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Abstract

We study the ε-rank of a real matrix A, defined for any ε > 0 as the minimum rank of a
matrix that approximates every entry of A to within an additive ε. This parameter is connected
to other notions of approximate rank and is motivated by problems from various topics including
communication complexity, combinatorial optimization, game theory, computational geometry and
learning theory. Here we give bounds on the ε-rank and use them for algorithmic applications.
Our main algorithmic results are (a) polynomial-time additive approximation schemes for Nash
equilibria for 2-player games when the payoff matrices are positive semidefinite or have logarithmic
rank and (b) an additive PTAS for the densest subgraph problem for similar classes of weighted
graphs. We use combinatorial, geometric and spectral techniques; our main new tool is an efficient
algorithm for the following problem: given a convex body A and a symmetric convex body B, find
a covering a A with translates of B.

1 Introduction

1.1 Background

A large body of work in theoretical computer science deals with various ways of approximating a
matrix by a simpler one. The motivation from the design of approximation algorithms is clear. When
the input to a computational problem is a matrix (that may represent a weighted graph, a payoff
matrix in a two-person game or a weighted constraint satisfaction problem), the hope is that it is
easier to solve or approximately solve the computational problem for the approximating matrix, which
is simpler. If the notion of approximation is suitable for the problem at hand, then the solution will
be an approximate solution for the original input matrix as well.

A typical example of this reasoning is the application of cut decomposition and that of regular
decomposition of matrices. The cut-norm of a matrix A with a set of rows R and a set of columns C
is

max
S⊂R,T⊂T

|
∑

i∈S,j∈T
Aij |.
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A cut matrix B(S, T ; r) is a matrix B for which Bij = r iff i ∈ S, j ∈ T and Bij = 0 otherwise. Frieze
and Kannan showed that any n-by-m matrix B with entries in [−1, 1] can be approximated by a sum
of at most 1

ε2
cut matrices, in the sense that the cut norm of the difference between B and this sum

is at most εmn. Such an approximation can be found efficiently and leads to several approximation
algorithms for dense graphs—see [20]. Similar approximations of matrices can be given using variants
of the regularity lemma of Szemerédi. These provide a more powerful approximation at the expense
of increasing the complexity of the approximating matrix, and supply approximation algorithms for
additional problems see [6, 19, 8].

All these methods, however, deal with global properties, as the approximation obtained by all
these variants of the regularity lemma are not sensitive to local changes in the matrix. In particular,
these methods cannot provide approximate solutions to problems like that of finding an approximate
Nash equilibrium in a two person game, or that of approximating the maximum possible density of a
subgraph on, say,

√
n vertices in a given n vertex weighted graph. Motivated by applications of this

type, it is natural to consider a stronger notion of approximation of a matrix, an approximation in
the infinity norm, by a matrix of low rank. This motivates the following definition.

Definition 1.1 For a real n× n matrix A, the ε-rank of A is defined as follows:

ε-rank(A) = min{rank(B) : B ∈ <n×n, ‖A−B‖∞ ≤ ε}.

We will usually assume that the matrix A has entries in [−1, 1], but the definition holds for any
real matrix. Define the density norm of a matrix A to be

den(A) = max
x,y∈<n

+

|xTAy|
‖x‖1‖y‖1

.

It is easy to verify that the following definition of ε-rank is equivalent to Definition 1.1:

ε-rank(A) = min{rank(B) : B ∈ <n×n,den(A−B) ≤ ε}.

The investigation of notions of simple matrices that approximate given ones is motivated not only
by algorithmic applications, but by applications in complexity theory as well. Following Valiant [43]
call a matrix A (r, s)-rigid if for any matrix B of the same dimensions as A and rank at most r, A−B
contains a row with at least s nonzero entries. Here the notion of simple matrix is thus a matrix of low
rank, and the notion of approximation is to allow a limited number of changes in each row. Valiant
proved that if an n-by-n matrix is (Ω(n), nΩ(1))-rigid, then there is no arithmetic circuit of linear size
and logarithmic depth that computes Ax for any given input x. Therefore, the main problem in this
context (which is still wide open) is to give an explicit construction of such a rigid matrix.

Another notion that received a considerable amount of attention is the sign-rank of a real matrix.
For a matrix A, rank±(A) is defined as the minimum rank over matrices each of whose entries has the
same sign as the corresponding entry in the original matrix. The notion of approximation here refers
to keeping the signs of the entries, while the simplicity of the approximating matrix is measured by
its rank. The sign rank has played a useful role in the study of the unbounded error communication
complexity of Boolean functions (see, e.g., [5, 21] and their references), in establishing lower bounds in
learning theory, and in providing lower bounds for the size of threshold-of-majority circuits computing
a function in AC0 (see [36]). It is clear that for −1, 1 matrices or matrices with entries of absolute
value exceeding ε, ε-rank(A) ≥ rank±(A), and simple examples show that in many cases the ε-rank is
far larger than the sign-rank.
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Another line of work on ε-rank is motivated by communication complexity [16, 31, 35]. The ε-error
private-coin communication complexity of a Boolean function is bounded from below by the logarithm
of the ε-rank of the corresponding communication matrix (see [28]). In addition, the ε-error private-coin
quantum communication complexity of a Boolean function is bounded from below by log ε-rank(A)/2
where A is the communication matrix of the function. Using this connection, it has been proven that
for fixed ε the 2n-by-2n set-disjointness matrix has ε-rank 2Θ(

√
n), by the quantum communication

protocol of Aaronson and Ambainis [1] for disjointness, and Razborov’s lower bound for the problem
(see [35], where there is a lower bound for the trace-norm of any matrix that ε-approximates the
disjointness matrix restricted to the sets of size n/4.) In another work, Lee and Shraibman [29] have
given algorithmic bounds on ε-rank via the γ2 norm. The γ2-norm of a real matrix A, denoted by
γ2(A), is the minimum possible value of the product c(X)c(Y ), where c(Z) is the maximum `2-norm of
a column of a matrix Z, and the minimum is taken over all factorizations of A of the form A = XtY .
For a sign matrix A and for α ≥ 1, let γα2 (A) denote the minimum possible value of γ2(B), where B
ranges over all matrices of the same dimension as A that satisfy 1 ≤ Aij · Bij ≤ α for all admissible
i, j. Let rankα(A) denote the minimum possible rank of such a matrix B. Note that for α = 1 + ε
this is (roughly) the ε/2-rank of A. In [29] it is shown that rankα(A) and γα2 (A) are polynomially
related for any sign matrix A, up to a poly-logarithmic factor in the dimension of A. Since γα2 (A)
can be computed efficiently using semidefinite programming, this provides a (rough) approximation
algorithm for the ε-rank of a given sign matrix.

For the special case of the n-by-n identity matrix the ε-rank has been studied and provided several
applications. In [2] it is shown that it is at least Ω( logn

ε2 log(1/ε)
) and at most O( logn

ε2
). This is used in

[2] to derive several applications in geometry, coding theory, extremal finite set theory and the study
of sample spaces supporting nearly independent random variables. See also [12] for a more recent
application of the lower bound (for the special case ε < 1/

√
n) in combinatorial geometry and in the

study of locally correctable codes over real and complex numbers.
The notion of the ε-rank of a matrix is also related to learning and to computational geometry.

Indeed, the problem of computing the ε-rank of a given n-by-n matrix A is equivalent to the geometric
problem of finding the minimum possible dimension of a linear subspace of Rn that intersects the
aligned cubes of edge length 2ε centered at the columns of A. In learning, the problem of learning with
margins, the fat-shattering dimension of a family of functions and the problem of learning functions
approximately are all related to this notion (see e.g., [4] and the references therein).

The focus of our paper is algorithmic applications of ε-rank; we state our results in the next section.

1.2 Results

Our results are divided into three related topics: bounds on the ε-rank, algorithmic applications, and
efficient covering of one convex body by another.

Bounds on approximate rank. We begin with bounds on the ε-rank. A well known result of
Forster [21] asserts that the sign-rank of any n-by-n Hadamard matrix H is at least Ω(

√
n). This

clearly implies the same lower bound for the ε-rank of any such matrix for any ε < 1. Using the
approximate γ2 norm, Linial et al. [30] further show that ε-rank(H) ≥ (1− 2ε)n. The following gives
a slightly stronger estimate, which is tight.

Theorem 1.2 For any n× n Hadamard matrix H and any 0 < ε < 1, ε-rank(H) ≥ (1− ε2)n.

Next we show a lower bound on the approximate rank of a random d-regular graph. Let AG denote
the adjacency matrix of a graph G, and ĀG denote the “signed” adjacency matrix where the (i, j)
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entry is 1 for an edge and −1 for a non-edge. We show, in fact, a stronger statement that for a random
d-regular graph the sign rank of ĀG is Ω(d).

A closely related result was shown by Linial and Shraibman [31]. Similarly to the sign rank, define
γ∞2 (A) as the minimum γ2 norm of a matrix that has the same sign pattern as A and all entries at
least 1 in magnitude. It is known that rank±(A) = O(γ∞2 (A) log(mn)) [13] and also that the sign rank
can be exponentially smaller than γ∞2 [15, 41]. Linial and Shraibman show that γ∞2 (AG) = Ω(

√
d) for

a random d-regular graph, which also implies an Ω(d) lower bound on the ε-approximate rank for any
constant ε < 1/2.

Our proof is different from these γ2 techniques and relies, as in previous lower bounds on the sign
rank [5], on Warren’s theorem from real algebraic geometry [45].

Theorem 1.3 For almost all d-regular graphs G on n vertices rank±(ĀG) = Ω(d) for the adjacency
matrix of G.

By “almost all” we mean that the fraction of d-regular graphs on n vertices for which the statement
holds tends to 1 as n tends to infinity. Note that as ĀG = 2AG − J , where J is the all ones matrix,
this result also implies that ε-rank(AG) = Ω(d) for any ε < 1/2. The lower bound here is tight for
ε-rank up to a log n factor: it follows from results in [30, 29] that for any fixed ε bounded away from
zero the ε-rank of AG for every d-regular graph on n vertices is O(d log n). The lower bound is tight
for sign rank, as a result of [5] implies that the sign rank is bounded by the maximal number of sign
changes in each row.

The ε-rank of any positive semidefinite matrix can be bounded from above as stated in the next
theorem. The theorem follows via a direct application of the Johnson-Lindenstrauss lemma [26].

Theorem 1.4 For any ε < 1 and a symmetric positive semidefinite n× n matrix A with |Aij | ≤ 1,

ε-rank(A) ≤ 9 log n

ε2 − ε3
.

Note that this is nearly tight, by the above mentioned lower bound for the ε-rank of the identity
matrix.

The last theorem can be extended to linear combinations of positive semidefinite (=PSD) matrices.

Corollary 1.5 Let A =
∑m

i=1 αiBi where |αi| ≤ 1 are scalars and Bi are n × n PSD matrices with
entries at most 1 in magnitude. Then

ε-rank(A) ≤ Cm2 log n

ε2

for an absolute constant C.

Algorithmic applications. The notion of ε-rank and the bounds above have algorithmic applica-
tions. The high-level idea is that we can replace the input matrix of a given instance by another that
approximates it in every entry and has lower rank.

For a 2-player game specified by two payoff matrices A,B, a fundamental problem is computing an
approximate ε-Nash equilibrium of the game (we define this precisely in Section 4.1). Since changing
any entry of a payoff matrix can affect the payoff to a player by at most ε, the ε-rank is a very natural
notion in this context. Lipton et al. [32] showed that an ε-Nash equilibrium for any 2-player game can
be computed in time nO(logn/ε2) and it has been an important open question to determine whether this
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problem has a PTAS (i.e., an algorithm of complexity of nf(ε)). Our result establishes a PTAS when
A+B is PSD or when A+B has ε-rank O(log n) (and we are given an ε-approximating matrix C of
A+B with rank O(log n)), where A and B are the payoff matrices of the game. Note that the special
case when A+B = 0 corresponds to zero-sum games, a class for which the exact Nash equilibrium can
be computed using linear programming. The setting of A+B having constant rank was investigated
by Kannan and Theobald [27], who gave a PTAS for this case. Their algorithm has running time

npoly(d,1/ε); ours has complexity [O(1/ε)]d poly(n), giving a PTAS for ε-rank d = O(log n).

Theorem 1.6 Let A,B ∈ [−1, 1]n×n be the payoff matrices of a 2-player game. If A + B is positive
semidefinite, then an ε-Nash equilibrium of the game can be computed by a deterministic algorithm
using poly(n) space and expected time

nO(log(1/ε)/ε2)

i.e., there is a PTAS to compute an ε-Nash equilibrium.

The above theorem can be recovered by a similar algorithm using the γ2-norm approach.
The next theorem is more general (the γ2 approach seems to achieve only a weaker bound of

(n/ε)O(d) here).

Theorem 1.7 Let A,B ∈ [−1, 1]n×n be the payoff matrices of a 2-player game. Suppose (ε/2)-
rank(A + B) = d and suppose we have a matrix C of rank d satisfying ‖A + B − C‖∞ ≤ ε/2. Then,
an ε-Nash equilibrium of the game can be computed in time(

1

ε

)O(d)

poly(n).

Note that in particular if the rank of A+B is O(log n) we can simply take C = A+B and get a
polynomial-time algorithm.

Our second application is to finding an approximately densest bipartite subgraph, a problem that
has thus far evaded a PTAS even in the dense setting. In fact, there are hardness results indicating that
even the dense case is hard to approximate to within any constant factor, see [3]. Here we observe that
we can efficiently compute a good additive approximation for the special case that the input matrix
has a small ε-rank (assuming we are given an approximating matrix of low rank). For a matrix A with
entries in [0, 1] and subsets S, T of rows and columns, let AS,T be the submatrix induced by S and T .
The density of the submatrix AS,T is

density(AS,T ) =

∑
i∈S,j∈T Aij

|S||T |

the average of the entries of the submatrix.

Theorem 1.8 Let A be an n × n real matrix with entries in [0, 1]. Then for any integer 1 ≤ k ≤ n,
there is a deterministic algorithm to find subsets S, T of rows and columns with |S| = |T | = k s.t.,

density(AS,T ) ≥ max
|U |=|V |=k

density(AU,V )− ε.

Its time complexity is bounded by nO(log(1/ε)/ε2) if A is PSD and by
(

1
ε

)O(d)
poly(n) where d = (ε/2)-rank(A)

(and we are given an ε/2-approximation of rank d).
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Note that this is a bipartite version of the usual densest subgraph problem in which the objective
is to find the density of the densest subgraph on (say) 2k vertices in a given (possibly weighted) input
graph. It is easy to see that the answers to these two problems can differ by at most a factor of 2,
and as the best known polynomial time approximation algorithm for this problem, given in [14], only
provides an O(n1/4+o(1))-approximation for an n-vertex graph, this bipartite version also appears to
be very difficult for general graphs.

Covering convex bodies. Our results for general matrices are based on an algorithm to efficiently
find a near-optimal cover of a convex body A by translates of another convex body B. We state this
result here as it seems to be of independent interest. Let N(A,B) denote the minimum number of
translates of B required to cover A. It suffices for the algorithm that an input convex body is specified
by a membership oracle, along with bounds on its inscribing and circumscribing ball radii and a point
inside the body [24]. In the applications in this paper, the bodies will in fact be explicit polytopes.

Theorem 1.9 For any convex body A and any centrally symmetric convex body B in <d, a cover of
A using translates of B of size N(A,B)2O(d) can be enumerated by a deterministic algorithm using
either

1. N(A,B)2O(d) time and 2O(d) space, or

2. N(A,B)O(d)d time and poly(d) space.

Although we do not prove it here, we expect that the theorem can be extended to asymmetric
convex bodies1.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we describe lower and upper bounds for the
ε-rank of a matrix, presenting the proofs of Theorems 1.2, 1.3, 1.4 and Corollary 1.5. In Section 3 we
describe efficient constructions of ε-nets which are required to derive the algorithmic applications, and
prove Theorem 1.9. Section 4 contains the algorithmic applications including the proofs of Theorems
1.6, 1.7 and 1.8. The final Section 5 contains some concluding remarks, open problems and plans for
future extensions.

2 Bounds on ε-rank

2.1 Lower bounds

We start with the proof of Theorem 1.2, which is based on some spectral techniques. For a symmetric
m-by-m matrix A let λ1(A) ≥ λ2(A) ≥ . . . ≥ λm(A) denote its eigenvalues, ordered as above. We
need the following simple lemma.

Lemma 2.1 (i) Let A be an n-by-n real matrix, then the 2n eigenvalues of the symmetric 2n-by-2n
matrix

B =

(
0 A
AT 0

)
(1)

1In an earlier version of this paper, we incorrectly claimed a poly(d) space bound while achieving time N(A,B)2O(d).
Fortunately, this does not affect any of the time complexity bounds, of the covering theorem or of the applications.
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appear in pairs λ and −λ.
(ii) For any two symmetric m-by-m matrices B and C and all admissible values of i and j

λi+j−1(B + C) ≤ λi(B) + λj(C).

Proof.
(i) Let (x, y) be the eigenvector of an eigenvalue λ of B, where x and y are real vectors of length n.
Then Ay = λx and ATx = λy. It is easy to check that the vector (x,−y) is an eigenvector of the
eigenvalue −λ of B. This proves part (i).
(ii) The proof is similar to that of the Weyl Inequalities - c.f., e.g., [23], and follows from the variational
characterization of the eigenvalues. It is easy and well known that

λi(B) = min
U, dim(U)=m−i+1

max
x∈U,‖x‖=1

xTBx

where the minimum is taken over all subspaces U of dimension m− i+ 1. Similarly,

λj(C) = min
W, dim(W )=m−j+1

max
x∈W,‖x‖=1

xTCx.

Let U and W be subspaces obtaining an optimal value for λi(B) and λj(C) respectively. Put V =
U ∩W . Clearly, the dimension of V is at least m− i− j + 2 and for any x ∈ V, ‖x‖ = 1,

xT (B + C)x = xTBx+ xTCx ≤ λi(B) + λj(C).

Therefore, λi+j−1(B + C) is equal to

min
Z, dim(Z)=m−i−j+2

max
x∈Z,‖x‖=1

xT (B + C)x ≤ λi(B) + λj(C).

2

Proof. (of Theorem 1.2). Let E be an n-by-n matrix, ‖E‖∞ ≤ ε so that the rank of H + E is the
ε-rank of H. Let B and C be the following two symmetric 2n-by-2n matrices

B =

(
0 H
HT 0

)
, (2)

C =

(
0 E
ET 0

)
. (3)

Since H is a Hadamard matrix, BTB = B2 is n times the 2n-by-2n identity matrix. It follows that
λ2
i (B) = n for all i, and by Lemma 2.1, part (i), exactly n eigenvalues of B are

√
n and exactly n are

−
√
n. In particular λn+1(B) = −

√
n.

The absolute value of every entry of E is at most ε, and thus the square of the Frobenuis norm of
C is at most 2n2ε2. As this is the trace of CTC, that is, the sum of squares of eigenvalues of C, it
follows that C has at most 2nε2 eigenvalues of absolute value at least

√
n. By Lemma 2.1, part (i), this

implies that there are at most ε2n eigenvalues of C of value at least
√
n and thus λbε2nc+1(C) <

√
n.

By Lemma 2.1, part (ii) we conclude that λn+bε2nc+1(B + C) < 0. Therefore B + C has at least
n − bε2nc negative eigenvalues and hence also at least n − bε2nc positive eigenvalues. Therefore its
rank, which is exactly twice the rank of H + E, is at least 2(n− bε2nc), completing the proof. 2
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Remark: By Theorem 1.2, if ε < 1√
n

then the ε-rank of any n-by-n Hadamard matrix is n. This

is tight in the sense that for any n which is a power of 4 there is an n-by-n Hadamard matrix with
ε-rank n− 1 for ε = 1√

n
. Indeed, the matrix

H1 =


+1 +1 +1 −1
+1 −1 +1 +1
+1 +1 −1 +1
+1 −1 −1 −1

 (4)

is a 4-by-4 Hadamard matrix in which the sum of elements in every row is of absolute value 2. Thus,
the tensor product of k copies of this matrix is a Hadamard matrix of order n = 4k in which the sum
of elements in every row is in absolute value 2k. We can thus either add or subtract 1

2k
= 1√

n
to each

element of this matrix and get a matrix in which the sum of elements in every row is 0, that is, a
singular matrix.

In a similar vein, we can show that the ε-rank of any n-by-n matrix A with entries in [−1, 1] is at
most n−1 for ε = 6√

n
. Indeed, for any such A = (aij) there are, by the main result of [42], δj ∈ {−1, 1}

so that for every i, |
∑n

j=1 aijδj | ≤ 6
√
n. Fix such δj and define, for each i, εi = (

∑n
j=1 aijδj)/n.

Therefore, for every i, |εi| ≤ 6√
n

and
∑n

j=1(δjaij − εi) = 0, implying that the inner product of the

vector (δ1, δ2, . . . , δn) with any row of the matrix (aij−δjεi) is zero. Since |δjεi| ≤ 6√
n

for all admissible

i, j, this shows that the ε-rank of A is at most n− 1, for ε = 6√
n

.

A similar reasoning shows that for any n-by-n matrix A with entries aij ∈ [−1, 1], the ε-rank is at

most n − Ω( ε2n
logn). The argument here proceeds as follows. Break the columns of A into k = ε2n

2 logn
disjoint subsets of nearly equal size, thus breaking A into k submatrices, each having n rows and
roughly 2 logn

ε2
columns. It suffices to show that the ε-rank of each of these submatrices is at most

one less than the number of its columns. Let A′ be such a submatrix and let p be the number of
its columns. Let δ = (δ1, . . . , δp) be a random vector in {−1, 1}p. By the the Chernoff-Hoeffding
Inequality, with positive (and in fact high) probability the inner product of each row of A′ with δ is of
absolute value at most εp. We can now proceed as before to get a matrix B′ satisfying ‖A′−B′‖∞ ≤ ε
so that each row of B′ is orthogonal to the vector δ, completing the proof.

Recall that the sign rank, rank±(A), is the minimal rank of a matrix with the same sign pattern
as A. In [5] it is shown that there are n-by-n sign matrices A for which rank±(A) ≥ n/32, thus for
larger ε (close to 1) we cannot expect that ε-rank(A) ≤ (1− ε2)n for all A.

The proof of Theorem 1.3 is a simple consequence of a known bound of Warren for the number of sign
pattern of real polynomials. For a sequence P1, P2, . . . , Pm of real polynomials in ` variables, and for
x ∈ R` for which Pi(x) 6= 0 for any i, the sign pattern of the polynomials Pi at x is the vector

(sign(P1(x)), sign(P2(x)), . . . , sign(Pm(x))) ∈ {−1, 1}m.

Let s(P1, P2, . . . , Pm) denote the total number of sign patterns of the polynomials Pi as x ranges over
all points of R` in which no Pi vanishes. Note that this is bounded by the number of connected
components of the semi-variety V = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}. In this notation, the
theorem of Warren is the following.

Theorem 2.2 (Warren [45]) Let P1, P2, . . . , Pm be real polynomials in ` variables, each of degree at
most k. Then the number of connected components of V = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}
is at most (4ekm/`)`. Therefore, s(P1, P2, . . . , Pm) ≤ (4ekm/`)`.
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Proof. [of Theorem 1.3] It is easy and well known that for any admissible n and d (with nd even) the
number of labelled d regular graphs on n vertices is [Θ(n/d)]nd/2. In particular this number is at least
(cn/d)nd/2 for some absolute positive constant c. Let us estimate the number of d-regular graphs G
for which rank±(ĀG) ≤ r. For any such matrix there are two matrices B and C where B is an n-by-r
matrix and C is an r-by-n matrix, so that sgn(BC) = ĀG, where sgn(A) is the sign function applied
entrywise to A. Thinking about the 2nr entries of the matrices B and C as variables, every entry of
their product BC is a degree 2 polynomial in these variables. This means that the number of such
adjacency matrices that have sign rank bounded by r is at most the number of sign patterns of n2

polynomials, each of degree 2, in ` = 2nr variables. (It actually suffices to look at half of the entries,
as the matrix is symmetric, but this will not lead to any substantial change in the estimate obtained).
By Theorem 2.2 this number is at most (

4e2n2

2nr

)2nr

.

For r < c′d for an appropriate absolute positive constant c′ this is exponentially smaller than the
number of labelled d-regular graphs on n vertices, completing the proof. 2

2.2 Upper bounds

We will use the Johnson-Lindenstrauss (JL, for short) Lemma [26]. The following version is from
[10, 44].

Lemma 2.3 Let R be an n × k matrix, 1 ≤ k ≤ n, with i.i.d. entries from N(0, 1/k). For any
x, y ∈ <n with ‖x‖, ‖y‖ ≤ 1,

Pr(|(RTx)T (RT y)− xT y| ≥ ε) < 2e−(ε2−ε3)k/4.

Proof. (of Theorem 1.4). Since A is PSD there is a matrix B so that A = BBT . Let R be a random
n× k matrix with entries from N(0, 1/k). Consider Ã = BRRTBT .

For two vectors x, y ∈ <n,
E(xTRRT y) = xT y

and by the JL Lemma,
Pr(|xTRRT y − xT y| ≥ ε) ≤ 2e−(ε2−ε3)k/4.

Setting, say, k = 9 lnn/(ε2 − ε3) we conclude that whp

‖A− Ã‖∞ ≤ ε.

2

Proof. (of Corollary 1.5). Put

A1 =
1∑

αi>0 αi

∑
αi>0

αiBi

and

A2 =
1∑

αi<0 |αi|
∑
αi<0

|αi|Bi.

9



Then A1 and A2 are positive semidefinite with entries of magnitude at most 1. We can thus apply
Theorem 1.4 to approximate the entries of each of them to within ε

m and obtain the desired result by
expressing A as a linear combination of A1 and A2 with coefficients whose sum of magnitudes is at
most m. 2

We can sometimes combine the Johnson-Lindenstrauss lemma with some information about the
negative eigenvalues and eigenvectors of a matrix to derive nontrivial bounds for its ε-rank. A more
elaborate use of the lemma arises when trying to estimate the ε-rank of the n by n matrix A = (aij)
in which aij = +1 for all i ≥ j and aij = −1 otherwise. This matrix, also known as the half-graph
matrix or the greater-than matrix, is motivated by applications in computational complexity as well
as by regularity partitions. It is known that its ε-rank is Ω(log n/(ε2 log(1/ε))) [2] and is also Ω(log2 n)
for any ε < 0.99. The latter inequality follows from the result of [22] that γα2 (A) ≥ Ω(log n) for any α,
and the known relation between the ε-rank of A and γα2 (A) for α = 1 + Θ(ε).

The best-known upper bound is that for any ε the ε-rank of A is O(log3 n/ε2) where here one
combines the result of [33] that γ2(A) = O(log n) with the the upper bound on approximate rank in
terms of approximate γ2 norm [29].

To see this directly, consider a decomposition of A first into an upper-triangular matrix and a
complementary lower-triangular matrix. For the upper-triangular 0-1 matrix, we extract the large
block of all 1 entries, roughly the upper right quarter of the matrix and let A1 be the matrix of the
same dimensions as A with this block as its support. The remaining matrix can be viewed as two
upper-triangular matrices put together, we recursively extract a block of 1’s from each of them and
let A2 be the matrix (of the same dimensions as A) with support equal to these two blocks. This
process clearly terminates after dlog ne steps, giving a decomposition into l = O(log n) matrices. Now
we notice that for each matrix in the decomposition, upon removing the all-zero rows and columns, we
are left with a block-diagonal matrix, with each block consisting entirely of 1’s. It is easy to see that
using the JL lemma, any such block-diagonal matrix has ε-rank O(logm/ε2) where m is the number
of blocks; all rows of the same block are mapped to the same random vector and so the entry in the
approximate matrix depends only on the block numbers of the indices. We assign a single random
vector to each index i ∈ [n] formed by concatenating the random vectors for each element of the
decomposition, i.e., a random vector from N(0, 1/k)kl. Then the expectation of the inner product
of two such indices is 0 or 1 corresponding to the entry, and the probability of deviation from the
expectation of any single entry by an additive tl is at most e−kl(t

2−t3)/4. Using l = O(log n) and
setting t = ε/l, we get a probability of failure bounded by e−k(ε2−ε3)/l. Thus setting k = O(l log n/ε2),
we ensure that with high probability, every entry deviates from its expectation by at most ε. The
total dimension of the embedding is kl = O(log3 n/ε2).

3 Constructing ε-nets

For a matrix A that has small ε-rank, we will be able to construct small ε-nets to approximate the
quadratic form xTAy for any x, y of `1-norm 1 to within additive ε. We describe the construction
of these nets in this section, then apply them to some algorithmic problems in what follows. The
construction in the PSD case is more explicit and independent of the input matrix; we describe this
first.

Theorem 3.1 Let A = BBT , where A is an n×n positive semidefinite matrix with entries in [−1, 1]
and B is n × d. Let ∆ = ∆n = {x ∈ Rn, ‖x‖1 = 1, x ≥ 0}. There is a finite set S ⊂ <d independent

10



of A,B such that

∀x ∈ ∆, ∃x̃ ∈ S : ‖BTx− x̃‖∞ ≤
ε√
d

with |S| = O(1/ε)d. Moreover, S can be computed in time O(1/ε)dpoly(n).

Proof. We note that since the diagonal entries of A are at most 1, every column of BT has 2-norm
at most 1. For x ∈ ∆, we have y = BTx ∈ [−1, 1]d. Let us classify the entries of y into buckets based
on their magnitude. Let m = dlog(

√
d)e and

bj =

∣∣∣∣{i :
1

2j
≤ |yi| ≤

1

2j−1
}
∣∣∣∣

for j = 1, . . .m− 1, and bm = |{i : |yi| ≤ 1/2m−1}|. Then

m−1∑
j=1

bj2
−2j ≤ 1.

We call the vector (b1, b2, . . . , bm) the profile of a vector y. Thus, bj ≤ 22j for all j ≤ m.
We will now construct an ε-net by discretizing each coordinate to multiples of ε/

√
d. If we replace

each coordinate of a vector y by its nearest multiple of ε/
√
d, then the resulting vector ỹ satisfies

‖y − ỹ‖∞ ≤
ε√
d

and thus ‖y − ỹ‖ ≤ ε.

We now bound the size of this ε-net. The total number of distinct profiles is(
d+m− 1

m− 1

)
< 22d. (5)

For a fixed profile, the number of ways to realize the profile (by assigning coordinates to each bucket)
is (

d

b1

)(
d− b1
b2

)
. . .

(
d−

∑m−1
j=1 bj

bm

)
<

log2 d∏
i=1

(
d

d/2i

)
. (6)

This last product is bounded by

2d(H(1/2)+H(1/4)+H(1/8)+...+H(1/d)) = 2O(d),

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.
For each realization of a profile, the maximum size of the ε-net can be bounded as

Πm
j=1

( √
d

2j−2ε

)bj
≤
(

1

ε

)d
Πm
j=1

( √
d

2j−2

)22j

≤
(

1

ε

)d
2O(d). (7)

The product of (5), (6) and (7) is an upper bound on the size of S. Thus, the size of the net is bounded
by [O(1/ε)]d as claimed. 2

We prove a similar algorithmic bound for the general case of a rank-k matrix, with a set that
depends on the input matrix.
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Theorem 3.2 Let A be an n-by-n matrix with entries in [−1, 1] and (ε/2)-rank(A) = d. There is a
finite set S ⊂ <n s.t.

∀x ∈ ∆,∃x̃ ∈ S : ‖Ax−Ax̃‖∞ ≤ ε

and |S| = O(1/ε)d. Moreover a set of size O(1/ε)d can be computed in time O(1/ε)dpoly(n) given an
ε/2-approximating matrix of rank d.

This theorem will be proved using a more general statement, Theorem 1.9. For compact sets A,B,
let N(A,B) be the minimum number of translates of B required to cover A. The following bounds
are well-known via volume arguments (see e.g., Pisier’s book [34]).

Lemma 3.3 1. For a centrally-symmetric convex body K ∈ <d, N(K, εK) ≤
(
1 + 2

ε

)d
.

2. For a convex body A and a centrally-symmetric convex body B, both in <d,

vol(A)

vol(A ∩B)
≤ N(A,B) ≤ 3d

vol(A)

vol(B)
.

3. For compact sets A,B,C ∈ <d, vol(A+ C) ≤ N(A,B)vol(B + C).

Proof. (of Theorem 3.2). We assume that A has rank d (replacing it with its ε/2 approximation, if
needed, and rescaling to assume that in this approximation too every entry lies in [−1, 1]). Let K be
the intersection of the span of A with [−1, 1]n. Thus K is a centrally-symmetric d-dimensional convex
body. Now let L be the intersection of the span of A with [−ε/2, ε/2]n. A cover of K by copies of L
would achieve the property we need for S. Note that (ε/2)K = L. Therefore,

N(K,L) = N
(
K,

ε

2
K
)
≤
(

1 +
4

ε

)d
using Lemma 3.3, part (1). We can now apply Theorem 1.9 (proved in the next subsection) to complete
the proof. 2

3.1 Constructing nearly optimal ε-nets

In this section we prove Theorem 1.9. We begin with the second part, for which the standard lattice
Zn can be used. For the near optimal cover size and time complexity of the first part, we will need
some additional tools.

Proof. [of Theorem 1.9(2).] Start by finding a parallelopiped P s.t.

P ⊆ A ∩B ⊆ αP

i.e., a sandwiching of A ∩ B by parallelopipeds. It is shown in [9] that α = 4d can be achieved in
polynomial time. Now apply an affine transformation that makes P a unit cube. Tile the resulting
A with unit cubes so that every point of A is covered. This covering can be carried out by a simple
depth-first search enumeration starting with any copy of P that intersects A and only exploring copies
of P that intersect A+ P . We prove two facts about this procedure:

1. The set of cubes intersecting A is connected via paths that use only cubes that intersect A+P .
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2. The total number of cubes explored in the enumeration is bounded by 2d times the number of
cubes that intersect A+ P , which is bounded by O(d)dN(A,B).

To prove the first part, consider the centers of two cubes P1 and P2 that intersect A and the straight
line joining these centers. To go from P1 to P2 it suffices to traverse a sequence of cubes that intersect
this line. Since P1, P2 intersect A, they lie in A+ P , and so do their centers. Thus, by convexity, the
line joining the centers lies entirely in A + P and therefore the cubes traversed in the path between
P1 and P2 all intersect A+ P .

For the second part, we note that the set of cubes intersecting A+ P are all contained in A+ 2P .
Therefore, using Lemma 3.3(2), their number is at most

vol(A+ 2P )

vol(P )
≤ vol(A+ 2A)

vol(P )
≤ 3d(4d)d

vol(A)

vol(A ∩B)

≤ (12d)dN(A,B).

This proves the correctness of the DFS enumeration and bounds its time. Finally, we note that
the space required is bounded by O(d) times the logarithm of the diameter of A+ P (after making P
a cube), which is polynomial in the input specification. 2

Our main tool for the near-optimal covering is an extremal lattice construction by Rogers [37] from
1950. The norm defined by a symmetric convex body K is

‖x‖K = inf{s : x ∈ sK}.

For a lattice L ∈ <d, two standard parameters are its shortest nonzero vector and its covering radius.
We recall their definitions:

λ1(K,L) = min
x∈L\{0}

‖x‖K

and
µ(K,L) = inf{s : L+ sK = <d}.

Theorem 3.4 [37] For any centrally-symmetric convex body K ⊂ <d, there is a d-dimensional lattice
L with the following properties:

1. µ(K,L) ≤ 1, i.e., L+K = <d.

2. λ1(K,L) ≥ 2/3.

Using Minkowski’s first theorem on lattices, we have λ1(K,L)d ≤ 2d det(L)/vol(K) and therefore
det(L) ≥ 3−dvol(K) for Rogers’ extremal lattice. Lattices with covering radius 1 and large determinant
were investigated in the 1950’s in a series of papers by Rogers [37, 38, 39, 40]. The simplest of
these consists of choosing a random lattice with a fixed determinant. Whp, this already satisfies
vol(K)
det(L) = 2O(d). The highest possible determinant for a covering lattice is an open question. The

current best existential result [40] is a covering lattice L for any convex body K with

vol(K)

det(L)
= dO(log log d).

Rogers’ proof of Theorem 3.4 is algorithmic and can be used to compute a basis of an extremal
lattice. We include a proof here for completeness along with an explicit algorithm and complexity
analysis.
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Theorem 3.5 [37] For any convex body K in <d given by a membership oracle, there is a deterministic
algorithm that outputs a basis for a lattice satisfying the conditions of Rogers’ extremal lattice theorem
and has complexity 2O(d).

We will use this lattice in our covering algorithm. In addition to this lattice, we need an enumer-
ation algorithm for lattice points in a convex body from [17]. An M-ellipsoid (Milman ellipsoid) of a
convex body K is an ellipsoid E that achieves N(K,E)N(E,K) = 2O(d). This object is a powerful
tool in convex geometry. It can be computed deterministically in time 2O(d) [18].

Theorem 3.6 [17] Given any convex body K ∈ <d, along with an M-ellipsoid E of K and any d-
dimensional lattice L ∈ <d, the set K ∩ L can be computed by a deterministic algorithm in time
G(K,L)2O(d) where G(K,L) = supx∈<d |L ∩ (x+K)|.

Using the above two results, we can prove the first part of Theorem 1.9.

Proof. [of Theorem 1.9(1).] To cover A with B, we compute a Rogers lattice L for B and an M -
ellipsoid E of A + B. This can be done deterministically in time 2O(d) as shown in [18]. Using the
M -ellipsoid, we can apply Theorem 3.6 to enumerate the set L ∩ (A + B) in time 2O(d)G(A + B,L).
It remains to bound G(A+B,L), which we do as follows:

G(A+B,L) = sup
x∈<d

|L ∩ (x+A+B)|

≤ N(A+B,B)G(B,L)

≤ 3d
vol(A+B)

vol(B)

≤ 3dN(A,B)
vol(2B)

vol(B)
G(B,L)

≤ 6dN(A,B)G(B,L).

Here we used Lemma 3.3(2),(3), the latter with C = B.
We now bound G(B,L) = supx∈<d |L∩(x+B)| using the fact that L is extremal for B. Fix x ∈ <d

and let S = L ∩ (x+ B). Using the fact that λ1(B,L) ≥ 2/3, we have that y + B/3 and z + B/3 for
any two y, z ∈ L are disjoint. Hence,⋃

x∈S
x+

B

3
⊆ x+B +

B

3
= x+

4B

3
.

Therefore

|S| ≤ vol(4B/3)

vol(B/3)
≤ 4d.

As a consequence, we have G(A+B,L) ≤ 24dN(A,B). The running time of the enumeration algorithm
is thus 2O(d)N(A,B) as claimed. 2

We now describe the algorithm implicit in Rogers’ deterministic construction. The main subrou-
tine, computing λ1(K,L), the length of shortest lattice vector, can be done using the deterministic
algorithm of [17] in time 2O(d). We will need the following fact from [25] (Lemma 4.7 in that paper).

Lemma 3.7 [25] For any integer M > 0, lattice L and symmetric convex body K,

µ(K,L) ≤ M

M − 1
sup
x∈ 1

3
L

min
y∈L
‖x− y‖K .
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Input: Convex body K ∈ <d.

1. Let L be a lattice of determinant 1 with basis b = (b1, . . . , bd). Compute λ1(K,L).

2. For each choice of ξ = (ξ1, . . . , ξd) ∈ {−1, 0, 1}d, with at least one ξi 6= 0,

(a) Let a =
∑d

i=1
ξi
3 bi.

(b) Check if the refined lattice L′ = L+ aZ with basis (b1, . . . , bd, a) has λ1(K,L′) = λ1(K,L).

(c) If yes, set L := L′, compute a new basis; restart Step (2).

3. Scale L to make λ1(K,L) = 2/3. Output the corresponding b1, . . . , bd.

Figure 1: Rogers’ algorithm for the basis of an extremal lattice

Proof. [of Theorem 3.5.] The proof of correctness is directly from [37]. When the algorithm terminates,
the lattice L has the property that for any x ∈ 1

3L\L, λ1(K,L+xZ) < λ1(K,L). Thus, if w ∈ L+xZ
achieves λ1(K,L+ xZ), we write w = y + z with y ∈ L, and z ∈ {x,−x}, since with z = 0 we would
get ‖w‖K ≥ λ1(K,L) > λ1(K,L+ xZ). Thus,

λ1(K,L+ xZ) = ‖w‖K = min
y∈L
{‖y − x‖K , ‖y + x‖K} = min

y∈L
‖y − x‖K .

Using Lemma 3.7 with M = 3, we have

µ(K,L) ≤ 3

2
sup
x∈ 1

3
L

min
y∈L
‖y − x‖K = sup

x∈L
3

λ1(K,L+ xZ) < λ1(K,L).

In the last step of the algorithm, when we scale to make λ1(K,L) = 2/3, we get µ(K,L) < 1, i.e.,
L+K = <d as required.

To bound the time complexity of the algorithm, we note that each iteration of Step (2) takes at
most 3d − 1 shortest vector computations, each of which has complexity 2O(d). Moreover, whenever
an iteration succeeds and refines the current lattice, its determinant decreases by a factor of 1/3. Let
L0 be the starting lattice with |det(L0)| = vol(K). After t iterations, the lattice Lt obtained has
determinant | det(Lt)| = 3−t|det(L0)|. On the other hand, by design, the shortest nonzero vector of
any Lt has the same length as the the original lattice L0. Thus, using Minkowski’s first theorem,

λ1(K,L0)d = λ1(K,Lt)
d ≤ 2

|det(Lt)|
vol(K)

≤ 2

3t
| det(L0)|
vol(K)

≤ 2

3t
.

Hence, t ≤ d log3(2/λ1(K,L0)), and the overall bound on the complexity is 2O(d) as claimed. 2

4 Algorithmic applications

4.1 Approximate Nash equilibria

Let A,B ∈ [−1, 1]n×n be the payoff matrices of the row and column players of a 2-player game. A
Nash equilibrium is a pair of strategies x, y ∈ ∆n = {x ∈ <n : ‖x‖1 = 1, x ≥ 0} s.t.

xTAy ≥ eTi Ay ∀i ∈ {1, . . . , n}
xTBy ≥ xTBej ∀j ∈ {1, . . . , n}
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Alternatively, a Nash equilibrium is a solution to the following optimization problem:

min max
i
Aiy + max

j
xTBj − xT (A+B)y (8)

x, y ∈ ∆n. (9)

An ε-Nash equilibrium is a pair of strategies with the property that each player’s payoff cannot
improve by more than ε by moving to a different strategy, i.e.,

xTAy ≥ eTi Ay − ε ∀i ∈ {1, . . . , n}
xTBy ≥ xTBej − ε ∀j ∈ {1, . . . , n}

Lemma 4.1 Any x, y ∈ ∆n that achieve an objective value of at most ε for (8) form an ε-Nash
equilibrium.

The algorithm for the case when A+B is PSD is described in Figure 2.

1. Let d = 9 log n/((ε/6)2−(ε/6)3) and R be an n×d random matrix with iid entries from N(0, 1/k).

2. Write A+B = UUT and let V = UR.

3. Let S be an (ε/6
√
d)-net in the L∞-norm for {V T y : y ∈ ∆n}.

4. For each ỹ ∈ S, solve the following convex program:

min max
i
Aiy + max

j
xTBj − xTV ỹ

s.t. y ∈ ∆n

‖V T y − ỹ‖∞ ≤
ε

6
√
d
.

5. Output x, y that achieve an objective value of at most ε
2 .

Figure 2: Finding ε-Nash when A+B is PSD

We are ready to prove Theorem 1.6.

Proof. Using Lemma 2.3, we have that for any x, y ∈ ∆n

‖xT (A+B)y − xTV V T y‖ ≤ ε

6
.

Using Theorem 3.1, we can find a set S in <d of size O(1/ε)d with the property that for every
y ∈ ∆n, there is a ỹ ∈ S s.t.

‖V T y − ỹ‖∞ ≤
ε

6
√
d
.

The algorithm enumerates over ỹ ∈ S and looks for a pair with a corresponding x, y ∈ ∆n such that
the objective function (8) is at most ε/2, i.e., solves a convex program for each ỹ ∈ S. We note that
since ỹ is fixed, the resulting program has a convex objective function subject to linear constraints
and thus can be solved in polynomial time.
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A solution of small objective value exists: any x, y that form a Nash equilibrium will have a
corresponding ỹ with objective value at most ε/2. Similarly any solution of objective value at most
ε/2 for the program used in the algorithm implies a solution of the original quadratic program of value
at most ε, and thus satisfies the ε-Nash conditions, completing the proof. 2

Next we give a variant of the algorithm that works for any A + B, not necessarily PSD, with
complexity depending on the (ε/2)-rank of A+B. This appears in Figure 3.

1. Let C be a rank d matrix that satisfies ‖A+B − C‖∞ ≤ ε/2.

2. Let S be an ε/2-net in the L∞-norm for {Cx : x ∈ ∆n}.

3. For each ỹ ∈ S, solve the following convex program:

min max
i
Aiy + max

j
xTBj − xT ỹ

s.t. x, y ∈ ∆n

‖Cy − ỹ‖∞ ≤
ε

4
.

4. Output x, y that achieve an objective value of at most ε
2 .

Figure 3: Finding ε-Nash when A+B has (ε/2)-rank d

The proof of Theorem 1.7 follows from this algorithm and Theorem 3.2.

4.2 Densest subgraph

Our strategy for approximating the densest (bipartite) subgraph is similar to the one described in the
previous subsection. We observe that an ε-approximate solution to the following optimization problem
suffices.

max xTAy

x, y ∈ ∆n

xi, yi ≤
1

k
∀i ∈ {1, . . . , n}

Indeed, in a solution here no xi, yj exceeds 1/k. Since for fixed y the function xTAy is linear in
x and vice versa, it is easy to replace any solution by one of at least the same value in which each
xi and each yj is either 0 or 1/k, and this corresponds to the problem of maximizing the quantity
density(AS,T ) over all sets S of k rows and T of k columns.

To solve this optimization problem, we replace the given adjacency matrix A by an approximating
matrix Ã of rank equal to the (ε/2)-rank of A. Then we enumerate an ε/2-net in the ∞-norm for Ãy
and solve a convex program for each element. This establishes Theorem 1.8.
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5 Concluding remarks

We have studied the ε-rank of a real matrix A, and exhibited classes of matrices for which it is
large (Hadamard matrices, random matrices) and ones for which it is small (positive semidefinite
matrices and linear combinations of those). This leads to several approximation algorithms, mainly
to problems in which the input can be approximated by a positive semidefinite matrix or a low-
rank matrix. Essentially all the discussion here applies to rectangular matrices as well, and we have
considered square matrices just for the sake of simplicity.

It will be interesting to investigate how difficult the problem of determining or estimating the
ε-rank of a given real matrix is. As mentioned in the introduction, a rough approximation is given in
[29].

One of our main motivating problems was the complexity of finding ε-Nash equilibria. This remains
open for general 2-player games. Our methods do not work when the sum of the payoff matrices has
high rank with many negative eigenvalues, e.g., for random matrices. However, in the latter case, there
is a known simple algorithm even for exact Nash equilibria, based on the existence of small support
equilibria [11]. It would be interesting to find a common generalization of this class with the classes
considered here.

Recall that much of the earlier work regarding several notions dealing with the approximation of
matrices by simpler ones revealed interesting applications of lower bounds, that is, of results stating
that certain matrices cannot be well approximated by very simple ones with respect to the appropriate
notions of simplicity and approximation. This is the case with the results regarding matrix rigidity
and the sign-rank of matrices as well as with some of the applications in [2, 12]. It is likely to expect
that lower bounds for the ε-rank of certain matrices can yield additional interesting applications. As
a simple, not too natural and yet interesting example we mention the following.

Claim 5.1 Let p be a prime, and let X be a sample space supporting 2p random variables

X0, X1, . . . , Xp−1 and Y0, Y1, . . . , Yp−1.

Assume, further that for each i and j, the covariance Cov(Xi, Yj) satisfies |Cov(Xi, yj)−χ(i−j)| < 1/2,
where the difference i− j is computed modulo p and χ(z) is the quadratic character which is 1 iff z is
a quadratic residue modulo p (or 0) and −1 otherwise. Then the size of the sample space X satisfies
|X| ≥ Ω(p).

This can be proved using the fact that for ε = 1/2 the ε-rank of the matrix (χ(i− j))i,j∈Zp is Ω(p),
as its eigenvalues are very similar to those of a Hadamard matrix. We omit the details but note that
it will be interesting to find more natural applications of lower bounds for the ε-rank of matrices.

Finally, note that the main component in our algorithmic applications is an efficient procedure for
generating, for a given input matrix A, a collection of not too many ε-cubes in the `∞ norm whose
union covers the convex hull conv(A) of the columns of A. This motivates the study of Nε(A), the
minimum possible size of such a collection. More precisely, Nε(A) is the minimum size of a set T such
that for all z ∈ conv(A) there is a t ∈ T such that ‖z − t‖∞ ≤ ε. Call a cover of conv(A) by ε-cubes
an ε-net for A. We have shown bounds on Nε(A) in terms of the approximate rank of A. In follow-up
work to this paper [7], bounds on Nε(A) are shown in terms of other complexity measures of A like
the γ2 norm and VC dimension.

For a real matrixA, and a subset C of its columns, we say thatA shatters C if there are real numbers
{tc, c ∈ C}, such that for any D ⊆ C there is a row i with A(i, c) < tc for all c ∈ D and A(i, c) > tc for
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all c ∈ C \D. The VC-dimension of A, denoted by VC(A) is the maximum cardinality of a shattered
set of columns. In [7] it is shown that for any real m-by-n matrix A with entries in [−1, 1] and VC-
dimension d, Nε(A) ≤ nO(d/ε2). Moreover, an ε-net of this size can be constructed deterministically in
time proportional to its size times a polynomial factor. Note that by definition the VC-dimension of
any matrix with m rows cannot exceed logm, and thus the corresponding covers are always of size at
most quasi-polynomial. This quasi-polynomial behavior is tight in general. The covers obtained using
this approach do not suffice to reproduce our polynomial time approximation algorithms obtained for
matrices of logarithmic rank, but they do provide improved bounds in many cases. In particular, the
construction via VC dimension supplies a quasi-polynomial time additive approximation scheme for
the densest bipartite subgraph problem for any weighted graph with bounded weights.
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same 2O(d) time complexity. Thus, while his algorithm does not improve the time complexity of our
enumeration algorithm or its applications, it achieves these bounds using space that is polynomial in
the ε-rank.
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