
Generalizing and Derandomizing Gurvits’s Approximation

Algorithm for the Permanent

Scott Aaronson∗ Travis Hance†

Abstract

Around 2002, Leonid Gurvits gave a striking randomized algorithm to approximate the
permanent of an n × n matrix A. The algorithm runs in O

(

n2/ε2
)

time, and approximates
Per (A) to within ±ε ‖A‖n additive error. A major advantage of Gurvits’s algorithm is that it
works for arbitrary matrices, not just for nonnegative matrices. This makes it highly relevant
to quantum optics, where the permanents of bounded-norm complex matrices play a central
role. Indeed, the existence of Gurvits’s algorithm is why, in their recent work on the hardness
of quantum optics, Aaronson and Arkhipov (AA) had to talk about sampling problems rather
than ordinary decision problems.

In this paper, we improve Gurvits’s algorithm in two ways. First, using an idea from
quantum optics, we generalize the algorithm so that it yields a better approximation when the
matrix A has either repeated rows or repeated columns. Translating back to quantum optics,
this lets us classically estimate the probability of any outcome of an AA-type experiment—even
an outcome involving multiple photons “bunched” in the same mode—at least as well as that
probability can be estimated by the experiment itself. It also yields a general upper bound on
the probabilities of “bunched” outcomes, which resolves a conjecture of Gurvits and might be
of independent physical interest.

Second, we use ε-biased sets to derandomize Gurvits’s algorithm, in the special case where
the matrix A is nonnegative. More interestingly, we generalize the notion of ε-biased sets to
the complex numbers, construct “complex ε-biased sets,” then use those sets to derandomize
even our generalization of Gurvits’s algorithm to the multirow/multicolumn case (again for
nonnegative A). Whether Gurvits’s algorithm can be derandomized for general A remains an
outstanding problem.

1 Introduction

The permanent of an n×nmatrix has played a major role in combinatorics and theoretical computer
science for decades. Today this function also plays an increasing role in quantum computing,
because of the fact (pointed out by Caianiello [4] and Troyansky and Tishby [15] among others)
that the transition amplitudes for n identical, non-interacting bosons are given by n×n permanents.

Recall that the permanent of an n× n matrix A = (aij), with entries over any field, is defined
as follows:

Per (A) :=
∑

σ∈Sn

n
∏

i=1

ai,σ(i), (1)

∗MIT. Email: aaronson@csail.mit.edu. This material is based upon work supported by the National Science

Foundation under Grant No. 0844626. Also supported by a DARPA YFA grant, an NSF STC grant, a TIBCO

Chair, a Sloan Fellowship, and an Alan T. Waterman Award.
†MIT. Email: tjhance7@gmail.com

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 170 (2012)



where Sn denotes the set of permutations of {1, . . . , n}. A great deal is known about the complexity
of computing Per (A), given A as input. Most famously, Valiant [16] showed in 1979 that computing
Per (A) exactly is #P-complete, even if A is a matrix of nonnegative integers (or indeed, if all of
its entries are either 0 or 1). On the other hand, in a celebrated application of the Markov-
Chain Monte-Carlo method, Jerrum, Sinclair, and Vigoda [11] gave a randomized algorithm to
approximate Per (A) to multiplicative error ε, in poly (n, 1/ε) time, in the special case where A is
nonnegative. When A is an arbitrary matrix (which could include negative or complex entries),
it is easy to show that even approximating Per (A) to polynomial multiplicative error remains a
#P-hard problem; see Aaronson [1] for example.

We can, on the other hand, hope to estimate Per (A) to within nontrivial additive error for
arbitrary A ∈ C

n×n. And that is exactly what a simple randomized algorithm due to Gurvits
[7] does: it approximates Per (A) to within additive error ±ε ‖A‖n in O

(

n2/ε2
)

time. Here ‖A‖
represents the largest singular value of A. The appearance of this linear-algebraic quantity when
discussing the permanent becomes a little less surprising once one knows the inequality

|Per (A)| ≤ ‖A‖n . (2)

See Section 2 for Gurvits’s algorithm, the proof of its correctness, and the closely-related proof of
the inequality (2).

In particular, if U is a unitary matrix, or a submatrix of a unitary matrix, then ‖U‖ ≤ 1, so
Gurvits’s algorithm approximates Per (U) to within ±ε additive error in O

(

n2/ε2
)

time. Equiv-
alently, the algorithm lets us detect when Per (U) is “anomalously close to 1” (note that, if U is a
random unitary matrix, then Per (U) will usually be exponentially small, and 0 will accordingly be
a good additive estimate to Per (U)). This observation makes Gurvits’s algorithm highly relevant
to the field of quantum optics, where subunitary matrices play a central role.

1.1 Our Results

In this paper, motivated by the problem of simulating quantum optics on a classical computer,
we study how far Gurvits’s algorithm can be improved. We present two sets of results on this
question.

First, we generalize Gurvits’s algorithm, as well as the inequality (2), to perform better on
matrices with repeated rows or repeated columns. Let B ∈ C

n×k be an n× k complex matrix, and
let s1, . . . , sk be positive integers summing to n. Also, let A ∈ C

n×n be an n×n matrix consisting
of si copies of the i

th column of B, for all i ∈ [k]. Then we give a randomized algorithm that takes
O
(

nk/ε2
)

time, and that estimates Per (A) to within an additive error

±ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n . (3)

Interestingly, we obtain this generalization by interpreting certain formal variables x1, . . . , xk arising
in Gurvits’s algorithm as what a physicist would call “bosonic creation operators,” and then doing
what would be natural for creation operators (e.g., replacing each xi by

√
sixi).

We also prove the general inequality

|Per (A)| ≤ s1! · · · sk!
√

ss11 · · · sskk
‖B‖n . (4)

2



Notice that both of these results reduce to Gurvits’s in the special case k = n and s1 = · · · = sn = 1,
but in general they can be much better (for example, if we have information about ‖B‖ but not
‖A‖). We discuss the quantum-optics motivation for these improvements in Section 1.3.

Second, we show that both Gurvits’s algorithm and our generalization of it can be derandomized,
in the special case where all matrix entries are nonnegative. That is, for nonnegative n × n
matrices A ∈ R

n×n
≥0 , we show that we can approximate Per (A) to within additive error ±ε · ‖A‖n,

deterministically and in poly (n, 1/ε) time. If A ∈ R
n×n
≥0 is obtained from an n×k matrix B ∈ R

n×k
≥0

as described above, then we also show that we can approximate Per (A) to within additive error

±ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n, (5)

deterministically and in poly (n, 1/ε) time.
To derandomize Gurvits’s original algorithm, the idea is simply to use ε-biased sets. To deran-

domize our generalization of Gurvits’s algorithm is more interesting: there, we need to generalize
the notion of ε-biased sets to complex roots of unity, then explicitly construct the “complex ε-biased
sets” that we need.

Let us compare our algorithm to a previous deterministic approximation algorithm for the
permanent. Gurvits and Samorodnitsky [8] gave a deterministic algorithm for estimating the
mixed discriminant of a positive semidefinite matrix up to a multiplicative error of en. The
permanent of a nonnegative matrix is a special case of this. Our algorithm improves over Gurvits
and Samorodnitsky’s [8] when Per (A) is large, i.e., close to ‖A‖n or to s1!···sk!

√

s
s1
1 ···ssk

k

‖B‖n.

Of course, for nonnegative A, the algorithm of Jerrum, Sinclair, Vigoda [11] (JSV) gives a better
approximation to Per (A) than any of the algorithms discussed above (including ours). Crucially,
though, no one seems to have any idea how to derandomize JSV. One motivation for trying to
derandomize Gurvits’s algorithm is the hope that it might be a stepping-stone toward a derandom-
ization of the much more complicated JSV algorithm.

1.2 Quantum Optics

This paper is about classical algorithms for a classical permanent-estimation problem. However,
the motivation and even one of the algorithmic ideas came from quantum optics, so a brief discussion
of the latter might be helpful. For details of quantum optics from a computer-science perspective,
see for example Aaronson [1] or Aaronson and Arkhipov [2].

In quantum (linear) optics, one considers states involving identical, non-interacting photons (or
other bosonic particles), which can move from one location (or “mode”) to another, but are never
created or destroyed. In more detail, the photons are in a superposition of basis states, each of
the form |s1, . . . , sk〉, like so:

|Φ〉 =
∑

s1,...,sk≥0 : s1+···+sk=n

αs1,...,sk |s1, . . . , sk〉 , (6)

for some complex numbers αs1,...,sk satisfying
∑

s1,...,sk≥0 : s1+···+sk=n

|αs1,...,sk |2 = 1. (7)

Here si is a nonnegative integer representing the number of photons in the ith mode, and s1 +
· · · + sk = n is the total number of photons. To modify the state |Φ〉, one applies a network of

3



“beamsplitters” and other optical elements, which induces some k × k unitary transformation U
acting on the k modes. Via homomorphism, the k× k unitary U gives rise to a

(k+n−1
n

)

×
(k+n−1

n

)

unitary ϕ (U) acting on the n-photon state |Φ〉. Crucially, each entry of the “large” unitary ϕ (U)
is defined in terms of the permanent of a matrix formed from entries of the “small” unitary U .
The formula is as follows:

〈s1, . . . , sk|ϕ (U) |t1, . . . , tk〉 =
Per (Us1,...,sk,t1,...,tk)√
s1! · · · sk!t1! · · · tk!

. (8)

Here Us1,...,sk,t1,...,tk is the n × n matrix formed from U by taking si copies of the ith row of U for
all i ∈ [k], and tj copies of the jth column of U for all j ∈ [k]. It can be checked [2, 1]—it is not
obvious!—that ϕ is a homomorphism, and that ϕ (U) is unitary for all U . (Indeed, the “reason”
for the scaling term

√
s1! · · · sk!t1! · · · tk! is to ensure these properties.)

Thus, in quantum optics, calculating amplitudes reduces to calculating permanents of the above
form. By the standard rules of quantum mechanics, the probabilities of measurement outcomes
can then be obtained by taking the absolute squares of the amplitudes.

Intuitively, the reason why the permanent arises here is simply that (by assumption) the n
photons are identical, and therefore we need to sum over all n! possible permutations of photons,
each of which contributes a term to the final amplitude. Indeed, even in a classical situation, with n
indistinguishable balls each thrown independently into one of k bins, the probability of a particular
outcome (for example: 2 balls landing in the first bin, 0 balls landing in the second bin, etc.) could
be expressed in terms of the permanent of a matrix A of transition probabilities. The difference is
that, in the classical case, this A would be a nonnegative matrix. And therefore, Per (A) could be
estimated in randomized polynomial time using the JSV algorithm [11]. In the quantum case, by
contrast, we want to estimate |Per (A)|2 for a matrix A of complex numbers—and here is it known
that multiplicative estimation is already a #P-hard problem [2]. That is why we need to settle
for additive approximation—or equivalently, for approximation in the special case that |Per (A)|2
happens to be “anomalously large” (i.e., non-negligible compared to the general upper bound that
we prove on |Per (A)|2).

1.3 Implications of Our Results for Quantum Optics

With that brief tour of quantum optics out of the way, we can now explain the implications
for quantum optics of our first set of results (the ones generalizing Gurvits’s algorithm to the
multirow/multicolumn case).

Consider the “standard initial state” |1, . . . , 1, 0, . . . , 0〉, which consists of n identical photons,
each in a separate mode, and the remaining m − n modes unoccupied. Suppose we pass the n
photons through a network of beamsplitters, then measure the numbers of photons in each of k
output modes. Given nonnegative integers s1, . . . , sk summing to n, let p be the probability that
exactly s1 photons are found in the first output mode, exactly s2 are found in the second output
mode, and so on up to sk. Then by (8), we have

p =
|Per (A)|2
s1! · · · sk!

, (9)

where A is the n× n matrix formed by taking si copies of the ith row of the mode-mixing unitary
U , for all i ∈ [k]. From this, together with the inequality (4), we have the upper bound

p ≤ s1! · · · sk!
ss11 · · · sskk

, (10)

4



and for the associated amplitude α,

|α| ≤
√

s1! · · · sk!
ss11 · · · sskk

. (11)

As a sample application of (10), suppose s1 = n and s2 = · · · = sk = 0. Then

p ≤ n!

nn
≈ 1

en
. (12)

This says that, regardless of what unitary transformation U we apply, we can never get n identical
photons, initially in n separate modes, to “congregate” into a single one of those modes with more
than ∼ n/en probability (the factor of n arising from taking the union bound over the modes).
Or in other words, for n ≥ 3, there is no direct counterpart to the Hong-Ou-Mandel dip [9], the
famous effect that causes n = 2 photons initially in separate modes to congregate into the same
mode with probability 1.1

Let us remark that the bound (10) is tight. To saturate it, let the n × n unitary U be
block-diagonal with k blocks, of sizes s1 × s1, . . . , sk × sk. Also, let the ith block consist of the
si-dimensional Quantum Fourier Transform, or any other si × si unitary matrix whose top row
equals

(

1/
√
si, . . . , 1/

√
si
)

. Then one can calculate that the probability of observing s1 photons
in the first mode of the first block, s2 photons in the first mode of the second block, and so on is
precisely

|〈1, . . . , 1|ϕ (U) |s1, 0, . . . , 0, s2, 0, . . . , 0, . . . 〉|2 =
s1! · · · sk!
ss11 · · · sskk

. (13)

Here is another implication of our results for quantum optics. Given a description of the unitary
transformation U applied by the beamsplitter network, the bound (3) implies the existence of a

randomized algorithm, taking O
(

nk/ε2
)

time, that estimates the amplitude α = Per(A)√
s1!···sk!

to within

an additive error of

ε ·
√

s1! · · · sk!
ss11 · · · sskk

‖B‖n ≤ ε ·
√

s1! · · · sk!
ss11 · · · sskk

(14)

≤ ε, (15)

and likewise estimates the probability p = |α|2 to within an additive error of

ε · |α|
√

s1! · · · sk!
ss11 · · · sskk

‖B‖n ≤ ε · s1! · · · sk!
ss11 · · · sskk

‖B‖n (16)

≤ ε · s1! · · · sk!
ss11 · · · sskk

(17)

≤ ε. (18)

Observe that the above guarantees match Gurvits’s in the special case that all si’s are equal to
1, but they become better than Gurvits’s when

∑

i |si − 1| is large. In the latter case, (10) says
that the probability p is exponentially small, but (16) says that we can nevertheless get a decent
estimate of p.

1When n = 2, we get p ≤ 1/2, which corresponds exactly to the Hong-Ou-Mandel dip: the 2 photons have

probability 1/2 of both being found in the first mode, and probability 1/2 of both being found in the second mode.

5



2 Gurvits’s Randomized Algorithm for Permanent Estimation

The starting point for Gurvits’s algorithm is the following well-known formula for the permanent
of an n× n matrix, called Ryser’s formula [14]:

Per(A) =
∑

x=(x1,...,xn)∈{0,1}n
(−1)x1+···+xn

n
∏

i=1

(ai,1x1 + · · · + ai,nxn) . (19)

Ryser’s formula leads to an O
(

2nn2
)

algorithm for computing the permanent exactly, which can
be improved to O (2nn) by cleverly iterating through the x’s in Gray code order. This remains the
fastest-known exact algorithm for the permanent.

To present Gurvits’s randomized algorithm, we will use a similar formula due to Glynn [6],
which pulls from the domain {−1, 1}n rather than {0, 1}n. We state Glynn’s formula in terms of
the expectation of a random variable. For a given x ∈ {−1, 1}n, define the Glynn estimator of an
n× n matrix A as

Glyx(A) := x1 · · · xn
n
∏

i=1

(ai,1x1 + · · · + ai,nxn) . (20)

Then we have
Per (A) = E

x∈{−1,1}n
[Glyx(A)] . (21)

To see why, we just need to expand the product:

E
x∈{−1,1}n

[Glyx (A)] =
∑

σ1,...,σn∈[n]
a1,σ1 · · · an,σn E

x∈{−1,1}n
[(x1 · · · xn)(xσ1 · · · xσn)] . (22)

Then, note that Ex∈{−1,1}n [(x1 · · · xn)(xσ1 · · · xσn)] is 1 if the map i 7→ σi is a permutation, and 0
otherwise. Hence the above sum is simply Per(A).

As a special case of a more general algorithm for mixed discriminants, Gurvits [7] gave a
polynomial-time randomized sampling algorithm for the permanent. His algorithm is simply the
following: for some m = O

(

1/ε2
)

, first choose n-bit strings x1, . . . , xm ∈ {−1, 1}n uniformly and
independently at random. Then compute Glyxj

(A) for all j ∈ [m], and output

Glyx1
(A) + · · ·+Glyxm

(A)

m
(23)

as the estimate for Per (A).
Since each Glyxi

(A) can be computed in O
(

n2
)

time, the algorithm clearly takes O
(

n2/ε2
)

time. The algorithm’s correctness follows from a single (important) fact. Recall that ‖A‖ denotes
the largest singular value of A, or equivalently,

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖ (24)

where ‖x‖ denotes the 2-norm of the vector x.

Proposition 1. For any n× n complex matrix A, we have |Glyx (A)| ≤ ‖A‖n.

6



Proof. For any x ∈ {1,−1}n, we have by the arithmetic-geometric mean inequality,

|Glyx(A)| ≤





√

∑n
i=1 |ai,1x1 + · · ·+ ai,nxn|2

n





n

(25)

=

(‖Ax‖
‖x‖

)n

(26)

≤ ‖A‖n . (27)

To summarize, Glyx (A) is a random variable that is bounded by ‖A‖n in absolute value, and
whose expectation is Per (A). This implies that

|Per (A)| ≤ ‖A‖n . (28)

By a standard Chernoff bound, it also implies that we can estimate Per (A) to additive error
±ε ‖A‖n, with high probability, by taking the empirical mean of Glyx (A) for O

(

1/ε2
)

random x’s.

3 Generalized Gurvits Algorithm

We now give our generalization of Gurvits’s algorithm to the multirow/multicolumn case, as well
as our generalized upper bound for the permanent. As in Section 1.1, given nonnegative integers
s1, . . . , sk summing to n, we let B ∈ C

n×k be an n × k matrix, and let A ∈ C
n×n be the n × n

matrix in which the ith column of B is repeated si times. Also, let R[j] denote the set of the
jth roots of unity, and let X := R[s1 + 1] × · · · × R[sk + 1]. Then for any x ∈ X , we define the
generalized Glynn estimator as follows. If x = (x1, . . . , xk), then let yi =

√
sixi and

GenGlyx(A) :=
s1! · · · sk!
ss11 · · · sskk

y1
s1 · · · yksk

n
∏

i=1

(y1bi,1 + · · ·+ ykbi,k) (29)

where bi,j denotes the (i, j) entry of B. We will use this to estimate Per (A), as follows. First we
will show that

E
x
[GenGlyx (A)] = Per (A) . (30)

Then we will show that

|GenGlyx (A)| ≤
s1! · · · sk!

√

ss11 · · · sskk
‖B‖n . (31)

The s1!···sk!
s
s1
1 ···ssk

k

factor in the definition of GenGlyx is a normalization factor that we need for Lemma

2 below to hold. The value of the normalization factor depends on our choice of the scale factors
when defining the yi’s. Here, we set yi =

√
sixi in order to optimize the bound in Lemma 3 below.

Lemma 2. For the uniform distribution of x over X , the expected value of GenGlyx (A) is

E
x∈X

[GenGlyx (A)] = Per (A) . (32)

7



Proof. We have

E
x∈X

[

s1! · · · sk!
ss11 · · · sskk

y1
s1 · · · yksk

n
∏

i=1

(y1bi,1 + · · · + ykbi,k)

]

(33)

=
s1! · · · sk!
ss11 · · · sskk

∑

σ1,...,σn∈[k]
b1,σ1 · · · bn,σn E

x∈X
[(y1

s1 · · · yksk)(yσ1 · · · yσn)] . (34)

Now notice that by symmetry over the roots of unity,

E
x∈X

[

(ys11 · · · yskk )(yt1 · · · ytn)
]

= 0, (35)

unless the product inside happens to evaluate to |y1|2s1 · · · |yk|2sk , in which case we have

E
x∈X

[

|y1|2s1 · · · |yk|2sk
]

= ss11 · · · sskk E
x∈X

[

|x1|2s1 · · · |xk|2sk
]

= ss11 · · · sskk . (36)

Therefore,

E
x∈X

[GenGlyx (A)] = s1! · · · sk!
∑

t1,...,tn∈[k] : |{i:ti=j}|=sj ∀j∈[k]

n
∏

i=1

bi,ti (37)

= Per (A) (38)

where (38) follows from the fact that each product
∏n

i=1 bi,ti appears s1! · · · sk! times in equation
(1).

Lemma 3. For all x ∈ X ,

|GenGlyx (A)| ≤
s1! · · · sk!

√

ss11 · · · sskk
‖B‖n . (39)

Proof. Let y = (y1, . . . , yk). Then

‖y‖2 =
√

|y1|2 + · · ·+ |yk|2 (40)

=
√
s1 + · · · + sk (41)

=
√
n. (42)

Hence
‖By‖ ≤ ‖B‖ ‖y‖ =

√
n ‖B‖ . (43)

So letting (By)i be the ith entry of By, we have
∣

∣

∣

∣

∣

n
∏

i=1

(By)i

∣

∣

∣

∣

∣

≤





√

n ‖B‖2
n





n

= ‖B‖n (44)

by the arithmetic-geometric mean inequality. Therefore

|GenGlyx (A)| =
∣

∣

∣

∣

∣

s1! · · · sk!
ss11 · · · sskk

ys11 · · · yskk
n
∏

i=1

(By)i

∣

∣

∣

∣

∣

(45)

≤ s1! · · · sk!
ss11 · · · sskk

√

ss11 · · · sskk ‖B‖n (46)

=
s1! · · · sk!

√

ss11 · · · sskk
‖B‖n . (47)

8



To summarize, GenGlyx (A) is an unbiased estimator for Per (A) that is upper-bounded by
s1!···sk!

√

s
s1
1 ···ssk

k

‖B‖n in absolute value. This immediately implies that

|Per (A)| ≤ s1! · · · sk!
√

ss11 · · · sskk
‖B‖n . (48)

It also implies that there exists a randomized algorithm, taking O
(

nk/ε2
)

time, that approximates
Per (A) to within additive error

±ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n (49)

with high probability. Just like in Section 2, that algorithm is simply to choose m = O
(

1/ε2
)

independent random samples x1, . . . , xm ∈ X , then output

GenGlyx1
(A) + · · ·+GenGlyxm

(A)

m
(50)

as the estimate for Per (A). The correctness of this algorithm follows from a standard Chernoff
bound.

As discussed in Section 1.3, in a linear-optics experiment with the standard initial state, the

above lets us estimate any output amplitude to within additive error ±ε
√

s1!···sk!
s
s1
1 ···ssk

k

, and any output

probability to within additive error ±ε s1!···sk!
s
s1
1 ···ssk

k

. This is at least as good an approximation as is

provided by running the experiment itself (and better, if some of the si’s are large).

4 Derandomization

We now discuss the derandomization of Gurvits’s algorithm (and its generalization) for nonnegative
matrices.

4.1 Derandomizing Gurvits

We start by showing how Gurvits’s algorithm can be derandomized in the case of computing the
permanent of a n × n matrix with nonnegative real entries. That is, we give a deterministic
algorithm that estimates Per (A) to within ±ε ‖A‖n additive error with certainty.

To do this, we need a pseudorandom generator with a specific guarantee.

Definition 4. We say that a probability distribution D on {0, 1}n is ε-biased if for any nonzero
vector a ∈ {0, 1}n, we have

∣

∣

∣

∣

E
x∼D

[(−1)a·x]

∣

∣

∣

∣

≤ ε. (51)

Furthermore, we say that a probabilistic algorithm G is ε-biased if it outputs an ε-biased distribution.

Note that if G outputs the uniform distribution over {0, 1}n, then G is 0-biased. Unfortunately,
this requires n random bits, and so it takes exponential time to loop over all possible states. We
will need an ε-biased generator with a much smaller seed. Such a generator was constructed by
Naor and Naor in [13], who showed the following.

9



Theorem 5. There exists an ε-biased generator which runs in poly(n, 1/ε) time and uses

O (log n+ log 1/ε) (52)

bits of randomness.

This allows us to derandomize Gurvits’s algorithm.

Theorem 6. If D is an ε-biased distribution on {0, 1}n, then for any n × n matrix A with non-
negative real entries, we have

∣

∣

∣

∣

Per(A)− E
x∼D

[Glyx(A)]

∣

∣

∣

∣

≤ ε · ‖A‖n (53)

where we define the vector x ∈ {−1, 1} by xi = (−1)ei .

Proof. Following equation (22) we get

E
e∼D

[Glyx(A)] =
∑

σ1,...,σn∈[n]
a1,σ1 · · · an,σn E

x∼D
[(x1 · · · xn)(xσ1 · · · xσn)] . (54)

If the map i 7→ σi is a permutation, then Ee∼D [(x1 · · · xn)(xσ1 · · · xσn)] will always be 1. We would
like to bound the terms for which σ does not give a permutation. Given such a σ, define a vector
c ∈ {0, 1}n such that

ci = 1 + (|{j : σj = i}|)mod 2. (55)

Clearly, c is nonzero if σ does not give a permutation. Then
∣

∣

∣

∣

E
e∼D

[(x1 · · · xn)(xσ1 · · · xσn)]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
e∼D

[(−1)c·e]

∣

∣

∣

∣

(56)

≤ ε (57)

since D is ε-biased by assumption. Then,

∣

∣

∣

∣

Per(A) − E
e∼D

[Glyx(A)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∑

σ1,...,σn∈[n]
i7→σi not a permutation

a1,σ1 · · · an,σn E
e∼D

[(x1 · · · xn)(xσ1 · · · xσn)]

∣

∣

∣

∣

∣

∣

∣

(58)

≤
∑

σ1,...,σn∈[n]
i7→σi not a permutation

a1,σ1 · · · an,σn

∣

∣

∣

∣

E
e∼D

[(x1 · · · xn)(xσ1 · · · xσn)]

∣

∣

∣

∣

(59)

≤ ε ·
∑

σ1,...,σn∈[n]
i7→σi not a permutation

a1,σ1 · · · an,σn (60)

≤ ε ·
∑

σ1,...,σn∈[n]
a1,σ1 · · · an,σn (61)

= ε ·
n
∏

i=1

(a1,i + · · ·+ an,i) (62)

= ε ·Gly(1,...,1)(A) (63)

≤ ε · ‖A‖n (64)

where for (59) we use the fact that the ai,j are nonnegative, and for (64) we appeal to Proposition
1.

10



Corollary 7. There exists an algorithm to deterministically approximate the permanent of an n×n
matrix A with nonnegative entries to within error ε · ‖A‖n which runs in time poly (n, 1/ε).

Proof. By Theorem 5 there is a polynomial time algorithm which outputs an ε-biased distribution
D on {0, 1}n. Since the seed for this algorithm is only O (log n+ log 1/ε) bits, we can compute
Ee∼D [Glyx(A)] by looping over all possible seeds. By Theorem 6, this suffices as our desired
approximation.

4.2 Derandomizing the Multicolumn Case

To derandomize the algorithm of Section 3, we need to generalize the concept of ε-bias to arbitrary
roots of unity.

Definition 8. Given s1, . . . , sk with n = s1+· · ·+sk, recall that we let X := R[s1+1]×· · ·×R[sk+1].
Then we say that a probability distribution D on X is complex-ε-biased if for any e1, . . . , ek, with
ei ∈ {0, . . . , si} where not all ei are 0, we have

∣

∣

∣

∣

E
x∼D

[

xei1 · · · xekk
]

∣

∣

∣

∣

≤ ε. (65)

Also, we say that a probabilistic algorithm G is complex-ε-biased if it outputs a complex-ε-biased
distribution.

In Section 4.3 we will show the following:

Theorem 9. There exists a complex-ε-biased generator which runs in poly (n, 1/ε) time and uses
O (log n+ log 1/ε) bits of randomness.

These complex-ε-biased distributions are useful because of the following property, which is
analogous to Theorem 6:

Theorem 10. If D is a complex-ε-biased distribution on X , then for any n × k matrix B with
nonnegative real entries, let A be an n× n matrix with si copies of the ith column of B. Then we
have

∣

∣

∣

∣

Per(A)− E
x∼D

[GenGlyx(A)]

∣

∣

∣

∣

≤ ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n . (66)

Proof. We begin by expanding the product:

E
x∼D

[GenGlyx(A)] = E
x∼D

[

s1! · · · sk!
ss11 · · · sskk

y1
s1 · · · yksk

n
∏

i=1

(y1bi,1 + · · ·+ ykbi,k)

]

(67)

=
s1! · · · sk!
ss11 · · · sskk

∑

σ1,...,σn∈[k]
b1,σ1 · · · bn,σn E

x∼D
[(y1

s1 · · · yksk) (yσ1 · · · yσn)] (68)

= s1! · · · sk!
∑

σ1,...,σn∈[k]
b1,σ1 · · · bn,σn

√

sσ1 · · · sσn

ss11 · · · sskk
E

x∼D
[(x1

s1 · · · xksk) (xσ1 · · · xσn)] .

(69)

Say that a sequence σ = (σ1, . . . , σn) is a desired sequence if for all i ∈ {1, . . . , k}, we have
|{j : σj = i}| = si. Let

ei = (−si + |{j : σj = i}|)mod (sk + 1) . (70)

11



Then we have
(x1

s1 · · · xksk) (xσ1 · · · xσn) = xe11 · · · xenn . (71)

Note that ei = 0 for all i if and only if σ is desired. Thus, in the case that σ is desired, the expected
value of (71) is 1. Otherwise, since D is complex-ε-biased, we get

∣

∣

∣

∣

E
x∼D

[(x1
s1 · · · xksk) (xσ1 · · · xσn)]

∣

∣

∣

∣

≤ ε.

Therefore,

∣

∣

∣

∣

Per(A)− E
x∼D

[GenGlyx(A)]

∣

∣

∣

∣

(72)

= s1! · · · sk!

∣

∣

∣

∣

∣

∣

∣

∑

σ1,...,σn∈[k]
σ not desired

(b1,σ1 · · · bn,σn)

√

sσ1 · · · sσn

ssk1 · · · sskk
E

x∼D
[(x1

s1 · · · xksk) (xσ1 · · · xσn)]

∣

∣

∣

∣

∣

∣

∣

(73)

≤ s1! · · · sk!
√

ss11 · · · sskk

∑

σ1,...,σn∈[k]
σ not desired

(b1,σ1 · · · bn,σn)
√
sσ1 · · · sσn

∣

∣

∣

∣

E
x∼D

[(x1
s1 · · · xksk) (xσ1 · · · xσn)]

∣

∣

∣

∣

(74)

≤ ε · s1! · · · sk!
√

ss11 · · · sskk

∑

σ1,...,σn∈[k]
σ not desired

(b1,σ1 · · · bn,σn)
√
sσ1 · · · sσn (75)

≤ ε · s1! · · · sk!
√

ss11 · · · sskk

∑

σ1,...,σn∈[k]
(b1,σ1 · · · bn,σn)

√
sσ1 · · · sσn (76)

= ε · s1! · · · sk!
√

ss11 · · · sskk

n
∏

i=1

(
√
s1bi,1 + · · ·+√

skbi,k) (77)

= ε ·GenGly(1,...,1)(A) (78)

≤ ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n (79)

where the last inequality follows from Lemma 3.

Theorems 9 and 10 immediately imply the following.

Corollary 11. For any n × k matrix B with nonnegative real entries, let A be an n × n matrix
with si copies of the ith column of B. Then we can deterministically approximate Per(A) to within
additive error

ε · s1! · · · sk!
√

ss11 · · · sskk
‖B‖n (80)

in poly (n, 1/ε) time.

4.3 Constructing Complex-ε-Biased Generators

Our proof of Theorem 9 will be modeled after the proof of Theorem 5 given by Naor and Naor [13].
We just need to generalize each step to deal with the domain of complex roots of unity rather than
the binary domain {1,−1}.

12



1−1

i

−i

θ

θ

θ-strong region

Figure 1: The θ-strong region of the unit circle in the complex plane.

Recall that our goal is to generate, with as few bits of randomness as possible, complex numbers
(ζ1, . . . , ζk) ∈ X , such that for any exponents e1, . . . , ek, we have

∣

∣E
[

ζe11 · · · ζekk
]∣

∣ ≤ ε. (81)

In our construction, it will be simpler to adopt an alternate perspective, which we now describe.
If we let fj be such that ζj = e2πifj/(sj+1), and let ξj = e2πiej/(sj+1), then

ζ
ej
j =

(

e2πi/(sj+1)
)ejfj

= ξ
fj
j . (82)

Hence our task is equivalent to outputting a random k-tuple (f1, . . . , fk) such that for any choice
of complex numbers ξj = e2πiej/(sj+1), not all 1, we have

∣

∣

∣E
[

ξf11 · · · ξfkk
]∣

∣

∣ ≤ ε. (83)

The proof of Theorem 5 given by Naor and Naor [13] revolves around the ability to find vectors
r ∈ {0, 1}n such that r · x = 1mod 2 with constant probability for any nonzero x ∈ {0, 1}n. A
uniformly random r ∈ {0, 1}n will satisfy r · x = 1mod 2 with probability 1/2, and in fact it is also
possible to generate such an r using only a small amount of randomness (possibly allowing for a
weaker constant).

In our setting, this would translate to generating (f1, . . . , fk) such that ξf11 · · · ξfkk = −1 with
constant probability. Unfortunately, this will not be possible since the ξi do not come from the
binary domain {1,−1}. Instead, we will have to replace the concept of “being equal to −1” with
what we call “θ-strongness.”

Definition 12. For a unit-norm complex number λ, we say that λ is θ-strong if |arg λ| ≥ θ, where
arg λ is the phase φ ∈ [−π, π) such that λ = eiφ.

Lemma 13. We can generate f1, . . . , fk such that for any ξ1, . . . , ξk, not all 1, we have

Pr[ξf11 · · · ξfkk is π/8-strong] ≥ 1

16
(84)

using O(log n) bits of randomness.

13



The proof of this will require the following fact.

Proposition 14. We can generate k random variables (g1, . . . , gk) such that we have gi ∈ {0, . . . , si}
(nearly) uniformly, and c-wise independence between the gi, using O(c log n) bits of randomness.

This is well-known. See, e.g., Luby and Wigderson [12]. It is possible to generate k random
variables t1, . . . , tk in Fp, where p is a prime of size poly(k), such that each one is uniformly
distributed in Fp, and any c of them are independent, using only c log k random bits. Since our
desired domains are {0, . . . , si}, to get the above result, we have to take the ti mod si + 1. There
is a small error since p is not divisible by si + 1, but this error is small enough that it does not
matter for our purposes.

Another fact we will need was proved by Naor and Naor [13]:

Proposition 15. There is a constant c such that the following holds: Let ℓ and m be integers such
that m ≤ ℓ ≤ 2m, and let S is a fixed subset of [k] with |S| = ℓ. If T is a randomly chosen subset
of [k] such that each element i ∈ [k] is in T with probability 2/m, and the elements are chosen with
pairwise independence, then

Pr [|S ∪ T | ≤ c] ≤ 1

2
. (85)

In particular, they show that we can take c = 7. These facts are enough for the following proof:

Proof of Lemma 13. Suppose that ℓ ≥ 1 of the ξi are not equal to 1, and let h be the integer such
that 2h ≤ ℓ < 2h+1. For now, suppose that we know h; we will relax this assumption later. Do
the following (using Proposition 14):

• Generate u = (u1, . . . , uk) whose entries are c-wise independent and such that ui is (nearly)
uniformly distributed in {0, . . . , si}, in the manner stated above. Here, c is the constant from
Proposition 15.

• Generate w = (w1, . . . , wk) whose entries are pairwise independent and such that wi ∈ {0, 1}
and Pr[wi = 1] = min(1/2h−1, 1).

Finally, we define f = (f1, . . . , fk) by

fi =

{

0 if wi = 0
ui if wi = 1

(86)

Let V := {i : ξi 6= 1} and W := {i : wi = 1}. Now we need that with probability at least 1/2, we

will have 1 ≤ |V ∩W | ≤ c. This follows from Proposition 15. Now let us examine λ := ξf11 · · · ξfkk .

With probability 1/2, we have 1 ≤ |V ∩W | ≤ c. If this is the case, write λ = ξ
fi1
i1

· · · ξfidid
where V ∩ W = {i1, . . . , id}, and 1 ≤ d ≤ c. Then, the values of fij will be (nearly) uniform in
{0, . . . , sij} and independent. Because of the c-independence, for any fixed values of fi2 , . . . , fid ,
we can condition on those choices and still get that fi1 is uniform in {0, . . . , sij}. Now, we know

that ξi1 is an sthi1 root of unity other than 1 (but still not necessarily primitive). Therefore as ξ
fi1
i1

ranges around the unit circle, we can see that

ξ
fi1
i1

(

ξ
fi1
i1

· · · ξfidid

)

= ξ
fi1
i1

(fixed unit-norm complex number) (87)

will have a probability of at least 1/4 of being π/4-strong (being conservative with constants
here). Putting it all together, we see that λ has a 1/8 probability of being π/4-strong, and

14



we have generated λ using only O(log n) bits. However, this has all assumed that we know the
value of h. Suppose we do not know h. Then, generate O(log n) random bits, and for every
h ∈ {0, . . . , ⌊log2 k⌋} use these bits to construct λ(h) using the above method. Let hactual be the
value such that 2hactual ≤ ℓ < 2hactual +1. Now, randomly and indepently choose bits b0, . . . , blog2 k

and let λ :=
∏

h

(

λ(h)
)bh . There is a 1/8 chance that λ(hactual) is π/4-strong. If this happens to be

the case, then write

λ =
(

λ(hactual)
)bhactual

∏

h 6=hactual

(

λ(h)
)bh

(88)

If we fix the values of bh for h 6= hactual, then the factor on the right becomes fixed, call it Λ. If
Λ is π/8-strong, then λ will be π/8-strong if bhactual

= 0. If Λ is not π/8-strong, then λ will be
π/8-strong if bhactual

= 1 (here, using the fact that λ(hactual) is π/4-strong). In either case, there is
a 1/2 chance that λ is π/8-strong. Combining with the 1/8 probabililty from earlier, we get that
in total, there is at least a 1/16 chance that λ is π/8-strong.

However, we need a better guarantee than just constant probability given by Lemma 13. In
particular, we will need to construct a set of λ which has high probability (at least 1 − ε/2) of
containing many π/8-strong elements. We could sample O(log(1/ε)) samples independently, but
that would require too many random bits.

To reduce the number of random bits, we use deterministic amplification. The following result
was shown independently by Cohen and Wigderson [5] and by Impagliazzo and Zuckerman [10],
using ideas from Ajtai, Komlós, and Szemerédi [3]. The original motivation for these results was to
amplify error probabilities in BPP algorithms using few bits of randomness. Here is a formulation
which is useful to us:

Theorem 16. Let T = {0, 1}r. Then with r+O (ℓ) bits of randomness we can efficiently generate
a set y1, . . . , yℓ ∈ T such that for any S ⊆ T with |S| ≥ 2 |T | /3, we have

Pr[yi ∈ S for at least ℓ/2 values of i] ≥ 1− 2−Ω(ℓ). (89)

This gives the following lemma:

Lemma 17. There are constants p, q > 0 such that using O (log n+ ℓ) bits of randomness, we can
generate λ1, . . . , λℓ such that with probability 1 − 2qℓ, there are at least pℓ values of i such that λi

is π/8-strong.

Proof. We start with a small amount of initial amplification: let t be the constant such that if we
generate λ1, . . . , λt independently as in Lemma 13, then with probability at least 2/3, one of the λi

is π/8-strong, and let r be the number of random bits needed to generate these λ1, . . . , λt. If we
want to generate λ1, . . . , λℓ for some ℓ, then generate groups λj,1, . . . , λj,t for j ∈ [ℓ/t] according to
Theorem 16. Then with probability at least 1 − 2−Ω(ℓ/t) = 1 − 2−Ω(ℓ), at least half of the groups
will have at least one π/8-strong member, i.e., at least a 1/2t fraction of the λ’s will be π/8-strong.
The total number of random bits used is r +O (ℓ) = O (log n+ ℓ).

It is worth noting that Lemma 17 is a slight difference between our construction of complex-ε-
biased distributions and the construction of ε-biased distributions by Naor and Naor [13]. Naor
and Naor constructed many values, needing only one to be −1, while we construct many values
needing many of them to be π/8-strong, for reasons evident in the proof of Theorem 9. Luckily, this
was not a problem, since as we saw, the same class of deterministic amplification results applied,
allowing us to prove Lemma 17.

15



Proof of Theorem 9. Generate λ1, . . . , λℓ as in Lemma 17, choosing

ℓ =

⌈

max

(

log1/2 (ε/2)

q
,
logβ (ε/2)

p

)⌉

. (90)

where β := 1
2

∣

∣1 + eπi/8
∣

∣. Randomly and independently choose d1, . . . , dℓ, each uniformly from
{0, 1}. Then let

µ :=
ℓ
∏

j=1

λdi
i . (91)

With probability at least 1− 2−qℓ ≥ 1− ε/2, at least pℓ of the λj will be π/8-strong. Suppose that
this is the case. Then

∣

∣

∣

∣

E
d∼{0,1}ℓ

[µ]

∣

∣

∣

∣

=

ℓ
∏

j=1

∣

∣

∣

∣

1 + λj

2

∣

∣

∣

∣

(92)

≤ βpℓ (93)

≤ ε/2. (94)

Thus, this shows that we get that with probability at least 1− ε/2, the norm of the expected value
of µ is at most ε/2. Hence, the total expected value of µ, over the random choices of λ1, . . . , λℓ

and d1, . . . , dℓ is at most
(

1− ε

2

) ε

2
+

ε

2
(1) ≤ ε. (95)

Now, since we have to choose ℓ values dj , each in {0, 1}, this takes O (ℓ) = O (log 1/ε) bits of
randomness. Generating the λ1, . . . , λℓ takes O (log n+ ℓ) = O (log n+ log 1/ε) bits of randomness.
Therefore, the entire procedure then takes O (log n+ log 1/ε) bits of randomness.

5 Open Problems

There are many interesting open problems about Gurvits’s algorithm, and the classical simulability
of quantum optics more generally. Firstly, can we improve the error bound even further in the
case that the matrix A has both repeated rows and repeated columns? More specifically, can we
estimate any linear-optical amplitude

〈s1, . . . , sk|ϕ (U) |t1, . . . , tk〉 =
Per (Us1,...,sk,t1,...,tk)√
s1! · · · sk!t1! · · · tk!

(96)

to ±1/poly (n) additive error (or better) in polynomial time? This is related to a question raised by
Aaronson and Arkhipov [2], of whether quantum optics can be used to solve any decision problems
that are classically intractable (rather than just sampling and search problems).

An even more obvious problem is to generalize our derandomization of Gurvits’s algorithm so
that it works for arbitrary matrices, not only matrices with nonnegative entries. Unfortunately,
our current technique appears unable to handle arbitrary matrices, as it relies too heavily on the
expansions of Gly(1,...,1) (A) and GenGly(1,...,1) (A) having no negative terms.

An alternative approach to derandomizing Gurvits’s algorithm would be to prove a general
“structure theorem,” showing that if U is a unitary or subunitary matrix, then Per (U) can only be
non-negligibly large if U has some special form: for example, if U is close (in a suitable sense) to

16



a product of permutation and diagonal matrices. A deterministic algorithm to estimate Per (U)
could then follow, by simply checking whether the structure is present or not. We conjecture that
such a structure theorem holds, but do not even know how to formulate the conjecture precisely.

Even in the realm of nonnegative entries, there is much room for improvement. Among other
things, it would be extremely interesting to derandomize a Jerrum-Sinclair-Vigoda-type algorithm
[11], enabling us deterministically to approximate the permanent of nonnegative matrices to within
small multiplicative error.

6 Acknowledgments

We thank Alex Arkhipov, Leonid Gurvits, and Shravas Rao for helpful discussions.

References

[1] S. Aaronson. A linear-optical proof that the permanent is #P-hard. Proc. Roy. Soc. London,
A467(2088):3393–3405, 2011. arXiv:1109.1674.

[2] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proc. ACM
STOC, 2011. ECCC TR10-170, arXiv:1011.3245.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in LOGSPACE. In Proc.
ACM STOC, pages 132–140, 1987.

[4] E. R. Caianiello. On quantum field theory, 1: explicit solution of Dyson’s equation in electro-
dynamics without use of Feynman graphs. Nuovo Cimento, 10:1634–1652, 1953.

[5] A. Cohen and A. Wigderson. Dispersers, deterministic amplification and weak random sources.
In Proc. IEEE FOCS, pages 14–19, 1989.

[6] D. G. Glynn. The permanent of a square matrix. European Journal of Combinatorics,
31(7):1887–1891, 2010.

[7] L. Gurvits. On the complexity of mixed discriminants and related problems. In Mathematical
Foundations of Computer Science, pages 447–458, 2005.

[8] L. Gurvits and A. Samorodnitsky. A deterministic algorithm for approximating the mixed
discriminant and mixed volume, and a combinatorial corollary. Discrete and Computational
Geometry, 27(4):531–550, 2002.

[9] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between
two photons by interference. Phys. Rev. Lett., 59(18):2044–2046, 1987.

[10] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. IEEE FOCS, pages
248–253, 1989.

[11] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. J. ACM, 51(4):671–697, 2004. Earlier version
in STOC’2001.

[12] M. Luby and A. Wigderson. Pairwise independence and derandomization. Foundations and
Trends in Theoretical Computer Science, 1(4):237–301, 2005.

17



[13] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications.
SIAM J. Comput., 22(4):838–856, 1993.

[14] H. Ryser. Combinatorial Mathematics. Mathematical Association of America, 1963.

[15] L. Troyansky and N. Tishby. Permanent uncertainty: On the quantum evaluation of the
determinant and the permanent of a matrix. In Proceedings of PhysComp, 1996.

[16] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci.,
8(2):189–201, 1979.

18

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


