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Abstract

An error-correcting code C ⊆ Fn is called (q, ε)-strong locally testable code (LTC) if there
exists a randomized algorithm (tester) that makes at most q queries to the input word. This
algorithm accepts all codewords with probability 1 and rejects all non-codewords x /∈ C with
probability at least ε · δ(x,C), where δ(x,C) denotes the relative Hamming distance between
the word x and the code C. The parameter q is called the query complexity and the parameter
ε is called soundness.

A well-known open question in the area of LTCs (Goldreich and Sudan, J.ACM 2006) asks
whether exist strong LTCs with constant query complexity, constant soundness and inverse
polylogarithmic rate.

In this paper, we construct strong LTCs with query complexity 3, inverse polylogarithmic
soundness and inverse polylogarithmic rate.

∗The research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 259426.
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1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. In this case, n is the blocklength of
the code C, denoted by blocklength(C). The dimension of C, denoted by dim(C), is its dimension as

a vector space. The rate of C, denoted by rate(C), is defined to be dim(C)
blocklength(C) = dim(C)

n . We define

the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the relative distance to

be δ(x, y) = ∆(x,y)
n . The distance of C is defined by ∆(C) = min

x6=y∈C
∆(x, y) and its relative distance is

defined by δ(C) = ∆(C)
n . We note that ∆(C) = min

c∈C\{0}
{wt(c)}. One is typically interested in codes

whose distance is linear to the blocklength of C, i.e., Ω(n).
For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min

y∈C
{δ(x, y)} denote the relative distance of x from the

code C. If δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x is ρ-close to C.
In this work we investigate locally testable codes (LTCs). A code C is said to be (q, ε, ρ)-weak

LTC if there exists a randomized algorithm T , called tester, that makes at most q queries to the
input word w. If w ∈ C then T accepts w with probability 1, but if w is ρ-far from C the tester T
rejects w with probability at least ε. Let us notice that the tester is not required to reject when
0 < δ(w, C) < ρ. This is the reason why such codes are called weak LTCs.

In contrast to weak LTCs, the testers for strong LTCs are required to reject all non-codewords
with corresponding probability. More formally, a code C is called (q, ε)-strong LTC if there exists
a tester T that makes at most q queries to the input word w. If w ∈ C then T accepts w with
probability 1, but if w /∈ C then T rejects w with probability at least ε · δ(w, C). The parameter q
is called the query complexity and the parameter ε is called soundness.

Informally, we say that a code C is a weak LTC if it has a linear distance and there exist
constants q, ε > 0 and ρ ≤ δ(C)/3 such that C is a (q, ε, ρ)-weak LTC. 1 Similarly, we say that a
code C is a strong LTC if it has a linear distance and there exist constants q, ε > 0 such that C is a
(q, ε)-strong LTC.

Such codes are of interest in computer science due to their numerous connections to probabilis-
tically checkable proofs (PCPs) and property testing (see the surveys [30, 21] for more information).
LTCs were implicit already in [2] (cf. [21, Sec. 2.4]) and they were explicitly studied by Goldreich
and Sudan [24]. The best known strong LTCs are due to Goldreich and Sudan [24], who presented
probabilistic construction of strong LTCs. These LTCs achieve constant query complexity, constant

soundness and rate
1

exp(Õ(
√

log n))
, where n denotes the blocklength.

Later, other constructions of LTCs [9, 17, 27] succeeded to obtain the rate
1

polylog(n)
together

with constant query complexity and soundness, however these codes were weak LTCs. It can be
verified that every strong LTC is also a weak LTC (see Claim B.4), but some weak LTCs are
not strong LTCs (see Proposition B.1). So, strong LTCs are strictly stronger objects than weak
LTCs. In the journal version of [24], the authors pointed out that all known LTCs that achieve
inverse polylogarithmic rate are weak LTCs, and asked about the existence of strong LTCs with
polylogarithmic rate [24, Section 6].

1The parameter ρ is required to be less than δ(C)/2 to avoid trivial solutions like claiming that every perfect
code C is a (0, 1, δ(C)/2)-weak LTC. Recall that a code C ⊆ Fn is called perfect if there are no words in Fn that are
(δ(C)/2)-far from C. So, in this case one could say that no queries are needed and all (δ(C)/2)-far words are rejected
with probability 1 vacuously.
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In this paper (Theorem 3.1) we construct binary linear 3-query strong LTCs with inverse polylog-
arithmic rate, inverse polylogarithmic soundness and linear distance. To the best of our knowledge
this range of the parameters for strong LTCs was not obtained before. We notice that every tester
for a (non-trivial) linear LTC has query complexity at least 3 (see [6])2. Although our construction
does not resolve the open question raised in [24], we believe that our results make this question
easier to solve. Let us explain why.

The best known weak LTCs [9, 17, 27] were constructed in two steps. In the first stage, the
authors presented a construction of weak LTCs that achieved constant query complexity, inverse
polylogarithmic rate, inverse polylogarithmic soundness and linear distance. Then, in the second
stage, the gap amplification technique of Dinur [17] was applied to increase the soundness from
inverse polylogarithmic to constant, while, roughly speaking, preserving all other parameters.

So, in this paper we show a construction of strong LTCs which have similar parameters to the
weak LTCs from the first stage above. We stress that when this gap amplification is applied to
strong LTCs, it will produce weak LTCs. Thus using the result of Dinur [17], our work implies
weak LTCs with best known parameters as in [9, 17, 27]. This gap amplification technique is also
known to preserve the linearity of the underlying LTCs (see e.g.,[27, Section 6.4]). Indeed, the
arguments of [27, Section 6.4] show that this procedure can be applied to linear strong LTCs to
increase its soundness parameter and this procedure even preserves the linearity of the underlying
LTC. 3 However, this procedure outputs a weak LTC, or more precisely, a code accompanied with
a probabilistically checkable proof that could be translated to a weak LTC.

Thus, in order to resolve the question raised in [24], one should modify the gap amplification
technique to preserve the strong testability of the underlying LTCs. We believe that this is a
feasible task but in this paper we were unable to do this.

1.1 The construction of Meir [27] vs. Our construction

We recall the open question of [24] about the strong LTCs with inverse polylogarithmic rate. This
question was raised again in the work of Meir [27], who showed an alternative construction of weak
LTCs that achieve constant query complexity, constant soundness and inverse polylogarithmic rate,
which is the best known range of parameters for weak LTCs. Meir stressed that codes presented in
[27] are weak LTCs and raised again the question about strong LTCs of polylogarithmic rate (see
[27, Section 7.3]). More precisely, Meir constructed another kind of linear codes, called codes with
proofs (CWPs). Informally, C ⊆ Fn is a (q, ε)-CWP if all coordinates of the code are partitioned
into two subsets I ⊆ [n] and [n] \ I, and there exists a tester T that makes at most q queries to
the given word w ∈ Fn. This tester accepts with probability 1 if w ∈ C, and otherwise rejects with
probability at least ε · δ(w|I , C|I).

It can be verified that a CWP can be easily converted to a weak LTC by repeating all bits in-
dexed by I several times (see [27, Section 6.2]). However, a CWP is not equivalent to a strong LTC
since the guarantee is only that the rejection probability of the tester is proportional to δ(w|I , C|I).
So, it can be the case that w /∈ C, but w|I ∈ C|I and the tester accepts with probability 1. Let us

2Ben-Sasson et al. [6] showed that testing any linear code with linear distance and non-constant dimension requires
at least 3 queries.

3Meir [27] considered linear codes with proof (CWP) which are a special case of PCPs of proximity [9, 17, 18].
Such CWPs can be easily converted to weak LTCs by repeating all “code coordinates” several times (see [27, Section
6.2]). On the other hand, every (linear) strong LTC is a special case of a linear CWP, where the proof is empty. Thus
the arguments of [27, Section 6.4] are valid for the strong LTCs as well.
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cite from [27, Section 7.3]:

“Our construction does not yield strong LTCs because the transformation from CWPs to LTCs
loses the strong rejection property. Thus, it remains an open problem to give a combinatorial
construction of strong LTCs. It seems to us that such a construction will have to be very different
from our construction, since it will not be able to use CWPs.”

Surprisingly, our construction is almost identical to the construction of [27], and provides a family
of strong LTCs. Our construction can be considered combinatorial according to [27, Remark 1.1],
although we do not stress this in the paper. In the next section we explain shortly our contributions
that allowed us to turn the codes of [27] into the strong LTCs.

1.1.1 The main observation — Core Oriented LTCs.

First, in Definition 2.1 we define a core of the code C ⊆ Fn to be a (small) subset of indices, denoted
by A(C), such that C|A(C) has the same dimension as C. Intuitively, think that a core is very small,
i.e., |A(C)| = o(n), but the coordinates indexed by A(C) are much more important than the other
coordinates of the code. Next, we define a core oriented distance (Definition 2.2) between a word w
and the code C, denoted by δA(C)(w, C) that devotes especial importance to the coordinates in A(C).
Saying that w is close to the code C with respect to the core oriented distance implies immediately
that there exists a codeword c ∈ C such that δ(w|A(C), c|A(C)) is small as well as δ(w, c).

Informally, a tester of a CWP (defined in [27]) provides an ability to test only the core of the
code, while a tester of a strong LTC tests the entire code with no especial importance to the core
coordinates. That means, whenever a tester of a CWP rejects w with a small probability we know
that δ(w|A(C), C|A(C)) is small, but we do not know whether δ(w, C) is small. On the other hand, if
a tester of a strong LTC rejects w with a small probability, then we know that δ(w, C) is small but
we do not know whether δ(w|A(C), C|A(C)) is small.

We realized that a combination of both these features inside a single tester would be highly
useful. Definition 2.4 contains the definition of core oriented LTCs (COLTCs). In words, a code C
is a (q, ε)-COLTC if it has a tester that makes at most q queries to an input word w. This tester
always accepts all codewords of C and rejects w with probability at least ε · δA(C)(w, C). In this
way, the fact that a COLTC-tester rejects w with a small probability guarantees the existence of a
codeword c ∈ C such that both δ(w, c) and δ(w|A(C), c|A(C)) are small. In particular, any COLTC
is a strong LTC and a CWP4.

The above observation becomes crucial in the iterative construction of LTCs, where we claim
that every iteration the underlying code is a COLTC, and not just a CWP or a strong LTC. This lead
us to the need to revise the definition of a standard notion of robust testing (Section 4) and design
a definition of “core robustness” in Definition 7.1. It can be proven that the iterative construction
suggested in [27] preserves this notion of “core robustness”. It turns out that if COLTCs are
involved in the iterative construction that preserves “core robustness”, then the resulting code is a
COLTC as well (see Claim 7.2).

The main step in this iterative construction is a product of codes, where a tensor product
(Section 2.1) is applied only on a small fraction of codeword entries. This product of codes was

4We notice that saying “a code C is a CWP and is a strong LTC” is weaker than saying “C is a COLTC” since
the fact that δ(w|A(C), C|A(C)) and δ(w, C) are small does not imply that there exists a single codeword c ∈ C such
that δ(w|A(C), c|A(C)) and δ(w, c) are small.
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used in [27]. We define it explicitly and call it the star product of codes (Section 7). In words, in
this star product the tensor is taken only on the core coordinates A(C) and this is the reason why
these coordinates play especially important role in the construction.

We would like to notice that if one takes repetitive standard tensor products then the rate of
the code decreases drastically (see Section 2.1). On the other hand, when we use the star product
and take care that A(C) stays small in every iteration, then the rate decreases only by a constant
in every iteration.

1.1.2 Our contributions to the construction of [27].

So, as we said previously our construction is almost the same as the construction of [27], and our
main contribution is the modified proof showing that the obtained codes are strong LTCs and
not just weak LTCs as were claimed in [27]. In this section we would like to mention briefly our
modifications to the construction of [27].

How to avoid the increase in query complexity. One of the drawbacks of the repeated
tensor product operation, even when it is applied only to a small fraction of coordinates, is that
this operation strongly decreases the distance of the base codes. Meir [27] observed that the drastic
decrease in the distance can be avoided using a “distance amplification” procedure DistAmp(·)
which preserves local testability. I.e., given any locally testable code C ⊆ Fn the distance amplifi-
cation procedure outputs a locally testable code C′ = DistAmp(C) such that dim(C′) = dim(C) and
rate(C′) = Ω(rate(C)). Furthermore, DistAmp(·) improves the distance of the code and preserves
its local testability, but unfortunately, the query complexity is multiplied by some constant integer
β ≥ 2. During the construction of [27], the procedure DistAmp(·) was applied Θ(log log n) times,
thus resulting in the query complexity polylog(n).

Now, if one is interested to obtain a weak LTC (or a CWP) with constant query complexity,
then the query complexity can be reduced to 3 (see [27, Section 6.3] and [14, Section A.1]). But the
problem arises when the goal is to obtain a strong LTC. The standard query complexity reduction
technique is not known to preserve the strong local testability and it seems that it should not.

We solve this issue as follows. In Sections 8 and 9 we implement our version of DistAmp(·)
procedure, which will improve the distance of the code, and on the other hand, the query com-
plexity remains intact. In particular, if C is a 3-query COLTC and has a small distance then
C′ = DistAmp(C) is a 3-query COLTC, C′ has larger distance than C and rate(C′) = Ω(rate(C)).
This gives us an opportunity to apply DistAmp(·) procedure many times and the query complexity
will stay unaffected.

A large distance of the code is preserved through way. In the work [27], the author cared
to obtain CWPs, where the large distance was preserved only inside the core coordinates (C|A(C)),
i.e., δ(C|A(C)) was large but δ(C) was very small. Hence, to obtain a weak LTC with a good distance
one is required to make many repetitions of the entries indexed by A(C) (see [27, Section 6.2]).

It turns out that to prove the “core robustness” results for the star products of COLTCs (Section
7) we need to assume that the underlying COLTCs have large distance. Thus in our construction,
we preserve through the way a large distance of the entire code (δ(C)) and not only the distance
inside the core coordinates (δ(C|A(C))). Thus we also avoid the need to use a separate stage of
repetitions at the end of the construction.
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1.2 A new product of codes and a new analysis of robustness

Let us introduce another part of this paper, which is not involved in the construction of COLTCs.
In [27] the author pointed out that his products of the base code C ⊆ Fn rely on the assumption
that a part of its coordinates must form a tensor product for some linear code. In our language, to
obtain a desired result we need to assume that C|A(C) = R⊗R for some linear code R. Meir raised
a question of whether one can avoid this assumption.

So, another contribution of this paper is that we define explicitly a new product of codes,
called L-product (Section 5), which is similar to the star product but it does not assume that an
underlying code has some particular structure. Similarly to the star products, in the L-products of
codes the tensor product operation is applied only to the core coordinates C|A(C). This operation
reduces the rate of the underlying code only by a constant given that A(C) is sufficiently small,
while the standard tensor product squares the rate of the code (see Section 5). Also, L-product of
codes affects the distance of the underlying code in the same way as the standard tensor product
operation.

It is worth to stress that the investigation of L-products does not involved in the proof of our
main result (Theorem 3.1), and comes on its own way. In spite of that it is interesting to notice that
although L-products seem similar to the star products (Definition 7.4), and they can be robustly
testable (Section 5.3) with regards to the standard notion of robustness (see Section 4), the author
of this paper did not succeed to use them to construct efficient strong LTCs. More specifically, we
were unable to implement the random projection operation for this type of code products, while it
can be implemented for the star products (Section 10) exactly as it appeared in [27, Section 4.2].

1.2.1 Robust testing of codes

One of the basic concepts behind the constructions of some LTCs [5, 10, 32] was the concept of
“robust testing”. Let us notice that without loss of generality a tester for a linear code selects
a small subset of entries, called a “local view”, and then accepts if and only if this local view is
consistent [8, 14]. In words, a code C is called robustly testable with respect to a tester T if given
any non-codeword w that is far from C, it holds that a typical local view of the tester T is far from
being consistent.

In Section 4 we identify the properties sufficient for robust testing. I.e., if a code C and its tester
T satisfy these properties then C is robustly testable. We proceed and prove in Section 5.3 that the
repeated L-products of codes can be robustly testable. Then we reprove in Section 6 the robust
testability of the repeated tensor product of codes [10, 32] using aforementioned observations to
demonstrate the simplicity of such a proof.

Organization of the paper.

In the following section we provide some preliminary definitions and the new concepts. Then, in
Section 3 we state our main results and, in particular, Theorem 3.1.

We present sufficient properties for the code to be robustly testable in Section 4. In Section 5 we
define a new product of codes, called L-products, and show that they are robustly testable. Then,
in Section 6 we reprove the main result of [32] using the general observations made in Section 4. In
Section 7 we define the star products of codes (implicitly used in [27]) and show that these codes
are robustly testable with regards to the “core robustness” notion presented in the same section.
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Then, we turn to define and study the distance amplification procedure in Sections 8 and 9 and
the random projection operation in Section 10. Finally, we prove our main results in Section 11.

The auxiliary proofs are postponed to Appendix: Sections A and B.

2 Preliminaries

In this work, we consider only linear codes. Let F be a finite field and [n] be the set {1, . . . , n}.
For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. For u = (u1, u2, . . . , un),
v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear function from Fn×Fn to F defined by 〈u, v〉 =
n∑
i=1

uivi. The dual code C⊥ is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. Similarly, we define

C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t =

{
u ∈ C⊥ | |u| = t

}
. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n]

we let w|S = (wj1 , wj2 , . . . , wjm), where j1 < j2 < . . . < jm, be the restriction of w to the subset
S. Similarly, we let C|S = {c|S | c ∈ C} denote the projection of the code C onto S. We define
C|−S = C|[n]\S , i.e., projection of the code C to all coordinates besides S.

Every linear code C is associated with a set of its coordinates, denoted coord(C). For example
if C ⊆ Fn then coord(C) = [n]. It follows that for every code C over the field F it holds that
C ⊆ Fcoord(C). The blocklength of the code, denoted by blocklength(C), is equal to |coord(C)|.

For two words x1 ∈ Fn1 and x2 ∈ Fn2 we define (x1, x2) to be a word in Fn1+n2 such that
(x1, x2)|[n1] = x1 and (x1, x2)|([n1+n2]\[n1]) = x2. With some abuse of notation, if C is a linear
code over the field F and I ⊆ coord(C) we use (C|I , C|coord(C)\I) to glue two parts of the code, i.e.,
C = (C|I , C|coord(C)\I). In this case, for every c ∈ C we have c = (c|I , c|coord(C)\I). This expression
will be used when the goal is to stress that the code C contains two “different” parts.

2.1 Tensor Product of Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e.g. [10, 11,
12, 19, 27, 31]).

For x ∈ Fn1 and y ∈ Fn2 we let x⊗ y denote the tensor product of x and y (i.e., the matrix M
with entries M(i,j) = xj · yi where (i, j) ∈ [n2] × [n1]). Let R ⊆ Fn1 and C ⊆ Fn2 be linear codes.
We define the tensor product code R ⊗ C to be the linear space spanned by words r ⊗ c ∈ Fn2×n1

for r ∈ R and c ∈ C. Some known facts regarding the tensor products (see e.g., [19]):

• The code R⊗C consists of all n2 × n1 matrices over F whose rows belong to R and columns
belong to C,

• dim(R⊗ C) = dim(R) · dim(C),

• rate(R⊗ C) = rate(R) · rate(C),

• δ(R⊗ C) = δ(R) · δ(C),

We let C⊗1 = C and C⊗m = C⊗(m−1) ⊗ C for m > 1. Note by this definition, C⊗20 = C and
C⊗2m = C⊗2m−1 ⊗ C⊗2m−1

for t > 0. We also notice that for a code C ⊆ Fn and m ≥ 1 it holds
that rate(C⊗m) = (rate(C))m, δ(C⊗m) = (δ(C))m and the blocklength of C⊗m is nm.

We notice that if coord(C) = [n] then a set of coordinates of C ⊗C is coord(C ⊗C) = [n]× [n].

8



2.2 New Concepts and Definitions

We start by defining the following auxiliary concept.

Definition 2.1 (A core of the code). Let C ⊆ Fn be a linear code. A core of the code, denoted
by A(C), is a nonempty subset of [n] such that dim(C|A(C)) = dim(C), and if A(C) 6= [n] then
dim(C|A(C)) = dim(C) = dim(C|−A(C)). Clearly, there might be many options for A(C), and in
this case we fix only one such option.

We say that A(C) is a γ-core of the code C if A(C) is a core of C, δ(C|A(C)) =
∆(C|A(C))

|A(C)| ≥ γ,

and if A(C) 6= [n] then δ(C|−A(C)) =
∆(C|−A(C))

n−|A(C)| ≥ γ.

Since A(C) ⊆ [n] is a subset, we note that A(C) and [n] \A(C) is a partition of [n].

We notice that under the assumption that A(C) 6= [n], dim(C|A(C)) = dim(C|−A(C)) = dim(C)
and so, it holds that for all c1, c2 ∈ C: c1|A(C) = c2|A(C) if and only if c1|−A(C) = c2|−A(C). I.e., the
bits in A(C) defines all bits in [n] \A(C) and vise versa. We also notice that

δ(C) =
∆(C)

n
=

∆(C|A(C)) + ∆(C|−A(C))

n
≥ γ · |A(C)|+ γ · (n− |A(C)|)

n
= γ,

where we used that ∆(C) = ∆(C|A(C)) + ∆(C|−A(C)) because, under an assumption that A(C) 6=
[n], two codewords of C are equal on A(C) if and only if they equal on [n] \A(C).

Definition 2.2 (Core oriented distance). Assume C ⊆ Fn is a linear code and A(C) is its core.
We define a core oriented distance between two words w,w′ ∈ Fn to be

δA(C)(w,w
′) = max

{
δ(w,w′), δ(w|A(C), w

′|A(C))
}
,

and a core oriented distance between the word w ∈ Fn and the code C to be

δA(C)(w,C) = min
c∈C

{
δA(C)(w, c)

}
.

We note that for every code C ⊆ Fn with a core A(C) and w ∈ Fn it holds that δA(C)(w,C) ≥
δ(w,C).

Remark 2.3. We stress that the standard triangle inequality holds with regards to the core oriented
distance, i.e., for every w1, w2, w3 ∈ Fn it holds that

δA(C)(w1, w2) + δA(C)(w2, w3) =

= max
{
δ(w1, w2), δ(w1|A(C), w2|A(C))

}
+ max

{
δ(w2, w3), δ(w2|A(C), w3|A(C))

}
≥

≥ max
{
δ(w1, w2) + δ(w2, w3), δ(w1|A(C), w2|A(C)) + δ(w2|A(C), w3|A(C))

}
≥

≥ max
{
δ(w1, w3), δ(w1|A(C), w3|A(C))

}
= δA(C)(w1, w3).

A standard q-query tester for a linear code C ⊆ Fn is a randomized algorithm T that on the
input word w ∈ Fn picks non-adaptively a subset I ⊆ [n] such that |I| ≤ q. Then T reads all
symbols of w|I and accepts if w|I ∈ C|I , and rejects otherwise (see [8, Theorem 2]). Hence a
q-query tester can be associated with a distribution over subsets I ⊆ [n] such that |I| ≤ q.
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Definition 2.4 (LTCs and Testers). A q-query tester for a linear code C ⊆ Fn is a distribution D
over subsets I ⊆ [n] such that |I| ≤ q.

• A q-query tester D is a (q, ε, ρ)-tester if for all w ∈ Fn, δ(w, C) ≥ ρ we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε.

• A q-query tester D is a (q, ε)-strong tester if for all w ∈ Fn we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε·δ(w, C).

• A q-query tester D is a (q, ε)-COLTC tester if, given that A(C) is a core of C, for all w ∈ Fn
we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε · δA(C)(w, C).

A code C ⊆ Fn is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-tester. A code C ⊆ Fn is a (q, ε)-strong
LTC if it has a (q, ε)-strong tester. A code C ⊆ Fn is a (q, ε)-COLTC if it has a (q, ε)-COLTC tester.

Remark 2.5. Although the tester in Definition 2.4 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the task is
to test whether w ∈ C and a subset I ⊆ [n] is selected by the tester, the tester can output accept if
w|I ∈ C|I and otherwise output reject. In this manner, the tester always accepts the codewords of
C. We notice that the linearity of C implies that C|I is a linear code.

Remark 2.6. Let C be a linear code and A(C) be its core. If C is a (q, ε)-COLTC (with respect to
the tester DC) then C is a (q, ε)-strong LTC. To see this let w ∈ Fn and note that

Pr
I∼DC

[w|I /∈ C|I ] ≥ ε · δA(C)(w, C) ≥ ε · δ(w, C).

3 Main Results

We state our main result in Theorem 3.1 that gives a probabilistic construction of linear strong
LTCs over the binary field. All code constructions we present in this paper can be taken directly
over any field. For simplicity of the presentation, we prefer to use the binary field.

Theorem 3.1 (Main Theorem). There exists a probabilistic algorithm that constructs (with positive
probability) a family of binary linear codes {Cm}m, where Cm has a core A(Cm), such that letting
km = dim(Cm) and nm = blocklength(Cm) for every m ≥ 1 we have

• km = 22m and rate(Cm) ≥ 1
polylog(km) = 1

polylog(nm) ,

• Cm ⊆ Fnm2 is a (3, 1
polylog(nm))-COLTC and thus is a (3, 1

polylog(nm))-strong LTC (see Remark

2.6), and

• δ(Cm) = Ω(1).

The proof of Theorem 3.1, which describes the probabilistic construction of the required family
of strong LTCs, is postponed to Section 11.

The rejection probability of a tester can be easily amplified by sampling the tester polylog(n)
times. This proves that the strong LTCs presented in Theorem 3.1 have testers with polylogarithmic
query complexity and constant soundness. Thus we conclude the following corollary.

Corollary 3.2. There exists a probabilistic algorithm that constructs a family of linear codes {Cm}m
such that

10



• Cm ⊆ Fnm2 is a (polylog(nm), 1
2)-strong LTCs,

• δ(Cm) = Ω(1), and

• dim(Cm) = 22m and rate(Cm) ≥ 1
polylog(nm) .

The proof of Corollary 3.2 appears in Section 11.

4 Properties sufficient for Robust Testing

In this section we define some properties of codes that are sufficient for robust testing. We start
this section by defining the notion of robustness (Definition 4.2) as was introduced in [10]. To do
that we provide the definition of local distance (Definition 4.1), which will be used in Definition
4.2 and later in our proofs. Then we proceed to define “nice codes” in Definition 4.3 and to state
Theorem 4.4 which argues that nice codes are robustly testable.

In this section we use n to denote the blocklength of the code C, i.e., n = |coord(C)|. Without
loss of generality we assume that coord(C) = [n].

Definition 4.1 (Local distance). Let C ⊆ Fn be a code and w|I be the view on the coordinate
set I ⊆ [n] obtained from the word w ∈ Fn. The local distance of w from C with respect to I is
∆(w|I , C|I) = min

c∈C
{∆(w|I , c|I)} and similarly the relative local distance of w from C with respect

to I is δ(w|I , C|I) = min
c∈C
{δ(w|I , c|I)}.

Informally, we say that a tester is robust if for every word that is far from the code, the tester’s
view is far on average from any consistent view. This notion was defined for LTCs following an
analogous definition for PCPs [5, 17]. We are ready to provide a general definition of robustness.

Definition 4.2 (Robustness). Given a tester (i.e., a distribution) D for the code C ⊆ Fn, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)] be the expected relative local distance of input w.

We say that the tester D has robustness ρD(C) on the code C if for every w ∈ Fn it holds that
ρD(w) ≥ ρD(C) · δ(w,C).

Let {Cn}n be a family of codes where Cn is of blocklength n and Dn is a tester for Cn. A family
of codes {Cn}n is robustly testable with respect to testers {Dn}n if there exists a constant α > 0
such that for all n we have ρDn(Cn) ≥ α.

Let C ⊆ Fn be a code and let S ⊆ 2[n] be a set of some subsets of [n]. Intuitively, think that S
is a set of tests (local views) for C. Let M ∈ Fn be a word. Let rM (I) be the closest word of C|I
to M |I (if there are more than one such codewords fix any of them arbitrarily). Intuitively, the
subset I of M “thinks” that the symbols of M |I should be changed to rM (I), or equivalently, one
can assume that rM (I) is the decoding of M |I to the closest codeword of C|I . In this sense every
subset of S has its own “opinion”.

We say that a point p ∈ [n] is almost fixed if for all I1, I2 ∈ S such that p ∈ I1 ∩ I2 we have
rM (I1)|p = rM (I2)|p, but p is contained in some I such that rM (I)|p 6= M |p. We let ToFix(M) =
{p ∈ [n] | p is almost fixed}. Intuitively, a point p is almost fixed if all subsets I ∈ S containing p
agree on this point, but “think” that its value in M (M |p) should be changed (to rM (I)|p).
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We say that a point p ∈ [n] is inconsistent with respect to M if there exist two subsets I1, I2 ∈ S
such that p ∈ I1∩I2 and rM (I1)|p 6= rM (I2)|p. We let Incon(M) to denote the set of all inconsistent
points with respect toM . A subset I ∈ S is called α-bad with respect toM if |I∩Incon(M)| ≥ α·|I|.
We say that p is contained in an α-bad subset if there exists an α-bad subset I such that p ∈ I.

Definition 4.3 (Nice codes). Let α, β ≤ 1 and m ∈ N+. The code C is called m-bounded with
respect to S if for every i ∈ [n] it holds that 1 ≤ |{I ∈ S | i ∈ I}| ≤ m. The code C is called
α-regulated with respect to S if for every M ∈ Fcoord(C) it holds that every inconsistent point with
respect to M is contained in some α-bad subset of S. We say that C is β-recoverable with respect

to S if for every M ∈ Fcoord(C) and Ŝ ⊆ S such that
|
⋃
I∈Ŝ I|

|coord(C)|
< β and Incon(M)∪ToFix(M) ⊆

(
⋃
I∈Ŝ I), then δ(M,C) ≤

|
⋃
I∈Ŝ I|

|coord(C)|
.

We say that C is (m,α, β)-nice with respect to S if C is m-bounded, α-regulated and β-
recoverable with respect to S.

Now we state Theorem 4.4 which claims that a nice code is robustly testable.

Theorem 4.4 (Nice codes are robustly testable). Let C ⊆ Fn be a code. Assume that D is a
uniform distribution over a set S and all subsets I ∈ S have the same size sz = |I| (for some sz).
If C is (m,α, β)-nice with respect to S then ρD(C) ≥ αβ

m2 .

The proof of Theorem 4.4 is postponed to Section 4.1.

Remark 4.5. Theorem 4.4 considers only the uniform distribution D over the local views (I) of
the same size. It should be possible to extend the theorem to any distribution over the local views
and allow the local views of different size.

4.1 Proof of Theorem 4.4

Let M ∈ Fn be an input word. We prove that ρD(M) ≥ αβ
m2 · δ(M,C).

The overview of the proof All points in M can be classified into the three categories: almost
fixed points (ToFix(M)), inconsistent points (Incon(M)) and good points (where p is a good point
if for all subsets I ∈ S such that p ∈ I it holds that M |p = rM (I)|p).

Intuitively, we prove that whenever ρD(M) is small then δ(M,C) is small. In Proposition 4.6
we show that ρD(M) is proportional to the number of inconsistent points and to the number of
almost fixed points. That means that if ρD(M) is small then the number of inconsistent points and
almost fixed points is small. By assumption, every inconsistent point of M is contained in some
(at least one) α-bad subset of S. By Proposition 4.7 it follows that the number of points covered
by all α-bad subsets is small. We use this observation to argue that M is close to C.

Now we state and prove Proposition 4.6.

Proposition 4.6. It holds that ρD(M) ≥ 1

m
·
(
|Incon(M)|

n
+
|ToFix(M)|

n

)
.

Proof. By definition of robustness (Definition 4.2) we have

ρD(M) = E
I∼D

[δ(M |I , rM (I))] =
EI∼D[∆(M |I , rM (I))]

sz
=

∑
τ ∆(M |I , r(I))

|S| · sz
,
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where we used the fact that there are |S| subsets and every subset contains sz points. Since
nm ≥ sz · |S| we conclude that

ρD(M) ≥ 1

m
·
∑

I ∆(M |I , r(I))

n
.

It is sufficient to prove that
∑
I∈S

∆(M |I , rM (I)) ≥ |Incon(M)|+ |ToFix(M)|.

Note that by definition the set Incon(M) is disjoint to the set ToFix(M). On the other
hand, for every subset I ∈ S and every point p ∈ I, if (M |I)|p 6= rM (I)|p it holds that p ∈
Incon(M) ∪ ToFix(M). Thus for every subset I ∈ S we have

∆(M |I , rM (I)) = |{p ∈ I | p ∈ ToFix(M)}|+ |{p ∈ I | p ∈ Incon(M)}| .

Now, we recall that for every point p ∈ Incon(M) ∪ ToFix(M) there exists at least one subset
I ∈ S (of at most m spaces containing the point p) such that r(I)|p 6= M |p. We conclude that∑

I∈S ∆(M |I , rM (I)) ≥ |Incon(M)|+ |ToFix(M)|.

We let Ŝ ⊆ S be the set of α-bad subsets with respect to M .

Proposition 4.7. It holds that

∣∣∣∣∣∣
⋃
I∈Ŝ

I

∣∣∣∣∣∣ ≤ |Incon(M)|m
α

.

Proof. Every α-bad subset I contains at least α|I| elements. On the other hand, every element of
Incon(M) is contained in at most m subsets of Ŝ. Thus (|

⋃
I∈Ŝ I| ·

α
m) ≤ |Incon(M)|.

We are ready to prove Theorem 4.4.

Proof of Theorem 4.4. First we argue that if |
⋃
I∈Ŝ I| ≥ βn then ρD(M) ≥ αβ

m2
and we are done.

Proposition 4.6 says that ρD(M) ≥ 1

m
· |Incon(M)|

n
. If |

⋃
I∈Ŝ I| ≥ βn then Proposition 4.7 implies

that |Incon(M)|m
α ≥ βn. Thus ρD(M) ≥ 1

m
· |Incon(M)|

n
≥ αβ

m2
.

Otherwise |
⋃
I∈Ŝ I| < βn. First of all, we define the vector M ′ ∈ Fn which is identical to M on

all points outside ToFix(M), and for every point p ∈ ToFix(M) we let M ′|p = rM (I)|p for some
subset I ∈ S containing p (note that all subsets “want” the same value on p). I.e., we fix all points

in ToFix(M) to the “right” values. It holds that δ(M,M ′) ≤ |ToFix(M)|
n .

Notice that there are no almost fixed points in M ′, i.e., ToFix(M ′) = ∅. On the other hand, it
can be easily verified that Incon(M ′) = Incon(M). Thus every point p ∈ Incon(M ′)∪ToFix(M ′)
is contained in some I ∈ Ŝ. By assumption, the code C is (m,α, β)-nice with respect to S (Definition

4.3) and hence δ(M ′, C) ≤ |
⋃
I∈Ŝ I|
n ≤ |Incon(M)|m

αn , where the last inequality holds due to Proposition
4.7. Then it holds that

δ(M,C) ≤ δ(M,M ′) + δ(M ′, C) ≤ |ToFix(M)|
n

+
|Incon(M)|m

α · n
≤

≤ m

α
·
(
|Incon(M)|

n
+
|ToFix(M)|

n

)
.
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Thus Proposition 4.6 yields

ρD(M) ≥ 1

m
·
(
|Incon(M)|

n
+
|ToFix(M)|

n

)
≥ α

m2
· δ(M,C).

5 L-product of codes and their testing

In this section we define a new form of composition of error-correcting codes, called L-product of
codes. We study the properties of these codes in Sections 5.1 and 5.2. Then, in Sections 5.3 and
5.5 we study the robust testing of L-products. Finally, in Section 5.5 we consider the testing of
two-wise L-products.

Let C ⊆ Fn be a linear code and let A(C) ⊆ [n] be its core (see Definition 2.1). We define
L1(C) = C to be the 1-wise L-product.

2-wise L product. We let L2(C) to be the 2-wise L-product of C whose coordinates are
(A(C)× [n]) ∪ ([n]×A(C)), and for every i ∈ A(C) it holds that L2(C)|({i}×[n]) ∈ C and
L2(C)|([n]×{i}) ∈ C, i.e., every axis parallel line that crosses A(C) × A(C) (either {i} × [n] or
[n]× {i}) belongs to C. The core of the code L2(C) is defined to be A(L2(C)) = A(C)×A(C).

Remark 5.1. Intuitively, think that A(C) = [|A(C)|], i.e., it is a set of the first |A(C)| coordinates
in [n]. We chose to call this operation L-product since such two-wise product (L2(C)) reminds the
letter “L”.

m-wise L product. This L product of codes can be easily generalized to m-wise L-product for
every m ≥ 2. For j ∈ [m] and l1, l2, . . . , lj−1, lj+1, . . . , lm ∈ A(C) we define

(j, (l1, l2, . . . , lj−1, lj+1, . . . , lm))− line ≡ {(l1, l2, . . . , lj−1, lj , lj+1, . . . , lm) | lj ∈ [n]}.

We let Lm(C) to be the m-wise L-product of C whose coordinates are the union of all lines,
i.e.,

{(j, (l1, l2, . . . , lj−1, lj+1, . . . , lm))− line | j ∈ [m]} =

{(l1, l2, . . . , lm) | ∃j ∈ [m] : (lj ∈ [n] and ∀i ∈ [m] \ {j} : li ∈ A(C))}
and for every j ∈ [m] and l1, l2, . . . , lm ∈ A(C), letting l′ be the (j, (l1, l2, . . . , lj−1, lj+1, . . . , lm))−line
it holds that Lm(C)|l′ ∈ C.

We let Am(C) =

m︷ ︸︸ ︷
A(C)×A(C)× . . .×A(C). The core of Lm(C), denoted by A(Lm(C)), is

defined to be A(Lm(C)) = Am(C).

Definition 5.2 (Petals of the code). Given a linear code C ⊆ Fn and its core A(C), we say that
C|−A(C) is a single petal of the code C. Note that the coordinate set for this petal is [n] \A(C).

Recall that for m ≥ 2 the code Lm(C) has the core Am(C). We say that the code Lm(C) has
m petals:

Lm(C)|Am−1(C)×([n]\A(C)), L
m(C)|Am−2(C)×([n]\A(C))×A(C), L

m(C)|Am−3(C)×([n]\A(C))×A2(C),

. . . . . . , Lm(C)|A(C)×([n]\A(C))×Am−2(C), L
m(C)|([n]\A(C))×Am−1(C).
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We note that if A(C) is a core of C then every petal of Lm(C) has the same dimension as
Lm(C). I.e., whenever we know the values of all bits in some petal in the given codeword, we know
all bits in this codeword. That means on the one hand, a core of the code determines all bits of
the code, and on the other hand, any petal can determine all bits of the code.

5.1 Properties of Lm(C)

We summarize the properties of Lm(C) in the following claim.

Claim 5.3. Assume that C ⊆ Fn is a linear code, where A(C) is a γ-core of C. Then the following
properties hold.

1. We have δ(C) ≥ γ.

2. It holds that δ(Lm(C)|Am(C)) ≥ γm, δ(Lm(C)|−A(Lm(C))) ≥ γm, and δ(Lm(C)) ≥ γm. In
particular, ∆(Lm(C)) ≥ γm · |coord(Lm(C))|.

3. It holds that dim(Lm(C)) = dim(Lm(C)|Am(C)) = (dim(C))m = dim(C|A(C))
m, where we

used the fact that dim(C|A(C)) = dim(C).

4. It holds that blocklength(Lm(C)) = |coord(Lm(C))| = |A(C)|m +m · |A(C)|m−1(n− |A(C)|).
Thus for m ≥ 2 we have |coord(Lm−1(C))| · |A(C)| ≤ |coord(Lm(C))| ≤ |coord(Lm−1(C))| ·
|A(C)| · 2.

5. It holds that

rate(Lm(C)) =
dim(Lm(C))

blocklength(Lm(C))
≥ (dim(C))m

m|A(C)|m−1n
=

(rate(C|A(C)))
m−1

m
· rate(C),

where the last equality holds since rate(C|A(C)) =
dim(C|A(C))

|A(C)| = dim(C)
|A(C)| .

6. We have L4(C) = L2(L2(C)).

Remark 5.4. Assume C ⊆ Fn is a linear code, where A(C) is a γ-core of C for some constant
γ > 0 (see Definition 2.1).

Then Lm(C) has the same dimension and the same distance promise to C⊗m, since dim(C⊗m) =
dim(Lm(C)) = (dim(C))m, δ(C⊗m) = (δ(C))m ≥ γm and δ(Lm(C)) ≥ γm.

We stress that Lm(C) has much better rate than the m-wise tensor product of C if rate(C) =
o(1) and rate(C|A(C)) = Ω(1). This is true since rate(C⊗m) = (rate(C))m but rate(Lm(C)) ≥
(rate(C|A(C)))

m−1

m · rate(C). In particular, if m ≥ 2 is a fixed constant, then rate(Lm(C)) decreases
only by a constant with respect to rate(C).

E.g., if m ≥ 2 is a constant, rate(C) = 1
logn and rate(C|A(C)) = Ω(1) then rate(C ⊗ C) =

(rate(C))2 = 1
log2 n

, while rate(L2(C)) = Ω( 1
logn). This demonstrates a benefit of the L-products

versus the tensor products.

15



5.2 L-products for different codes

In Section 5 we defined the L-product for a single code C. In this section we define the L-product
for a number of linear codes C1, C2, . . . , Cm such that for i ∈ [m] it holds that Ci ⊆ Fni has the core
A(Ci). This product will be denoted by L(C1, C2, . . . , Cm). The coordinate set of L(C1, C2, . . . , Cm)
is defined by

coord(L(C1, . . . , Cm)) = {(l1, l2, . . . , lm) | ∃j ∈ [m] : (lj ∈ [nj ] and ∀i ∈ [m] \ {j} : li ∈ A(Ci))}.

Every line in coord(L(C1, . . . , Cm)) belongs to the appropriate code Cj , or more formally,
it holds that for every j ∈ [m] and l1 ∈ A(C1), l2 ∈ A(C2), . . . , lm ∈ A(Cm), letting l′ be the
(j, (l1, l2, . . . , lj−1, lj+1, . . . , lm))− line it holds that Lm(C)|l′ ∈ Cj .

The core of L(C1, C2, . . . , Cm) is defined by A(L(C1, C2, . . . , Cm)) = A(C1) × A(C2) × . . . ×
A(Cm).

Claim 5.5. Assume that for every i ∈ [m] a linear code Ci has the core A(Ci). Then

dim(L(C1, . . . , Cm)) = dim(C1) · dim(C2) · . . . · dim(Cm).

Proof. For every i ∈ [m] we know that dim((Ci)|A(Ci)) = dim(Ci). The claim follows since

dim(L(C1, . . . , Cm)) = dim(L(C1, . . . , Cm)|A(C1)×A(C2)×...×A(Cm)) =

dim(C1|A(C1)) · dim(C2|A(C2)) · . . . · dim(Cm|A(Cm)) = dim(C1) · dim(C2) · . . . · dim(Cm).

5.3 Robust Testing of L-products

In this section we consider the “L-space tester” (or briefly, the space tester), which is analogous to
the “hyperplane tester” defined in the work of Ben-Sasson and Sudan [10] (see also [28, 32]). To
do this let us define two auxiliary notations: points and L-spaces (or shortly, spaces).

Definition 5.6 (Points and L-spaces). Let C ⊆ Fn be a linear code where we recall that A(C) is
a core for C.

A point with respect to the code Lm(C) can be associated with an m-tuple (i1, i2, ..., im) such
that (i1, i2, ..., im) ∈ coord(Lm(C)). For b ∈ [m] and i ∈ A(C) we say that τ is a (b, i)-space if

τ = {(i1, i2, . . . , im) | ib = i and (i1, i2, . . . , im) ∈ coord(Lm(C))}.

If τ is a (b, i)-space then Lm(C)|τ denotes the projection of the code Lm(C) to the space τ .

Remark 5.7. Let τ is a (b, i)-space. Note that the projection of any codeword M ∈ Li(C) to the
space τ produces the word M |τ ∈ Li−1(C).

Definition 5.8 (L-space Tester). Let m ≥ 3. Let M ∈ Fcoord(Lm(C)) be an input word and think
of testing whether M ∈ Lm(C). The L-space tester D picks (non-adaptively) a random b ∈ [m]
and random i ∈ A(C), and returns M |(b,i), i.e., the word M projected on the selected (b, i)-space.
It is not hard to prove that if M ∈ Lm(C) then M |(b,i) ∈ Lm−1(C).
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Notice that the L-space tester D is a uniform distribution over the spaces. Now we state our
Lemma 5.9.

Lemma 5.9. Let C ⊆ Fn be a linear code such that A(C) is a γ-core. Let S be the set of spaces

with respect to Lm(C) and D be the space tester for Lm(C). Then Lm(C) is (m, γ
m−1

4 , γ2 )-nice with

respect to S and by Theorem 4.4 it holds that ρD(Lm(C)) ≥ γm

8m2 .

The proof of Lemma 5.9 appears in Section 5.4. Let us prove Theorem 5.10 using Lemma 5.9.

Theorem 5.10 (Main Technical Theorem). Let C be a code such that A(C) is a γ-core. If L2(C)

is a (q, ε)-strong LTC then Lm(C) is a

(
q, ε ·

(
γm

8m2

)m−2
)

-strong LTC.

We are ready to prove Theorem 5.10.

Proof of Theorem 5.10. Let Dm, Dm−1,Dm−2, . . ., and D3 be the space testers for Lm(C), Lm−1(C),
Lm−2(C), . . ., and L3(C), respectively. Assume that M ∈ Fcoord(Lm(C)) be an input word.

Lemma 5.9 says that the tester Di (for 3 ≤ i ≤ m) on an input word Mi outputs the local view
(which is a candidate to be in Li−1(C)) such that the expected relative distance of this local view
from the code Li−1(C) is at least γm

8·m2 · δ(Mi, L
i(C)). Recall that L2(C) is a (q, ε)-strong LTC and

let D2 be its tester.
Let us describe the ”composed” tester, where the composition of testers is done similarly to

[10, 32]. We sample the tester Dm on the word M and obtain a local view M |I for some subset
of coordinates I ⊆ coord(Lm(C)). Then we sample the tester Dm−1 on M |I and obtain a smaller
local view (M |I)|I′ for some subset of coordinates I ′ ⊆ I, etc. Finally, we obtain a local view of D3,
called X, which is a candidate word to be in L2(C) and invoke the tester D of L2(C) on the word
X. The composed tester accepts/rejects as the tester of L2(C), which accepts X with probability
1 if X ∈ L2(C), and otherwise rejects X with probability at least ε · δ(X,L2(C)).

So, the rejection probability of the composed tester on the word M is at least

δ(M,Lm(C)) · γm

8 ·m2
· γm−1

8 · (m− 1)2
· . . . · γ3

8 · 32
· ε ≥ ε ·

(
γm

8m2

)m−2

· δ(M,Lm(C)).

Clearly, the composed tester has query complexity q and always accepts all codewords of Lm(C).

Hence Lm(C) is a

(
q, ε ·

(
γm

8m2

)m−2
)

-strong LTC.

5.4 Proof of Lemma 5.9

First we define the basic concepts (some of the terms defined similarly to [10, 32]) and recall
Definition 5.8. For simplicity we recommend to the reader to think about the case where m = 3.

For b ∈ [m] and i1, i2, . . . , im ∈ A(C) we say that l is a (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line if

l = {(i1, i2, . . . , ib−1, i, ib+1, . . . , im) | where i ∈ [n]}.

Note that (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line is parallel to the b-th axis and crosses the core of
the code Lm(C), i.e., A(Lm(C)). A line l contains a point p if p ∈ l. Note that a
(b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line contains a point p = (j1, i2, . . . , jm) if for all k ∈ [m] \ {b} we
have ik = jk.
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A space τ contains the point p if p ∈ τ and contains the line l if it contains all points of the
line. We say that two (different) spaces τ1 and τ2 intersect if τ1 ∩ τ2 6= ∅.

Given a word M ∈ Fcoord(Lm(C)), b ∈ [m] and i ∈ A(C) we let M |(b,i) be a restriction of M to
the (b, i)-space. We say that M |(b,i) is a (b, i)-space of M . Similarly, for the point p let M |p be a
restriction of M to the point p and for the line l we let M |l be a restriction of M to the line l.

We recall the definitions made in Section 4. For every space τ of M let rM (τ), or simply r(τ),
to denote the closest codeword of Lm−1(C) to M |τ (if there are more than one such codewords
fix any of them arbitrarily). We say that spaces τ1 and τ2 disagree on the point p if p ∈ τ1 ∩ τ2

and r(τ1)|p 6= r(τ2)|p. In this case, the point p is called inconsistent with respect to M . The set
Incon(M) denotes all inconsistent points with respect to M . For the point p we say that the point
is almost fixed if all spaces agree on this point but r(τ)|p 6= M |p. We let ToFix(M) be a set of
almost fixed points with respect to M .

5.4.1 The rest of the proof

Let us state Propositions 5.11 and 5.12. Their proofs are postponed to Sections 5.4.2 and 5.4.3,
respectively.

Proposition 5.11. It holds that C is γm−1

4 -regulated with respect to S.

Proposition 5.12. It holds that C is γ
2 -recoverable with respect to S.

We are ready to prove Lemma 5.9.

Proof of Lemma 5.9. We know that the distribution D is uniform over S and all spaces of S are
of the same size. Note also that Lm(C) is m-bounded with respect to S since for every point
p ∈ coord(Lm(C)) it holds that 1 ≤ |{τ ∈ S | p ∈ τ}| ≤ m.

Proposition 5.11 proves that C is γm−1

4 -regulated with respect to S. Proposition 5.12 shows

that C is γ
2 -recoverable with respect to S. We conclude that C is (m, γ

m−1

4 , γ2 )-nice with respect to
S.

5.4.2 Proof of Proposition 5.11

We need the following simple claim about the intersection of spaces.

Claim 5.13 (space intersections). Let τ1 be the (b1, i1)-space and τ2 be the (b2, i2)-space.

• If b1 = b2 and i1 = i2 then τ1 = τ2.

• If b1 = b2 and i1 6= i2 then τ1 ∩ τ2 = ∅.

• If b1 6= b2 then τ1 ∩ τ2 6= ∅, and if M ∈ Lm(C) then M |τ1∩τ2 ∈ Lm−2(C).

Let M ∈ Fcoord(Lm(C)) be an input word and p = (i1, i2, . . . , im) be an inconsistent point with

respect to M . We recall that a space τ ∈ S is γm−1

4 -bad with respect to M if

|Incon(M) ∩ τ | ≥ γm−1

4
· |τ |.

We prove that p is contained in some γm−1

4 -bad space.
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Proof of Proposition 5.11. Since p is inconsistent there exist two spaces τ1 and τ2 such that p ∈
τ1 ∩ τ2 and r(τ1)|p 6= r(τ2)|p. Due to the symmetry of Lm(C), we assume without loss of generality
that τ1 = (1, i1) and τ2 = (2, i2) for some i1, i2 ∈ A(C). We will prove that either τ1 is a bad space
or τ2 is a bad space.

Consider the intersection of τ1 and τ2, i.e.,

reg = τ1 ∩ τ2 = {(i1, i2, j3, j4, . . . , jm) | (i1, i2, j3, j4, . . . , jm) ∈ coord(Lm(C))}.

Note that p ∈ reg. We are going to define a line l which will be parallel to some axis h 6= 1, 2 such
that p ∈ l. Recall that m ≥ 3. If for every j ∈ [m] \ {1, 2} it holds that ij ∈ A(C) (recall that
p = (i1, i2, . . . , im)) then fix h = 3, otherwise fix h ∈ [m] \ {1, 2} such that ih /∈ A(C) (there is only
one such h since p ∈ coord(Lm(C))).

Again, due to the symmetry we assume without loss of generality that h = 3. Now, let l be a
line, which is parallel to the axis h and contains the point p, i.e.,

l = (h, (i1, i2, . . . , ih−1, ih+1, . . . , im)) = (3, (i1, i2, i4, . . . , im)),

since we assumed that h = 3. Note that l ∈ τ1 ∩ τ2.
The spaces τ1 and τ2 disagree on the line l, i.e., r(τ1)|l 6= r(τ2)|l, because they disagree on the

point p contained in the line l. But r(τ1)|l, r(τ2)|l ∈ C by definition. Now we recall that A(C) is a
core for C and thus (r(τ1)|l)|A(C) 6= (r(τ2)|l)|A(C) ∈ C|A(C). Hence ∆((r(τ1)|l)|A(C), (r(τ2)|l)|A(C)) ≥
∆(C|A(C)).

Since the coordinates of the line l are naturally associated with the coordinates of C, we use
l|A(C) to denote the projection of the line to the coordinate subset associated with A(C).

Let ErrPoints =
{
p ∈ l|A(C) | τ1 and τ2 disagree on p

}
and

ErrSpaces = {(3, i)− space | i ∈ A(C),∃p ∈ (ErrPoints ∩ (3, i)− space)}.

Note that |ErrPoints| ≥ ∆(C|A(C)) ≥ γ|A(C)| and |ErrSpaces| ≥ ∆(C|A(C)) ≥ γ|A(C)|.
We claim that for every τ ∈ ErrSpaces we have that either τ disagrees with τ1 on some point

p ∈ ErrPoints or with τ2 on some point p ∈ ErrPoints. Hence at least one of τ1, τ2 disagrees
with at least 1

2 · |ErrSpaces| ≥
1
2 ·∆(C|A(C)) spaces from ErrSpaces. Without loss of generality

assume that τ1 disagrees with at least 1
2 ·∆(C|A(C)) spaces from ErrSpaces.

Let ErrSpacesτ1 = {τ ∈ ErrSpaces | τ disagrees with τ1}. Recall that |ErrSpacesτ1 | ≥ 1
2 ·

∆(C|A(C)). All spaces from ErrSpaces are non-intersecting and thus all spaces from ErrSpacesτ1
are non-intersecting (see Claim 5.13). Every space τ ∈ ErrSpacesτ1 disagrees with the space τ1 on
some point and hence disagree on at least ∆(Lm−2(C)) points in their intersection region (τ ∩ τ1)
since r(τ)|τ∩τ1 6= r(τ1)|τ∩τ1 ∈ Lm−2(C). To see this note that Lm(C)|τ∩τ1 is a code Lm(C) restricted
to the points in τ ∩ τ1, and thus δ(Lm(C)|τ∩τ1) = δ(Lm−2(C)).

Let total = {p = (j1, j2, . . . , jm) | ∃τ ∈ ErrSpacesτ1 s.t. p ∈ τ ∩ τ1, r(τ)|p 6= r(τ1)|p} be the set
of all “disagreement” points for τ1. We have |total| ≥ ∆(Lm−2(C)) · (1

2 · ∆(C|A(C))) since every
intersection region (as above) contains at least ∆(Lm−2(C)) inconsistency points and there are at
least (1

2 · ∆(C|A(C))) such regions. We stress that we do not count any inconsistency point more
than once, since the spaces in ErrSpacesτ1 are non-intersecting.

Hence the space τ1 contains at least 1
2 ·∆(C|A(C)) ·∆(Lm−2(C)) ≥ 1

4 · γ
m−1 · |τ1| inconsistent

points, where we used that by Claim 5.3 we have ∆(C|A(C)) · ∆(Lm−2(C)) ≥ γ · |A(C)| · γm−2 ·
|coord(Lm−2(C))| ≥ γm−1 · |coord(Lm−1(C))|/2 and |τ1| = |coord(Lm−1(C))|.

We conclude that the point p ∈ τ1, where τ1 is γm−1

4 -bad space.
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5.4.3 Proof of Proposition 5.12

Let Ŝ ⊆ S such that
∣∣⋃

τ∈Ŝ τ
∣∣ < (γ/2) · |coord(Lm(C))|. Assume that Incon(M) ∪ ToFix(M) ⊆⋃

τ∈Ŝ τ belongs to some space in Ŝ. We prove that δ(M,Lm(C)) ≤ |⋃τ∈Ŝ τ |
|coord(Lm(C))| .

Proof of Proposition 5.12. For b ∈ [m] we let

Sb = {τ = (b, j) | j ∈ A(C), τ ∈ S} and S′b = {j | (b, j)− space ∈ Sb}.

For every space τ ∈ S it holds that |τ | = |coord(Lm−1(C))| and |coord(Lm−1(C))| · |A(C)| ≤
|coord(Lm(C))|. Note that for every b ∈ [m] the set Sb contains non-intersecting spaces. Hence

the number of points covered by spaces in Sb is
∣∣∣⋃τ∈Sb τ

∣∣∣ = |Sb| · |coord(Lm−1(C))|. On the other

hand, ∣∣∣∣∣∣
⋃
τ∈Sb

τ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
τ∈Ŝ

τ

∣∣∣∣∣∣ < (γ/2) · |coord(Lm(C))| ≤ γ|A(C)| · |coord(Lm−1(C))|.

Thus for every b ∈ [m] we have |S′b| = |Sb| < γ|A(C)| ≤ ∆(C|A(C)). Thus for every b ∈ [m] we have
dim(C) = dim(C|−S′b) = dim((C|A(C))|−S′b).

It holds that Lm(C)|−Ŝ = L(C|−S′1 , C|−S′2 , . . . , C|−S′m) and dim(L(C|−S′1 , C|−S′2 , . . . , C|−S′m)) =

dim(L(

m︷ ︸︸ ︷
C,C, . . . , C)) = dim(Lm(C)) (see Claim 5.5). Notice that M |−Ŝ ∈ Lm(C)|−Ŝ since all

inconsistent and almost fixed points were projected out.
We claim that every codeword c′ of Lm(C)|−Ŝ can be extended to a unique codeword c of

Lm(C). To see this note that the projection of C to C|−S′b is bijective for every b ∈ [m].
It is surjective because it is a projection, and it is injective because dim(C) = dim(C|−S′b).
So, the projection of Lm(C) to Lm(C)|−Ŝ is bijection, because both codes are of dimension
dim(L(C|−S′1 , C|−S′2 , . . . , C|−S′m)) = dim(Lm(C)). Thus every word in Lm(C)|−Ŝ has a unique
preimage in Lm(C). This observation implies that every codeword of Lm(C)|−Ŝ can be uniquely ex-

tended to the codeword of Lm(C) by appending
∣∣⋃

τ∈Ŝ τ
∣∣ symbols. We conclude that δ(M,Lm(C)) ≤

|⋃τ∈Ŝ τ |
|coord(Lm(C))| .

5.5 L2(C) is testable but is not robustly testable

Let C ⊆ Fn be a linear code with γ-core A(C). Consider L2(C) and recall that coord(L2(C)) =
(A(C) × [n]) ∪ ([n] × A(C)). We also recall that M ∈ Fcoord(L2(C)) is a codeword of L2(C) if and
only if for every i ∈ A(C) it holds that M |{i}×[n] ∈ C and M |[n]×{i} ∈ C.

We define the line tester for the code L2(C), which is an analogue to the row/column tester for
the two-wise tensor product [10, 12, 11, 19, 31].

Definition 5.14 (Line Tester). Assume that M ∈ Fcoord(L2(C)) is an input word.

• Toss a coin.

• If “head” - pick random i ∈ A(C) and accept iff M |{i}×[n] ∈ C.

• Otherwise - pick random i ∈ A(C) and accept iff M |[n]×{i} ∈ C.
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Using this line tester we prove the following Proposition.

Proposition 5.15 (L2(C) is testable). Let C ⊆ Fn be a linear code with γ-core A(C). Then L2(C)
is (n, 1

2)-strong LTC.

Proof. Let D be the line tester for the code L2(C). Clearly, the query complexity of the tester is
n. It also easy to see that the tester accepts all codewords M ∈ L2(C) with probability 1.

We turn to analyze its soundness parameter. Let M ∈ Fcoord(L2(C)) be an input word.
For i ∈ A(C) we say that a line {i} × [n] is erroneous if M |{i}×[n] /∈ C, and similarly, we say

that a line [n]× {i} is erroneous if M |[n]×{i} /∈ C.
The number of all lines is 2|A(C)| since for every i ∈ A(C) there are two lines: {i} × [n] and

[n]× {i}. Let Err be the number of erroneous line. Then the rejection probability of the tester is
Err

2|A(C)|
.

On the other hand, δ(M,L2(C)) ≤ Err

|A(C)|
. This is true since all erroneous lines can be removed

from the word M , and then can be reconstructed back. This statement is very similar to the
corresponding statement in the 2-wise tensor products [11].

Thus the rejection probability is at least 1
2 · δ(M,L2(C)).

However, this line tester (Definition 5.14) does not provide a robust testing.

Proposition 5.16 (L2(C) is not robustly testable). For arbitrary large n > 0, there exists a linear
code C ⊆ Fn2 with γ-core A(C) such that letting D be its line tester we have ρD(L2(C)) = o(1).

Proof. We recall the result of [16], which was based on the work of [31] (see also [23]). In [16]
the authors constructed a code R ⊂ Fh2 (for arbitrary large h > 0) such that δ(R) ≥ γ for some
constant γ > 0 and a word M ∈ Fh×h2 such that every row and every column of M is o(1)-close to
R but δ(M,R⊗R) ≥ Ω(1).

Let n = 2h and C ⊆ Fn2 such that C|[h] = R and C|[n]\[h] = R. I.e., C = (R,R). We fix
A(C) = [h] and note that it is a γ-core of C since δ(C|A(C)) ≥ γ and δ(C|−A(C)) ≥ γ.

Now, let X ∈ Fcoord(L2(C))
2 be a word such that for every i ∈ A(C) we have

X|{i}×[h] = X|{i}×([n]\[h]) = M |{i}×[h]

and
X|[h]×{i} = X|([n]\[h])×{i} = M |[h]×{i}.

It can be verified that for every i ∈ A(C) we have δ(X|{i}×[n], C) = o(1) and δ(X|[n]×{i}, C) =

o(1). But δ(X,L2(C)) ≥
δ
(
X|A(C)×A(C), L

2(C)|A(C)×A(C)

)
3

=
δ(M,R⊗R)

3
= Ω(1). Hence

ρD(L2(C)) = o(1).

6 Robust Testing of Tensor Products

In this section we reprove the main result of [32]. Let C ⊆ Fn be a linear code. We consider the
code C⊗m ⊆ Fnm and note that coord(C⊗m) = [n]m.
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We briefly recall the basic notations from [32]. A point p is denoted as (i1, i2, . . . , im) such that
ij ∈ [n]. We say that τ is a (b, i)-hyperplane if

τ = {(i1, i2, . . . , im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [n]}.

In the rest of the paper, such hyperplanes τ will be called (m− 1)-dimensional hyperplanes, since
all points of such hyperplanes are determined using m dimensions (i1, i2, . . . , im), while one of them
is fixed (ib = i) and the other are to be chosen.

Given a word M ∈ Fnm and hyperplane τ we let M |τ be a restriction of M to the hyperplane τ .
Similarly, for the point p let M |p be a restriction of M to the point p. Let S be a set of hyperplanes
with respect to C⊗m.

Definition 6.1 (Hyperplane Tester). Let m ≥ 3. Let M ∈ Fnm be an input word and think of
testing whether M ∈ C⊗m. The hyperplane tester D picks (non-adaptively) a random b ∈ [m] and
random i ∈ [n], and returns (b, i)-hyperplane (the corresponding local view is M |(b,i)). Notice that

if M ∈ C⊗m then M |(b,i) ∈ C⊗(m−1).

Now we state Theorem 6.2 and postpone its proof to Section 6.1.

Theorem 6.2 (Robust Testing of Tensor Products). Let C ⊆ Fn be a linear code and m ≥ 3. Let

D be the hyperplane tester for C⊗m. Then C⊗m is
(
m,
(

(δ(C))m−1

2

)
, δ(C)

)
-nice with respect to S

and by Theorem 4.4 it follows that ρD(C⊗m) ≥ (δ(C))m

2m2
.

6.1 Proof of Theorem 6.2

First we recall some notations. Then we state and prove Propositions 6.3 and 6.4. Finally, we
prove Theorem 6.2.

For b ∈ [m] and i ∈ [n] we say that l is a (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line if

l = {(i1, i2, . . . , ib−1, i, ib+1, . . . , im) | where i ∈ [n]}.

Note that (b, (i1, i2, . . . , ib−1, ib+1, . . . , im))-line is parallel to the b-th axis. For the line l we let M |l
be a restriction of M to the line l.

Recall that given M ∈ Fnm , a hyperplane τ is
(

(δ(C))m−1

2

)
-bad if it contains at least

(
(δ(C))m−1

2

)
inconsistent points with respect to M .

Proposition 6.3. Let p be an inconsistent point with respect to M . Then p is contained in some(
(δ(C))m−1

2

)
-bad hyperplane.

Proof. We know that there are (at least) two hyperplanes that disagree on the point p. Assume
without loss of generality (symmetry) that the hyperplanes τ1 = (1, i1) and τ2 = (2, i2) disagree on
the point p.

Consider the intersection of τ1 and τ2, i.e., reg = τ1 ∩ τ2 = {(i1, i2, j3, j4, . . . , jm) | jk ∈ [n]}.
Note that p ∈ reg. Let l be a line, which is parallel to the third axis and contains the point p
(recall that m ≥ 3). Then the hyperplanes τ1 and τ2 disagree on this line (since they disagree on
the point p contained in the line l), i.e., r(τ1)|l 6= r(τ2)|l. But r(τ1)|l, r(τ2)|l ∈ C by definition.

22



This implies that ∆(r(τ1)|l, r(τ2)|l) ≥ δ(C) · n, i.e., for at least δ(C) · n points p ∈ l it holds that
r(τ1)|p 6= r(τ2)|p.

Let BadPoints = {p ∈ l | τ1 and τ2 disagree on p}. Note that |BadPoints| ≥ δ(C) · n. Let

BadP lanes = {(3, i)− hyperplane | i ∈ [n],∃p ∈ BadPoints s.t. p ∈ (3, i)− hyperplane}.

Note that |BadP lains| ≥ δ(C) · n.
We claim that for every τ ∈ BadP lanes we have that either τ disagrees with τ1 on some point

p ∈ BadPoints or with τ2 on some point p ∈ BadPoints. Hence at least one of τ1, τ2 disagrees
with at least 1

2 · |BadP lanes| ≥
1
2 · δ(C)n hyperplanes from BadP lanes. Without loss of generality

assume that τ1 disagrees with at least 1
2 · δ(C) · n hyperplanes from BadP lanes.

LetBadP lanesτ1 = {τ ∈ BadP lanes | τ disagrees with τ1}. All hyperplanes fromBadP lanes
are non-intersecting and thus all hyperplanes from BadP lanesτ1 are non-intersecting. Every hyper-
plane τ ∈ BadP lanesτ1 disagrees with the hyperplane τ1 on some point and hence disagree on at
least (δ(C)n)m−2 points in their intersection region (τ ∩ τ1) since r(τ)|τ∩τ1 6= r(τ1)|τ∩τ1 ∈ C⊗(m−2).

Let total = {p = (i1, j2, . . . , jm) | ∃τ ∈ BadP lanesτ1 s.t. p ∈ τ ∩ τ1, r(τ)|p 6= r(τ1)|p}. We have

|total| ≥ (δ(C)n)m−2 · δ(C)·n
2 = (δ(C)·n)m−1

2 since every intersection region (as above) contains at
least (δ(C)n)m−2 inconsistency points and there are at least 1

2 ·δ(C) ·n such regions. We stress that
we do not count any inconsistency point more than once, since the hyperplanes in BadP lanesτ1
are non-intersecting.

Hence the hyperplane τ1 disagree with other hyperplanes in at least (δ(C)·n)m−1

2 points (on the

hyperplane τ1). We conclude that τ1 is a
(

(δ(C))m−1

2

)
-bad hyperplane and p ∈ τ1.

Proposition 6.4. Let M ∈ Fnm. Assume Ŝ ⊆ S is a subset of hyperplanes such that Incon(M) ∪
ToFix(M) ⊆

(⋃
τ∈Ŝ τ

)
and

|⋃τ∈Ŝ τ |
nm < δ(C). Then δ(M,C⊗m) ≤

⋃
τ∈Ŝ τ

nm .

Proof. For b ∈ [m] let Sb =
{
i | (b, i)− hyperplane ∈ Ŝ

}
and note that S = S1 × S2 × . . . × Sm.

Let C ′ = C|S1 ⊗ C|S2 ⊗ . . .⊗ C|Sm and note that for every i ∈ [n] we have |Si| > n− δ(C) · n.
First we argue that every codeword c′ of C⊗m|−Ŝ can be extended to a unique codeword c of

C⊗m. To see this note that the projection of C to C|Si is bijective. It is surjective because it
is a projection, and it is injective because |Si| > n − ∆(C). So, the projection of C⊗m to C ′ is
bijection, because both codes are of dimension (dim(C))m. Thus, every word in C⊗m|−Ŝ has a
unique preimage in C⊗m. This argument was used by Ben-Sasson and Sudan in [10, Proposition
3.1]. We turn to prove Proposition 6.4. We know that M |−Ŝ ∈ C

⊗m|−Ŝ since all inconsistent and
almost fixed points were projected out. Thus only changing the symbols in M |Ŝ we can obtain a

codeword of C⊗m. We conclude that δ(M,C⊗m) ≤
⋃
τ∈Ŝ τ

nm .

We are ready to prove Theorem 6.2.

Proof of Theorem 6.2. We know that all hyperplanes of the code C⊗m are of the equal size and
that the hyperplane tester (Definition 6.1) has a uniform distribution over the hyperplanes. We
know also that C⊗m is m-bounded with respect to S.

Proposition 6.3 shows that C⊗m is
(

(δ(C))m−1

2

)
-regulated with respect to S. Proposition 6.4

implies that C⊗m is δ(C)-recoverable with respect to S. We recall Definition 4.3 and conclude that

C⊗m is
(
m,
(

(δ(C))m−1

2

)
, δ(C)

)
-nice.
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7 Robust Testing of Star products

We start this section by providing an auxiliary Definition 7.1 and Claims 7.2 and 7.3 that will be
highly useful in our studying of star products (Section 7.1) and robust testing of star products
(Section 7.2). Then we proceed to define the star products and to study their basic properties
in Section 7.1. Finally, in Section 7.2 we prove that the star products are robustly testable with
respect to the core robustness (Definition 7.1).

Now we present one of the cental concepts in this paper.

Definition 7.1 (Core robustness). Assume that D is a tester (i.e., a distribution) for the code
C ⊆ Fn with a core A(C). Assume that for every subset I ⊆ [n] such that D(I) > 0 it holds
that C|I is a code with a core A(C|I). We let ρDA(C)(w) = E

I∼D

[
δA(C|I)(w|I , C|I)

]
be the expected

core oriented relative local distance of input w. We say that the tester D for the code C has core
robustness ρDA(C)(C) if for every w ∈ Fn it holds that ρDA(C)(w) ≥ ρDA(C)(C) · δA(C)(w,C).

It turns out that a combination of “core robustness” with COLTCs is highly useful.

Claim 7.2. Let C be a (q, ε)-COLTC and let DC be its tester. Let Ĉ ⊆ Fcoord(Ĉ) be a linear code

with a core A(Ĉ) and let DĈ be its tester. Assume that ρ
DĈ
A(Ĉ)

(Ĉ) ≥ α and for every local view

I ⊆ coord(Ĉ) such that DĈ(I) > 0 it holds that Ĉ|I = C. Then Ĉ is a (q, α · ε)-COLTC.

Proof. We consider a composed tester of DĈ and DC that on the input word invokes the tester
DĈ and then, on the obtained local view invokes the tester DC . The composed tester has query

complexity at most q (as DC) and always accepts the codewords of Ĉ. Moreover, the rejected

probability of this composed tester on the word w ∈ Fcoord(Ĉ) is at least

E
I∼DĈ

[
ε · δA(C)(w|I , Ĉ|I)

]
= ε · E

I∼DĈ

[
δA(C)(w|I , Ĉ|I)

]
≥ ε · (α · δA(C)(w, Ĉ)).

Following definitions of Section 4, given a code C ⊆ Fn, I ⊆ [n] and w ∈ Fn we set r(w|I) to be
a closest word of C|I to w|I (if there are more than one such word, we fix one arbitrary). Similarly,
we let r(w) to be a closest word of C to w.

Claim 7.3. Let C be a linear code with a γ-core A(C) for some constant γ > 0. Let w ∈ Fcoord(C)

be a word such that δA(C)(w,C) < γ/2. Then r(w)|A(C) = r(w|A(C)).

Proof. The fact that δA(C)(w,C) < γ/2 implies that there exists a codeword c ∈ C such that
δA(C)(w, c) < γ/2. That means δ(w|A(C), c|A(C)) < γ/2 and δ(w, c) < γ/2, where δ(C|A(C)) ≥ γ
and δ(C) ≥ γ, because A(C) is a γ-core (see Definition 2.1). Thus c|A(C) is the closest codeword of
C|A(C) to w|A(C), and c is the closest codeword of C to w. Hence, r(w) = c and r(w|A(C)) = c|A(C).
Thus r(w)|A(C) = r(w|A(C)).

7.1 Star Products

Now we provide a definition of star products. These products of codes are very similar to ones used
in [27, Section 4], although there exist minor differences.
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Definition 7.4 (Star Products - C?m). Let C ⊆ Fn2 be a linear code and with a γ-core A(C),
where γ > 0 is a constant. Assume that for a linear code R ⊆ FnR2 we have A(C) = [nR]2 and
C|A(C) = R⊗2. In this case we let C?2 = C and A(C?2) = A(C) = [nR]2.

Let residue2 be an operator such that residue2(A(C?2)) = coord(C?2)\A(C?2). That means given
a core coordinates of the code C?2 it outputs the non-core coordinates of the code C?2. This operator
is important since the coordinates of the code might be enumerated in a different way. Note that
|residue2(A(C?2))| = n−|A(C?2)| and that for every c ∈ C?2 we have c = (c|A(C?2), c|residue2(A(C?2))).

We define C?m and residuem(·) by induction for m ≥ 2 be an integer. Assume we defined
C?(m−1) and residuem−1(·). We will use the term “hyperplane” to denote an (m − 1)-dimensional
hyperplane. Let C?m to be a linear code over F2 and residuem(·) be an operator such that

• A(C?m) = [nR]m and (C?m)|A(C?m) = R⊗m.

• coord(C?m)\A(C?m) is defined to be a union of all coordinate subsets residuem−1(τ) for all hy-
perplanes τ , where we assume that for every two hyperplanes τ1 6= τ2 we have residuem−1(τ1)∩
residuem−1(τ2) = ∅, i.e., the coordinates of every subset residuem−1(τ) are unique. 5 The
projected code C?m|−A(C?m) is defined to be a code such that for every hyperplane τ it holds

that C?m|residue(m−1)(τ) = C?(m−1)|−A(C?(m−1)) and C?m|(τ∪residue(m−1)(τ)) = C?(m−1).

• We define residuem(A(C?m)) = coord(C?m) \ A(C?m). So, for every M ∈ C?m we have
M =

(
M |A(C?m),M |residuem(A(Cm))

)
.

Remark 7.5. We note that given M ∈ C?m and an (m − 1)-dimensional hyperplane τ we have
(M |τ ,M |residuem−1(τ)) ∈ C?(m−1). This is true since C?m|(τ∪residue(m−1)(τ)) = C?(m−1).

The following claim shows the affect of the star product on the dimension, the distance and the
rate of the underlying code.

Claim 7.6. Let C?2 ⊆ Fn2 be a linear code and with a γ2-core A(C?2), where γ > 0 is a constant.
Assume that for a linear code R ⊆ FnR2 we have A(C?2) = [nR]2 and C?2|A(C?2) = R⊗2. Then,

• dim(C?4) = (dim(C?2))2,

• blocklength(C?4) ≤ 12|A(C?2)| · blocklength(C?2),

• if dim(C?2)
|A(C?2)| ≥ β > 0 then rate(C?4) ≥ β

12
· rate(C?2), and

• A(C?4) is a (γ4)-core of C?4. In particular, δ(C?4) ≥ γ4 and δ(C?4|A(C?4)) ≥ γ4.

Proof. We recall that blocklength(C?2) = n and |A(C?2)| = n2
R ≤ n. We know that dim(C?4) =

(dim(C?2))2 since the code C?4 projected on A(C?4) is equal to R⊗4, while C?2 projected on A(C?2)
is equal to R⊗2. Thus dim(C?4) = (dim(R))4 and dim(C?2) = (dim(R))2.

By definition we have

blocklength(C?4) = 4 · nR · blocklength(C?3) = (4 · nR) · (3 · nR) · blocklength(C?2) =

5The term hyperplane was defined in Section 6 and here it has exactly the same meaning with regards to R⊗m,
i.e., τ = (b, i) for some b ∈ [m], i ∈ [nR] means

τ = {(i1, i2, . . . , im) | ib = i and for all j ∈ [m] \ {b} we have ij ∈ [nR]}.
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= 12 · n2
R · blocklength(C?2) = 12 · |A(C?2)| · blocklength(C?2),

where we used the fact that there are (4 · nR) 3-dimensional hyperplanes with regards to the code
C?4 and there are (3 · nR) 2-dimensional hyperplanes with regards to the code C?3. Thus,

rate(C?4) =
dim(C?4)

blocklength(C?4)
≥ (dim(C?2))2

12|A(C)| · blocklength(C?2)
≥ β

12
· rate(C?2).

We know that A(C?4) is a core of C?4 such that C?4|A(C?4) = R⊗4. Similarly, A(C?3) is a core of
C?3 such that C?3|A(C?3) = R⊗3. Thus δ(C?4|A(C?4)) ≥ γ4 and δ(C?3|A(C?3)) ≥ γ3. Every residue2

of a 2-dimensional hyperplane of C?3 has relative distance γ2, i.e., for a 2-dimensional hyperplane
τ we have δ(C?3|residue2(τ)) ≥ γ2 because A(C?2) is a (γ2)-core. Thus δ(C?3|−A(C?3)) ≥ γ3 and
similarly, δ(C?4|−A(C?4)) ≥ γ4.

We conclude that A(C?4) is a (γ4)-core of C?4.

7.2 Star Products are Robustly Testable

We are ready to define a tester for the star products and prove Theorem 7.8.

Definition 7.7 (Tester for the Star Product). The star-tester D?m for the code C?m, on the given
word M acts as follows.

• picks a random (m− 1)-dimensional hyperplane τ with regards to C?m|A(C?m) = R⊗m,

• outputs M |(τ∪residuem−1(τ)).

We notice that this star-tester is m-bounded (Definition 4.3) with respect to C?m since every
coordinate/point of the code C?m is contained in at most m local views and in at least 1 local
view selected by the star-tester. Moreover, all local views are of the same size and the tester has a
uniform distribution over these local views.

Now we state and prove Theorem 7.8 that shows that the star products are robustly testable
with respect to “core robustness” (see Definition 7.1). Then we will conclude Corollary 7.9 showing
that if C?2 is a q-query COLTC, then C?4 is a q-query COLTC.

Theorem 7.8. Let C be a linear code with a γ2-core A(C) such that C|A(C) = R⊗2 for a linear
code R ⊆ FnR2 . Assume that D is the star-tester for the code C?m, where m ≥ 3. Then,

ρDA(C?m)(C
?m) ≥ γm

7 ·m2
.

Proof. We know that δ(C|A(C)) ≥ γ2, δ(C|−A(C)) ≥ γ2 and δ(C) ≥ γ2 (see Definition 2.1). Since
δ(C|A(C)) = (δ(R))2 we know that δ(R) ≥ γ.

Let M ∈ Fcoord(C?m)
2 be an input word and α = ρDA(C?m)(M). If ρDA(C?m)(M) ≥ γm

7·m2 we are

done. Otherwise, assume that ρDA(C?m)(M) < γm

7·m2 for the rest of the proof.

In the rest of the proof, when we say “a hyperplane” the intention is “(m − 1)-dimensional
hyperplane”. Notice that the local views selected by the tester can be denoted by (τ, residuem−1(τ))
for a hyperplane τ selected at random. Recall that τ ⊆ A(C?m). We have

ρDA(C?m)(M) = E
(τ∪residuem−1(τ))∼D

[
δA(C?(m−1))(M |(τ∪residuem−1(τ)), C

?(m−1))
]

= α.
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Let us call the local view (τ ∪ residuem−1(τ)) far if δA(C?(m−1))(M(τ∪residuem−1(τ)), C
?(m−1)) ≥

γm−1

4
, and otherwise it is close. This implies that the fraction of far local views is at most β = 4α

γm−1 .

By arguments similar to Claim 7.6 we have δ(C?m|τ∪residuem−1(τ)) = δ(C?(m−1)) ≥ γm−1 and
δ(C?m|τ ) ≥ γm−1. Hence δA(C?(m−1))(C

?m|τ∪residuem−1(τ)).
Now we recall Claim 7.3 saying that besides far local views (τ∪residuem−1(τ)), we have r(M |τ ) =

r(M |(τ∪residuem−1(τ)))|τ . This is a crucial fact, which shows that decoding of the “close” local view

M |(τ∪residuem−1(τ)) to the closest codeword of C?(m−1) is equivalent to decoding of its “core” part

M |τ to the closest codeword of R⊗(m−1) and then fixing the bits of its non-core part M |(residuem−1(τ))

to correspond to the obtained “core” part of the local view. Recall that the core bits uniquely defines
the non-core bits (see Definition 2.1).

We recall the concepts of inconsistent and almost fixed points from Section 4 with respect to our
local views ((τ∪residuem−1(τ))) for hyperplanes τ and the wordM : Incon(M) and ToFix(M). The
intuition of this paragraph is similar to one that was used in the proof of Theorem 4.4 in Section 4.1.
Let us fix all almost fixed point to their “right values” in M and to obtain M ′, i.e., if the coordinate
p ∈ (τ ∪residuem−1(τ)) is almost fixed, then M ′|p = r(M |(τ∪residuem−1(τ)))|p. By Proposition 4.6, we

have |ToFix(M)|
|coord(C?m)| ≤ α ·m. Thus δ(M,M ′) ≤ αm. Similarly, we have

|ToFix(M |A(C?m))|
|A(C?m)| ≤ α ·m since

α denotes the core robustness of the tester, which was defined with respect to the core oriented
distance. Hence δ(M |A(C?m),M

′|A(C?m)) ≤ αm. We conclude that δA(C?m)(M,M ′) ≤ αm. Now, it
holds that M ′ has no almost fixed points but Incon(M ′) = Incon(M).

Notice that after almost fixed points were fixed, the average distance of a typical local view on
M ′ could become only smaller and, in particular, we have

α ≥ E
(τ∪residuem−1(τ))∼D

[
δA(C?(m−1))(M

′|τ∪residuem−1(τ), C
?(m−1))

]
≥

≥ E
τ

[
δ(M ′|τ , C?(m−1)|A(C?(m−1)))

]
= E

τ

[
δ(M ′|τ , R⊗(m−1))

]
.

In words, an average hyperplane of M ′ is α-close to being consistent.

We say that a hyperplane τ is bad with respect to M ′ if at least γ(m−1)

2 · nm−1
R of its entries

are inconsistent points, and recall that |τ | = nm−1
R . By Theorem 6.2, every inconsistent point

is contained in at least one bad hyperplane. Moreover, every inconsistent point is covered by at
most m bad hyperplanes (notice that all hyperplanes are subsets of A(C?m)). We notice also
that inconsistent points can be only in A(C?m) since every coordinate of coord(C?m) \ A(C?m) is
covered by a single local view, which is a residue of the corresponding hyperplane. Recall that
every hyperplane has its own (unique) residue.

Thus, recalling that Incon(M ′) = Incon(M), we use
∣∣Incon(M |A(C?m))

∣∣ to denote that all
inconsistent points of M (or M ′) are in M |A(C?m), and so, the number of bad hyperplanes is at
most

m ·
∣∣Incon(M |A(C?m))

∣∣
(γ(m−1)/2) · nm−1

R

=
2m ·

∣∣Incon(M |A(C?m))
∣∣

γ(m−1)nm−1
R

.

So, the fraction of bad hyperplanes is at most

β′ =
2m ·

∣∣Incon(M |A(C?m))
∣∣

γ(m−1)m · nmR
=

2
∣∣Incon(M |A(C?m))

∣∣
γ(m−1)nmR

,
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since the total number of hyperplanes is m · nR.
Proposition 4.6 implies that

α = ρDA(C?m)(M
′) ≥

Incon(M |A(C?m))

m · nmR
,

which means that
∣∣Incon(M |A(C?m))

∣∣ ≤ α(m · nmR ). Thus, β′ =
2α(m·nmR )

γ(m−1)·nmR
= 2mα

γ(m−1) .

Remove from M ′ all local views (M ′|(τ∪residuem−1(τ))) if the hyperplane τ is bad or the local
view (τ ∪ residuem−1(τ)) is far. So we remove

β + β′ ≤ 4α

γm−1
+

2mα

γ(m−1)
≤ 6mα

γm−1
<

γ

m

fraction of hyperplanes and local views, where we use the assumption that α < γm

7m2 .
Since this fraction is less than γ

m , the fraction of points covered by the removed hyperplanes
in M ′|A(C?m) is strictly less than γ ≤ δ(R) and thus by Proposition 6.4, all removed local views
can be restored back (modified) to form a codeword. This can be done first, as in Proposition 6.4,
by restoring the removed hyperplanes in M ′|A(C?m), which is a candidate to be in R⊗m, and after
that restoring the residues of the restored hyperplanes. Recall that every hyperplane has its unique
residue, where different residues are not intersected and the bits of a residue is uniquely determined
by the bits of its hyperplane. Call the resulting word X and note that X ∈ C?m. It holds that

δA(C?m)(M
′, X) = max

{
δ(M ′|A(C?m), X|A(C?m)), δ(M

′, X)
}
≤ β + β′ ≤ 6mα

γm−1
.

Remark 2.3 implies that δA(C?m)(M,X) ≤ δA(C?m)(M,M ′) + δA(C?m)(M
′, X). Since X ∈ C?m

we have

δA(C?m)(M,C?m) ≤ αm+
6mα

γm−1
≤ 7mα

γm−1
.

We conclude that

α = ρDA(C?m)(M) ≥ γm−1

7m
· δA(C?m)(M,X) ≥ γm

7m2
· δA(C?m)(M,X).

We conclude the following corollary.

Corollary 7.9. Assume that C?2 is a (q, ε)-COLTC and A(C?2) is a γ2-core of C?2. Assume that

C?2|A(C?2) = R⊗2 for some linear code R ⊆ FnR2 . Then C?4 is a
(
q, ε ·

(
γ7

104

))
-COLTC.

Proof. The proof of Corollary 7.9 follows from Theorem 7.8 and Claim 7.2.
Let D3 be the star-tester for the code C?3 and let D4 be the star-tester for the code C?4.

Theorem 7.8 implies that

ρDA(C?3)(C
?3) ≥ γ3

7 · 32

and

ρDA(C?4)(C
?4) ≥ γ4

7 · 42
.
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Notice that the local views of the tester D4 on any input codeword M ∈ C?4 belong to C?3. Thus
we can define the combined tester Dcomb that on the input word M will invoke the tester D4, and
then on the obtained local view will invoke the tester D3. The resulting local views produced by
the combined tester are candidates to belong to C?2.

Thus ρDcomb
A(C?4)

(C?4) ≥
(
γ4

7·42

)
·
(
γ3

7·32

)
≥ γ7

104
. Since C?2 is a (q, ε)-COLTC, Claim 7.2 implies that

C?4 is a
(
q, ε ·

(
γ7

104

))
-COLTC.

8 Concatenation can preserve the query complexity

In this section we develop our main tools that will be used in Section 9 to show how to implement
the distance amplification procedure to preserve the query complexity of the underlying COLTC.

Let us start from the definition of locally decodable codes (LDCs). Then we will define a
concatenation of error-correcting codes in Definition 8.3. Finally, we state the main theorem of
this section (Theorem 8.4), whose proof is postponed to Section 8.2 and relies on the new kind of
testing presented in Section 8.1.

Definition 8.1 (LDCs). Let C ⊆ Fn2 be a linear code of dimension k = dim(C). Let EC : Fk2 → Fn2
be the encoding function of C, i.e., C =

{
EC(m) | m ∈ Fk2

}
. Then C is a (q, ε, α)-LDC (where

ε < 1
|F2| = 1

2) if there exists a randomized decoder D that reads at most q queries and the following
condition holds.

• For all m ∈ Fk2 and i ∈ [k] letting c = EC(m) we have that Pr[Dc[i] = mi] = 1.

• For all m ∈ Fk2, i ∈ [k] and ĉ ∈ Fn2 such that δ(EC(m), ĉ) ≤ α we have Pr
[
Dĉ[i] 6= mi

]
≤ ε.

Note that Definition 8.1 is a bit non-standard since it requires that given any codeword the
decoder retrieves correctly any message symbol with probability 1. However, it seems that any
linear LDC should satisfy this requirement, and in particular, the famous Hadamard code is known
to be (2, 2α, α)-query LDC for 0 ≤ α < 1

4 (under Definition 8.1).
Notice also that Definition 8.1 implies that α < δ(C)/2 since otherwise there exists a word w

which is α-close to two different codewords (EC(m1) 6= EC(m2)) and the decoder will not be able
to retrieve with high probability some message entries.

The following fact is known due to [15, 4, 3, 25].

Fact 8.2 (Hadamard code). Let H ⊆ F2t
2 be the Hadamard code. The generator matrix of H is a

binary matrix GH ∈ F2t×t
2 whose rows are all distinct vectors in Ft2, so H =

{
GH · x | x ∈ F k2

}
.

Then H is a (3, 1
2)-strong LTC and (2, 2α, α)-LDC for every 0 ≤ α ≤ 1

4 .

We recall that the Hadamard code H ⊆ F2t
2 contains the message bits as a part of its encoding.

We let msg(H) ⊆ [2t] to denote the message bits coordinates in the codewords of H, i.e., if for
some m ∈ Ft2 we have GH ·m = h then h|msg(H) = m.

Let m ∈ Ft2 and h ∈ H. We say that h fits the message m if h|msg(H) = m. We say that a
codeword h is α-close to fit the message m if there exists h′ ∈ H such that h′ fits the message m
and δ(h, h′) ≤ α.

Now let us define the repeated codes and the concatenation of codes (the definitions are similar
to the analogues definitions in [27]).
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Definition 8.3 (Repeated Hadamard code and Concatenation). We define the l-repeated Hadamard
code H [l] : Fl·t2 → Fl·2t2 as the code that results from partitioning the message x ∈ Fl·t2 to l blocks of
length t, and encoding each of them by H. I.e., the code H [l] encodes every message x ∈ Fl·t2 by

H [l](x) = H(x1, x2, . . . , xt)H(xt+1, xt+2, . . . , x2t) . . . H(x(l−1)·t+1, x(l−1)·t+2, . . . , xl·t).

Let C : Fk2 → Ftn2 be a linear code such that A(C) = [|A(C)|] and t | |A(C)|. Recall that
H [n] : Fn·t2 → Fn·2t2 is the n-repeated Hadamard code. Then H [n] ◦ C : Fk2 → Fn·2t2 is a linear code
that encodes the message x ∈ Fk2 by encoding it with C (to the string in Ftn2 ) and then encoding
the result with H [n] (to the string in Fn·2t2 ).

We set A(H [n] ◦ C) = [(2t) · |A(C)|
t ] to be the core of H [n] ◦ C. Notice that C|A(C) is composed

from |A(C)|
t consequent substrings of length t, and each such substring is going to be encoded (in

H [n]◦C) by the Hadamard code H to the string of length 2t. Thus, (H [n]◦C)|A(H[n]◦C) is a sequence

of |A(C)|
t Hadamard codes H of length 2t.

In the following statement (Theorem 8.4) we argue that the concatenation of a strong LTC
with the Hadamard code preserve the query complexity. It can be verified that instead of the
Hadamard code we could use any other linear code which is 3-query strong LTC, 2-query LDC and
has the message bits as a part of its encoding. However, we note that any 2-query linear LDC has
exponential blocklength [14, 20, 22], so the Hadamard code is optimal in this sense.

Theorem 8.4. Let C : Fk2 → Ftn2 be a (q, ε)-COLTC for q ≥ 3, with a core A(C) = [|A(C)|] such
that t | |A(C)|. Let H : Ft2 → F2t

2 be the Hadamard code and H [n] : Fn·t2 → Fn·2t2 be the n-repeated
Hadamard code. Let C ′ = H [n] ◦ C : Fk2 → Fn·2t2 be the concatenation of H [n] and C.

Then C ′ is a (q, ε
66t)-COLTC and A(C ′) = A(H [n] ◦ C).

The proof of Theorem 8.4 appears in Section 8.2 and this proof relies on the new concept
(Definition 8.5) suggested in Section 8.1 and Proposition 8.6.

8.1 Local Testing to fit the message

The standard notion of the local testability for a code C assumes a tester that accepts or rejects
a given word w. If this tester rejects with small probability then the given word w is close to the
code C. That means some of the entries of w are “wrong” but we don’t know exactly which one,
and the only thing we know is that the number of such wrong entries is small.

In this section, we initiate the studying a special kind of local testing. Assume that a code
contains all message bits as a part of its encoding (e.g., the Hadamard code). Now, assume that
the message bits are much more “important” than non-message bits. So, we want to distinguish
between two cases: (i) it is possible to modify a small number of non-message bits to obtain a
codeword and (ii) to obtain a codeword one should change at least one message bit or a large
fraction of non-message bits. In this case, if a tester rejects a given word w with a small probability
we conclude that only a small fraction of non-message bits in w should be modified to get a
codeword, and in particular, no message bits should be modified.

Fortunately, it can be shown that the Hadamard code has such type of testing. Now we provide
a definition for the described type of LTC, which we call strong LTCM for strong Local Testing to

30



check a Codeword as well as a Message6.

Definition 8.5 (Test to fit the message). Let C ⊆ Fn be a linear code that contains its message
entries as a part of its encoding. Assume without loss of generality that the first dim(C) entries
of C are the message entries. Let δmsg(w,C) = min

{
δ(w, c) | c ∈ C, c|[dim(C)] = w|[dim(C)]

}
be the

relative distance between w and the closest codeword of C with the same message entries as in w.
We say that a code C ⊆ Fn is (q, ε)-strong LTCM if there exists a tester that makes at most q

queries to the input word w. It always accept the codewords of C and rejects every word w /∈ C
with probability at least ε · δmsg(w,C). We call this tester the LTCM-tester of C.

Note that δmsg(w,C) ≥ δ(w,C) and hence any (q, ε)-strong LTCM is also a (q, ε)-strong LTC.
Now we prove that the Hadamard code is a strong LTCM. It is not hard to prove because the
Hadamard code contains the message as a part of its encoding, it is a 3-query strong LTC and a
2-query LDC (as stated in Fact 8.2).

Proposition 8.6. Let C ⊆ F2k−1
2 be the Hadamard code, where k = dim(C). Then C is a (3, 1

16k )-
strong LTCM.

Proof. Let TC be the (3, 1
2)-strong tester for the code C and D be the decoder for the code C,

guaranteed by Fact 8.2. First we define a tester TLTCM for the code C. Let w ∈ F2k−1
2 be an input

word and assume without loss of generality that the first k entries of C are the message entries.

• pick random r ∈ {1, 2}

• If r = 1 then invoke TC on w and accept iff this tester accepted.

• Otherwise (r = 2)

– pick a random coordinate i ∈ [k]

– invoke Dw[i] and accept iff Dw[i] = w|i, i.e., the invocation of D returned the bit wi.
(Note that w|i is queried here.)

Clearly, this tester makes at most 3 queries and accepts all codewords of C. Assume that w /∈ C.
If δ(w,C) ≥ 1

4 , then the word w is rejected by TLTCM with probability at least

1

2
· 1

2
· δ(w,C) ≥ 1

16
≥ 1

16
· δmsg(w,C),

since the tester TC is invoked with probability 1
2 , and due to the Fact 8.2 it rejects w with probability

at least 1
2 · δ(w,C).

Otherwise δ(w,C) < 1
4 . Thus there exists a codeword c ∈ C such that δ(w, c) = δ(w,C) < 1

4 .
If c|[k] = w|[k] then δmsg(w,C) = δ(w, c) = δ(w,C) < 1

4 . In this case the word w is rejected with
probability at least

1

2
· 1

2
· δ(w,C) ≥ 1

4
· δmsg(w,C).

6We stress that the definition of an LTCM code is not a special case of the definition of a COLTC with a core
equal to the message bits subset. This is true since a small rejection probability for an LTCM-tester means that no
message bit inside the input word should be changed to obtain a codeword, while a small rejection probability for
an COLTC-tester means that only a small fraction of message bits should be changed to obtain a codeword.
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Otherwise, there is a message entry i ∈ [k] such that c|i 6= w|i and recall that δ(w, c) =
δ(w,C) < 1

4 . With probability 1
2 ·

1
k the decoder D is invoked on i (Dw[i]) and with probability at

least 1− 2 · 1
4 = 1

2 this decoder outputs c|i (see Fact 8.2), which means that w is rejected. In this
case, the rejection probability is at least

1

2
· 1

k
· 1

2
=

1

4k
≥ 1

4k
· δmsg(w,C).

So, in any case the word w is rejected by our tester TLTCM with probability at least

min

{
1

16
· δmsg(w,C),

1

4
· δmsg(w,C),

1

4k
· δmsg(w,C)

}
≥ 1

16k
· δmsg(w,C).

8.2 Proof of Theorem 8.4

Let TC be a COLTC-tester for C. Let TH be an LTCM-tester (see Definition 8.5) for the Hadamard
code H as promised by Proposition 8.6). Recall that A(C) = [|A(C)|] and t | |A(C)|. We also
recall that A(C ′) is a core of C ′.

We let msg ⊆ [n·2t] to denote the message coordinates with regards to the encoding by H [n], i.e.,
for every w ∈ H [n] we have w|msg = m, where H [n](m) = w. Note that if c′ ∈ C ′ then c′|msg ∈ C.
We notice that |msg| = n · t and A(C) ⊆ msg.

For j ∈ [n · t] let blockj =
{

(j− 1) · 2t + 1, (j− 1) · 2t + 2, . . . , (j− 1) · 2t + 2t
}

. Recall that
the code C ′ is a sequence of the Hadamard encodings (with blocklength 2t). We call them the
Hadamard blocks of C ′. I.e., for every j ∈ [n · t] it holds that for every c′ ∈ C ′: c′|blockj

∈ H.

The tester for C ′. We define the tester TC′ for C ′. Assume w′ ∈ Fn·2t2 is an input word.

• pick random r ∈ {1, 2}

– If r = 1

∗ invoke the tester TC on w′|msg and accept iff TC accepted.

– Otherwise (r = 2),

∗ pick random r′ ∈ {1, 2}
· If r′ = 1 then pick random j ∈ A(C)

· Otherwise (r′ = 2), pick random j ∈ [n · t]
∗ invoke the LTCM-tester TH on w′|blockj

and accept iff TH accepted.

The query complexity of TC′. The tester TC′ makes at most q queries to the input word w′

since the tester TC makes at most q queries, and the LTCM-tester TH makes at most 3 queries.
Recall that q ≥ 3.

All codewords are accepted with probability 1. Assume that w′ ∈ C ′. We know that
w′|msg ∈ C and hence TC accepts w′|msg with probability 1. It holds that for every j ∈ [n] we have
w′|blockj

∈ H and thus TH always accepts the word w′|blockj
. Hence the tester TC′ accepts w′ with

probability 1.
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8.2.1 The analysis of the soundness parameter of TC′

Assume that w′ /∈ C ′ and let β = Pr[TC′ [w′] = reject]. We argue that δ(w′, C ′) ≤ 66t
ε · β. This

proves that C ′ is a (q, ε
66t)-COLTC.

It holds that δA(C)(w
′|msg, C) is small. We argue that δA(C)(w

′|msg, C) ≤ 1
t ·
(

2t
ε · β

)
. Assume

not, but then

Pr
[
TC′ [w′] = reject

]
≥ 1

2
· (Pr

[
TC [w′|msg] = reject

]
) ≥ 1

2
· ε · δA(C)(w

′|msg, C) >

ε

2
·
(

1

t
·
(

2t

ε
· β
))
≥ β.

Contradiction. Thus δA(C)(w
′|msg, C) ≤ 1

t ·
(

2t
ε · β

)
, i.e., at most 1

t ·
(

2t
ε · β

)
-fraction of bits in w′|msg

should be changed, such that this modifies at most 1
t ·
(

2t
ε · β

)
-fraction of bits inside (w′|msg)|A(C),

to get w′|msg ∈ C.
Let modified ⊆ msg be these bits coordinates that should be changed. We say that an

Hadamard block (w′blockj
) is good if blockj∩modified = ∅, and otherwise it is called bad. Intuitively,

good Hadamard blocks contain only “correct” message bits. The bits indexed by modified are con-
tained in at most t ·

(
1
t ·
(

2t
ε · β

))
-fraction of the Hadamard blocks, because each Hadamard block

contains t message bits (the bits indexed by msg). Similarly, the bits indexed by A(C)∩modified
are contained in at most t ·

(
1
t ·
(

2t
ε · β

))
-fraction of the Hadamard blocks of w′|A(C).

In the worst case, all bits in bad Hadamard blocks containing message bits from modified
should be changed. Hence at most

(
2t
ε · β

)
-fraction of bits in w′ should be changed in order to

receive all message bits correct (w′|msg ∈ C) and all bad Hadamard blocks belong to H. The same
fraction of Hadamard blocks is modified inside w′|A(C′), where we recall that bits of A(C ′) are the
sequential encodings by the Hadamard code of bits indexed by A(C).

All bit modifications are done only inside the bad Hadamard blocks. In the rest of the proof we
are going to modify some bits of w′, inside the good Hadamard blocks. But all bits we will modify
will be outside the set msg.

Recall that the total number of the Hadamard blocks is n, while the blocklength of the code is
n · 2t, and every Hadamard block contains t message symbols from msg.

A typical Hadamard block is close to fit its message. Recall that Proposition 8.6 says
that every Hadamard block w′blockj

is rejected by the LTCM-tester TH with probability at least
1

16tδmsg(w
′
blockj

, H). We also recall that δmsg(w
′
blockj

, H) shows the fraction of non-message bits
that should be changed to get a codeword, i.e., no message bit is modified.

By definition of TC′ , with probability 1
4 the LTCM-tester TH is invoked on a random Hadamard

block. Since the rejection probability of TC′ is β, it follows that for an average Hadamard block
w′blockj

it holds that δmsg(w
′
blockj

, H) ≤ (4 ·16t) ·β. It also holds that with probability 1
4 the LTCM-

tester TH is invoked on a random j-th Hadamard block for j ∈ A(C). Thus, it follows that for an
average Hadamard block w′blockj

with j ∈ A(C) it holds that δmsg(w
′
blockj

, H) ≤ (4 · 16t) · β.
We consider only good Hadamard blocks and conclude that it is sufficient to modify at most

(4 · 16t) · β fraction of bits in w′, which includes at most (4 · 16t) · β fraction of bits in w′|A(C′), to
obtain a situation where all good Hadamard blocks belong to H. Note that only the non-message
bits of the good Hadamard blocks are modified here.
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Summary. It follows that we modify at most 2t
ε · β + (4 · 16t) · β ≤ 66t

ε · β fraction of bits in w′,
which includes at most 66t

ε · β fraction of bits inside w′|A(C′), to receive a codeword of C ′. Hence

δA(C′)(w
′, C ′) ≤ 66t

ε
· β.

9 Distance Amplification Procedure

In this section we present a procedure DistAmp(·) that increases the distance of a strong LTC,
while preserving its query complexity. The idea behind this result is similar to [27, Section 4.3].
The distance amplification procedures are well-known in the area of error-correcting codes (e.g.,
[1]). Meir [27] showed that the distance of the underlying LTC can be amplified such that the
resulting code is still an LTC but the query complexity was slightly increased. In Theorem 9.1 we
show how to implement this procedure to remain the query complexity intact. Then, in Theorem
9.3 we use Theorem 9.1 to show a way to improve the distance of a COLTC whose core is a two-wise
tensor product to preserve the query complexity of the COLTC and preserve the tensor structure
of its core.

We stress that the distance amplification procedure we present here can be considered as a
special case of the corresponding procedure in the work of Meir [27, Section 4.3]. This is true since
in [27] the author considered the concatenation for general codes, while we used the concatenation
with the repeated Hadamard code (Definition 8.3 and Theorem 8.4), exploiting that fact that the
Hadamard code is locally testable, locally decodable and its codewords contain message bits as a
part of the encoding. Hence the observations made in [27] are valid for our case as well.

Theorem 9.1. Let 0 < δ0 < δ1 <
1
2 and q ≥ 3 be two constants. Then there exists a sufficiently

large constant t = t(δ1/δ0) and deterministic distance amplification procedure DistAmpt(·) that
given a linear code C ⊆ Fn2 with a δ0-core A(C) such that C is a (q, ε)-COLTC, outputs the code
C ′ = DistAmpt(C) that satisfies:

• A(C ′) is a δ1-core of C ′,

• blocklength(C ′) = 2t · blocklength(C),

• dim(C ′) = dim(C),

• C ′ is a (q, ε
528t)-COLTC.

Proof of Theorem 9.1. Any codeword of C can be viewed as a binary string of length n. We recall
Definition A.1 presented in Section A and let C(t) ⊆ Ft·n2 be the t-repetition of the code C, where t
is sufficiently large integer that will be fixed in the rest of the proof. Proposition A.3 says that C(t)

is a (q, ε/8)-COLTC (for every t ≥ 1). It is also easy to see that δ(C(t)) = δ(C) ≥ δ0. Note that a
code C(t) can be viewed as a sequence of t blocks, where every block has length n and belongs to
C. Note that A(C(t)) is a δ0-core for C(t) because A(C) is a δ0-core for C.

Now for a permutation σ : [n] → [n] and a word x = (x1, x2, . . . , xn) ∈ Fn2 let σ(x) =
(xσ(1), xσ(2), . . . , xσ(n)) be the word x permuted by σ. Similarly, let σ(C) = {σ(c) | c ∈ C}. In
this case we say that a permutation σ is a permutation over [n].

Given t− 1 permutations σ1, σ2, . . . , σt−1 over [n] we say that a word ((σ1, σ2, . . . , σt−1)(w)) ∈
Ft·n2 is a word w ∈ Ft·n2 permuted by (σ1, σ2, . . . , σt−1) if letting w′ = ((σ1, σ2, . . . , σt−1)(w)) it
holds that w′|[n] = w|[n] and for every j ∈ [t − 1] we have w′|[n]+jn = σj(w|[n]+jn). Similarly,
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with some abuse of notations we let ((σ1, σ2, . . . , σt−1)(C(t))) ⊆ Ft·n2 be the code C(t) permuted by

(σ1, σ2, . . . , σt−1) if letting Ĉ = ((σ1, σ2, . . . , σt−1)(C(t))) it holds that

Ĉ =
{

(σ1, σ2, . . . , σt−1)(c) | c ∈ C(t)

}
.

Meir [27] (see Sections 3.2.3, 4.3, and Definition 4.10 in [27]) explained that when t = t(δ1/δ0) is
sufficiently large integer it is possible to deterministically select permutations σ1, σ2, . . . , σt−1 over
[n] such that letting

Ĉ = ((σ1, σ2, . . . , σt−1)(C(t))),

for every ĉ ∈ Ĉ \
{

0t·n
}

it follows that for at least (2δ1) fraction of indices j ∈ [n] we have at
least one non-zero bit in

{
ĉ|j , ĉ|j+n, ĉ|j+2n, . . . , ĉ|j+(t−1)n

}
. Note that 2δ1 < 1. In the work [27],

this observation was shown using the (deterministic) walk of length t− 1 on the regular expander
graph G, where [n] was associated with the vertex set of G (see Section 3.2.3 in [27]). So, for
the coordinate j the walk in the graph was a t-tuple: j = j1, j2, . . . , jt. In our proof, this walk
corresponding to the sequence ĉ|j , ĉ|j+n, ĉ|j+2n, . . . , ĉ|j+(t−1)n, where the codeword ĉ belongs to the

permuted code Ĉ. We notice that dim(Ĉ) = dim(C(t)) and Ĉ is a (q, ε/8)-COLTC.
Now, since A(C(t)) is a δ0-core for C(t) that means δ(C(t)|A(C(t))) ≥ δ0 and δ(C(t)|−A(C(t))) ≥

δ0. Moreover, the core coordinates A(C(t)) is a t-repetition of A(C). Thus the permutations
σ1, σ2, . . . , σt−1 over [n] can be selected exactly as described above but such that the repetition of
A(C) coordinates will be permuted between them and the repetition of [n] \A(C) coordinates will
be permuted between them. In this way, we will also deterministically select these permutations
σ1, σ2, . . . , σt−1 over [n] such that letting

Ĉ = ((σ1, σ2, . . . , σt−1)(C(t))),

for every ĉ ∈ Ĉ \
{

0t·n
}

it follows that for at least (2δ1) fraction of indices j ∈ A(C) we have at
least one non-zero bit in

{
ĉ|j , ĉ|j+n, ĉ|j+2n, . . . , ĉ|j+(t−1)n

}
;

and for at least (2δ1) fraction of indices j ∈ [n] \ A(C) we have at least one non-zero bit in{
ĉ|j , ĉ|j+n, ĉ|j+2n, . . . , ĉ|j+(t−1)n

}
. We fix this Ĉ and notice that the core A(Ĉ) is obtained by the

corresponding permutation of A(C(t)).

Let R ⊆ Ft·n2 be a code which is equal to Ĉ besides a regrouping of bits such that for every
j ∈ [n] the indices j, j + n, j + 2n, . . . , j + (t− 1)n become adjacent. More formally, r ∈ R iff there
exists c ∈ Ĉ such that for every i ∈ [t] and j ∈ [n] we have c|(j+(i−1)n) = r|((j−1)t+i). Clearly, the

core A(R) will be obtained by the corresponding regrouping of A(Ĉ). We notice that R is a linear
code, dim(R) = dim(C(t)) and R is a (q, ε/8)-COLTC. By construction, for every non-zero codeword
r ∈ R it holds that for at least 2δ1 fraction of indices j ∈ A(R) we have at least one non-zero bit
in
{
r|((j−1)t+1), r|((j−1)t+2), . . . , r|((j−1)t+t)

}
, and for at least 2δ1 fraction of indices j ∈ [n] \ A(R)

we have at least one non-zero bit in
{
r|((j−1)t+1), r|((j−1)t+2), . . . , r|((j−1)t+t)

}
. We assume without

loss of generality that A(R) = [|A(R)|], since the coordinates can be re-enumerated.
Let H ⊆ F2t

2 be the Hadamard code. Let C ′ = H [n]◦R be the concatenation ofH [n] and R, where
H [n] and the concatenation operation were defined in Definition 8.3. Note that C ′ : Fk2 → Fn·2t2 ,

i.e., blocklength(C ′) = 2t · blocklength(C). Theorem 8.4 says that C ′ is a (q, ε/866t )-COLTC, where
the core A(C ′) is defined as in Definition 8.3.

We argue that δ(C ′) ≥ δ1 and δ(C ′|A(C′)) ≥ δ1. Too see this let c′ ∈ C ′ be a non-zero codeword.

Since C ′ is linear it is sufficient to prove that |c′|
blocklength(C′) ≥ δ1 and

|c′|A(C′)|
|A(C′)| ≥ δ1. We recall that
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δ(H) ≥ 1
2 , i.e., the encoding of every non-zero message by H has relative weight at least 1

2 . We also
recall that for at least 2δ1 fraction of indices j ∈ A(R) (and of j ∈ ([n · t] \A(R))) we have at least
one non-zero bit in the sequence r|((j−1)t+1), r|((j−1)t+2), . . . , r|((j−1)t+t), which serves a (non-zero)

message forH in the concatenation ofH [n] and R. I.e., at least 2δ1 fraction of messages (in A(R) and
in [n · t]\A(R)) are non-zero messages and the code C ′ can be viewed as a sequence of encodings of

every such message by H. Thus |c′|
blocklength(C′) ≥

1
2 ·(2δ1) = δ1 and similarly,

|c′|A(C′)|
|A(C′)| ≥

1
2 ·(2δ1) = δ1.

The arguments above show also that dim(C ′|A(C′)) = dim(C ′|−A(C′)) = dim(C ′). We conclude that
A(C ′) is a δ1-core of C ′.

Remark 9.2. We stress that the above distance amplification procedure is dependent on the
choice of the permutations σ1, σ2, . . . , σt−1 over [n]. Given these permutations, the output of the
algorithm is uniquely defined. Now, in Theorem 9.1 we argued that these permutations can be found
deterministically, using expanders walk (see Sections 3.2.3, 4.3, and Definition 4.10 in [27]). The
crucial point is that finding “appropriate” permutations are important only to increase the distance
of the underlying code. That means for any selection of the permutations σ1, σ2, . . . , σt−1 over [n]
in the proof of Theorem 9.1, we will conclude that the resulting code C ′ has blocklength(C ′) =
2t · blocklength(C), dim(C ′) = dim(C) and C ′ is a (q, ε

528t)-COLTC. This observation will play
an essential role in Theorem 9.3 and we will refer to the different executions of the procedure
DistAmpt(·) that actually means different executions of this procedure defined by different selection
of the permutations σ1, σ2, . . . , σt−1.

For example, the procedure DistAmpt(·) can be invoked on the input code R ⊆ Fn2 such that the
code R has no defined core and is not a COLTC. In this case, we can artificially set A(R) = [nR],
i.e., to be the core containing all coordinates, and the output code C ′ is not guaranteed to be a
COLTC; however C ′ will have the dimension, the blocklength and the relative distance (increased
up to δ1) as guaranteed by Theorem 9.3. Similarly, given two linear codes C1 and C2, the code
(DistAmpt(C1),DistAmpt(C2)) can be obtained by the execution of DistAmpt((C1,C2)), where
(C1, C2) means that the code C2 is appended to the code C1.

We are ready to state and prove the main theorem of this section.

Theorem 9.3. Let 0 < δ0, δ1 < 1/2 be constants. Assume C is a linear code and let A(C) be its
δ2

0-core. Assume also that C is a (q, ε)-COLTC and C|A(C) = R⊗2 for some linear code R such that
δ(R) ≥ δ0.

Then there exists a deterministic procedure DistAmp′t(·) and sufficiently large constant t > 0
such that letting C ′ = DistAmp′t2(C) we have

• dim(C ′) = dim(C) and rate(C ′) = Ω(rate(C)),

• C ′ is a (q, ε
528t2

)-COLTC,

• C ′|A(C′) = R′ ⊗R′ for some linear code R′,

• A(C ′) is a δ2
1-core.

Proof. Let t > 0 be the sufficiently large integer promised guaranteed by Theorem 8.4 to increase
the relative distance from δ0 to δ1. Recall that C has a core A(C) such that C|A(C) = R⊗R, and
let

DistAmp′t(C) =
(
(DistAmpt(R))⊗2 , DistAmpt2(C|−A(C))

)
,
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where (C1, C2) was defined in Section 2. Let C ′ = DistAmp′t(C). Let A(DistAmp′t(C)) be the
coordinate set of (DistAmpt(R))⊗2. So, letting R′ = DistAmpt(R) it holds that R′ is a linear code,
δ(R′) ≥ δ1 since δ(R) ≥ δ0, and C ′|A(C′) = R′ ⊗ R′. Thus δ(C ′|A(C′)) ≥ δ2

1 and δ(C ′|−A(C′)) =
δ(DistAmpt2(C|−A(C))) ≥ δ2

1 . It follows that A(C ′) is a δ2
1-core of C ′.

Meir [27, Section 5] pointed out that DistAmpt(·) procedure can be applied to the tensor
products and preserves its structure. That means (DistAmpt(R))⊗2 is equal to one of the possible
outputs of DistAmpt2(R⊗2) (see Remark 9.2). This implies that

C ′ =
(
DistAmpt2(R⊗2) , DistAmpt2(C|−A(C))

)
,

where the intention is that such a result is possible for some of the executions of DistAmp(·)
procedure, as explained in Remark 9.2.

Finally, as was explained in Remark 9.2, amplifying the distance of the code separately on its first
part of the coordinates and on its second part of the coordinates is one of the possibilities for am-
plifying the distance for the entire code. Thus, C ′ = DistAmpt2(R⊗2 , C|−A(C)) = DistAmpt2(C).
Theorem 9.1 says that if C is a (q, ε)-COLTC then C ′ is a (q, ε

528t2
)-COLTC. Also, Theorem 9.1

implies that dim(C ′) = dim(C) and rate(C ′) = Ω(rate(C)) since t is a constant.

10 Random Projection Procedure

We start this section by defining the random projection operation RandProj(·). Although this
procedure had appeared in [27, Section 4.2], the corresponding proofs should be revisited according
to our needs, e.g., showing that the distance of the underlying code (δ(C)) is preserved as well
as the distance inside its core (δ(C|A(C))), and proving the fact that the core oriented testability
(Definition 2.4) is preserved after this procedure is applied.

In words, this operation receives a linear code C, whose core (A(C)) is a tensor product of some
linear code R. If the rate of R is sufficiently high then this operation does nothing. Otherwise, it
“shortens” the core of the code such that this core remains to be a tensor product of some other
linear code. I.e., this operation does not affect the code itself but redefines (probabilistically) its
core.

Algorithm 1 Random Projection

Input: C ⊆ Fn2 such that A(C) = [nR]× [nR] is the core of C and C|A(C) = R⊗R for the linear
code R ⊆ FnR2 .

if

(
rate(R) >

δ2(R)

100

)
then

Output C.
else

Pick random SR ⊆ [nR] such that |SR| ≤
10 · dim(R)

δ2(R)
.

Let C ′ = C and fix A(C ′) = SR × SR.
Output C ′.

Now we state Theorem 10.1. Informally, Theorem 10.1 says that with high probability the
procedure RandProj(·) outputs the same code as an input code but redefines its core such that this
new core has constant rate and relative distance, and has a shape of a tensor product.
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Theorem 10.1. Let γ > 0 be a constant and nR ∈ N+. Let C ⊆ Fn2 be a code and A(C) =
[nR] × [nR] be its γ2-core such that C|A(C) = R ⊗ R for the linear code R ⊆ FnR2 . Assume that C
is a (q, ε)-COLTC.

Then, letting C ′ = RandProj(C), with probability at least 1− exp(−Ω(dim(R))) we have

1. A(C ′) is a (γ2/4)-core,

2. C ′|A(C′) = R′ ⊗R′ for some linear code R′ such that δ(R′) ≥ γ/2,

3. rate(C ′|A(C′)) ≥ max
{
γ4

100 , rate(C|A(C))
}

,

4. dim(C) = dim(C ′), blocklength(C) = blocklength(C ′) and ∆(C) = ∆(C ′),

5. C ′ is a (q, ε · rate(C|A(C)))-COLTC.

We prove Theorem 10.1 in Section 10.1.

10.1 Proof of Theorem 10.1

Let us consider two auxiliary statements, and then we prove Theorem 10.1. The following propo-
sition and its proof appeared in [27]. We reproduce it here for the sake of completeness.

Proposition 10.2 ([27]). Let C ⊆ Fn2 be a code such that rate(C) ≤ δ2(C)
100 . Let h = 10·dim(C)

δ2(C)
.

Then

Pr
S⊆[n],|S|≤h

[
δ(C|S) ≥ δ(C)

2
and dim(C|S) = dim(C)

]
≥ 1− exp(−Ω(dim(C))),

where the probability is taken over a uniform selection of S ⊆ [n] such that |S| ≤ h.

Proof. To prove that C|S has relative distance at least δ(C)
2 and that dim(C|S) = dim(C), we use

a standard probabilistic argument. Fix a non-zero codeword c ∈ C, and let S ⊆ [n] be a uniformly
chosen set such that |S| ≤ h. The relative weight of c is at least δ(C), and therefore the expected
relative weight of c|S is at least δ(C). Applying the Chernoff Bound, it follows that the probability

that the relative weight of c|S is less than δ(C)
2 is at most 2 exp(−1

4 · δ
2(C) · h).

By taking a union bound over all the codewords of C, the probability that there exists a non-zero
codeword c ∈ C such that c|S has relative weight less than δ(C)

2 is bounded by

2dim(C) · 2 exp(−1

4
· δ2(C) · h) ≤ 2 exp(−Ω(dim(C))).

Remark 10.3. One can see that Proposition 10.2 holds (up to some change in the constants)
for any constant-size field. However, this Proposition becomes problematic when the field size |F|
depends on the blocklength n. This issue was solved by [29] using smarter arguments, i.e., the
statement in Proposition 10.2 is true (up to the small change in constants) for any field F and does
not dependent on the field size.
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Assume that C ⊆ Fn2 is a code such that rate(C) = dim(C)
n ≤ δ2(C)

100 . Notice that when one

selects S ⊆ [n] at random such that |S| ≤ 10·dim(C)
δ2(C)

, then S̄ = [n] \ S is selected at random such

that |S̄| ≥ 90·dim(C)
δ2(C)

. Similarly to Proposition 10.2, one can obtain the following proposition.

Proposition 10.4. Let C ⊆ Fn2 be a code such that rate(C) ≤ δ2(C)
100 . Let h = 10·dim(C)

δ2(C)
. Then

Pr
S⊆[n],|S|≤h

[
δ(C|[n]\S) ≥ δ(C)

2
and dim(C|[n]\S) = dim(C)

]
≤ 1− exp(−Ω(dim(C))),

where the probability is taken over a uniform selection of S ⊆ [n] such that |S| ≤ h.

We are ready to prove Theorem 10.1.

Proof of Theorem 10.1. We know that C|A(C) = R⊗R and δ(C|A(C)) = δ2(R). We also know that
A(C) is a γ2-core, i.e., δ(C|A(C)) ≥ γ2. Thus δ(R) ≥ γ.

If rate(R) > δ2(R)
100 then C ′ = C, A(C ′) = A(C) and the Theorem holds.

Otherwise, we have rate(R) ≤ δ2(R)
100 . Propositions 10.2 and 10.4 imply that with probability at

least 1− exp(−Ω(dim(R))) we have

δ(R|SR) ≥ γ

2
, δ(R|[n]\SR) ≥ γ

2
, and dim(R|SR) = dim(R|[nR]\SR) = dim(R).

Given these facts we prove all parts of Theorem 10.1.

Proof of Part 1. It follows that A(C ′) is a (γ2/4)-core since δ(C ′|A(C′)) ≥ δ2(R|SR) ≥ γ2/4 and
it can be verified that

δ(C ′|−A(C′)) ≥ min
{
δ2(R|SR), δ(R|SR) · δ(R|[n]\SR), δ2(R|[n]\SR), δ(C|−A(C))

}
≥ γ2/4.

Proof of Part 2. By definition of RandProj we have C ′|A(C′) = R|SR ⊗R|SR for the linear code
R|SR such that δ(R|SR) ≥ γ/2.

Proof of Part 3. By definition of RandProj it holds that |SR| ≤ 10 dim(R)
δ2(R)

and rate(C ′|A(C′)) ≥(
δ2(R)

10

)2
≥ γ4

100 .

Proof of Part 4. Since C ′ = C it follows that

dim(C) = dim(C ′), blocklength(C) = blocklength(C ′) and ∆(C) = ∆(C ′).

Proof of Part 5. We know that the core of C ′ was modified such that A(C ′) ⊆ A(C) and
|A(C ′)| ≥ rate(C|A(C)) · |A(C)| since the dimension of the core stays intact. We argue that the
tester for C, which is a (q, ε)-COLTC tester is also a (q, ε · rate(C|A(C)))-COLTC tester for C ′. This
is true since for every w ∈ Fn2 we have δ(w|A(C), C|A(C)) ≥ rate(C|A(C)) · δ(w|A(C′), C|A(C′)) and w
is rejected by the COLTC tester of C with probability at least

ε · δ(w|A(C), C|A(C)) ≥
(
ε · rate(C|A(C))

)
· δ(w|A(C′), C|A(C′)).

Thus C ′ is a (q, ε · rate(C|A(C)))-COLTC.
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11 Proof of Main Results

We prove Theorem 3.1.

Proof of Theorem 3.1. First we present an iterative construction of COLTCs. Then we prove that
these codes have the required range of parameters.

Let R = F2
2 = {00, 01, 10, 11} and fix a core A(R) = supp(R) = {1, 2}. We let C1 = R⊗2

and note that C1 = C?21 = C1|A(C1) = R⊗2 = F2×2
2 because A(R) = supp(R). Let DC1 be the

tester for C1 that always accepts any given word (with 0 ≤ 3 queries). Thus DC1 always accepts
the codewords of C1 and rejects all non-codewords with probability 1 (vacuously). I.e., C1 is a
(3, 1)-COLTC. We have:

• dim(C1) = 221 = 4 and blocklength(C1) = 4,

• rate(C1) = rate(C1|A(C1)) = 1,

• δ(C1) = δ2(R) = δ2(R|A(R)) = 1
22

= 1
4 ,

• A(C1) = A(R)×A(R) is a 1
4 -core of C1 and C1|A(C1) = R⊗2, and

• C1 is a (3, 1)-COLTC.

Now we provide a probabilistic algorithm that constructs COLTCs.

Algorithm 2 Construction of COLTCs

Input: m ∈ N+

for every i ∈ [m] do
C ′ := C?4i
C ′′ := RandProj(C′)
Ci+1 := DistAmp′(C′′)

Output Cm.

We want to prove that the output code of Algorithm 2, denoted by Cm, satisfies the required
properties. To do that we prove that for all i ∈ [m] it holds that Ci satisfy the following properties,
where we fix γ = 1

100 .

• dim(Ci) = 22i ,

• rate(Ci) ≥ 1
polylog(ni)

and rate(Ci|A(Ci)) = Ω(1),

• δ(Ci) ≥ γ2 and δ(Ci|A(Ci)) ≥ γ2,

• A(Ci) is a γ2-core and Ci|A(Ci) = R⊗2
i for some linear code Ri, and

• Ci ⊆ Fni2 is a (3, 1
polylog(ni)

)-COLTC.

We have showed that this is true for the code C1 = C?21 . Let us prove that for all i ∈ [m] the
code Ci satisfies these properties.

40



Dimension. By induction, for all i ∈ [m − 1] we have dim(Ci+1) = dim(C?4i ) = dim2(Ci) =

(22i)2 = 22i+1
(see Claim 7.6) since the operation (?4) squares the dimension, while the operations

RandProj(·) and DistAmp′(·) do not change the dimension of the underlying code (see Theorems
10.1 and 9.3). Notice that this imply in particular, if dim(Ci) = k then i = log log k.

The rate of Ci|A(Ci) and of Ci. For all i ∈ [m] it can be verified that rate(Ci|A(Ci)) = dim(Ci)
|A(Ci)| is

a fixed constant. This is true since it was a fixed constant in C1, and it is preserved to be a fixed
constant using RandProj(·) operation, while DistAmp′(·) and the star product (?4) can decrease
this rate only by a constant (see Claim 7.6). Each iteration this rate is restored by RandProj(·)
operation to be a fixed constant (see Theorem 10.1).

Given that rate(Ci|A(Ci)) is preserved to be a fixed constant for all i ∈ [m], it holds that every
iteration rate(Ci) is decreased by a fixed multiplicative constant after the star product (?4) (see
Claim 7.6) and the distance amplification procedure DistAmp′(·), while RandProj(·) does not affect
the rate of the input code. Thus rate(Ci) ≥ 1

polylog(ni)
.

Distance of Ci and of Ci|A(Ci). It can be easily verified that for every i ∈ [m] it holds that
δ(Ci) ≥ γ2 and δ(Ci|A(Ci)) ≥ γ2. This is true since given that it is satisfied for a code Ci we
conclude that the distance and the core distance of the code after the star product and after the
random projection is reduced only by a multiplicative fixed constant (see Claim 7.6 and Theorem
10.1), while after the distance amplification procedure the distance and the core distance of the
code are increased up to γ2 (Theorem 9.3).

A(Ci) is a γ2-core and Ci|A(Ci) = R⊗2
i for some linear code Ri. The facts that δ(Ci) ≥ γ2,

δ(Ci|A(Ci)) ≥ γ2 and A(Ci) is a core of Ci after each step, imply that A(Ci) is a γ2-core of Ci.
Moreover, the star product, the random projection and the distance amplification procedures (see
Theorems 10.1 and 9.3) preserve the fact that Ci|A(Ci) is always a two-wise tensor product of some
linear code.

For example, if Ci|A(Ci) = R⊗2
i then C?2i = Ci and C?4i |A(C?4i ) = R⊗4

i = (R′i)
⊗2 for R′i = R⊗2

i .

Ci ⊆ Fni2 is a (3, 1
polylog(ni)

)-COLTC. Corollary 7.9 implies that the star product (?4) decreases
the soundness parameter of a COLTC only by a fixed constant, while the query complexity stays
intact. Similarly, the random projection and the distance amplification procedures (Theorems 10.1
and 9.3) reduce the soundness parameter only by a fixed constant, but remain the query complexity
unaffected. Since the code C1 is a (3, 1)-COLTC, we conclude that for every i ∈ [m] it follows that
Ci ⊆ Fni2 is a (3, 1

polylog(ni)
)-COLTC.

11.1 Proof of Corollary 3.2

Proof of Corollary 3.2. Let Cm ⊆ Fn2 be a linear (3, 1
polylog(n))-COLTC as guaranteed by Theorem

3.1. Let Tm be the associated 3-query tester for Cm. We know that this tester always accepts all
codewords of Cm and there exists a constant d ∈ N such that every word w /∈ Cm is rejected by Tm
with probability at least 1

logd n
· δ(w,Cm). We let T ′m be the new tester that invokes the tester Tm

on the input word logd n times and rejects if and only if at least one invocation of the tester Tm
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rejected. Clearly, the tester T ′m has query complexity 3 · logd n and always accepts all codewords of
Cm.

Let w /∈ Cm be an input word. The tester T ′m accepts w with probability at most(
1− δ(w,Cm)

logd n

)logd n
and rejects w with probability at least 1 −

(
1− δ(w,Cm)

logd n

)logd n
. We argue that

1−
(

1− δ(w,Cm)

logd n

)logd n
> 1

2 · δ(w,Cm) and this yields the Corollary.

It holds that

((
1− δ(w,Cm)

logd n

)logd n
) 1

δ(w,Cm)

=

(
1− δ(w,Cm)

logd n

) logd n
δ(w,Cm)

≤ e−1 <
1

2
and

1−
(

1− δ(w,Cm)

logd n

) logd n
δ(w,Cm)

>
1

2
. On the other hand,

1−
(

1− δ(w,Cm)

logd n

) logd n
δ(w,Cm)

≤ 1

δ(w,Cm)
·

(
1−

(
1− δ(w,Cm)

logd n

)logd n
)
,

where we used the fact that 1 − pl ≤ l · (1 − p) for p ≤ 1 and l ∈ N+.7 The required inequality is

obtained by replacing p with
(

1− δ(w,Cm)

logd n

)logd n
and m with 1

δ(w,Cm) (we assume without loss of

generality that 1
δ(w,Cm) is an integer because otherwise we could use

⌈
1

δ(w,Cm)

⌉
).

We conclude that
1

2
<

1

δ(w,Cm)
·

(
1−

(
1− δ(w,Cm)

logd n

)logd n
)

and

δ(w,Cm)

2
< 1−

(
1− δ(w,Cm)

logd n

)logd n

.
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A Repetition for strong LTCs and COLTCs

In this section we prove Proposition A.3 showing that a repetition of codeword entries preserve the
local testability. Similar statements appeared in [13] for the case of weak LTCs. For the sake of
completeness, we provide the proofs in this section, while modifying them to fit for strong LTCs
and COLTCs.

For S ⊆ [m] and i ∈ N let S + i = i + S = {s+ i | s ∈ S}. For w ∈ Fm and t ∈ N let
w(t) ∈ Fmt be the concatenation of w to itself t times. I.e., for every i ∈ {0, 1, . . . , t− 1} we have
w(t)|([m]+(i·m)) = w. To do this we first define projected testers.

Definition A.1 (Repetition Code). Let R ⊆ Fm be a linear code and t > 0. We say that C ⊆ F(im)

is the t-repetition of R if every codeword of C is a codeword of R repeated t times. Formally, c ∈ C
if and only if c = r(t) for some r ∈ R.

If A(R) is a core of R, then A(C) is a core for C such that C|A(C) is a t-repetition R|A(R). In
particular, it follows that C|−A(C) is a t-repetition R|−A(R).

Notice that the linearity of R implies the linearity of its repetition. The following simple claim
argues that the repetition does not affect the distance of the code.

Claim A.2. Let t ∈ N+ and R ⊆ Fm be a linear code. If C ⊆ F(mt) is a t-repetition of R then
δ(C) = δ(R). Similarly, we have δ(C|A(C)) = δ(R|A(R)) and δ(C|−A(C)) = δ(R|−A(R)).

Now we state Proposition A.3.

Proposition A.3. Let R ⊆ Fm be a linear code and t > 0 be an integer. Let C ⊆ F(mt) be a
(t)-repetition of R. Then,

• If R is a (q, ε)-strong LTC then C is a (q, ε/4)-strong LTC. Moreover, if R is a (q, ε)-COLTC
then C is a (q, ε/8)-COLTC.

• If C is a (q, ε)-strong LTC then R is a (q, ε)-strong LTC. Moreover, if C is a (q, ε)-COLTC
then R is a (q, ε)-COLTC.

To prove Proposition A.3 we need to define projected testers. Let R ⊆ Fm be a linear code
and C ⊆ F(mt) be its t-repetition. Given a tester TC for C we define its projected tester by the
distribution obtained from picking tests (I mod m) where I ∼ TC .

Proof of Proposition A.3. Note that C|[m] = R.

Part 1. Assume that R is a (q, ε)-strong LTC and let TR be a (q, ε)-strong tester for R. We define
the following tester TC for C.

• Flip a coin

• If “heads,”

– pick j ∈ [m] and `1 ∈ [t− 1] independently at random,

– output I = {j, j +m · `1} (note that I ⊆ [mt]);

• Else pick I ∼ TR and output I (note that I ⊆ [m]).
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We argue that TC is a (q, ε/4)-strong tester for C. Let w ∈ F(mt) be a word. If δ(w|[m], C|[m]) =
δ(w|[m], R) ≥ δ(w,C)/2 we are done, since

Pr
I∼TC

[w|I /∈ C|I ] ≥
1

2
· Pr
I∼TR

[
(w|[m])|I /∈ R|I

]
≥ δ(w,C) · ε

4
.

Otherwise we have δ(w|[m], C|[m]) = δ(w|[m], R) < δ(w,C)/2. But then

E
j∈[t−1]

[
δ(w|{jm+1,...,(j+1)m}, w|[m])

]
≥ δ(w,C)− δ(w,C)/2 = δ(w,C)/2.

Hence Pr
I∼TC

[w|I /∈ C|I ] ≥
1

2
Pr

j∈[m],`1∈[t−1]

[
w|{j,j+m·`1} /∈ C|{j,j+m·`1}

]
≥ δ(w,C)/4. Thus C is a

(q, ε/4)-strong LTC.

Now, assume that R is a (q, ε)-COLTC and let TR be a (q, ε)-COLTC tester for R. We define
the following tester TC for C.

• Flip a coin

• If “heads,”

– pick random r ∈ {1, 2}
∗ If r = 1 then check the repetition for A(R): pick j ∈ A(R) and `1 ∈ [t − 1]

independently at random,
∗ Else (r = 2) then check the entire repetition: pick j ∈ [m] and `1 ∈ [t− 1] indepen-

dently at random.

– Output I = {j, j +m · `1} (note that I ⊆ [mt]);

• Else pick I ∼ TR and output I (note that I ⊆ [m]).

We argue that TC is a (q, ε/8)-COLTC tester for C. Let w ∈ F(mt) be a word. If δA(R)(w|[m], C|[m]) =
δA(R)(w|[m], R) ≥ δA(C)(w,C)/2 we are done, since

Pr
I∼TC

[w|I /∈ C|I ] ≥
1

2
· Pr
I∼TR

[
(w|[m])|I /∈ R|I

]
≥
δA(R)(w|[m], R) · ε

2
≥
δA(C)(w,C) · ε

4
.

Otherwise we have δ(w|[m], C|[m]) = δ(w|[m], R) < δA(C)(w,C)/2. But then

E
j∈[t−1]

[
δ(w|jm+A(R), w|A(R))

]
≥ δA(C)(w,C)− δA(C)(w,C)/2 = δA(C)(w,C)/2.

or

E
j∈[t−1]

[
δ(w|jm+[m], w|[m])

]
≥ δA(C)(w,C)− δA(C)(w,C)/2 = δA(C)(w,C)/2.

Assume without loss of generality the first case. Then,

Pr
I∼TC

[w|I /∈ C|I ] ≥
1

2
· 1

2
· Pr
j∈A(R),`1∈[t−1]

[
w|{j,j+m·`1} /∈ C|{j,j+m·`1}

]
≥ δA(C)(w,C)/8.

Thus C is a (q, ε/8)-COLTC.
This completes the proof of the first part and now we deal with the second part.
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Part 2. Assume that C is a (q, ε)-strong LTC and let TC be its (q, ε)-strong tester. Let TR be a
projected tester of TC . Note that TR is a distribution over subsets I ⊆ [m] such that |I| ≤ q.

We argue that TR is a (q, ε)-strong tester for R. Let w ∈ Fm be a word. Assume by way
of contradiction that Pr

I∼TR
[w|I /∈ R|I ] < ε · δ(w,R). Notice that δ(w(t), C) = δ(w,R). We have

Pr
I∼TC

[
w(t)|I /∈ C|I

]
< ε · δ(w,R) since if for I ⊂ [tm] it holds that w(t)|I /∈ C|I then w|I mod m /∈ R.

We conclude that TC is not a (q, ε)-strong tester for C. Contradiction.

The case, where C is a (q, ε)-COLTC, has almost the same proof. Let TC be the (q, ε)-COLTC
tester for C. Let TR be a projected tester of TC . Fix any w ∈ Fm and note that δA(C)(w

(t), C) =

δA(R)(w,R), and as was said, for I ⊂ [tm] it holds that w(tm)|I /∈ C|I then w|I mod m /∈ R. So, the

rejection probability of TR on w is at least the rejection probability of TC on w(t). We conclude
that TR is the (q, ε)-COLTC tester for R.

B Weak LTCs vs. strong LTCs

In this section we show that some weak LTCs are not strong LTCs (Proposition B.1), but all strong
LTCs are weak LTCs (Claim B.4). Although these claims are folklore in the area of LTCs, we
do not aware of a formal proof of Proposition B.1 in the literature. Hence we state and prove
Proposition B.1 and Claim B.4 in Sections B.1 and B.2, respectively.

B.1 Some weak LTCs are not strong LTCs

In this section we state and prove Proposition B.1.

Proposition B.1. There exists a binary linear code C ⊆ Fn+1
2 for arbitrary large n such that

δ(C) = Ω(1), C is a (3, ε, ρ)-weak LTC for constants ρ = δ(C)/10 and ε > 0, but C is not a
(q′, ε′)-strong LTC for any constants q′, ε′ > 0.

To prove Proposition B.1 we need to state and prove two auxiliary claims.
We start by recalling one of the results in the work of Ben-Sasson et al. [8] and refer a reader

to [7] for the detailed explanation of this result and its corollaries. The work [8] showed that
without loss of generality a q-query tester for a linear code C associated with a distribution D over
C⊥≤q. This tester picks u ∈D C⊥≤q and accepts the input word w if and only if 〈w, u〉 = 0. Since
| supp(u)| ≤ q the tester needs to query w in at most q coordinates in order to compute 〈w, u〉.
Hence the result of Ben-Sasson et al. [8] gives us the following claim.

Claim B.2. Let C ⊆ Fn be a linear code. If span(C⊥≤q) 6= C⊥ then C is not a (q, ε)-strong LTC for
any ε > 0.

Proof. The fact that span(C⊥≤q) 6= C⊥ implies the existence of u ∈ C⊥ such that u /∈ span(C⊥≤q).
Thus there exists a word w ∈ Fn such that 〈u′, w〉 = 0 for all u′ ∈ C⊥≤q but 〈u,w〉 6= 0. So, w /∈ C
and δ(w, C) > 0.

Assume by contradiction that C is a (q, ε)-strong LTC for some ε > 0. Then C has a correspond-
ing tester T .

However, the work of Ben-Sasson et al. [8] implies that any tester for C picks a dual codeword
of weight at most q and always accepts when the inner product between the input word and the
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selected dual codeword is 0. Thus any tester for C will accept the word w with probability 1,
i.e., the rejection probability is 0. However, the tester T is supposed to reject the word w with
probability at least ε · δ(w, C) > 0. Contradiction.

Now we recall the following claim of Kaufman and Viderman [26].

Claim B.3 ([26]). Let C ⊆ Fn be a linear code such that dim(C) = ω(log(n)). Then there exists
w ∈ Fn such that ∆(w, C⊥) = ω(1).

Proof. For integer R ∈ N let V (n,R) =
R∑
i=0

(
n

i

)
·(|F|−1)i be the volume of a sphere in Fn of radius

R. Let k = dim(C) = ω(log(n)) and S = C⊥. Then dim(S) = n− k and |S| = |F|n−k = |F|n/|F|k.
Recall that a covering radius of a code S is RS = max

w∈Fn
∆(w, S), i.e., the largest Hamming distance

of any word in Fn from S. Note that if RS is constant then V (n,RS) is polynomial in n and vice
versa, if V (n,RS) is super-polynomial in n then RS goes to infinity with n. Assume by a way of
contradiction that there exists a constant t > 0 such that for all w ∈ Fn we have ∆(w, S) ≤ t, i.e.,
RS ≤ t = O(1).

The covering radius bound8 states that

|S| · V (n,RS) ≥ |F|n.

But then V (n,RS) ≥ |F|k, where k = ω(log(n)). Hence V (n,RS) must be super-polynomial in n,
and RS = ω(1). Contradiction.

We are ready to prove Proposition B.1.

Proof of Proposition B.1. Let C′ ⊆ Fn2 be a binary linear code such that C ′ is a (3, ε′)-strong LTC
for constant ε′ > 0, dim(C) = ω(log n) and ∆(C) = Ω(n) (such codes exist, e.g., [24]). Let T ′ be the
corresponding tester for C′. Claim B.3 implies that there exists u ∈ Fn such that ∆(u, (C′)⊥) = ω(1).

Let C ⊆ Fn+1
2 be a binary linear code such that C|[n] = C′ and for every c ∈ C we have

c(n+1) = 〈u, c|[n]〉, i.e., the first n coordinates of the code C are identical to the code C and the
last bit of the code C is a sum of the bits indexed by supp(u). Note that ∆(C) ≥ ∆(C′) and
δ(C) ≥ n

n+1 · δ(C) ≥ 0.99δ(C) for n ≥ 99.
Let q′, ε′ > 0 be any constants and assume by contradiction that C is a (q′, ε′)-strong LTC. Let

v ∈ Fn+1
2 be such that supp(v) = supp(u) ∩ {n+ 1}. Note that since the underlying field F2 is the

binary field, the vector v is defined. Notice that by construction it holds that v ∈ C⊥ and for every
v′ ∈ C⊥ we have ∆(v, v′) = ω(1) > q′. It follows that v′ /∈ span(C⊥≤q′),. i.e, span(C⊥≤q′) 6= C⊥. Then
by Claim B.2 we conclude that C is not (q′, ε′)-strong LTC. Contradiction.

However, C is a (3, ε′ · δ(C)/11, δ(C)/10)-weak LTC. To see this, let T be the tester for C
that on the input word w ∈ Fn+1

2 invokes the tester T ′ on w|[n], and accepts if and only if T ′
accepted. Clearly, T makes at most 3 queries as T ′. If w ∈ C then T accepts with probability 1,
since w|[n] ∈ C′ and thus T ′ accepts w|[n] with probability 1. Finally, if δ(w, C) ≥ δ(C)/10 then
δ(w|[n], C′) ≥ δ(C)/11. Thus the tester T ′ rejects w|[n] with probability at least ε′ · δ(C)/11. That
means the tester T rejects w with probability at least ε · δ(C)/11.

We conclude that C is a (3, ε, ρ)-weak LTC, where ε = ε′ · δ(C)/11 and ρ = δ(C)/10.

8For any code C ⊆ Fn (whether linear or not) the covering bound states that the covering radius R of C relates to
n and |C| by |C| · V (n,R) ≥ |F|n.
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B.2 All strong LTCs are weak LTCs

Claim B.4. If a code C ⊆ Fn2 is a (q, ε)-strong LTC then C is a (q, ε · ρ, ρ)-weak LTC for every
ρ > 0.

Proof. The claim holds since there exists a q-query tester T that always accepts all w ∈ C and
rejects all w /∈ C with probability at least ε · δ(w,C). In particular, if δ(w,C) ≥ ρ then T rejects
w with probability at least ε · ρ.
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