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Abstract

Locally decodable codes (LDCs) are error correcting codes with the extra property that it is sufficient
to read just a small number of positions of a possibly corrupted codeword in order to recover any one
position of the input. To achieve this, it is necessary to use randomness in the decoding procedures. We
refer to the probability of returning the correct answer as the correctness of the decoding algorithm.

Thus far, the study of LDCs has focused on the question of the tradeoff between their length and the
query complexity of the decoders. Another natural question is what is the largest possible correctness, as
a function of the amount of codeword corruption and the number of queries, regardless of the length of the
codewords. Goldreich et al. (Computational Complexity 15(3), 2006) observed that for a given number
of queries and fraction of errors, the correctness probability cannot be arbitrarily close to 1. However,
the quantitative dependence between the largest possible correctness and the amount of corruption δ
has not been established before.

We present several bounds on the largest possible correctness for LDCs, as a function of the amount
of corruption tolerated and the number of queries used, regardless of the length of the code. Our bounds
are close to tight. We also investigate the relationship between the amount of corruption tolerated by
an LDC and its minimum distance as an error correcting code. Even though intuitively the two notions
are expected to be related, we demonstrate that in general this is not the case. However, we show a
close relationship between minimum distance and amount of corruption tolerated for linear codes over
arbitrary finite fields, and for binary nonlinear codes. We use these results to strengthen the known
bounds on the largest possible amount of corruption that can be tolerated by LDCs (with any nontrivial
correctness better than random guessing) regardless of the query complexity or the length of the code.
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1 Introduction

Locally decodable codes (LDCs) are error correcting codes with the extra property that it is sufficient to
read just a small number of positions of a possibly corrupted codeword in order to recover any one position
of the input. The concept of LDCs dates back to several papers in the 1990s (for example [2, 1, 17]), but
the formal definition is from Katz and Trevisan [11]:

Definition 1. (Katz and Trevisan [11]) For reals δ and ε, and a natural number q, we say that C: Σn → Γm

is a (q, δ, ε)-Locally Decodable Code (LDC) if there exists a probabilistic algorithm A such that: in every
invocation, for every x ∈ Σn and y ∈ Γm with d(y,C(x)) ≤ δm (where d(, ) denotes Hamming distance)
and for every i ∈ [n], A reads at most q positions of y and we have Pr [Ay(i) = xi] ≥ 1

|Σ| + ε, where the
probability is taken over the internal coin tosses of A. A is called the Decoding Algorithm or Decoder.

We will refer to the value 1
|Σ| + ε in Definition 1 as the correctness associated with the given decoding

algorithm A while ε can be thought of as the advantage over random guessing. More formally, we use the
following definition.

Definition 2. Let A be an algorithm operating on a code C: Σn → Γm. The correctness of the algorithm
A for amount of corruption δ is defined as

ζδ(A) , min
i∈[n]

min
x∈Σn

(
min

y∈Γm : d(y,C(x))≤δm
Pr [Ay(i) = xi]

)
where the probability is taken over the internal coin tosses of A.

Unless stated otherwise, we consider codes for which the input and output alphabets Σ and Γ are the
same. From Definition 1, there are several parameters related to an LDC, namely, the length m, alphabet
size |Σ|, number of queries q, fraction of tolerable errors δ, and correctness ζδ that is the best correctness
achievable by any decoding algorithm limited to q queries (when up to a δ fraction of the positions are
adversarially corrupted). These parameters are competing, and ideally, one aims for small m (relative to
n), small q, small |Σ| (in particular, the binary case Σ = {0, 1}), large δ, and large ζδ. The central question
on LDCs is to characterize the achievable range of parameters.

So far, research on LDCs has been mostly focused on the possible trade-offs between length and the
number of queries (for a given alphabet size, possibly depending on n). Namely, for a given alphabet size
and number of queries q (e.g., constant or a slowly growing function of m), the question is to find out
the minimum possible codeword length m for which there are LDCs with any nontrivial (constant) δ and
nontrivial advantage ε.

For q = 2, the Hadamard code over a finite field F is easily seen to achieve correctness ζδ ≥ 1 − 2δ
(which is nontrivial for δ < 1

2(1−1/|F |)) at exponential length m = |F |n. Conversely, it is known that any
two query LDC must have exponential length [12, 18, 9, 10], for linear codes over arbitrary finite fields,
and for non-linear codes over not too large alphabets.

For q > 2, the gap between known upper and lower bounds on the length of LDCs has remained
significant. In this case, classical Reed-Muller codes (cf. [15]) can achieve lengths m = exp(n1/(q−1)) which
is super-polynomial for any constant number of queries [14, 2, 7, 8]. Following the breakthrough work of
Yekhanin [20], subexponential-sized LDCs (i.e., m = exp(no(1))) for constant q (as small as q = 3) were
discovered [20, 16, 5, 3, 4]. For large number of queries, namely, q = Nα, the multiplicity codes of [13]
are locally decodable at rates arbitrarily close to 1. Known lower bounds for q > 2 show that any q-query
LDC must have length m = Ω(nq/(q−1)), which is far from the best known upper bounds (see [11] and
slight improvements in [18, 19]). For a comprehensive survey of these results and the literature on locally
decodable codes refer to [21, 22].

By a union bound, any LDC equipped with a decoder that does not err on an uncorrupted codeword
and for which each individual query position is uniformly distributed achieves correctness ζδ ≥ 1 − qδ.
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This simple observation is what the error analysis of various families of LDCs, including the Hadamard
code and 3-query “matching vector” LDCs of [20, 16, 5] are based on. Gál and Mills [6] have shown
that the correctness bound for 3-query matching vector codes is essentially optimal, in that any code that
noticeably improves their correctness bound has to have exponential length. At exponential length, the
binary Hadamard code already achieves a better correctness 1 − 2δ (using only 2 queries) than matching
vector codes.

In this paper, we study the tradeoffs between correctness ζδ, tolerable errors δ, and the number of
queries q. We estimate the maximum possible correctness achievable by any q-query LDC at error rate
δ. Goldreich et al. [9] observed that for a given number of queries and fraction of errors, the correctness
probability cannot be arbitrarily close to 1. However, the quantitative dependence between the largest
possible correctness and the amount of corruption δ has not been established before. We believe that this
is a fundamental question about the limitations of locally decodable codes.

First, we consider binary (possibly non-linear) codes, and obtain the following upper bounds on the
correctness probability of any non-adaptive decoder for binary codes. We remark that our upper bound
on correctness also holds considering uniformly random messages x in Definition 2 instead of the minimum
over x, which makes the result even stronger.

Theorem 3. Let C: {0, 1}n → {0, 1}m be a code, and let A be a q query non-adaptive decoding algorithm
for it. Then, for large enough n, 1

ζδ(A) ≤ 1− δ

2
√
q

(
4δ(1− δ)

)q/4
+Oq(

1

n1/3
).

In order to obtain a lower bound on the largest possible correctness of q-query LDCs, we look at the
binary Hadamard code, which is a prototypical example of an LDC. By simply repeating the classical
2-query decoder for this code and taking the majority of the results (Lemma 16), we obtain a q-query

decoder with correctness at least 1−
(

4(2δ)(1−2δ)
)q/4

for the Hadamard code. This shows that the upper

bound of Theorem 3 is close to tight, in the sense that it gives the correct exponent in the dependence on
the number of queries. In fact, we prove the following more precise bound: 1 − 2q/2−1(2δ)d

q
4
e(1 − 2δ)b

q
4
c.

For q = 2 this gives the 1− 2δ bound, which we show to be asymptotically tight.
Next, we derive specific upper bounds on the correctness of two-query binary LDCs. The reason to

separately focus on this special case is its fundamental importance, which is exemplified by the Hadamard
code that is used as an important building block in constructions of binary LDCs (typically as an inner
code in a concatenation scheme, cf. [4]) or PCP constructions. It is natural to ask if the correctness 1− 2δ
achieved by the Hadamard code may be improved by other codes. We prove that this is not the case and
any 2-query binary LDC, no matter how long, is unable to substantially improve the correctness bound
achieved by the Hadamard code.

We will then move on to the connection between the minimum distance of LDCs and the fraction δ of
errors tolerable by their local decoders. The minimum distance is a fundamental classical notion related to
error-correcting codes which captures the fraction of adversarial errors that are combinatorially correctable
by the code (regardless of any locality or efficiency concerns or the use of randomness). On the other hand,
the parameter δ associated with LDCs in Definition 1 captures the fraction of adversarial errors that are
tolerable for locally decoding any single message symbol, where “decoding” refers to obtaining a non-trivial
guess for the correct symbol. While both notions intuitively capture error tolerance of the code and are
therefore expected to be related, their exact relationship is not obvious from the standard definition of
LDCs given by Definition 1. In this work, we study this relationship by showing bounds on the minimum
distance of LDCs with a given error tolerance δ. For arbitrary binary LDCs of codeword length m, we verify
the intuition that the minimum distance of the code is at least 2δm. For linear LDCs of codeword length m

1We use the notation Oq() for O() with the hidden constant depending on q.
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over a finite field F , we extend this bound to show that the minimum distance is at least |F |δm/(|F | − 1).
For non-binary non-linear LDCs, we show that in general there is no relationship between the minimum
distance and error tolerance δ. However, we prove that any LDC has a large sub-code having minimum
distance at least δm.

The fact that the minimum distance of LDCs is not directly related to the error tolerance parameter is
mainly because the standard definition of LDCs (Definition 1) is very weak for LDCs over large alphabets.
It is noted by Goldreich et al. [9], that the correct answer may not be the value that is being output with
the largest probability, and thus the definition does not allow amplification of the decoder’s correctness
probability by independent repetitions, unless the alphabet size is 2.

To circumvent this issue, we consider the following stronger definition of LDCs:

Definition 4. For reals δ and ε, and a natural number q, we say that C: Σn → Γm is a strong (q, δ, ε)-Locally
Decodable Code (strong LDC) if there exists a probabilistic algorithm A such that: in every invocation, for
every x ∈ Σn and y ∈ Γm with d(y,C(x)) ≤ δm and for every i ∈ [n], A reads at most q positions of y and
for every x′ ∈ Σ \ xi we have Pr [Ay(i) = xi] ≥ Pr [Ay(i) = x′] + ε, where the probability is taken over the
internal coin tosses of A.

It is easy to see from the definitions that a strong (q, δ, ε)-LDC is a (q, δ, ε(1 − 1/|Σ|))-LDC and thus,
Definition 4 is indeed stronger than Definition 1. Note that the two definitions are equivalent for binary
codes, up to constant factor difference in ε. Moreover, the strong definition is chosen to allow amplification
of the correctness probability by independent repetitions. This property makes it possible to show that for
strong LDCs over any alphabet (with ε > 0), the minimum distance is at least 2δm.

Finally, we combine the above-mentioned results with the classical Plotkin bound on codes (cf. [15])
to obtain an upper bound for the maximum δ tolerable by any (standard or strong) LDC in terms of the
alphabet size. In particular, for standard LDCs (Definition 1), we show that any binary LDC must satisfy
δ ≤ 1/4+o(1) and moreover conclude that any linear LDC over field F must satisfy δ ≤ (1−1/|F |)2 +o(1).
For the special cases of binary codes and non-binary linear codes, this improves the upper bound δ ≤
1 − 1/|F | that is known to hold for any LDC [6]. For strong LDCs (Definition 4), however, we show
δ ≤ 1

2(1− 1/|F |) regardless of linearity, which gives a stronger bound when |F | > 2.

Techniques:

In order to prove Theorem 3, we define a measure on codes with respect to a given noise distribution that
we call the statistical influence of the message variables (Definition 8). The statistical influence of a given
variable measures the dependence of the distribution of local views of random (and possibly corrupted)
codewords on the value of the variable. It is defined as the statistical distance between the distribution
of the corrupted codewords restricted to a local view and conditioned on different values of the variable.
Intuitively, if a variable has small statistical influence on a local view, then it is unlikely that any decoding
algorithm can correctly recover its value from the given local view. Formally, we show that upper bounds
on statistical influence, (averaged over all local views) translate into upper bounds on the correctness
probability of the LDC.

We estimate statistical influence by relating it to an expression that only depends on the Hamming
distance between the local views of pairs in a matching between codewords corresponding to messages with
a 0 and those having a 1 at the given variable (Claim 11). We show the existence of a matching, using the
probabilistic method, for which the Hamming distances are sufficiently small on average.

We remark that while it seems tempting to guess the bound proved in Theorem 3 by natural heuristics
(such as estimating the number of times a typical decoder hits corrupted positions) which result in qual-
itatively sound estimates, it is not clear how to turn such simpler intuitions into correct proofs. This is
partly because a local decoder may behave in arbitrary ways in choosing the query positions. In particular,
it cannot be assumed that the query positions are chosen uniformly at random, since reductions involving
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such assumptions change the parameters of the code, including its correctness. The proof should also take
into account the possibility of the decoder being correct even after reading corrupted positions.

1.1 Notation

Let F be an arbitrary finite field. We denote by F ∗ the multiplicative group of the non-zero elements of
F . Arithmetic operations involving field elements are over F . This should be clear from the context, and
will be omitted from the notation.

For two strings x, y ∈ Fm, we use d(x, y) to denote the Hamming distance between x and y. Similarly,
the Hamming distance between x and a code C is denoted by d(x,C). For a code C: Fn → Fm (that
we identify by its encoding function throughout the work), we can represent any vector y ∈ Fm with
d(y,C(x)) ≤ δm as a sum of the form y = C(x) + B, where B ∈ Fm, such that the number of nonzero
entries in B is at most δm.

We use (C(x) + B)Q ∈ F |Q| to denote the codeword C(x) corrupted by B restricted to the positions
indexed by the query set Q. Similarly, for any string z ∈ Fm we denote by zQ the restriction of z to the
positions in Q.

We use the notation Prx,B,A to indicate probabilities over uniformly random input x from Fn, B chosen
at random from a given distribution for corruption, and the random coin tosses of the given algorithm A.

We use E;F to denote the intersection of the events E and F . H() denotes the binary entropy function,
i.e., H(x) , −x log2 x− (1− x) log2(1− x).

The correlation between two Boolean functions f and g is defined as Corr(f, g) , Prx[f(x) = g(x)]−
Prx[f(x) 6= g(x)].

2 Preliminaries

We will use the following theorem of Katz and Trevisan [11].

Theorem 5. (Theorem 2 in [11]) Let g : {0, 1}n → R be a function. Assume there is an algorithm A such
that for every i ∈ [n], we have Prx [A(g(x), i) = xi] ≥ 1

2 + ε, where the probability is taken over the internal
coin tosses of A and uniform x ∈ {0, 1}n. Then log |R| ≥ (1−H(1/2 + ε))n.

The following property of decoders with respect to distributions of corruption that contain a truly
random part was proved in [6]:

Lemma 6. [6] Let C: Fn → Fm be a code. Assume there exists a q query algorithm A such that
Prx,B,A

[
AC(x)+B(i) = xi

]
≥ 1
|F | + ε where the probability is over the internal coin tosses of A, uniform

x ∈ Fn, and B = B1 +B2 chosen by the product distribution of the distributions DR and DS, where R and
S are disjoint subsets of [m], DR is arbitrary over vectors in Fm that are identically zero in coordinates
outside of R, DS is uniformly random when restricted to S, and identically zero in coordinates outside of

S. Then there exists a q query algorithm Ã such that Prx,B,Ã

[
ÃC(x)+B(i) = xi

]
≥ 1
|F | + ε as well, and Ã

never queries any positions from S.

The following lemma is implicit in [6], and it holds for any distribution B used by an adversary for
corrupting the codewords. We note that the lemma would be straightforward if the event E was independent
of all other events in the statement. However, while we require that E does not depend on the internal
randomness of A, it may depend on the distribution B and on the input x. Therefore, the events we work
with are in general not independent events. Nevertheless, the lemma holds.

Lemma 7. (implicit in [6]) Let C be a code Σn → Σm and A be a non-adaptive q-query decoder for C.
Let E be an event that does not depend on the internal randomness of A. Then, for any i ∈ [n], Q ⊂ [m]
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with |Q| = q, v ∈ Σ, and any bit string s (representing the answers to the queries A makes)

Pr
x,B,A

[AC(x)+B(i) = v |E;Q; (C(x) +B)Q = s] = Pr
x,B,A

[AC(x)+B(i) = v |Q; (C(x) +B)Q = s]

where Q denotes the event “A queries Q”.

For completeness, we include a proof of the lemma in the Appendix.

3 The statistical influence of the message variables of codes

In this section we prove a general result about estimating the correctness of local decoding algorithms, for
arbitrary codes. Our bounds are given in terms of a measure on codes that we call statistical influence.

Definition 8. Let C: {0, 1}n → {0, 1}m be a code, and let B be randomly distributed on {0, 1}m. For
i ∈ [n], and Q ⊆ [m], we define

∆i,Q ,
∑

s∈{0,1}q

∣∣∣ Pr
x,B

[(C(x) +B)Q = s | xi = 1]− Pr
x,B

[(C(x) +B)Q = s | xi = 0]
∣∣∣ ,

and call it the statistical influence of the i-th message variable of C on query set Q with respect to the
distribution B.

Note that in other words, ∆i,Q is the statistical distance between the distribution of the corrupted
codewords restricted to Q and conditioned on xi = 1 vs. xi = 0. We assume uniform distribution over
the input x, but the definition can be generalized to arbitrary probability distributions over x as well. We
omit from the notation the dependence on the distribution B, in what follows, the distribution B will be
clear from the context.

Intuitively, if the statistical influence of the i-th variable of a code is small on a query set Q with
respect to a distribution B, then any decoder will have a large probability of error using the query set Q
in trying to recover xi, if the adversary uses the distribution B to corrupt the codewords. We prove this
more formally in the following theorem.

Theorem 9. Let C: {0, 1}n → {0, 1}m be a code, and let A be a non-adaptive decoding algorithm for it.
Let B be a distribution on {0, 1}m that is independent of the input x. Let i ∈ [n]. Then

Pr
x,B,A

[AC(x)+B(i) 6= xi] ≥
1

2

∑
Q

(1− 1

2
∆i,Q) Pr[A queries Q] .

Proof. Since the distribution B is independent of x, for all query sets Q of size q, k ∈ {0, 1}, and s ∈ {0, 1}q,
Prx,B[(C(x) + B)Q = s | x1 = k] > 0. Similarly, since A is non-adaptive, A is independent of x, and for
Q that A queries with positive probability and k ∈ {0, 1}, Prx,A[A queries Q;x1 = k] > 0. Since all these
probabilities are positive, we will be able to condition on these events properly.

Define ErrQ,k , Prx,B,A[AC(x)+B(1) 6= k | A queries Q;x1 = k]. Then

Pr
x,B,A

[AC(x)+B(1) 6= x1] =
∑
Q

(ErrQ,0 Pr
x

[x1 = 0] + ErrQ,1 Pr
x

[x1 = 1]) · Pr
A

[A queries Q]

=
1

2

∑
Q

(ErrQ,0 + ErrQ,1) Pr
A

[A queries Q] .
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Next we consider ErrQ,0 + ErrQ,1

=
∑

s∈{0,1}q
Pr
x,B,A

[AC(x)+B(1) 6= 0 | A queries Q;x1 = 0; (C(x) +B)Q = s]·

Pr
x,B,A

[(C(x) +B)Q = s | A queries Q;x1 = 0]

+
∑

s∈{0,1}q
Pr
x,B,A

[AC(x)+B(1) 6= 1 | A queries Q;x1 = 1; (C(x) +B)Q = s]·

Pr
x,B,A

[(C(x) +B)Q = s | A queries Q;x1 = 1] .

The value of x1 does not depend on the internal randomness of A. Therefore, by Lemma 7, we can
remove the conditioning on the value of x1 in the first terms of the above products. Using the notation

pQs , Pr
x,B,A

[AC(x)+B(1) = 0 | A queries Q; (C(x) +B)Q = s] ,

this gives

ErrQ,0 + ErrQ,1 =
∑

s∈{0,1}q
(1− pQs ) Pr

x,B,A
[(C(x) +B)Q = s | A queries Q;x1 = 0]

+
∑

s∈{0,1}q
pQs Pr

x,B,A
[(C(x) +B)Q = s | A queries Q;x1 = 1] .

Since A is non-adaptive, the internal randomness of A is independent of B, and the values of the
positions labeled by Q are independent of whether the algorithm actually queries Q. So we have

ErrQ,0 + ErrQ,1

=
∑

s∈{0,1}q
(1− pQs ) Pr

x,B
[(C(x) +B)Q = s | x1 = 0] +

∑
s∈{0,1}q

pQs Pr
x,B

[(C(x) +B)Q = s | x1 = 1]

=
∑

s∈{0,1}q
Pr
x,B

[(C(x) +B)Q = s | x1 = 0]

+
∑

s∈{0,1}q
pQs

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 1]− Pr
x,B

[(C(x) +B)Q = s | x1 = 0]
)

= 1 +
∑

s∈{0,1}q
pQs

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 1]− Pr
x,B

[(C(x) +B)Q = s | x1 = 0]
)
.

This expression is smallest when pQs is 0 for s such that

Pr[(C(x) +B)Q = s | x1 = 1] > Pr[(C(x) +B)Q = s | x1 = 0]

and when pQs is 1 for s such that

Pr[(C(x) +B)Q = s | x1 = 1] < Pr[(C(x) +B)Q = s | x1 = 0] .

Thus

ErrQ,0 + ErrQ,1 ≥ 1−
∑

s∈{0,1}q
Pr[s|x1=1]<Pr[s|x1=0]

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 0]− Pr
x,B

[(C(x) +B)Q = s | x1 = 1]
)
.
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Next, note that∑
s∈{0,1}q

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 0]− Pr
x,B

[(C(x) +B)Q = s | x1 = 1]
)

= 1− 1 = 0

This implies ∑
s∈{0,1}q

Pr[s|x1=1]<Pr[s|x1=0]

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 0]− Pr
x,B

[(C(x) +B)Q = s | x1 = 1]
)

=

∑
s∈{0,1}q

Pr[s|x1=1]>Pr[s|x1=0]

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 1]− Pr
x,B

[(C(x) +B)Q = s | x1 = 0]
)

Therefore, ∑
s∈{0,1}q

Pr[s|x1=1]<Pr[s|x1=0]

(
Pr
x,B

[(C(x) +B)Q = s | x1 = 0]− Pr
x,B

[(C(x) +B)Q = s | x1 = 1]
)

=
1

2

∑
s∈{0,1}q

∣∣∣ Pr
x,B

[(C(x) +B)Q = s | x1 = 1]− Pr
x,B

[(C(x) +B)Q = s | x1 = 0]
∣∣∣ ,

and this concludes the proof of the theorem.

By Theorem 9, we can estimate the largest possible correctness of any decoder of a code by estimating
the statistical influence of the message variables of the code. We use the following equivalent expression of
statistical influence, for obtaining our estimates. The next claims hold for any input position i. To simplify
notation, we state them for i = 1, and use 1w (0w) to denote the input string with x1 = 1 (x1 = 0) followed
by the string w ∈ {0, 1}n−1.

Claim 10.

∆1,Q =
1

2n−1

∑
s∈{0,1}q

∣∣∣ ∑
w∈{0,1}n−1

(
Pr
B

[BQ = s−C(1w)Q]− Pr
B

[BQ = s−C(0w)Q]
)∣∣∣ .

Proof.

∆1,Q ,
∑

s∈{0,1}q

∣∣∣ Pr
x,B

[(C(x) +B)Q = s | x1 = 1]− Pr
x,B

[(C(x) +B)Q = s | x1 = 0]
∣∣∣

=
∑

s∈{0,1}q

∣∣∣ ∑
w∈{0,1}n−1

Pr
x,B

[(C(x) +B)Q = s | x = 1w] Pr
x

[x2x3...xn = w | x1 = 1]

−
∑

w∈{0,1}n−1

Pr
x,B

[(C(x) +B)Q = s | x = 0w] Pr
x

[x2x3...xn = w | x1 = 0]
∣∣∣

=
∑

s∈{0,1}q

∣∣∣ ∑
w∈{0,1}n−1

Pr
x,B

[(C(x) +B)Q = s | x = 1w] Pr
x

[x2x3...xn = w]−

∑
w∈{0,1}n−1

Pr
x,B

[(C(x) +B)Q = s | x = 0w] Pr
x

[x2x3...xn = w]
∣∣∣

=
∑

s∈{0,1}q

∣∣∣ ∑
w∈{0,1}n−1

Pr
x

[x2x3...xn = w]
(

Pr
B

[BQ = s−C(1w)Q]− Pr
B

[BQ = s−C(0w)Q]
)∣∣∣

=
1

2n−1

∑
s∈{0,1}q

∣∣∣ ∑
w∈{0,1}n−1

(
Pr
B

[BQ = s−C(1w)Q]− Pr
B

[BQ = s−C(0w)Q]
)∣∣∣ .

This concludes the proof of the claim.
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Claim 11. Let M be any matching2 between the set of vectors in {0, 1}n with first bit 0 and the set of
vectors in {0, 1}n with first bit 1. Then

∆1,Q ≤
1

2n−1

∑
(w1,w2)∈M

∆w1,w2 ,

where
∆w1,w2 ,

∑
s∈{0,1}q

∣∣∣Pr
B

[BQ = s]− Pr
B

[BQ = s+ C(1w1)Q −C(0w2)Q]
∣∣∣ .

Proof.

∆1,Q =
1

2n−1

∑
s∈{0,1}q

∣∣∣ ∑
(w1,w2)∈M

(
Pr
B

[BQ = s−C(1w1)Q]− Pr
B

[BQ = s−C(0w2)Q]
)∣∣∣

≤ 1

2n−1

∑
s∈{0,1}q

∑
(w1,w2)∈M

∣∣∣Pr
B

[BQ = s−C(1w1)Q]− Pr
B

[BQ = s−C(0w2)Q]
∣∣∣

by reordering the terms inside the absolute value of the expression in Claim 10 and using the triangle
inequality. The claim follows by switching the order of summations and renaming s−C(1w1)Q as s.

To obtain our results, we choose an appropriate distribution B for the corruption, and use a carefully
chosen matching to estimate ∆w1,w2 with respect to B.

4 Correctness versus corruption and query complexity

4.1 Proof of the main theorem

In this section we prove Theorem 3. The statement will follow from the following more precise estimate,
by substituting t = 1/n1/3 (which in turn makes ν = O(1/n1/3) by the Taylor expansion of the entropy
function H(x)).

Theorem 12. Let C: {0, 1}n → {0, 1}m be a code, and let A be a q query non-adaptive decoder for it. Fix
t < 1, and let ν , 1

.99n(1−H( 1
2

+ t
2

))
. Then, for large enough n,

ζδ(A) ≤ 1− δ

2
√
q(1 + t2)

(
4δ(1− δ)

) q
4

(1+t2)
+

2q+1q2

n
+ (q + 1)ν

Proof. For i ∈ [n], define:

Ri ,
{
j ∈ [m]

∣∣∣ |Corr(xi,C(x)j)| > t
}

Now consider:

S ,
{
i ∈ [n]

∣∣∣ |Ri| ≥ νm}
Clearly |S|νm ≤

∑
i∈[n] |Ri|. So there exists a j ∈ [m] belonging to at least ν|S| of the sets Ri.

Theorem 5 then implies that ν|S| ≤ 1
1−H( 1

2
+ t

2
)
. Therefore, |S| ≤ 1

ν
1

1−H( 1
2

+ t
2

)
= .99n < n. So S̄ contains at

least one i. Without loss of generality, 1 ∈ S̄. That is, |R1| < νm.

2Throughout this work by matching we mean perfect matching.
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Because the argument below works for arbitrary algorithms, without loss of generality, we can assume
the algorithm always queries exactly q positions. If the algorithm ever queried fewer than q positions, have
it query more and ignore the additional values obtained.

Define γ , |[m]\R1|
m and β , δ−ν

γ . Let us consider the probability of error of the decoder over uniformly
random x ∈ {0, 1}n, uniformly random B1 ⊂ [m] \R1 such that |B1| = βγm, uniformly random B2 ⊆ R1,
and the internal randomness of A. (We emphasize that the corruption B1 always has the same size; but,
for B2, it is chosen whether to include each member of R1 independently). Let B , B1 ∪ B2, generated
by the product distribution of B1 and B2. We also use B to denote the characteristic vector of the set B.
By our choice of the parameters, |B| ≤ δm always holds.

By Lemma 6, we can, without loss of generality, assume that A never queries any positions from R1.
Thus, by Theorem 9, in order to prove Theorem 12 it is sufficient to prove an upper bound on ∆1,Q for
every query set Q of size q, such that Q ∩R1 = ∅.

To obtain bounds on ∆1,Q, we will use the following claim.

Claim 13. Let β < 1/2 and B be the distribution that chooses subsets of size βm uniformly at random
from [m]. Then, for any z ∈ {0, 1}q of Hamming weight a,

∆z ,
∑

s∈{0,1}q

∣∣∣Pr
B

[BQ = s]− Pr
B

[BQ = s+ z]
∣∣∣

≤ 2− 4

(
a

b(a− 1)/2c

)
βd(a+1)/2e(1− β)b(a−1)/2c +

3 ∗ 2qq2

m

≤ 2− 2
β√
2a

(4β(1− β))a/2 +
3 ∗ 2qq2

m

Proof. For a given s, PrB[BQ = s] is a function of only the Hamming weight of s, namely, it is given by
the expression (

m−q
βm−`

)(
m
βm

) ,

where ` is the Hamming weight of s. Recall that a is the Hamming weight of z. Also, let b be the number
of positions where z and s both equal 1; and let c be number of positions where z equals 0 but s equals 1.
Then, by Claims 24 and 25 (for large enough m), we have

∆z =
a∑
b=0

(
a

b

) q−a∑
c=0

(
q − a
c

) ∣∣∣∣∣
( m−q
βm−(b+c)

)(
m
βm

) −

( m−q
βm−(a+c−b)

)(
m
βm

) ∣∣∣∣∣
≤

a∑
b=0

(
a

b

) q−a∑
c=0

(
q − a
c

)(∣∣∣βb+c(1− β)q−b−c − βa−b+c(1− β)q−a+b−c
∣∣∣+

3q2

m

)
Simplifying, we have

=

a∑
b=0

(
a

b

) q−a∑
c=0

(
q − a
c

)∣∣∣βb+c(1− β)q−b−c − βa−b+c(1− β)q−a+b−c
∣∣∣+

3 ∗ 2qq2

m

=
a∑
b=0

(
a

b

)(q−a∑
c=0

(
q − a
c

)
βc(1− β)q−a−c

)∣∣∣βb(1− β)a−b − βa−b(1− β)b
∣∣∣+

3 ∗ 2qq2

m

=
a∑
b=0

(
a

b

)∣∣∣βb(1− β)a−b − βa−b(1− β)b
∣∣∣+

3 ∗ 2qq2

m

9



Since β < 1/2, we have β < 1− β. Therefore, the expression inside of the absolute value is positive if
and only if b < a

2 . Also note that the value of the expression inside of the absolute value, for a given b, has
the opposite sign of that same expression when b is replaced by a− b. Using these facts, we have

∆z ≤ 2

b(a−1)/2c∑
b=0

(
a

b

)(
βb(1− β)a−b − βa−b(1− β)b

)
+

3 ∗ 2qq2

m

Because
∑a

b=0

(
a
b

)
βb(1− β)a−b = (1− β + β)a = 1, the last line equals

= 2
(

1−
a∑

b=b(a+1)/2c

(
a

b

)
βb(1− β)a−b −

b(a−1)/2c∑
b=0

(
a

b

)
βa−b(1− β)b

)
+

3 ∗ 2qq2

m

≤ 2
(

1− 2

b(a−1)/2c∑
b=0

(
a

b

)
βa−b(1− β)b

)
+

3 ∗ 2qq2

m

< 2− 4

(
a

b(a− 1)/2c

)
βd(a+1)/2e(1− β)b(a−1)/2c +

3 ∗ 2qq2

m

Here we obtained the first inequality by interchanging b and a− b in second term of the previous line.
The last line follows by omitting all but the b = b(a − 1)/2c term from the sum. This proves the first
inequality of the claim.

For proving the second inequality of the claim, we first observe that

βd(a+1)/2e(1− β)b(a−1)/2c ≥ β
(
β(1− β)

)a/2
.

To see this, consider separately the cases when a is even and when a is odd. Next, note that for any integer
k ≥ 1,

(
2k
k

)
≥ 4k

2
√
k
. This follows from Stirling’s formula for k ≥ 2 and can be directly verified for k = 1.

Using this, and considering the cases when a is even and when a is odd, we see that(
a

b(a− 1)/2c

)
≥ 2a

2
√

2a
=

4a/2

2
√

2a
,

and thus we have

4

(
a

b(a− 1)/2c

)
βd(a+1)/2e(1− β)b(a−1)/2c ≥ 4β

1

2
√

2a

(
4β(1− β)

)a/2
.

This concludes the proof of the claim.

The next two lemmas allow us to find an appropriate matching M that gives a good bound on ∆1,Q

when applying Claim 11 with respect to the matching M .

Lemma 14. Let C: {0, 1}n → {0, 1}m be a code, and let Q ⊆ [m], such that |Q| = q. Assume that for
every position j ∈ Q, |Corr(x1,C(x)j)| ≤ t. Then

E
w1,w2∈{0,1}n−1

d
(
C(1w1)Q,C(0w2)Q

)
≤ q

2
(1 + t2)

10



Proof. Let f(x) = C(x)j , and let g : {1,−1}n → {1,−1} be obtained from f by replacing 0s by 1s and 1s
by -1s, that is for y ∈ {1,−1}n, g(y) = (−1)f((1−y)/2). Then, the correlation between x1 and C(x)j ,

Corr(x1,C(x)j) = Pr
x∈{0,1}n

[x1 = C(x)j ]− Pr
x∈{0,1}n

[x1 6= C(x)j ]

= Pr
y∈{1,−1}n

[y1 = g(y)]− Pr
y∈{1,−1}n

[y1 6= g(y)]

=
1

2n

∑
y∈{1,−1}n

y1g(y)

=
1

2
(S1 − S−1)

where S1 = 1
2n−1

∑
y∈{1,−1}n−1 g(1y) and S−1 = 1

2n−1

∑
y∈{1,−1}n−1 g(−1y).

We will estimate

E
w1,w2∈{0,1}n−1

d
(
C(1w1)Q,C(0w2)Q

)
= E

w1,w2∈{0,1}n−1

∑
j∈Q

d
(
C(1w1)j ,C(0w2)j

)
=
∑
j∈Q

E
w1,w2∈{0,1}n−1

d
(
C(1w1)j ,C(0w2)j

)

Let Ej , Ew1,w2∈{0,1}n−1 d
(
C(1w1)j ,C(0w2)j

)
. Then,

Ej = E
w1,w2∈{0,1}n−1

1

2

(
1− g(1w1)g(−1w2)

)
and Ew1,w2∈{0,1}n−1 g(1w1)g(−1w2) = S1S−1. Thus, we have Ej = 1

2(1− S1S−1).
Recall that by assumption, |Corr(x1,C(x)j)| ≤ t, thus |(S1 − S−1)| ≤ 2t. If S1 and S−1 have the

same sign, then S1S−1 ≥ 0. Otherwise, if they have opposite signs, |S1 − S−1| = |S1| + |S−1|, and thus
|S1|+ |S−1| ≤ 2t. Since 4ab ≤ (a+ b)2, substituting a = |S1| and b = |S−1|, this implies that S1S−1 ≥ −t2,
and in turn, Ej ≤ 1

2(1 + t2).
This concludes the proof of the lemma.

Lemma 15. Let C: {0, 1}n → {0, 1}m be a code, and let Q ⊆ [m], such that |Q| = q. Assume that for
every position j ∈ Q, |Corr(x1,C(x)j)| ≤ t. Then there is a matching M between the set of vectors in
{0, 1}n with first bit 0 and the set of vectors in {0, 1}n with first bit 1 such that

E
(w1,w2)∈M

d
(
C(1w1)Q,C(0w2)Q

)
≤ q

2
(1 + t2)

Proof. Consider the following family of matchings, parameterized by u ∈ {0, 1}n−1

Mu ,
{

(v, v + u) | v ∈ {0, 1}n−1
}

The key property we use about this family is that it is a partition of the set {(w1, w2) | w1, w2 ∈
{0, 1}n−1}. If we consider a probability distribution in which u is drawn uniformly at random from
{0, 1}n−1 and then (w1, w2) is drawn uniformly at random from Mu, then

E
u∈{0,1}n−1

E
(w1,w2)∈Mu

d
(
C(1w1)Q,C(0w2)Q

)
= E

w1,w2∈{0,1}n−1
d
(
C(1w1)Q,C(0w2)Q

)
≤ q

2
(1 + t2) ,
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where the last inequality holds by Lemma 14. Therefore, for at least one u,

E
(w1,w2)∈Mu

d
(
C(1w1)Q,C(0w2)Q

)
≤ q

2
(1 + t2) .

Now we are ready to finish the proof of Theorem 12. Let M be a matching with the properties in the
above lemma, whose existence we proved. For (w1, w2) ∈M , let a(w1, w2) denote the Hamming weight of
C(1w1)Q −C(0w2)Q. By Lemma 15

1

2n−1

∑
(w1,w2)∈M

a(w1, w2) ≤ q

2
(1 + t2) . (1)

In Claim 26 in the Appendix, we show that for β < 1
2 , the function φ(a) = 1√

2a
(4β(1− β))a/2 is convex for

positive a. Thus, applying Jensen’s inequality with respect to (1) and Claim 13, by Claim 11 we get

∆1,Q ≤ 2− 2
β√

q(1 + t2)
(4β(1− β))

q
4

(1+t2) +
3 ∗ 2qq2

m
.

Note that g(β) = 2 β√
q(1+t2)

(4β(1− β))
q
4

(1+t2) is strictly increasing in β. Thus, g(β) evaluated at β = δ−ν
γ

is lower bounded by g(δ− ν) ≥ g(δ)− 2(q+ 1)ν. The statement of Theorem 12 follows by Theorem 9.

4.2 Example: the Hadamard code

The binary Hadamard code of dimension n can be defined by the encoder C : {0, 1}n → {0, 1}m, where
m = 2n, as follows. Denote C(x) := (ca)a∈{0,1}n . Then ca := 〈x, a〉, where the inner product is defined
over the binary field. The following classical 2-query decoder for the Hadamard code is easily shown to
achieve correctness at least 1− 2δ:

Given a corrupted codeword (wa)a∈{0,1}n , choose a ∈ {0, 1}n uniformly at random and output wa+wa+ei

(where ei is the ith standard basis vector and addition is over the binary field) as the decoding of the ith
message bit xi.

A q-query decoder, for even q, can be obtained by repeating the above 2-query decoder independently
q/2 times and taking majority vote3. The following observation analyzes the correctness of this simple
decoder.

Lemma 16. For δ < 1
4 and even number of queries q, the Hadamard code achieves

ζδ ≥ 1− 2q/2−1(2δ)d
q
4
e(1− 2δ)b

q
4
c ≥ 1−

(
4(2δ)(1− 2δ)

)b q
4
c
.

For q = 2 this gives the 1− 2δ bound, which we show to be tight below (Theorem 17). In light of the
above lemma, we conclude that the exponent q/4 in the correctness estimate of Theorem 3 is tight.

Proof. Let z be defined so that q = 2z. For clarity, call the classical 2-query decoder as Â. The q-
query decoder algorithm will perform Â as a sub-procedure z times. Each sub-procedure will use its own
random coin flips, and hence each answer produced by an Â will be independent from the other answers,
conditioned on the input to the code and the error. The algorithm will take the majority vote of the z
answers it receives. In the case that z is even and the vote is tied, assume the algorithm guesses 0 or 1 with
equal probability (1

2). For any fixed input to the code and error, let the probability, over the randomness

3Ties can be broken by outputting a random guess.
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of Â, that the adversary makes one sub-procedure wrong be α. The majority vote operation produces the
wrong answer when half or more of the sub-procedures return the wrong answer. So the probability of
error is: 

∑ z−1
2

i=0

(
z
i

)
(1− α)iαz−i z odd∑ z

2
−1

i=0

(
z
i

)
(1− α)iαz−i + 1

2

(
z
z/2

)
(1− α)

z
2α

z
2 z even

We will upper bound these quantities. First note that
∑ z−1

2
i=0

(
z
i

)
z odd∑ z

2
−1

i=0

(
z
i

)
+ 1

2

(
z
z/2

)
z even

both equal 2z−1. Next, note that (by a union bound) α ≤ 2δ and, by assumption, 2δ < 1
2 . Therefore,

α
1−α < 1, and (1− α)iαz−i is increasing in i. Therefore, the error probability is upper bounded by

2z−1(1− α)b
z
2
cαz−b

z
2
c = 2z−1(1− α)b

z
2
cαd

z
2
e

This expression is increasing in α, and α ≤ 2δ, so the result follows.

4.3 Correctness of 2-query codes

It is possible to demonstrate more precise bounds than Theorem 3 on the largest possible correctness of
2-query binary codes. For binary linear codes, we obtain the following bound, which is tight, as it matches
the correctness achieved by the Hadamard code (up to a sub-constant difference).

Theorem 17. Let C: {0, 1}n → {0, 1}m be a linear code. For any non-adaptive two query decoding
algorithm A, ζδ(A) ≤ max(1

2 , 1− 2δ + 2
n).

Proof. For i ∈ [n], define:

Ri ,
{
j ∈ [m] | C(x)j = xi

}
So there exists at least one i such that |Ri| ≤ m

n . Without loss of generality, assume |R1| ≤ m
n .

Let S ⊆ [m] be the set of codeword positions that do not depend on x1. Define T as whichever of S
and S̄ (the complement of S) has smaller size. If they have the same size, T can be either set. Clearly
|T | ≤ m

2 .

Because the argument below works for arbitrary algorithms, without loss of generality, we can assume
the algorithm always queries exactly 2 positions. If the algorithm ever queried fewer than 2 positions, have
it query more and ignore the additional values obtained.

Define γ , |T |
m and β , min(

δ− |R1|
m
γ , 1

2). Let us consider the probability of error of the decoder over
uniformly random x ∈ {0, 1}n, uniformly random B1 ⊂ T such that |B1| = βγm, uniformly random
B2 ⊆ R1, and the internal randomness of A. (We emphasize that the corruption B1 always has the same
size; but, for B2, it is chosen whether to include each member of R1 independently). Let B , B1 ∪ B2,
generated by the product distribution of B1 and B2. We also use B to denote the characteristic vector of
the set B. By our choice of the parameters, |B| ≤ δm always holds.

By Lemma 6, we can, without loss of generality, assume that A never queries any positions from R1.
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Now consider the decomposition:

Pr
x,B,A

[AC(x)+B(1) 6= x1]

=
∑

Q⊂[m],|Q|=2

Pr
x,B,A

[AC(x)+B(1) 6= x1 | A queries Q] Pr[A queries Q]

Define ErrQ , Prx,B,A[AC(x)+B(1) 6= x1 | A queries Q]. We will bound ErrQ depending on all the
different possibilities for Q for which Pr[A queries Q] > 0. First we give some notation.

For Q and a, b ∈ {0, 1} such that Prx,B,A[A queries Q; (C(x) + B)Q = ab] > 0 (where ab denotes
concatenation), define

pQab , Pr
x,B,A

[AC(x)+B(1) = 0 | A queries Q; (C(x) +B)Q = ab]

For simplicity, let us define the following notation. For a given S ⊆ Q,

qQ,kab (S) , Pr
x,B,A

[(C(x) +B)Q = ab | A queries Q; |B ∩ S| = k]

Let e1 denote the binary vector of length n with 1 in its first coordinate and 0 everywhere else.
By Lemma 3.2 of Goldreich et al. [9], if e1 is not spanned by the vectors aj1 and aj2 corresponding to

the columns of the generator matrix of the code for Q = {j1, j2}, ErrQ ≥ 1
2 . Because β ≤ 1

2 , ErrQ ≥ β as
well.

If e1 ∈ span {aj1 , aj2}, then exactly one bit of Q must be in T – assume it is j1. We can decompose
ErrQ into

ErrQ =

1∑
k=0

Pr
x,B,A

[AC(x)+B(1) 6= x1 | A queries Q; |B ∩ {j1}| = k] · Pr
B

[|B ∩ {j1}| = k | A queries Q]

=
1∑

k=0

Pr
x,B,A

[AC(x)+B(1) 6= x1 | A queries Q; |B ∩ {j1}| = k] · Pr
B

[|B ∩ {j1}| = k]

Note that for any Q, j1 ∈ Q, and 0 ≤ k ≤ 1, the events A queries Q and |B∩{j1}| = k are independent.
So for any Q, j1 ∈ Q, and 0 ≤ k ≤ 1, Pr[A queries Q; |B ∩ {j1}| = k] > 0. Thus, above we are
conditioning on events with nonzero probability. The second equality above also holds because of the
independence of A queries Q and |B ∩ {j1}| = k. For simplicity, define, ErrQ,k , Prx,B,A[AC(x)+B(1) 6=
x1 | A queries Q; |B ∩ {j1}| = k]. We can further decompose ErrQ,k into

ErrQ,k =
∑
a,b

Pr
x,B,A

[AC(x)+B(1) 6= x1 | A queries Q; |B ∩ {j1}| = k; (C(x) +B)Q = ab]·

Pr
x,B,A

[(C(x) +B)Q = ab | A queries Q; |B ∩ {j1}| = k]

Since neither bit is in R1 but e1 is in the span of both bits, the sum of the two bits (when uncorrupted)
is x1. So a+ b = x1 + |B ∩ {j1}|, and the above becomes:

ErrQ,k =∑
a,b

a+b=k

qQ,kab ({j1}) · Pr
x,B,A

[AC(x)+B(1) 6= 0 | A queries Q; |B ∩ {j1}| = k; (C(x) +B)Q = ab]

+
∑
a,b

a+b=1+k

qQ,kab ({j1}) · Pr
x,B,A

[AC(x)+B(1) 6= 1 | A queries Q; |B ∩ {j1}| = k; (C(x) +B)Q = ab]

14



The event |B ∩ {j1}| = k does not depend on the internal randomness of A. Therefore, by Lemma 7,

ErrQ,k =∑
a,b

a+b=k

Pr
x,B,A

[AC(x)+B(1) 6= 0 | A queries Q; (C(x) +B)Q = ab]qQ,kab ({j1})+

∑
a,b

a+b=1+k

Pr
x,B,A

[AC(x)+B(1) 6= 1 | A queries Q; (C(x) +B)Q = ab]qQ,kab ({j1})

This means,

ErrQ,k =
∑
a,b

a+b=k

(1− pQab)q
Q,k
ab ({j1}) +

∑
a,b

a+b=1+k

pQabq
Q,k
ab ({j1})

The two query bits cannot be equal because one is in T and one is not. Since neither is 0, they
are linearly independent. Since, also, x is uniformly random, (C(x) + B)j1 and (C(x) + B)j2 are two

independent, uniformly random bits. Thus, ∀k, a, b: qQ,kab ({j1}) = 1
4 . So, in the k = 0 case,

ErrQ,0 =
(
pQ01 + pQ10 + (1− pQ00) + (1− pQ11)

)
/4

For simplicity, define PQ ,
(
pQ01 + pQ10 + (1− pQ00) + (1− pQ11)

)
/4. On the other hand, in the k = 1 case,

ErrQ,1 =
(

(1− pQ01) + (1− pQ10) + pQ00 + pQ11

)
/4 = 1− PQ

The probability that j1 was corrupted is β. Combining everything, we find

ErrQ = (1− β)PQ + β(1− PQ) = β + (1− 2β)PQ

Because β ≤ 1
2 , ErrQ ≥ β.

Since for all Q, ErrQ ≥ β, Prx,B,A[AC(x)+B(1) 6= x1] ≥ β. Thus, there exists an x and B such that
Pr[AC(x)+B(1) 6= x1] ≥ β (where the probability is only over the internal coin flips of A). When β = 1

2 ,

we are done. Otherwise β =
δ− |R1|

m
γ ≥ δ− 1

n
γ , and we know γ ≤ 1

2 . In this case β ≥ 2δ− 2
n . Combining these

two possibilities gives the result.

For arbitrary binary (possibly nonlinear) codes, we prove the following.

Theorem 18. Let C: {0, 1}n → {0, 1}m be a code. For any non-adaptive two query decoding algorithm A,
and large enough n, ζδ(A) ≤ 1− 2δ(1− δ) +O( 1

n1/3 ).

Proof. Let t = 1/n1/3, and let ν , 1
.99n(1−H( 1

2
+ t

2
))

. We will show that for any non-adaptive decoding

algorithm A, ζ(A) ≤ 1− 2δ(1− δ) + 2ν + t + 8
n .

We define Ri, B and β as in the proof of Theorem 12. By Lemma 6, we can, without loss of generality,
assume that A never queries any positions from R1.

Without loss of generality, we assume that A flips all of its random coins first, and then, based on those
random values, chooses a query set Q ⊂ [m] and a deterministic function φ to apply on the two values it
receives from querying Q. Without loss of generality, Q = {1, 2}. We use the shorthand “Q, φ” to mean
the event A has chosen to query Q and applies the function φ on the query results. Now consider the
decomposition:

Pr
x,B,A

[AC(x)+B(1) 6= x1] =
∑

Q⊂[m]:|Q|=2,φ

Pr
x,B,A

[AC(x)+B(1) 6= x1 | Q,φ] Pr[Q,φ]
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Define ErrQ,φ , Prx,B[AC(x)+B(1) 6= x1 | Q,φ]. Recall that the correlation between two Boolean
functions f and g is defined as

Corr(f, g) , Pr
x

[f(x) = g(x)]− Pr
x

[f(x) 6= g(x)]

Let χS(Y1, Y2) ,
∑

s∈S Ys for S ⊆ {1, 2}, then (as shown in [6])∣∣∣Corr(xi, φ(Y1, Y2))
∣∣∣ ≤ ∣∣∣Corr(xi, 0)

∣∣∣+
∑

S⊆{1,2} : |S|=1

∣∣∣Corr(xi, χS(Y1, Y2))
∣∣∣+
∣∣∣Corr(xi, Y1 + Y2)

∣∣∣ .
The first term of this expression is 0 because Prx[xi = 0] = 1

2 . The two absolute values in the second
term are each at most t. This is because for any j ∈ [m], if |Corr(xi,C(x)j)| > t, then j1 is corrupted by
B into a uniformly random value in {0, 1}. Therefore, the correlation of the corrupted value with xi is 0.
This gives: ∣∣∣Corr(xi, φ(Y1, Y2))

∣∣∣ ≤ 2t+
∣∣∣Corr(xi, Y1 + Y2)

∣∣∣
Because of the independence of x and B, we have:∣∣∣Corr(xi, Y1 + Y2)

∣∣∣ ≤ ∣∣∣Corr(0, B1 +B2)
∣∣∣

Because β ≤ 1
2 , we have∣∣∣Corr(xi, φ(Y1, Y2))

∣∣∣ ≤ 2t+
(

1− Pr
B

[|B ∩Q| = 1]
)
−
(

Pr
B

[|B ∩Q| = 1])
)

= 2t+ 1− 2
(

Pr
B

[|B ∩Q| = 1]
)

≤ 2t+ 1− 2
(

2β(1− β)− 8

m

)
Noting that ErrQ,φ ≤ 1

2 or else the algorithm would just guess randomly, we have:

(1− ErrQ,φ)− ErrQ,φ =
∣∣∣(1− ErrQ,φ)− ErrQ,φ

∣∣∣ =
∣∣∣Corr(xi, φ(Y1, Y2))

∣∣∣
Thus we have ErrQ,φ ≥ 2β(1− β)− t− 8

m .

Recall that β = min( δ−νγ , 1
2). When β = δ−ν

γ , first note that the expression 2β(1−β) is strictly increasing

in β. Therefore, we can lower bound 2β(1 − β) − t − 8
m evaluated at β = δ−ν

γ with 2β̂(1 − β̂) − t − 8
m

evaluated at β̂ = δ − ν:

2
(
δ − ν

)(
1− δ + ν

)
− t− 8

m
≥ 2δ(1− δ)− 2ν − t− 8

m

The lower bound of Katz and Trevisan [11] implies that m > n, for large enough n. Therefore, this
expression is more than 2δ(1− δ)− 2ν − t− 8

n .

When β = 1
2 , 2β(1− β)− t− 8

m = 1
2 − t−

8
n for large enough n (again, note that m > n).

5 Minimum distance and largest tolerable corruption

In this section, we study the relationship between the amount of corruption tolerable by LDCs and their
minimum distance as an error-correcting code. As we noted in the introduction, while intuitively it is
expected that the two notions are related, in general, for non-binary codes this may not be the case. Then,
we study the largest possible corruption parameter δ that any LDC may have.
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5.1 Corruption versus minimum distance

It is easy to see that for non-binary codes, local decodability does not imply large minimum distance.
As an example, consider the ternary code C : {−1, 0,+1}n → {−1, 0,+1}m with m , n + 2n defined as
C(x1, . . . , xn) , (x1, . . . , xn, H1, . . . ,H2n) where (H1, . . . ,H2n) is the binary Hadamard encoding of the
binary vector (|x1|, . . . , |xn|). The absolute minimum distance of this code is 1 which can be seen, for
example, by looking at the encodings of the two vectors (1, 0, . . . , 0) and (−1, 0, . . . , 0). However, this code
is a (2, δ, ε)-LDC according to Definition 1 for every constant δ ∈ [0, 1/12) and ε , 1/6−2δ−o(1). Namely,
in order to locally decode a message bit xi, it suffices to run the standard 2-query local decoder of the
Hadamard code on (H1, . . . ,H2n) to obtain x̃i ∈ {0, 1}. If x̃i = 0, the decoder outputs 0 and otherwise
randomly outputs −1 or +1 with equal probabilities. If xi = 0, this procedure errs with probability at
most 2δ+o(1) (as each of the two queries coincide with an error position with probability at most δ+o(1)),
and otherwise the error probability would be at most 1/2 + 2δ+ o(1) (since the coin flip to decide between
−1 and +1 errs with probability 1/2). Altogether this decoder attains correctness 1/2−2δ which is greater
than 1/3 (as required by Definition 1) by at least ε. Thus, for non-binary codes, the minimum distance
may be very small, even for codes that tolerate a large fraction of errors as LDCs.

However, we show a direct relationship between minimum distance and the fraction of errors tolerated
by LDCs in the case of binary codes. Moreover, we are able to extend this result to linear codes over
arbitrary finite fields.

Lemma 19. Let C: {0, 1}n → {0, 1}m be a (q, δ, ε)-LDC with ε > 0. Then C has minimum distance at
least 2δm+ 1.

Proof. Assume there are two codewords C(a) and C(b) with a 6= b ∈ {0, 1}n such that the Hamming
distance between them is less than 2δm + 1. Because a 6= b, a and b differ in at least one bit – without
loss of generality, let i ∈ [n] be one such bit in the support of a − b. Because d(C(a),C(b)) ≤ 2δm,
there exists a string, call it Y , such that d(C(a), Y ) ≤ δm and d(Y,C(b)) ≤ δm. Whenever the input
to the code is a or b, the adversary will change the codeword into Y . Either Pr[AY (i) outputs 1] ≤ 1

2 or
Pr[AY (i) outputs 1] ≥ 1

2 , where the probabilities are over the internal coin tosses of A. In the first case,
the algorithm fails with probability at least 1

2 on whichever input a or b has i’th position 1. In the second
case, the algorithm fails with probability at least 1

2 on whichever input a or b has i’th position 0. Thus,
in either case, we have shown there exists an input and an adversary error pattern of size at most δm so
that the probability of error is at least 1

2 , which contradicts the assumption that ε > 0.

We remark that Lemma 19 can be alternatively proved by independently running the local decoder
sufficiently many times and taking majority votes for each message position, thus recovering the entire
message from corrupted encodings. However, as we noted in the introduction, this argument cannot be
used for non-binary codes. The proof presented here can be generalized to arbitrary fields for the case of
linear codes, as follows.

Lemma 20. Let C: Fn → Fm be a linear (q, δ, ε)-LDC with ε > 0. Then C has minimum distance at

least |F |
|F |−1δm+ 1.

Proof. Assume there are two codewords C(g0) and C(g1) with g0 6= g1 ∈ Fn such that the Hamming

distance between them is less than |F |
|F |−1δm+ 1. Then, for f ∈ F, f 6= 0, 1 define gf , g0 + f(g1 − g0).

Because g0 6= g1, g0 and g1 differ in at least one position – without loss of generality, let i ∈ [n] be one
such position in the support of g0 − g1. For f ∈ F , define hf as the unique gf ′ (f ′ ∈ F ) such (gf ′)i = f .

Construct a string Y in the following way. In the positions outside the support of C(g0) −C(g1), let
Y equal C(g0). (Notice for later that because C is linear, the C(gf ) are identical outside of the support
of C(g0) − C(g1).) Divide the positions in the support of C(g0) − C(g1) into |F | equal pieces and label
each piece by a member of F . For the positions in the f ∈ F piece, let Y be the same as hf . This implies
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∀f ∈ F, d(C(hf ), Y ) ≤ |F |−1
|F |

|F |
|F |−1δm = δm. Whenever the input to the code is hf , for some f ∈ F , the

adversary will change the codeword into Y . Now
∑

f∈F Pr[AY (i) outputs f ] = 1 where the probability is
over the internal coin tosses of A. So there exists at least one f ∈ F such that, if the adversary corrupts
C(hf ) into Y , the probability of the algorithm correctly answering f is at most 1

|F | . Therefore, we have
shown there exists an input x and an adversary error pattern of size at most δm so that the probability of
error is at least 1− 1

|F | , which contradicts the assumption that ε > 0.

Even though the code in the example at the beginning of this section has very small minimum dis-
tance, the code still contains a large subcode with large minimum distance. Namely, the set of codewords
corresponding to messages that lie in {0, 1} is a subcode of size 2n, as opposed to size 3n of the code C,
and relative distance at least 1/2. This brings up the following question:
Question: Does every (q, δ, ε)-LDC with constant ε > 0 and message length n contain a subcode of size
exp(n) and relative minimum distance at least 2δ?

Lemma 19 shows that the answer to this question is positive for binary codes (the code itself must have
relative minimum distance at least 2δ). For non-binary codes we are able to show the following.

Proposition 21. Let C : Σn → Γm be any (q, δ, ε)-LDC with ε > 0. Then, C has a sub-code of size at
least (|Σ|/(|Σ| − 1))n that has relative minimum distance at least δ.

Proof. Consider any y ∈ Γm, and for every i ∈ [n], denote by Xi the probability distribution on Σ induced
by applying the local decoding algorithm on the received word y and index i (this distribution depends
on the choice of y and the internal coin flips of the decoder). Let wi ∈ Σ be the symbol for which
pi , Pr[Xi = wi] is the least. By an averaging argument, pi ≤ 1/|Σ|. Thus, for any x = (x1, . . . , xn) ∈ Σn

with xi = wi we must have d(C(x), y) > δm since otherwise, y can be interpreted as a corruption of C(x)
and the definition of locally decodable codes would then imply that pi ≥ 1/|Σ| + ε, which we know is
not the case. We conclude that for any y, the Hamming ball of radius δm around y can contain at most
(|Σ| − 1)n codewords.

Now consider the following greedy procedure: Start with any codeword y in C, keep y in the code,
remove all codewords at distance up to δm of y (we know there are at most (|Σ| − 1)n), and continue the
procedure with unseen codewords until the code is exhausted. The resulting sub-code of C has at least
(|Σ|/(|Σ| − 1))n codewords. Moreover, the codewords belonging to the sub-code have pairwise distances of
δm or more by construction.

As we saw above, for non-binary codes, local decodability in general does not imply large distance. We
show that under the stronger Definition 4, Proposition 21 can be strengthened as follows.

Proposition 22. Let C : Σn → Γm be a strong (q, δ, ε)-LDC with ε > 0. Then, C has relative minimum
distance greater than 2δ.

Proof. Consider any y ∈ Γm and for every i ∈ [n], denote by Xi the probability distribution on Σ induced
by providing the local decoding algorithm with the received word y and index i. Let xi ∈ Σ be the symbol
for which pi , Pr[Xi = xi] is the largest. Definition 4 implies that the Hamming ball of radius δm around
y can only contain up to one codeword; namely, C(x1, . . . , xn). As a result, the Hamming balls of radius
δm around codewords must not collide.

5.2 Largest tolerable amount of corruption

We now combine the results of the previous subsection with Plotkin’s bound to obtain upper bounds on the
corruption parameter δ that any LDC may allow. Recall that the Plotkin bound on codes (cf. [15]) asserts
that any code C : Σn → Σm with minimum distance d > (1− 1/|Σ|)m has size |C| ≤ d/(d− (1− 1/|Σ|)m).
In particular, when d = (1−1/|Σ|+γ)m, we have |C| ≤ 1/γ. By choosing, say, γ , 1/n, one can ensure that
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there is no code4 over Σ with message length n and relative distance at least 1−1/|Σ|+1/n = 1−1/|Σ|+o(1).
Combining this with Proposition 21 gives δ < 1−1/|Σ|+ 1

n , which almost recovers the bound δ < 1−1/|Σ|
proved in [6] (Observation 2.1). Using Lemma 19, Lemma 20, and Proposition 22, respectively, we get the
following stronger bounds:

Corollary 23. Let C : Σn → Σm be any (q, δ, ε)-LDC where ε > 0. Then,

1. If |Σ| = 2, then δ < 1/4 + 1
n .

2. If C is linear, then δ < (1− 1/|Σ|)2 + 1
n .

3. If C satisfies the stronger Definition 4, then δ < 1
2(1− 1/|Σ|) + 1

n .
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A Appendix

A.1 Proof of Lemma 7

A simple, but important point used in the proof below is that, for any Q, the value of (C(x) + B)Q is
independent of the event A queries Q, since the decoder A is non-adaptive. Note however, that while E
does not depend on the internal randomness of A, it may depend on the distribution B or the input x.
Thus, the events we work with in general are not independent events.

Without loss of generality, assume A makes all of its coin flips in advance of querying any codeword
positions. Let r denote the event that the outcome of these coin flips is a particular string r. Then we
have:

Pr
x,B,A

[AC(x)+B(i) = v | A queries Q;E; (C(x) +B)Q = s] =∑
r

Pr
x,B,A

[AC(x)+B(i) = v | A queries Q;E; (C(x) +B)Q = s; r]·

Pr
x,B,A

[r | A queries Q;E; (C(x) +B)Q = s]

Since |Q| = q, for a fixed setting of the decoder’s random bits, the output of the decoder is completely
determined by the values (C(x)+B)Q, if A queries Q. Thus, Prx,B,A[AC(x)+B(i) = v | A queries Q; (C(x)+
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B)Q = s; r] is either 0 or 1. An event with probability 0 or probability 1 remains of probability 0 or 1, respec-
tively, under any conditioning. Therefore, we can remove the conditioning on E from Prx,B,A[AC(x)+B(i) =
v | A queries Q;E; (C(x) +B)Q = s; r] and get:

Pr
x,B,A

[AC(x)+B(i) = v | A queries Q;E; (C(x) +B)Q = s]

=
∑
r

Pr
x,B,A

[AC(x)+B(i) = v | A queries Q; (C(x) +B)Q = s; r]·

Pr
x,B,A

[r | A queries Q;E; (C(x) +B)Q = s]

Next, we note that for any r,

Pr
x,B,A

[r | A queries Q;E; (C(x) +B)Q = s]

=
Prx,B,A[r;A queries Q]

Prx,B,A[A queries Q]

= Pr
x,B,A

[r | A queries Q; (C(x) +B)Q = s] .

Above, we have used the fact that r and A queries Q is independent of E and the values of C(x) +B
on the positions indexed by Q. Therefore,

Pr
x,B,A

[AC(x)+B(i) = v | A queries Q;E; (C(x) +B)Q = s]

= Pr
x,B,A

[AC(x)+B(i) = v | A queries Q; (C(x) +B)Q = s] ,

and this concludes the proof of the Lemma.

A.2 Helpful facts

The following bound was proved in [6].

Claim 24. For large enough m, (
q
k

)(
m−q
δm−k

)(
m
δm

) >

(
q

k

)
δk(1− δ)q−k − q2

m

We also use the following upper bound.

Claim 25. For large enough m, (
q
k

)(
m−q
δm−k

)(
m
δm

) <

(
q

k

)
δk(1− δ)q−k +

2q2

m
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Proof. When 0 ≤ k < q:(
q
k

)(
m−q
δm−k

)(
m
δm

) =

(
q

k

)
(δm)!(m− δm)!

m!

(m− q)!
(δm− k)!(m− δm− q + k)!

=

(
q

k

)
·

δm(δm− 1)...(δm− k + 1)(m− δm)(m− δm− 1)...(m− δm− q + k + 1)

m(m− 1)...(m− q + 1)

<

(
q

k

)
(δm)k(m− δm)(m− δm− 1)...(m− δm− q + k + 1)

m(m− 1)...(m− q + 1)

≤
(
q

k

)
(δm)k(m− δm)q−k

mq−k(m− q + k)(m− q + k − 1)...(m− q + 1)

<

(
q

k

)
(δm)k(m− δm)q−k

mq−k(m− q)k

=

(
q

k

)
δk(1− δ)q−k 1

(1− q
m)k

<

(
q

k

)
δk(1− δ)q−k 1

1− kq
m

for m large enough

<

(
q

k

)
δk(1− δ)q−k(1 +

2kq

m
) for m large enough

≤
(
q

k

)
δk(1− δ)q−k +

2q2

m
because

(
q

k

)
δk(1− δ)q−k ≤ 1

When k = q: (
m−q
δm−q

)(
m
δm

) =
δm(δm− 1)...(δm− q + 1)

m(m− 1)...(m− q + 1)
< (

δm

m
)q = δq

Claim 26. Given that β < 1
2 , the function φ(a) = 1√

2a
(4β(1− β))a/2 is convex for positive a.

Proof. Note that φ(a) can be rewritten as χ(b) , γb

2
√
b

where b , a/2 and γ , 4β(1− β) < 1.

The first derivative of χ(b), with respect to b, is

γb(−1

4
b−3/2 +

1

2
b−1/2 log γ)

The second derivative of χ(b) is

γb(
3

8
b−5/2 − 1

2
b−3/2 log γ +

1

2
b−1/2(log γ)2)

Because log γ < 0, γ > 0, and b > 0, each term of the last line is positive. So the last line as a whole
is positive. Also note that these first and second derivatives are continuous over the domain of positive b.
So χ(b) is convex. Because the derivative of b with respect to a is 1

2 > 0, then, by the chain rule, φ(a) is
convex as well.
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