obtained random value α.
We note that showing that it is unlikely that a new linearly independent relation will appear in

Step 5 is quite subtle because the way oracle queries of Dec are answered is different from Step 3,
which may in turn induce a different distribution on the queries asked by Dec (this is property (iii)
described above). Nevertheless, we are able to show by careful analysis of the distribution of each
query in the sequence that the probability of encountering a new linear relation is a polynomial
fraction that can be made arbitrarily low. The details of the analysis are given in the next section.

Finally, showing that property (ii) holds is relatively straightforward: we show that after per-
forming sufficiently many encryptions of a random bit, it is unlikely that a new frequently accessed
point or a new linear relation will be discovered when the challenge ciphertext is generated. Note
that this property is independent from the fake encoding function σT and the fake secret key SK∗
since encryption is always performed using the actual oracle.

6 Analysis of RIBE adversary

6.1 Hybrid Experiments

In our analysis we compare the view generated by our adversary to several other experiments
involving the algorithms of the IBE. For each experiment we show the unlikelihood of certain
events which would correspond to bad events for the run of our attack. Relying on the unlikelihood
of the bad events, we show that with high probability, our adversary presents a consistent and
appropriately distributed view to the decryption algorithm, which allows us to use the correctness
property to conclude that our adversary decrypts the challenge ciphertext with high probability.
Specifically, the experiments we consider are the following:

Experiment Exp0

This is the game of IBE security played with our adversary. Our goal is to show that our adversary
wins in this experiment with high probability.

Experiment Exp1

This experiment proceeds as Exp0 except step 5, which is modified as follows:

Step 5. Let T
(∗)
enc be the set of query-answer pairs that appear during the generation of the challenge

ciphertext C∗. Simulate Dec(SK∗, C∗), where SK∗ is the sampled private key for ID∗ and C∗
is the challenge ciphertext. To answer a query q = q(1) + q(g) + q(t) let q̂ = CHB

T
(∗)
enc

(q).

The query q̂ is of the form q̂ = q̂(1) + q̂(g). If σT (dlogσT (q̂)) is defined, respond to q with
σT (dlogσT (q̂)). Otherwise, query the actual oracle, and respond with O(q̂).

Experiment Exp2

Experiment Exp2 proceeds as Exp1, except for the following modification of steps 4 and 5:

Step 4, 5. Let T ∗j be the sets of the first j query-answer pairs that appear during the challenge
encryption, and the encryption and decryption procedures in steps 4 and 5. Note that this
includes both the sampling of step 4, the generation of the challenge ciphertext, and its

20

decryption in step 5. Specifically, j is in the range [2nc4+1] (each of the nc4 encryption-
decryption processes generates exactly 2n queries); note that this is a new use of the notation
j.

For each 0 ≤ j ≤ 2n let

T
(j)
step1

def
= T ∪ T ∗j ∪

k1⋃
i=1

(T (i)
enc ∪ T

(i)
dec)

Let σ(j) be the minimal partial encoding function7 that is defined for all mappings {q 7→ g} ∈
T
(j)
step1.

To answer the jth oracle query q of Enc or Dec, for 1 ≤ j ≤ 2n, respond with σ(j)(dlogσT (q̂))
if it is defined. Otherwise, respond with O(q).

Experiment Exp3

Experiment Exp3 proceeds as Exp2, except that step 3 is omitted, and the following modifications
are made to steps 4 and 5:

Steps 4, 5. Proceed as in Exp2, except to answer the jth oracle query q of Enc or Dec, for
1 ≤ j ≤ 2n do: respond with σ(j)(dlogσT (q̂)) if it is defined. Otherwise, choose uniformly at

random g ∈R S \
{
g|∃q s.t. (q, g) ∈ T (j−1)

step1

}
, and respond to q with g.

Experiment Exp4

Experiment Exp4 is essentially identical to Exp3, with the following conceptual modification of steps
4 and 5:

Steps 4 and 5. Let σ̂ be a complete encoding function (i.e. σ̂ is defined on all of Zp) that is
chosen at random from all encoding functions consistent with the view of the adversary view
at the last iteration of step 3, and the set T (of query-answer pairs generated by the adversary
offline). Let Ô be the generic group oracle for σ̂.

Choose b∗ ∈R {0, 1}, and using Ô generate C∗ ←R Enc(PP, ID∗, b). Then, using Ô again,
compute Dec(SK∗, C∗).

Experiment Exp5

The final experiment Exp5 is identical to Exp4 except that in steps 4 and 5, the ciphertexts are
decrypted using the correct oracle and private key. Specifically, let MSK0 be the global secret key
generated by the challenger, and compute SK∗ = KeyGen(MSK0, ID∗), and Dec(SK∗, C∗) using the
actual oracle O.

7Obviously there is a well-defined partial encoding function induced by T . Now, by definition of the sampling
(drawn uniformly from a consistent view) the T

(i)
enc’s start by computing on the gi’s for which we already have a

well-defined discrete logarithm. Similarly, for T
(i)
dec. The issue exists with T ∗j and in particular with the queries made

during the computation of the challenge ciphertext by Enc. The problem is that there may be a collision, i.e. by
accident the actual oracle returns a group element which also appears in some of the other tables. In this case, σ(j)

may not be well-defined. However, due to step 2 a very similar claim as Claim 2 yields that such an event happens
with probability ≤ n/en. This issue affects the comparison of Exp2, Exp3, Exp4, and Exp5. To simplify the exposition
we carry the comparisons conditioned that this even does not happen and we account for it at the end.

21

6.2 Comparing the intermediate experiments

In this section we present a formal comparison of the above hybrid experiments. Intuitively, our goal
is to show that the probability that the adversary decrypts the challenge ciphertext C∗ correctly
in Exp0 is close the probability that C∗ is decrypted correctly in Exp4, and to relate the latter
probability to the correctness parameter of the IBE.

We start our analysis from the last experiment, establishing properties of Exp5 first, and pro-
ceeding to show that experiments Exp3, Exp4, and Exp5 are essentially identical, and comparing
experiments Exp3 and Exp2, and finally Exp2 and Exp1.

Properties of Exp5

We make use of the following two properties of Exp5. First, we observe that the probability that C∗
is decrypted correctly in step 5 is exactly the correctness parameter ε of the IBE. Second, we show
that it is unlikely that during step 5 we will see any affine relationships among the group elements
of the public key (the gi’s) that are not in the span of the relationships that were discovered in step
1.

The following claim follows in a straightforward manner from the fact that in Exp5 the challenge
ciphertext is decrypted using the correct oracle and private key for ID∗.

Claim 3. Let b be the random variable representing the output of the decryption algorithm in step
5 of Exp4. Then, Pr[b = b∗] = ε, where ε is the correctness parameter of IBE.

We now formally state the second property of experiment Exp5. The proof is a straightforward
adaptation of the proof of Claim 1.

Claim 4. Let R = Eq
(⋃l

i=1(T
(i)
enc ∪ T (i)

dec)
)

, and let R∗ = Eq(T step4
enc ∪T step4

dec ∪T
(∗)
enc∪T (∗)

dec∪
⋃l
i=1(T

(i)
enc∪

T
(i)
dec)). Then, Pr[R∗ 6⊆ R] ≤ 1/nc1−1

Comparing Exp4 and Exp5

We now show that any (appropriately defined) event is equally likely to occur in experiments Exp4
and Exp5. To prove the following claim we also make use of the following simple fact.

Fact 1. Let Ω be a probability space, and let f be function with domain Ω. Consider the following
experiment: 1. sample x from Ω; 2. sample x′ from Ω conditioned on f(x) = f(x′). Then, for
every y ∈ Ω, Pr[x′ = y] = Pr[x = y].

Claim 5. Let view be the view of the adversary in the last iteration of step 3. Then the tuples
(view,MSK, σ̂) and (view,MSK0, σ) from experiments Exp4 and Exp5 respectively are identically
distributed.

Proof. From the description of Exp4 it is clear that there all oracle queries of Dec will be answered
according to the encoding function σ̂. Therefore, all we need to show is that the global secret key
MSK generated in the last iteration of step 3, and the encoding function σ̂ are uniformly distributed
among all strings of length n and injective functions from Zp to S.

Let MSK0 and σ be the actual master secret key and encoding function chosen by the challenger.
We show that (MSK, σ̂) have the same distribution as (MSK0, σ). Consider an alternative way of

22

choosing the encoding function σ: first compute Setup(MSK0), answering each oracle query with a
random element from S (without repetition). Let T0 be the set of query-answer pairs that appeared
during the computation. Then, choose σ uniformly at random from all encoding functions such that
for every mapping {a1 7→ g} ∈ T0, σ(a) = g. Clearly this procedure yields the same distribution
over (MSK0, σ) as in the case where we first choose σ randomly and use it to compute Setup(MSK0).

Now, notice that view is simply a probabilistic (but non-adaptive) function of MSK0, T0,
and σ. We can therefore apply Fact 1 to obtain that (MSK, T, σ̂) are distributed identically to
(MSK0, T0, σ).

Comparing Exp3 and Exp4

The difference between experiments Exp3 and Exp4 is purely conceptual: in Exp3 we essentially
generate the needed part of σ̂ online, as needed, rather than choosing the entire encoding function
at once. We therefore have the following property:

Claim 6. Let view be the view of the adversary in the last iteration of step 3, and let T
(∗)
enc and T

(∗)
dec

be the sets of query and answer pairs that appear during the generation of the challenge ciphertext C∗
and its decryption. Then, the tuple (view,MSK, T

(∗)
enc, T

(∗)
dec) is identically distributed in experiments

Exp3 and Exp4.

Comparing Exp2 and Exp3

The difference between experiments Exp2 and Exp3 is in the way that we answer oracle queries q for

which the response is not determined by the view of the adversary and the set T
(j)
step1. In experiment

Exp3 we generate a response at random from among all the available elements of S, while in Exp2
the oracle O is used. The difference is subtle: the response in Exp3 is what we expect if the view
of adversary had been correct. However, in Exp2 there are three cases: the first case is when there
has been a previous query q′ such that O(q) = O(q′) and q′ has not been seen by the adversary,
and is not one of the queries asked during the generation of the challenge ciphertext. The only
candidates for such queries q′ are oracle queries that were asked by Setup or KeyGen when the
challenger generated the public parameters PP and the private keys SK1, . . . ,SKk1 .

The second case is when q is the first query with discrete logarithm dlogσ(q) that is submitted
to O in the experiment. Then, the response will be random among all unused elements of S. A
minor problem is caused by the fact that the unused elements of S in the view of the adversary,
and in the view of O can be different. However, this difference has a very minor effect on events in
the two experiments for large enough sets S (when the order of the group is small any IBE scheme
can be broken by querying O on all points of Zp).

Finally, we must handle queries that were observed by the adversary in step 3. Note that these

queries are not included in T
(j)
step1, and so in Exp3 answers to these queries will be generated at

random, rather than using the answers that were previously obtained from O. To handle this last
issue we explicitly exclude step 3 from the comparison.

In both the following claims we use the following notation:

T
(j)
extended

def
= T ∪ T (∗)

j ∪
l+k3⋃
i=1

(T (i)
enc ∪ T

(i)
dec)

23

The following two claims show that case (i) is unlikely to occur. The proof of the first claim is
similar to Claim 1 and is omitted.

Claim 7. Let MSK0 be the global private key generated by the challenger. Let Tinit be the set of
query-answer pairs that appear during the computation of Setup(MSK0), and KeyGen(MSK0, IDi)

for 1 ≤ i ≤ l, that are performed by the challenger. Let R = Eq
(
Tinit ∪

⋃
l+1≤j≤l+k3(T

(j)
enc ∪ T (j)

dec)
)

,

and let R∗ = Eq
(
Tinit ∪ T (∗)

enc ∪ T (∗)
dec ∪

⋃
l+1≤j≤l+k3(T

(j)
enc ∪ T (j)

dec)
)

. Then, in Exp2, Pr[R∗ 6⊆ R] ≤
1/nc3−1.

Claim 8. For a set T̂ of query-answer pairs, let S(T̂) =
{
g|∃q s.t. (q, g) ∈ T̂

}
. Then, in Exp2

Pr

S (T (∗)
enc ∪ T

(∗)
dec

)
∩ S(Tinit) 6⊆ S

 ⋃
l+1≤j≤l+k3

(T (j)
enc ∪ T

(j)
dec)

 ≤ 1/nc3−c1−1

Proof. The claim follows from the fact that the encryption and decryption of the challenge in Exp2
proceed identically to the online phases of step 3. Therefore, step 5 can be viewed as iteration
k3 + 1 of step 3, and therefore a random iteration among nc3 iterations of the procedure described
in step 3. There are at most nc1+1 elements in S(Tinit). Therefore, the probability that a new one
is discovered during the encryption and decryption of the challenge is at most 1/nc3−c1−1.

The following claim shows that experiments Exp2 and Exp3 proceed identically with high prob-
ability.

Claim 9. Let view−3 be the view of the adversary in the last iteration of step 2, let (T step4
enc , T step4

dec),

and let (T
(∗)
enc, T

(∗)
dec) be the sets of query and answer pairs that appear during the generation of the

challenge ciphertext C∗ and its decryption in step 5. Let Γ be the set of all tuples of the form

(view−3, T,MSK, T step4
enc , T step4

dec , T (∗)
enc, T

(∗)
dec)

and let D2 and D3 be the distributions on Γ induced by experiments Exp2 and Exp3 respectively.
Then, for all events E ⊆ Γ, |Prγ←RD2 [γ ∈ E]− Prγ←RD3 [γ ∈ E]| ≤ 8n/p+ 1/nc3−1 + 1/nc3−c1−1

Proof. We prove the claim through a coupling argument. Consider an alternative way of running
experiment Exp2. Instead of choosing the encoding function σ in advance, generate it one point at
a time. Now, consider the following intermediate distributions D′2 and D′3 where each query with a
new discrete logarithm is answered using a random element from S (and so collisions may occur).
Using a straightforward adaptation of the analysis in Lemma 2, we obtain that

| Pr
γ←RD2

[γ ∈ E]− Pr
γ←RD

′
2

[γ ∈ E]| ≤ 4n/p and

| Pr
γ←RD3

[γ ∈ E]− Pr
γ←RD

′
3

[γ ∈ E]| ≤ 4n/p

Therefore, by the triangular inequality it is sufficient to compare the distributions D′2 and D′3.
Consider generating both distributions together in a coupled manner (using identical randomness)
up to step 3 of D′2. Then, proceed to run step 3 of D′2 and let Tstep3 be the set of query-answer
pairs (from the actual oracle O) that are recorded. Finally, we run steps 4 and 5 of both D′2 and D′3

24

as follows. To answer an oracle query q, let q̂ = q if q is a query of Enc, and q̂ = CHBTenc(q), if q
is a query of Dec, where Tenc is the set of query-answer pairs that appeared during the generation
of the ciphertext being decrypted.

We consider the following cases:

1. If σ(j)(dlogσT (q̂)) is defined, then the answer to q is determined and identical in both exper-
iments.

2. Else, if there exists q′ such that {q′ 7→ O(q′)} ∈ Tinit and O(q) = O(q′) it is answered as
follows. If

O(q) ∈ S

 ⋃
l+1≤j≤l+k3

(T (j)
enc ∪ T

(j)
dec)

 and

q− q′ ∈ span

Eq

 ⋃
l+1≤j≤l+k3

(T (j)
enc ∪ T

(j)
dec)


then in both Exp2 and Exp3, the response to q is O(q′). Otherwise, if q−q′ is not in the span,
we give up on generating both distributions together, and generate the remaining answers to
queries for each of the distributions D′2 and D′3 separately.

3. Finally, the remaining case is when dlogσ(q) ∈ dlogσ(T
(j)
extended) but σ(j)(dlogσT (q̂)) is not

defined. In this case, O(q), which is the answer given to q in Exp2 is a value that has already
been observed by the adversary, while in Exp3 a fresh random answer is generated. It remains
to show that even though O(q) is part of the adversary’s view (and in particular this value
has influenced the choice of T), it is still uniformly distributed given view−3.

Let g be a random variable representing the response to q in Exp3. Let E be the event that
σ(j)(dlogσT (q)) is not defined, and the events in 1 and 2 above do not occur.

Pr[g = O(q)|view−3, E] =
Pr[view−3|g = O(q), E] Pr[g = O(q)|E]

Pr[view−3|E]

We shall now argue that Pr[view−3|g = O(q), Γ] = Pr[view−3|Γ]. This will in turn imply that
view−3 does not provide any information about O(g). First, let us argue that view−3 does
not contain any queries q′ for which dlogσ(q′) = dlogσ(q). Otherwise, since σ(j)(dlogσT (q̂)) is

not defined, we would have q−q′ 6∈ span
(
Eq
(⋃

l+1≤j≤l+k3(T
(j)
enc ∪ T (j)

dec)
))

, which contradicts

the conditioning on E .

Clearly, both experiments proceed identically unless there is a query q that is asked during the
encryption or decryption of the challenge ciphertext for which from Claim 7 and Claim 8, we obtain
that this occurs with probability at most 1/nc3−1 + 1/nc3−c1−1, which gives us the claim.

Notational remark: in every experiment in the remaining comparisons, the “view” of the ad-
versary does not include step 3. From this point on we denote by view what we defined as view−3.

25

Comparing Exp1 and Exp2

The difference between Exp1 and Exp2 is in the way that we handle oracle queries q for which the
partial encoding function σT does not determine a response (i.e. σT (dlogσT (q)) is not defined). In
Exp1, we forward all such queries to the actual oracle O, whereas in Exp2 we first check if answer
to an equivalent query has already been given, and if so, use that answer instead of querying the
oracle.

We start by showing that in Exp1 it is unlikely that during step 5 new linear relations (under the
original oracle encoding function σ) among the group elements gi of the public key are discovered.

Claim 10. Let R = Eq
(⋃

1≤j≤l(T
(j)
enc ∪ T (j)

dec) ∪
⋃
l+1≤j≤l+k3(T

(j)
enc ∪ T (j)

dec)
)

, and let

R∗ = Eq

T (∗)
enc ∪ T

(∗)
dec ∪

⋃
1≤j≤l

(T (j)
enc ∪ T

(j)
dec) ∪

⋃
l+1≤j≤l+k3

(T (j)
enc ∪ T

(j)
dec)


Then, in Exp1, Pr[R∗ 6⊆ R] ≤ 1/nc3−1; i.e. with probability ≥ 1− nc3−1 these two vector spaces are
equal.

Proof sketch. The proof of this claim is similar to the proof of Claim 1. Essentially, it follows from
the fact that in Exp1, step 5 is identical to an iteration of step 3 where in the online phase oracle

queries are answered as in Exp1 (and the T
(i)
enc and T

(i)
dec are constructed). Therefore, step 5 can

be viewed as the online phase of another iteration of the procedure described in step 3. Since
step 3 is repeated k3 times, which is a uniformly chosen integer between 1 and nc3 , step 5 can be
viewed as a random iteration among nc3 iterations of step 3. R and R∗ both contain formal sums of
dimension ≤ n. Therefore, at most n out of the nc3 iterations may introduce linearly independent
affine relations between the gi. The probability that this occurs during step 5 is therefore at most
1/nc3−1.

The following claim shows that with high probability our adversary learns all the points of
Zp (and their corresponding encodings) that are accessed with high probability by the encryption
algorithm. The proof is similar to the proof of Claim 2 and is omitted.

Claim 11. Let Sδ be the set of x ∈ Zp such that

Pr

[
x ∈ dlogσ(Tenc) ;

ID←R ID, b← {0, 1},
(C, Tenc)←R Enc(PP, ID, b0)

]
≥ δ

Then, Pr
[
S1/nc2−1 ⊆ dlogσ(

⋃l
i=k1+1 T

(i)
enc)

]
≥ 1− n/en

We are now ready to compare experiments Exp1 and Exp2.

Claim 12. Let Γ be the set of all tuples of the form8 (view, T,MSK, T
(∗)
enc, T

(∗)
dec), and let D1 and D2

be the distributions on Γ induced by experiments Exp1 and Exp2 respectively. Then, for all events
E ⊆ Γ, |Prγ←RD1 [γ ∈ E]− Prγ←RD2 [γ ∈ E]| ≤ 4/nc3−1 + 1/nc3−c1−1 + 1/nc1−1 + 1/nc2−2 + 9n/p

8Recall that view := view−3.

26

Proof. Once again, we apply a coupling argument. Consider running both experiments together
using identical randomness. Then, Exp1 and Exp2 proceed identically unless one of the following
bad events occurs:

Event F1: during the generation of the challenge ciphertext Enc submits a query q such that
σT (dlogσT (q)) is defined and equal to some α ∈ S, but O(q) 6= α.

Event F2: For queries qj of Enc (1 ≤ j ≤ n), define q̂j = qj (this is for notational convenience;
for n + 1 ≤ j ≤ 2n, q̂j is defined as before: q̂j = CHB

T
(∗)
enc

(qj)). Event F2 is defined as follows:

event F1 does not occur, and during the computation of Enc (generation of the challenge ciphertext)
or Dec a query qj is asked for which σ(j−1)(dlogσT (q̂)) is defined and equal to some α ∈ S, but
O(q̂) 6= α.

Event F3: during the computation of Enc or Dec two queries qi and qj , i < j, are asked such
that O(qi) = O(qj) but dlogσT (q̂i) 6= dlogσT (q̂j).

Let us bound the probability that any of the above events occur.
First, we bound the probability of F1. Let X = {x ∈ Zp|∃g ∈ S s.t. σT (x) = g}; i.e. X is the

domain of the partial encoding function σT . Consider a query q asked by the encryption algorithm.
If dlogσ(q) ∈ S1/nc2−1 then by Claim 11 we know that with probability ≥ 1 − n/en there exists
another query q′ 6= q such that O(q′) = O(q) and q′ appeared during an encryption that was
simulated by the adversary in step 2. From Claim 10 we know that with probability ≥ 1−1/nc3−1,
q− q′ ∈ R.

Let {ce ∈ Zp|e ∈ R} be coefficients such that q− q′ =
∑

e∈R cee. Then,

dlogσT (q) = dlogσT

(
q′ −

∑
e∈R

cee

)
= dlogσT (q′)

Therefore, if dlogσT (q) ∈ X then σT (x) = O(q′) = O(q) (since σT is chosen to be consistent with
the view of the adversary). Combining the above we get

Pr[F1 for an F1 which is caused by q s.t. dlogσ(q) ∈ S1/nc2−1] ≤ 1/nc3−1 + n/en

Now, consider all elements x ∈ X \ S1/nc2−1 . There are at most n such elements (since |X| ≤
n). Therefore, by the union bound, the probability that during the generation of the challenge
ciphertext a query q is asked such that dlogσ(q) ∈ x ∈ X\S1/nc2−1 is at most n/nc2−1. Consequently
we get

Pr[F1] ≤ 1/nc2−2 + 1/nc3−1 + n/en

Next, we consider the event F2. Let Rstep1 = Eq
(⋃k1

i=1(T
(i)
enc ∪ T (i)

dec)
)

. F2 can only occur when F1

does not occur, therefore we can only consider queries qj for which σT (dlogσT (qj)) is not defined.

Let q′ be a query for which {q′ 7→ O(qj)} ∈ T
(j−1)
extended. Then, if q̂j − q′ ∈ span(Rstep1) we have

O(q̂j − q′) = O(0), and therefore O(q̂j) = O(q′). On the other hand, combining Claims 9, 6, 5
and 4 we get

Pr[F2] ≤ Pr[∃j s.t. q̂j − q′ 6∈ span(Rstep1)] ≤ 8n/p+ 1/nc3−1 + 1/nc3−c1−1 + 1/nc1−1

To conclude our analysis we bound the probability of event F3. If event F3 occurs, then qi−qj 6∈
R, but according to Claim 10 this can happen with probability at most 1/nc3−1.

Combining the above analysis, we obtain that Pr[F1 ∨ F2 ∨ F3] ≤ 2/nc3−1 + 8n/p + 1/nc3−1 +
1/nc3−c1−1 + 1/nc1−1 + 1/nc2−2 + n/en.

27

Comparing Exp0 and Exp1

The proof of the following claim follows similarly to the proof of Claim 2 (and 11) and it is omitted.
Having three instead of one more general lemma improves readability (note that the individual
claims are in principle the same, but the setting is different).

Claim 13. For x ∈ Zp, let Ex be the event that during a decryption of a ciphertext in step 4 of the
adversary, a query q is asked such that dlogσT (CHBTenc(q)) = x. Let X = {x|Pr[Ex] ≥ 1/nc2 − 1},
then Pr

[
X ⊆ dlogσT (T step4

dec)
]
≥ 1− n/en.

Claim 14. Let Γ be the set of all tuples of the form (view, T,MSK, T
(∗)
enc, T

(∗)
dec), and let D0 and D1

be the distributions on Γ induced by experiments Exp0 and Exp1 respectively. Then, for all events
E ⊆ Γ, |Prγ←RD0 [γ ∈ E]− Prγ←RD1 [γ ∈ E]| ≤ 2

nc1−1 + 2
nc3−c1−1 + 4

nc3−1 + 2
nc2−1 + n+1

en + 16n
p .

Proof. Let T
(∗)
enc be the set of query-answer pairs asked during the generation of the challenge

ciphertext. We couple the two experiments. Clearly, both experiments proceed identically, unless
in step 5 the decryption algorithm asks a query q for which σT (CHB

T
(∗)
enc

(q)) is defined, and yet the

adversary responds to q with α 6= σT (CHB
T

(∗)
enc

(q)).

Let us consider an arbitrary x ∈ dlogσT (T). For each query q of Dec, if dlogσT (CHB
T

(∗)
enc

(q)) = x

we must respond with σT (x). If x ∈ X (where X is the set defined in Claim 13), then by Claim 13
we know that with probability 1− n/en there exists a pair (mapping) {q′ 7→ α} ∈ T step4

dec such that

dlogσT (q′) = x. Let R = Eq
(⋃l

i=1(T
(i)
enc ∪ T (i)

dec)
)

. Then, if q − q′ ∈ R then there exists a linear

combination
∑

e∈R cee such that q = q′ −
∑

e∈R cee, and O(q) = O(q′ −
∑

e∈R cee) = O(q′). In
this case, our adversary responds to q with σT (x). By combining Claims 12, 9, 6, 5 and 4 we get
that

Pr[q− q′ 6∈ R] ≤ 2

nc1−1
+

2

nc3−c1−1
+

4

nc3−1
+

2

nc2−1
+
n

en
+

16n

p

Now, consider arbitrary x 6∈ X. There are at most 2n elements x ∈ dlogσT (T). Therefore,
by the union bound the probability that Dec asks a query q for which dlogσT (q) = x is at most
1/nc2−2.

Acknowledgments

This work is in part a result of a delightful collaboration with Dan Boneh and Brent Waters. We’d
like to thank Brent for the insightful remarks and suggestions, and Dan for his collaboration in the
beginning of this research.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model. In EUROCRYPT, pages 553–572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical ibe. In CRYPTO, pages 98–115, 2010.

28

[ADVW12] S. Agrawal, Y. Dodis, V. Vaikuntanathan, and D. Wichs. On continual leakage of
discrete log representations. IACR Cryptology ePrint Archive, 2012:367, 2012. informal
publication.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random ora-
cles. In CRYPTO, pages 443–459, 2004.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO, pages 213–229, 2001.

[BF03] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. SIAM
J. of Computing, 32(3):586–615, 2003.

[Bon98] D. Boneh. The Decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symp, pages 48–63, 1998.

[BPR+08] D. Boneh, P. A. Papakonstantinou, C. W. Rackoff, Y. Vahlis, and B. Waters. On the
impossibility of identity based encryption from trapdoor permutations. In Foundations
of Computer Science (FOCS), pages 283–292, 2008.

[CDK+12] R. Cramer, I. Damg̊ard, E. Kiltz, S. Zakarias, and A. Zottarel. DDH-like assumptions
based on extension rings. In PKC, pages 644–661, 2012.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In
EUROCRYPT, pages 255–271, 2003.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, pages 523–552, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA International Conference on Cryptography and Coding, pages 26–8, 2001.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

[DHT12] Y. Dodis, I. Haitner, and A. Tentes. On the instantiability of hash-and-sign rsa signa-
tures. In Theory of Cryptography Conference (TCC), pages 112–132, 2012.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In EURO-
CRYPT, pages 445–464, 2006.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on the
Theory of Computing (STOC), pages 169–178, 2009.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

29

[GKM+00] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship
between public key encryption and oblivious transfer. In Foundations of Computer
Science (FOCS), pages 325–335, 2000.

[GMM07] Y. Gertner, T. Malkin, and S. Myers. Towards a separation of semantic and CCA
security for public key encryption. In Theory of Cryptography Conference (TCC),
pages 434–455, 2007.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor
functions on trapdoor predicates. In Foundations of Computer Science (FOCS), pages
126–135, 2001.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Symposium on the Theory of Computing (STOC),
pages 197–206, 2008.

[HH09] I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption. In
Theory of Cryptography Conference (TCC), pages 202–219, 2009.

[HHRS07] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive
protocols - a tight lower bound on the round complexity of statistically-hiding com-
mitments. In Foundations of Computer Science (FOCS), pages 669–679, 2007.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way per-
mutations. In Symposium on the Theory of Computing (STOC), pages 44–61, 1989.

[KM07] N. Koblitz and A. Menezes. Another look at generic groups. Advances in Mathematics
of Communications, 1:13–28, 2007.

[Lan87] Serge Lang. Linear Algebra. Springer-Verlag, 1987.

[Mau05] U. M. Maurer. Abstract models of computation in cryptography. In Cryptography and
Coding, pages 1–12, 2005.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

[Pap10] P. A. Papakonstantinou. Constructions, lower bounds, and new directions in Cryptog-
raphy and Computational Complexity. PhD thesis, University of Toronto, March 2010.
(pp 43–60) http://itcs.tsinghua.edu.cn/∼papakons/pdfs/phd thesis.pdf.

[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryptographic
primitives. In Theory of Cryptography Conference (TCC), pages 1–20, 2004.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, pages 256–266, 1997.

30

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

[Vah10] Y. Vahlis. Two is a crowd? a black-box separation of one-wayness and security under
correlated inputs. In Theory of Cryptography Conference (TCC), pages 165–182, 2010.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT, 2005.

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

