
A Cookbook for Black-Box Separations and a Recipe for

UOWHFs∗

Kfir Barhum Thomas Holenstein

Department of Computer Science
ETH Zurich, 8092 Zurich, Switzerland

December 2012

Abstract

We present a new framework for proving fully black-box separations and lower bounds.
We prove a general theorem that facilitates the proofs of fully black-box lower bounds from
a one-way function (OWF).

Loosely speaking, our theorem says that in order to prove that a fully black-box con-
struction does not securely construct a cryptographic primitive Q (e.g., a pseudo-random
generator or a universal one-way hash function) from a OWF, it is enough to come up with
a large enough set of functions F and a parameterized oracle (i.e., an oracle that is defined
for every f ∈ {0, 1}n → {0, 1}n) such that Of breaks the security of the construction when
instantiated with f and the oracle satisfies two local properties.

Our main application of the theorem is a lower bound of Ω(n/ log(n)) on the number
of calls made by any fully black-box construction of a universal one-way hash function
(UOWHF) from a general one-way function. The bound holds even when the OWF is
regular, in which case it matches to a recent construction of Barhum and Maurer [BM12].

Keywords: Complexity-Based Cryptography, One-Way Functions, Universal One-Way Hash
Functions, Black-Box Constructions, Lower-Bound on Efficiency

1 Introduction

1.1 Cryptographic Primitives and Black-Box Constructions

An important question in complexity-based cryptography is understanding which cryptographic
primitives (e.g., one-way functions, pseudo-random generators) are implied by others. In prin-
ciple, an implication between two primitives can be proved as a logical statement (e.g., the
existence of one-way functions implies the existence of pseudo-random generators). However,
most proofs of such implications (with very few exceptions, e.g., [Bar01]) are in fact so-called
fully black-box constructions.

Informally, a black-box construction of a primitive Q from a primitive P is a pair of algo-
rithms, called construction and reduction, such that the construction, using only the function-
ality of P, implements Q and the reduction, using only the functionality of P and the one of a
potential breaker algorithm, breaks P whenever the breaker algorithm breaks Q. As a corollary,
such a black-box construction establishes that the existence of P implies the existence of Q.

∗This is the full version of a paper due to appear at the 10th Theory of Cryptography Conference (TCC 2013).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 173 (2012)

One of many such examples is the construction of a one-way function from a weak one-way
function [Yao82].

After futile attempts to prove that the existence of one-way functions implies that of key
agreement, Impagliazzo and Rudich [IR89] proved the first black-box separation result: They
showed that there is no fully black-box construction of key agreement from one-way functions.
Their seminal work inspired a plethora of similar results and nowadays one identifies two main
types of black-box separation results: black-box separations of a primitive Q from a primitive
P and lower bounds on some complexity parameter (e.g., seed length, number of calls to the
underlying primitive, etc.) in the construction of Q from P. Besides [IR89], the work of Simon
[Sim98], where he shows that there is no fully black-box construction of a collision-resistant hash
function from a one-way function, is an example of the former. As an example of the latter,
Kim et. al. [KST99] established a lower bound of Ω(

√
k/ log(n)) on the number of queries of

any construction of a universal one-way hash function that compresses k bits from a one-way
permutation on n bits. This was later improved by Gennaro et. al. [GGKT05] to Ω(k/ log(n)).

Reingold et. al. [RTV04] were the first to formalize a model for and study the relations
between different notions of “black-boxness” of cryptographic constructions.

A key property of a fully black-box construction of Q from P is the requirement that it
constructs Q efficiently even when given black-box access to a non-efficient implementation of
P. A proof technique utilizing this property, which is implicit in many black-box separations,
involves an (inefficient) oracle instantiation of the primitive P and an appropriate (inefficient)
breaker oracle B. The separation is usually proved by showing that B breaks the security of the
candidate construction for Q, but at the same time no efficient oracle algorithm that has black-
box oracle access to both the breaker and the primitive (in particular, the potential reduction)
breaks the security property of the underlying instantiation of P.

In [HR04], Hsiao and Reyzin introduce the “two-oracle” paradigm, referring to the oracle
implementations of P and the breaker B. The separation in [MM11] also makes explicit use of
this paradigm.

1.2 Our Contribution

In constructions based on one-way functions (or permutations), i.e., when P = OWF, the oracle
that implements OWF is usually set to be a random permutation, which is one-way with very
high probability even in the presence of a non-uniform algorithm. On the other hand, the proof
that the breaker algorithm for the constructed primitive Q does not help invert the permutation
is repeated in an “ad-hoc” manner in many separation proofs, e.g., in [Sim98, HHRS07] and
also in a recent result on lower bounds on the number of calls made by any construction of a
pseudo-random generator from a one-way function [HS12].

Thus, while in many separation proofs the task of finding the right breaker oracle is different
(this is inherent, as each time it is required to break the security of a different primitive), we
observe that the proof that it does not help in inverting the underlying one-way function can be
facilitated and unified to a large extent. To that end, we prove a general theorem that facilitates
the proof of black-box separations (Theorem 18). In particular, we show that any circuit with
access to an oracle that satisfies two local properties, does not help to invert many functions.

Our framework allows proving separation results that exclude the existence of reductions
with very weak security requirements. In this work we focus on the important case where the
black-box construction is so-called fixed-parameter. That is, for a security parameter ρ, both
the construction algorithm and the reduction access the primitive and breaker of security ρ only.
All black-box constructions found in the literature are in fact fixed-parameter constructions.
We believe that adapting the approach of [HS12], it is possible to extend our results to the most

2

general case.
Our proof uses the encoding technique from [GGKT05], which was already adapted to the

special cases in [HHRS07] and [HS12]. We also use the bending technique that originated in
[Sim98] and was subsequently used in [HH09] and [HS12].

As an application, in Section 4 we prove a lower bound of Ω(n/ log3(n)) on the number of calls
made by any fully black-box construction of a universal one-way hash function (UOWHF) from
a one-way function f : {0, 1}n → {0, 1}n. The bound is improved in Section 5 to Ω(n/ log(n)),
which matches the construction from [BM12].

UOWHFs are a fundamental cryptographic primitive, most notably used for obtaining digital
signatures. They were studied extensively since their introduction by Naor and Yung [NY89],
who showed a simple construction that makes only one call to the underlying one-way function
whenever, additionally, the function is a permutation. Rompel [Rom90] showed a construction
based on any one-way function, and the most efficient construction based on general one-way
functions is due to Haitner et. al. [HHR+10]. Their construction makes Õ(n6) calls to a one-way
function f : {0, 1}n → {0, 1}n. Note that the bound given in [GGKT05] does not say anything
for the mere construction of a UOWHF (e.g., for a function which compresses one bit), and
prior to our work it would have been possible to conjecture that there exists a construction of a
UOWHF from a general one-way function that makes only one call to the underlying one-way
function. Our bound matches exactly and up to a log-factor the number of calls made by the
constructions of [BM12] and [?], respectively.

Our result can be understood as an analog to that of Holenstein and Sinha, who show a bound
of Ω(n/ log(n)) on the number of calls to a one-way function that are made by a construction of
a pseudo-random generator. We observe (details are omitted) that the recent result of [HS12]
can be explained in out framework. Our characterization of UOWHFs (presented in Section
4.1) is inspired by their characterization of pseudo-random generators. For some candidate
constructions, our proof also utilizes their BreakOW oracle. Our main technical contribution
in Section 4.2 is the oracle BreakPI and the proof that it satisfies the conditions of our theorem
from Section 3.

2 Preliminaries

2.1 The Computational Model

A function p = p(ρ) is polynomial if there exists a value c such that p(ρ) = ρc. A machine M is
efficient if there exists a polynomial p such that on every input x ∈ {0, 1}∗, M(x) halts after at
most p(|x|) steps. A function s : N+ → N+ is a security function if for every ρ ∈ N+ it holds that
s(ρ + 1) ≥ s(ρ), and s is efficiently computable (i.e., there exists an efficient machine M that

on input 1ρ outputs s(ρ)). For a security function s we define 1
s : N+ → R+ as 1

s (ρ)
def
= 1

s(ρ) .

A function f : N+ → R+ is negligible if for all polynomial security functions p it holds that
f(ρ) < 1

p(ρ) for all large enough ρ.

A boolean circuit A : {0, 1}m → {0, 1}m′ is a directed acyclic graph in which every node
(called gate) is either an input node of in-degree 0 labeled as one of the m input bits, an output
node labeled by one of the m′ output bits, an AND gate, an OR or a NOT gate. A circuit A
implements the function f : {0, 1}m → {0, 1}m′ that corresponds to its evaluation on its inputs.
The converse also holds: For every function f : {0, 1}m → {0, 1}m′ it is always possible to define
canonically1 a circuit A that implements f .

1E.g., the circuit that implements the DNF of f .

3

Let n, n′ ∈ N+. An (n, n′)-oracle circuit C(?) is a circuit that additionally has special “oracle”
gates, each having in-degree n and out-degree n′. A circuit C(?) is an oracle circuit if it is an
(l, l′)-oracle circuit for some l, l′ ∈ N+. Let C(?) be an (n, n′)-oracle circuit and let A be a
circuit with n input gates and n′ output gates (in this case we say that A is compatible with
C(?)). The circuit C(A) is defined as the circuit C(?) where each oracle gate is substituted by
a copy A. For a function f : {0, 1}n → {0, 1}n′ define C(f) as the circuit C(?) where each
oracle gate is substituted by a copy of the canonical circuit that evaluates f . Similarly, let
n1, n

′
1, n2, n

′
2 ∈ N+. An (n1, n

′
1, n2, n

′
2)-two oracle circuit C(?,?) is a circuit that has two types

of oracle gates, where a gate of the first type has n1 inputs and n′1 outputs and a gate of the
second type has n2 inputs and n′2 outputs. As before, for compatible functions and circuits that
evaluate compatible functions f1 : {0, 1}n1 → {0, 1}n′1 and f2 : {0, 1}n2 → {0, 1}n′2 the circuit
C(f1,f2) is defined similarly.

A non-uniform algorithm A = {Aρ}ρ∈N+ is a parameterized family of circuits Aρ. A non-
uniform algorithm A implements the parametrized functions family f = {fρ}ρ∈N+ , if each Aρ
implements fρ.

A non-uniform oracle algorithm A(?) = {A(?)
ρ}ρ∈N+ is a parameterized family of oracle cir-

cuits. For an oracle algorithm A(?) and a family of functions f we define A(f) def
= {Afρρ } (resp.,

A(B) def
= {ABρρ }) whenever for every ρ the function is compatible with the oracle-circuit.

2.1.1 Uniform generation of oracle algorithms.

The construction and reduction algorithms in fully black-box constructions are assumed to
work for any2 input/output lengths of the primitive and breaker functionalities, and therefore
are modeled in the following way: In addition to the security parameter ρ, both the construction
and the reduction algorithms take as input information about the input/output lengths of the
underlying primitive fρ and the breaker algorithm Bρ.

A uniform oracle algorithm is a machine M that on input M(1ρ, n(ρ), n′(ρ)) outputs an

(n(ρ), n′(ρ))-oracle circuit A
(?)
ρ . For a uniform oracle algorithm M and a parameterized family

of functions f = {fρ : {0, 1}n(ρ) → {0, 1}n′(ρ)}ρ∈N+ , define M (f) def
= {A(fρ)

ρ }ρ∈N+ , where A
(?)
ρ

def
=

M(1ρ, n(ρ), n′(ρ)). For a non-uniform algorithm A, the family M (A) is defined analogously.
Let s = s(ρ) be a security function. An s-non-uniform two oracle algorithm is a ma-

chine M such that for every ρ, n1, n
′
1, n2, n

′
2 ∈ N+ and every a ∈ {0, 1}s(ρ), it holds that

M(1ρ, n1, n
′
1, n2, n

′
2, a) outputs an (n1, n

′
1, n2, n

′
2)-two oracle circuit A

(?,?)
ρ,a with at most s(ρ)

oracle gates. Note that the last requirement is essential and is implicit in the case of an efficient
uniform oracle algorithm, where the number of oracle gates is bounded by the polynomial that
bounds the running time of the algorithm. For an s-non-uniform two oracle algorithm M , a

non-uniform algorithm B and a family of functions f , we formally define M [B,f] def
= (M,B, f).

2.2 Modeling Cryptographic Primitives

In order to state our results in their full generality, and in particular to exclude reductions
that are allowed to use non-uniformity and are considered successful in inverting the one-way
function even if they invert only a negligible fraction of the inputs of the function, the following
two definitions are very general, and extend Definitions 2.1 and 2.3 from [RTV04]. The example
of modeling a one-way function follows the definition.

2 A-priori, for a fixed security parameter ρ there is no bound on the input length the construction is expected
to work, as long as the series of the input-output lengths is bounded by some polynomial.

4

Definition 1 (Cryptographic Primitive). A primitive Q is a pair 〈FQ, RQ〉, where FQ is a set
of parametrized families of functions f = {fρ}ρ∈N+ and RQ is a relation over triplets 〈fρ, C, ε〉
of a function fρ ∈ f (for some f ∈ FQ), a circuit C and a number ε > 0. We define that
C (Q, ε)-breaks fρ if and only if 〈fρ, C, ε〉 ∈ RQ.

The set FQ specifies all the correct implementations (not necessarily efficient) of Q and the
relation RQ captures the security property of Q, that is, it specifies for every concrete security
parameter implementation, how well a breaker algorithm performs with respect to the security
property of the primitive.

Finally, let s = s(ρ) be a security function, B = {Bρ}ρ∈N+ be a non-uniform algorithm, and
f ∈ FQ. We say that B (Q, 1

s)-breaks f if 〈fρ, Bρ, 1
s(ρ)〉 ∈ RQ for infinitely many values ρ. Let us

fix an s-non-uniform two oracle algorithm R. We say that R[B,f] (Q, 1
s)-breaks f if for infinitely

many values ρ there exists an a ∈ {0, 1}s(ρ) (called advice) such that 〈fρ, R
(Bρ,fρ)
ρ,a , 1

s(ρ)〉 ∈ RQ,

where R
(?,?)
ρ,a = R(1ρ, n, n′, b, b′, a).

The usual notion of polynomial security of a primitive is captured by the following definition:
B Q-breaks f if there exists a polynomial p = p(ρ) such that B (Q, 1

p)-breaks f .
A primitive Q exists if there exists an efficient uniform algorithm M that implements an

f ∈ FQ, and for every efficient uniform algorithm M ′ that, on input 1ρ outputs a circuit, it
holds that {M ′(1ρ)}ρ∈N+ does not Q-break f .

Observe that the requirement that M ′ outputs a circuit is made without loss of generality
and captures the standard definition of an efficient randomized machine M ′ that breaks a
primitive. Given such an M ′ that tosses at most r = r(ρ) random coins, there exists3 a
(now deterministic) efficient uniform machine M ′′ that on input 1ρ outputs a circuit Cρ with
m(ρ) + r(ρ) input gates and n(ρ) output gates that computes the output of M for all strings of
length m(ρ), and therefore Q-breaks the primitive.

2.3 One-Way Functions

Our model for describing a primitive is very general and captures the security properties of
many cryptographic primitives. As an example, we bring a standard definition of a one-way
function and then explain how it can be described in our model.

Definition 2 (One-Way Function). A one-way function f = {fρ}ρ∈N+ is an efficiently uni-

formly computable family of functions fρ : {0, 1}n(ρ) → {0, 1}m(ρ), such that for every efficient
randomized machine A, the function that maps ρ to

Pr
x

r←{0,1}m(ρ)

[
A(1ρ, fρ(x)) ∈ f−1

ρ (fρ(v))
]

is negligible.

In order to model a one-way function (OWF), we set f = {fρ}ρ∈N+ ∈ FOWF, where

fρ : {0, 1}n(ρ) → {0, 1}m(ρ), if and only if n = n(ρ) and m = m(ρ) are polynomial security
functions. We say that FOWF contains a collection of sets of functions F = {Fρ}ρ∈N+ , if for
every family f ′ = {f ′ρ}ρ∈N+ , where f ′ρ ∈ Fρ for every ρ, it holds that f ′ ∈ FOWF.

In this case, for a function fρ ∈ f ∈ FOWF, a circuit C that inverts fρ on an ε-fraction of
its inputs, and ε′ > 0, set 〈f, C, ε′〉 ∈ ROWF if and only if ε ≥ ε′. The definition is general,
and allows for the circuit C to implicitly use randomness. In such a case, for fρ as before, a
circuit with C with m(ρ) + r(ρ) input bits that computes an output x ∈ {0, 1}n(ρ), and a value
ε′ > 0, define 〈fρ, C, ε′〉 ∈ ROWF if and only if ε ≥ ε′, where ε is the probability over uniform
z ∈ {0, 1}r(ρ) and x ∈ {0, 1}n(ρ) that C(fρ(x), z) outputs an x′ ∈ f−1

ρ (fρ(x)).

3For example, by the canonical encoding of an efficient machine as in the Cook-Levin Theorem.

5

2.4 Fully Black-Box Cryptographic Constructions

Finally, we bring the standard definition of a fixed-parameter fully black-box construction
of a primitive Q from a primitive P, which is usually implicit in the literature. The con-
struction algorithm G is an efficient uniform oracle algorithm and the security reduction R
is an efficient uniform two-oracle algorithm. For every security parameter ρ and a function

fρ : {0, 1}n(ρ) → {0, 1}n′(ρ), G’s output on (1ρ, n, n′) is an (n, n′)-oracle circuit g
(?)
ρ such that

{g(fρ)
ρ }ρ∈N+ implements Q. The reduction algorithm works as follows: For a security parameter

ρ and f as before, and additionally a breaker circuit B : {0, 1}b(ρ) → {0, 1}b′(ρ), the reduction R

on input (1ρ, n, n′, b, b′) outputs an (n, n′, b, b′)-two-oracle circuit R
(?,?)
ρ . The security property

property requires that indeed the series of circuits {R(Bρ,fρ)
ρ }ρ∈N+ P-breaks f . We emphasize

that the vast majority (if not all) of the constructions of primitives from a one-way function
found in the literature are in fact fixed-parameter fully black-box constructions. Formally:

Definition 3 (fixed-parameter fully black-box construction of Q from P). An efficient uniform
oracle algorithm G and an efficient uniform two oracle algorithm R are a fixed-parameter fully-
BB construction of a primitive Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every
f ∈ FP:

1. (correctness) G(f) implements f ′ ∈ FQ.

2. (security) For every algorithm B: If B Q-breaks G(f) then R(B,f) P-breaks f .

For a super-polynomial security function s = s(ρ) (e.g., s(ρ) = 2
√
ρ), the following definition

of a fully black-box construction is significantly weaker than the standard one in the following
three aspects: First, it requires that reduction only mildly breaks the one-way property of the
function f (whenever the breaker breaks the constructed primitive in the standard polynomial
sense). Second, the reduction algorithm does not have to be efficient or uniform (but the non-
uniformity is limited to an advice of length s). Lastly, it allows the reduction to make s calls
to its oracles4.

Definition 4 (s-weak fixed-parameter fully black-box construction of Q from P). A uniform
oracle algorithm G and an s-non-uniform two oracle algorithm R are an s-weak fixed-parameter
fully-BB construction of a primitive Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every
f ∈ FP:

1. (correctness) G(f) implements an f ′ ∈ FQ.

2. (security) For every non-uniform algorithm B: If B Q-breaks G(f) then R[B,f] (P, 1/s)-
breaks f .

2.5 Random Permutations and Regular Functions

Let n and i be two integers such that 0 ≤ i ≤ n. We denote the set of all permutations on
{0, 1}n by Pn. Let X ,Y be sets. We denote by (X → Y) the set of all functions from X to Y.
A function f : X → Y is regular if |{x′ : f(x) = f(x′)}| is constant for all x ∈ X . A family of
functions f = {fρ}ρ∈N+ is a regular function if for every ρ the function fρ is regular. We denote
by Rn,i the set of all regular functions from {0, 1}n to itself such that the image of f contains
2i values. E.g., Rn,n = Pn is the set of all permutations, and Rn,0 is the set of all constant
functions.

4In Definition 3 the limitation on the number of queries made to the oracles is implicit as R is an efficient
algorithm, and so its output circuit has at most a polynomially number of oracle gates.

6

2.6 Bending a Function and Image Adaptation

It will be useful for us to compare the run of a circuit with oracle access to a function f to a
run that is identical except that the output of one specific value is altered.

For a fixed function f : {0, 1}n → {0, 1}n and y′, y′′ ∈ {0, 1}n, set

f(y′,y′′)(x)
def
=

{
y′′ if f(x) = y′

f(x) otherwise.

Similarly, for two fixed functions f, f ′ : {0, 1}n → {0, 1}n and a set S ⊂ {0, 1}n, we define
the image adaptation 5 of f to f ′ on S to be the function

f(S,f ′)(x)
def
=

{
f ′(x) if x ∈ f−1(f(S))

f(x) otherwise.

3 A General Theorem for Proving Strong Black-Box Separa-
tions

3.1 Deterministic Parametrized Oracles and Local Sets

The following definition allows to model general parameterized oracles, that is, oracles that, for
any function f from some set of functions and any q from some query domain, return a value
a from some answer set. We observe that many of the oracles used for black-box separations
found in the literature could be described in such a way.

Let X ,Y,D and R be sets. A deterministic parametrized oracle for a class of functions
(X → Y) is an indexed collection O = {Of}f∈X→Y , where Of : D → R. We call f , D, and R
the function parameter, the domain, and the range of the oracle, respectively.

Our first example of a deterministic parametrized oracle is the evaluation oracle E for func-
tions on {0, 1}n, which on a query q returns the evaluation of f on q. In this case we have that

X = Y = D = R = {0, 1}n and Ef (q)
def
= f(q).

The next two definitions capture two important local properties of parametrized oracles.
We believe that they are natural and observe that many of the oracles devised for separation
results satisfy them.

Intuitively, a determining set is an indexed collection of sets that determine the output of
the oracle for every function f and query q in the following sense: If for two functions f and
f ′ it holds that their corresponding oracle outputs differ for some q, then for one of them (f or
f ′) it holds that the local change of an image adaptation of one of the functions to agree with
that of the other on its determining set changes the output of the oracle. Formally:

Definition 5. Let O be a deterministic parametrized oracle. A determining set IO for a class
of functions F ⊂ (X → Y) is an indexed collection {IOf,q}f∈F ,q∈D of subsets of X , such that

for every f, f ′ ∈ F and every query q ∈ D: If Of (q) 6= Of ′(q), then it holds that either the
image adaptation of f to f ′ on IOf ′,q changes Of (q) (i.e., Of(

IO
f ′,q

,f ′
)(q) 6= Of (q)), or the image

adaptation of f ′ to f on IOf,q changes Of ′(q). IO is a t-determining set if for every function

f ∈ F and query q ∈ D it holds that
∣∣IOf,q∣∣ ≤ t.

5We mention that if f is a permutation, the condition f(x) = y can be replaced by x = f−1(y), and similarly
for f(S,f ′) check whether x ∈ S, which is what one may expect initially from such a definition.

7

In the example of the evaluation oracle, we observe that it has a 1-determining set. Indeed,

setting IEf,q
def
= {q} satisfies the required definition, since if for any f, f ′ ∈ {0, 1}n → {0, 1}n and

x ∈ {0, 1}n for which f(x) 6= f ′(x) it holds that f({x},f ′)(x) = f ′(x) 6= f(x).

Consider an oracle O with a determining set IO for some class of permutations F . Fix
f, f ′ ∈ F and q ∈ D. The following two propositions are immediate from the definition of
determining sets:

Proposition 6. If Of (q) 6= Of ′(q) and f(x) = f ′(x) for all x ∈ IOf ′,q (in this case we say that

f agrees with f ’ on IOf ′,q), then adapting f ′ to agree with f on IOf,q changes Of ′(q).

Proposition 7. If for all x ∈ IOf,q ∪ IOf ′,q it holds that f(x) = f ′(x) (in this case we say that
the functions agree on their determining sets), then Of (q) = Of ′(q).

Proposition 7 establishes that determining sets indeed determine the output of the oracle in
the following sense: If we know the value Of (q) for a query q and a function f , and, moreover,
we know that functions f ′, f agree on their determining sets for q, then this information already
determines for us the value Of ′(q).

The next local property of an oracle captures the fact that it is in some sense “stable”. For
a function f and query q as before, and a value y in the image set of f , a bending set for f, q,
and y is a set of all potentially “sensitive” y′ values: For any value y which is not in the image
of f on its determining set, and for any value y′ which is not in the bending set, the oracle’s
answer to query q does not change for the local adaptations of f from y′ to y. That is, it holds
that Of(y′,y)(q) = Of (q). Formally:

Definition 8. Let O be a deterministic parametrized oracle. A bending set BO for F is an
indexed collection {BOf,q,y}f∈F ,q∈D,y∈Y of subsets of Y, such that for every function f ∈ F ,

query q ∈ D, for every target image y ∈ Y, and for every source image y
′
/∈ BOf,q,y, it holds that

Of (q) = Of(y′,y)(q). We say that BO is a t-bending set if for every function f ∈ F , query q ∈ D
and y ∈ Y it holds that |BOf,q,y| ≤ t.

For the example of the evaluation oracle, we observe that it also has a 1-bending set. Setting

BEf,q,y
def
= {f(q)} (for the relevant f, q and y) satisfies the required definition. Indeed, for any

y′ 6= f(q) and y′′ ∈ Y, it holds that Ef(y′,y′′)(q) = f(y′,y′′)(q) = f(q) = Ef (q).
Finally, a deterministic parametrized algorithm O is t-stable for a class of functions F if

there exist (IO,BO) that are a t-determining set and a t-bending set for F , respectively, and
at least one of them is not empty.

We note that determining and bending sets always exist unconditionally (just choose the en-
tire domain and range of f , for every determining and bending set, respectively). The challange
is finding an oracle that allows to break a primitive and at the same time is t-stable.

3.1.1 Exhaustive-search oracles.

We identify that all the parametrized oracles in the literature are in fact of a special type, which
we call exhaustive-search oracles. We say that an oracle is an exhaustive-search oracle if there
is an oracle circuit Φ(?) : D × R → {0, 1} (called a predicate) such that for every function f
and query q the computation of Of (q) can be computed by a loop (according to an understood
enumeration) over the values v ∈ R, where in each step the current value v is checked to satisfy
a predicate Φ(f)(q, v). If the predicate is satisfied, i.e., Φ(f)(q, v) = 1, the algorithm outputs v,
and if no such v exists it returns a special bottom value ⊥.

8

Formally, a deterministic parameterized oracle O is an exhaustive-search oracle if there exists
Φ (as before) such that following algorithm outputs Of (q) for every function parameter f and
every query q ∈ D:

Exhaustive Search Algorithm Of (q) (on function f ∈ X → Y and input q ∈ D)
.

for all v ∈ R do
. if Φ(f)(q, v) = 1 then
. return v
return ⊥

Observe that the range of an exhaustive-search algorithm is the set R∪{⊥}. Of special interest
are exhaustive-search oracles that make relatively few queries to their oracles (e.g., a polynomial
number of queries). We note that most parameterized oracles in the literature are in fact of
this type. The following lemma shows that an exhaustive-search oracle O : D → R ∪ {⊥} for
which Φ makes t queries has a t-determining set.

Lemma 9. Let O be an exhaustive-search oracle with predicate Φ(?) : D × R → {0, 1} that

makes t queries to its oracle. Denote by X
(f)
Φ (q, v) the list of queries issued by the predicate

during the evaluation of Φ(f)(q, v). Then

IOf,q
def
=

{
X

(f)
Φ (q, v) v is the first value for which Φ(f)(q, v) = 1

X
(f)
Φ (q, vlast) if Of (q) = ⊥, where vlast is the last value in the enumeration of R

is a t-determining set for O.

The proof follows by inspection of the algorithm and the definition of determining sets.

Proof: The bound on the size of the set is immediate and so we check that IOf,q is indeed a
determining set. Suppose that for two functions f, f ′ and a query q it holds that Of (q) 6= Of ′(q).
It follows that for at least one of the functions, there is an iteration v for which the predicate
Φ(f)(q, v) holds (otherwise both return ⊥). W.l.o.g. assume that this happens for f , i.e., that
Of (q) = v, and that v is the minimal of the returned values, i.e., that Of ′(q) = v′, where either
v′ > v or v′ = ⊥. Now, observe that after adapting f ′ to agree with f on IOf,q = XΦ(f, q)
it holds that with the adapted function oracle the predicate circuit returns v (or some value
that appears in the enumeration before v), as the answer of the predicate depends only on the
answers of the function to the query set.

The choice of vlast (for the case Of (q) = ⊥) is somewhat arbitrary, but it will be useful for
us to have the queries involved with q on some arbitrary evaluation of the predicate as part of
the bending set. We note that this is not needed for the proof of the lemma.

3.2 A t-Stable Oracle Of Inverts Only a Few Functions

The next lemma, which first appeared in [GGKT05] and was subsequently adapted to many
other separation results, e.g., [HHRS07, RS10, HS12], establishes an information-theoretic
bound on the number of functions an oracle-aided algorithm can invert from a set F if the
oracle is t-stable for F . Essentially, it shows that given an oracle circuit A(?) with access to
such an oracle O, it is possible to encode a function f ∈ F that A inverts well using significantly
fewer bits than log(|F|), such that f can still be fully reconstructed, or equivallently, that the
encoding is injective.

9

Lemma 10 (Encoding Lemma). Let A(?) be an oracle circuit making at most c calls to its
oracle, and let O = {Of}f∈{0,1}n→{0,1}n be a deterministic parameterized oracle such that for

a class of permutations F ⊆ Pn it is t-stable with sets (IO,BO). Then, for at most dn =

dn(c, t) =
((

2n

b

))2
· ((2n − b)!), where b

def
= 2n

3·c2·t , of the permutations f in F , it holds that

Pr
x

r←{0,1}n
[
AOf (f(x)) = x

]
> 1

c .

The proof is a generalized version of the encoding technique of [GGKT05].

Proof: We describe an injective canonical mapping from the set of all functions f ∈ F which
AOf inverts well (i.e., inverts more than a 1

c -fraction of the inputs to f) into a small set.
Denote by Queries(AOf (y)) the list of at most c of queries made by A to Of during its

computation on input y. Consider the following algorithm:

Algorithm Buildimage(f):

1. S := ∅
2. T := {y : AOf (y) ∈ f−1(y)}
3. while T 6= ∅ do :

4. y′ := miny∈T

5. S := S ∪ {y′}

6. R := f

(⋃
q∈Queries

(
A
Of (y′)

) IOf,q
)

7. R := R ∪
⋃
q∈Queries

(
A
Of (y′)

) BOf,q,y′
8. R := R ∪ {y′}
9. T := T \R

10. end

Define the mapping M that maps every function f which AOf inverts well to a list of its
action on f−1(Y\S) as a list of pairs, i.e., f 7→

(
x1, f(x1), x2, f(x2), . . . , x|Y\S|, f(x|Y\S|)

)
, where

x1 < x2 < · · · < x|Y\S|. We show that M is injective. Suppose that for f1, f2 ∈ F , AOf1 and

AOf2 invert well f1 and f2, respectively.

Claim 11. If M(f1) =M(f2) then f1 = f2.

Proof: Assume towards contradiction that f1 6= f2. We first observe that both functions agree
on the sets {y : AOf1 (y) /∈ f−1

1 (y)} and on {y : AOf2 (y) /∈ f−1
2 (y) }. This holds as these images

are explicitly given by M(·) since they are in Y \ S. Therefore, there must be a value y, which
they both invert, such that

AOf1 (y) = f1
−1(y) 6= f2

−1(y) = AOf2 (y) . (1)

Let y be the lexicographically first element for which (1) holds. Define x1
def
= AOf1 (y) and

x2
def
= AOf2 (y).

Proposition 12. For both f1 and f2 there is an iteration during the run of the algorithm
Buildimage(f1) (resp., Buildimage(f2)) during which y is added to S.

10

X = {0, 1}n

IOf1,q

IOf2,q

Y = {0, 1}n

x∗

y = y1

y2

BOf2,q,y

f2

f1

Figure 1: An illustration of the proof of Lemma 10. The functions f1 and f2 agree on IOf1,q\{x
∗},

f1(x∗) = y = y1 6= y2 = f2(x∗) and adapting f2 to f1 on IOf1,q changes Of2(q).

Proof: Otherwise, we reach a contradiction to the assumption that M(f1) = M(f2) as the
value of y is explicitly given by M.

Any difference in the computation of AOf1 (y) and AOf2 (y) may only stem from different
answers to some oracle query. Let q be an oracle query on which the computations differ, that
is, for a query q made in both computations and a1 6= a2 ∈ R we have:

a1 = Of1(q) 6= Of2(q) = a2 . (2)

By Proposition 7 (for f1, f2 and their corresponding determining sets IO), we have that
there exists a value x∗ ∈ IOf1,q ∪ I

O
f2,q

for which

y1 = f1(x∗) 6= f2(x∗) = y2 , (3)

as otherwise, (2) cannot hold.
The next two propositions yield that for such an x∗ ∈ IOf1,q ∪ I

O
f2,q

if x∗ ∈ IOf1,q (resp.,

x∗ ∈ IOf2,q) it holds that f1(x∗) = y (resp., f2(x∗) = y). In particular, combining this with

Equation (3) and the fact that f1 and f2 are permutations asserts that in each of the sets IOf1,q
and IOf2,q there is at most one such x∗ . Let us assume that x∗ ∈ IOf1,q.

Proposition 13. It holds that y1 ≤ y.

Proof: Assuming otherwise (that y1 > y), consider the execution of the algorithm
Buildimage(f1). In such a case, recall that by Proposition 12 y is added to the set S, and
in line (6) of the algorithm y1 is added to R (as it is in the image of the determining set for
query q). Subsequently, in line (9) y1 is removed from T . Since at this point of the execution
of Bulidimage(f1) y1 is not in S, it is never added to S, hence M(f1) contains (x∗, y1), which
contradicts M(f1) =M(f2).

Proposition 14. It holds that y1 ≥ y and y2 ≥ y.

Proof: We prove that y1 ≥ y and observe that the proof for y2 ≥ y follows from symmetry.
Assuming otherwise (that y1 < y), we consider two cases: If (x∗, y1) appears in M(f1) or
(f−1

2 (y1), y1) appears inM(f2), then since both are permutations, combining with (3) we reach

11

a contradiction for M(f1) = M(f2). Otherwise, both AOf1 (y1) = x∗ and AOf2 (y1) = f−1
2 (y1)

must hold, and moreover y1 is added to S at each of the corresponding Buildimage runs. Observe
now that this contradicts the minimality of y.

It follows that: For any element x in IOf1,q∪I
O
f2,q

on which f2 and f1 do not agree it holds that

f1(x) = y if x ∈ IOf1,q and that f2(x) = y if x ∈ IOf2,q. Moreover, since f1, f2 are permutations,
we know that there is at most one such element in each of the sets, and in at least one of them
such an element exists.

Next, if there exists exactly one such element, then, as before, without loss of generality
we assume that there exists x∗ ∈ IOf1,q for which f1(x∗) = y. If there are two elements, i.e.,

x∗ ∈ IOf1,q and x∗∗ ∈ IOf2,q, then by the definition of determining sets we know that adapting
one of the functions to agree with the other changes the value of the oracle on it.

In both cases we get that (without loss of generality) we may assume that adapting f2 to
agree with f1 on IOf1,q changes Of2(q). Recall that if there is exactly one such element, this
follows from Proposition 6.

Now, note that the image adaptation of f2 to f1 on IOf1,q is just f2(y2,y) and therefore

Of2(y2,y)(q) 6= Of2(q), and by defintion of the bending sets it must hold that y2 = f2(x∗) ∈ BOf2,q,y.
Observe that at step (4) of the execution of Buildimage(f2), after y′ is set to y from T , in line
(7) y2 is added to R (by the definition of the determining sets and in line (9) y2 is removed from
T . Propositions 13 and 14 establish that y2 > y = y1. Therefore, at this point of the execution
y2 is not in S and hence never added to S. Finally, this means that (x∗, y2) appears in M(f2)
which contradicts M(f1) =M(f2).

Claim 15. The set S generated by the algorithm Buildimage(f) contains at least b elements.

Proof: We start by showing that for all the functions f which the circuit inverts well,
the generated set S in algorithm Buildimage(f) is large. Let f be a function for which
Pr

x
r←X [AOf inverts f(x)] > 1

c . By the definition of the set T at the begining of the run of

Buildimage(f), T is of size at least |X |c . Observe that during each iteration of the algorithm one
element is added to S and at most (c · t+ c · t+ 1) elements are removed from T , where the first
two summands correspond the size of the relevant bending set and determining set for each of
the c potential calls to the oracle, and the third to the element y (lines 6 - 9 in the algorithm).

It follows that when the algorithm terminates, the set S contains at least |X |
c2·(2·t+1)

> 2n

3·c2·t = b

elements.

We note that it is possible to encodeM(f) by describing the set S, the set Y \f(S), and an
ordering on the set Y \ f(S), which by what we have shown has size at most 2n − b. Therefore,

the size of the range of the mapping M is at most
((

2n

b

))2
· ((2n − b)!). Combining this with

the first claim, we infer that there are at most
((

2n

b

))2
· ((2n − b)!) such functions. The lemma

is proved.

Our next goal is to extend the encoding lemma to the case where F ⊆ Rn,i. We observe
that the following process, which consists of 3 independent random choices, samples a uniform
random f from from Rn,i:

1. Partition of the domain: Sample a random uniform partition P of the domain into
subsets of size 2n−i. The partition P is chosen in an unordered manner, and then we use
some order relation6 φ on all the subsets of size 2n−i. For x ∈ Pi, where Pi ∈ P , we define

6 For example, the order relation induced by the minimal element of the sets. That is, S1 < S2 if and only if
minx∈S1 < minx∈S2 .

12

{0, 1}n {0, 1}n

I

{0, 1}i {0, 1}i

f = rI ◦ h ◦ πP

πP

h

rI

Figure 2: Decomposition of a regular function f : πP is a regular function onto {0, 1}i induced
by a partition P of {0, 1}n, h is a permutation on {0, 1}i, and rI is injective from {0, 1}i into I.

πP : {0, 1}n → {0, 1}i by πP (x) as the order function of Pi in P according to φ 7 .

2. A permutation on {0, 1}i: Sample a random permutation h from Pi.
3. Image determination: Sample a set I ⊂ {0, 1}n of size 2i and set rI : {0, 1}i → {0, 1}n

as the inverse function of the lexicographical order function8 of I.

4. Finally, set f
def
= rI ◦ h ◦ πP .

Indeed, the reader can verify that the mapping (P, h, I) 7→ rI ◦h◦πP is an injective function

onto Rn,i. In particular, it holds that |Rn,i| =
(

(2n)!

((2n−i)!)2i ·(2i!))

)
· ((2i)!) ·

(
2n

2i

)
, where the factors

in the product correspond to the number of partitions of {0, 1}n to sets of size 2i, the number
of permutations on {0, 1}i and the number of subsets of size 2n−i from {0, 1}n, respectively.

For a fixed P and I (of the matching size), we denote by Rn,i(P, I) the subset of Rn,i with
partition P and image set I. The sampling process establishes a natural bijection f : Pi →
Rn,i(P, I), where f [h]

def
= rI ◦h◦πP . Similarly, we denote the inverse transformation by h[f]. We

extend the definition of f [h] to the entire set {0, 1}i → {0, 1}i with f [h] : ({0, 1}i → {0, 1}i)→
Fn,i(P, I) given by f [h]

def
= rI ◦ h ◦ πP , where Fn,i(P, I)

def
= {πP ◦ h ◦ rI}h∈{0,1}i→{0,1}i . That is,

Fn,i(P, I) is the set of all functions f on n bits with image set contained in I, such that if for
x, x′ ∈ {0, 1}n it holds that πP (x) = πP (x′) then f(x) = f(x′).

Therefore, it is not surprising that any oracle circuit A(?) with access to a t-stable determin-
istic parameterized oracle for a class of functions F ⊂ Rn,i(P, I) does not invert many functions
from F . This is formalized in the next lemma:

Lemma 16. Let n ≥ i ≥ 0, P be a fixed partition of {0, 1}n into subsets of size 2n−i,
and I ⊂ {0, 1}n an image set of size 2i. Let A(?) be an oracle circuit making at most
c calls to its oracle, and let O = {Of}f∈Fn,i(P,I) be a deterministic parameterized oracle

such that for a class of functions F ⊆ Rn,i(P, I) it is t-stable with sets (IO,BO). Then
for at most di(c, t) of the functions f ∈ F , where di is as9 in Lemma 10, it holds that
Pr

x
r←{0,1}n

[
AOf (f(x)) ∈ f−1(f(x))

]
> 1

c .

The proof works by reduction to the setting of Lemma 10. To this end, we define a deter-
ministic parameterized oracle Õ, a set F̃ ⊂ Pi of permutations with corresponding determining
and bending sets, and show how to use A(?) to derive an algorithm Ã(?) that inverts many
permutations from F̃ which contradicts Lemma 10.

7Continuing the example, for the relation described in Footnote 6, we always have that for all x ∈ S, where
S ∈ P contains the all zero string 0n, that πP (x) is the all zero string 0i.

8Of course, any order relation would work just as well.
9Note that here we substitute n for i.

13

Proof: Towards contradiction, let O be a deterministic parametrized oracle, where Of : D →
R defined for all f ∈ {0, 1}n → I, such that for F ⊂ Rn,i(P, I) it is t-stable with sets (IO,BO),
and A(?) an oracle circuit that inverts well (as before inverts well f means inverting at least a
1
c -fraction of the inputs to f) more than di functions from F .

We define Õ = {Õh}h∈{0,1}i→{0,1}i , a deterministic parameterized oracle, where Õh : D → R
is given by Õh(q)

def
= Of [h](q), F̃

def
= {h[f] : f ∈ F}, and for every h ∈ F̃ , q ∈ D and every

y′ ∈ {0, 1}i set IÕh,q
def
= πP

(
IOf [h],q

)
and BÕh,q,y′

def
= rI

−1
(
BOf [h],q,rI(y′)

)
.

By the construction, the definition of determining sets, bending sets and the definition of
image adapting a function to agree with another function on a set, one can check that the new
constructed sets are indeed determining sets and bending sets for Õ. Moreover, as rI is an
injective function it holds that BÕ is a t-bending set for F̃ . For every h ∈ {0, 1}i and q ∈ D it
holds that ∣∣πP (IOf,q)

∣∣ ≤ ∣∣IOf,q∣∣ ≤ t,
and so IÕ is a t-determining set10. Therefore, the oracle is t-stable for F̃ .

We construct a circuit Ã(?) such that for every function h ∈ F̃ and and every image y′ ∈
{0, 1}i it holds that Ã(Õh)(y′) = h−1(y′) whenever A(Of [h])(rI(y

′)) ∈ (f [h])−1(rI(y
′)).

The circuit Ã stores the complete descriptions of πP and rI . On input y′ ∈ {0, 1}i it

computes y
def
= rI(y

′) and simulates the run of A(Of)(y). Whenever in the simulation A issuses
a query q to its oracle, Ã queries its oracle and uses the answer as an answer for the simulation.
When the simulation terminates with output x = A(y), Ã outputs x′ = πP (x).

By the construction of the oracle Õ it follows that Ã inverts well exactly the same number
of functions as A, and so we reach a contradiction to Lemma 10.

We next show that any two oracle circuit making few queries to two deterministic
parametrized oracles, where both oracles are t-stable for some set of functions F , does not
invert well many functions from F .

Lemma 17. Let n ≥ i ≥ 0, P be a fixed partition of {0, 1}n into subsets of size 2n−i, and I ⊂
{0, 1}n an image set of size 2i. Let A(?,?) be an oracle circuit making a total number of at most c

calls to its oracles, and let O(0) = {O(0)
f }f∈Fn,i(P,I) and O(1) = {O(1)

f }f∈Fn,i(P,I) be deterministic
parameterized oracles such that for a class of functions F ⊆ Rn,i(P, I) both oracles are t-stable

with sets (IO(0)
,BO(0)

) and (IO(1)
,BO(1)

), respectively. Then for at most di(c, t) of the functions

f ∈ F , where di is as in Lemma 10, it holds that Pr
x

r←{0,1}n

[
AO

(0)
f ,O(1)

f ∈ f−1(f(x))

]
> 1

c .

The proof is straight forward and very similar to the proof of Lemma 16. We show how to
reduce this case to the setting of Lemma 16. In this case we define a new parametrized oracle Õf
that on query q′ = (b, q) ∈ ({0} ×D(0)) ∪ ({1} ×D(1)), where b ∈ {0, 1} and O(b)

f : D(b) → R(b),

answers Õf (q′)
def
= O(b)

f (q). It follows readily that Õ is t-stable. As before, any oracle circuit

A(?,?) that inverts well more that di functions from F when plugged with O(0) and O(1) can
be used to construct a circuit Ã(?) that inverts well more than di functions when plugged with Õ.

We are now ready to prove the main theorem of this section:

Theorem 18 (Black-Box Separation Factory). Let s = s(ρ) be a security function, and p = p(ρ)
be a polynomial function. Let (G,A) = (G(?), A(?,?)) be a uniform oracle algorithm and an s-
non-uniform two-oracle algorithm, respectively. Let F = {Fρ}ρ>0, where Fρ ⊂ Rn(ρ),i(ρ)(Pρ, Iρ),

10Note that in both inequalities an equality may hold.

14

be contained in FOWF, and O = {Oρ}ρ>0, where Oρ = {Oρ,f}f∈Fn(ρ),i(ρ)(Pρ,Iρ), such that for

all large enough ρ:

1. Oρ,f (Q, 1
p(ρ))-breaks g

(f)
ρ for every f ∈ Fρ, where g

(?)
ρ

def
= G(1ρ, n, n′).

2. Oρ is t-stable with sets (IO,BO) for Fρ such that 2s(ρ) · di(s(ρ), t) < |Fρ| holds, where di
is as in Lemma 10.

Then (G,A) is not an s-weak fixed-parameter fully black-box construction of Q from OWF.

Proof: Towards contradiction, assume that (G,R) is an s-non-uniform fixed-parameter fully
black-box construction of Q from OWF. We explain how to construct a family of functions f ′

that will be used to contradict the security assumption on our construction. As before, we set
Eρ is the evaluation oracle for Rn(ρ),i(ρ), and recall that we have shown that Eρ is 1-stable for
Rn(ρ),i(ρ). Combining this with the first condition and using Lemma 17 we have that for every

fixed advice a ∈ {0, 1}s(ρ), the two-oracle circuit R
(?,?)
ρ,a inverts with probability greater than

1
s(ρ) at most di(s(ρ), t) of the functions in Fρ. Therefore, by the union bound there are at most

2s(ρ) ·di(s(ρ), t) functions f ∈ Fρ, for which there exists an advice a, such that the circuit inverts
more than a 1

s -fraction of the inputs to f . The condition on the size of Fρ gives a a function

f ′ρ ∈ Fρ, such that for every a ∈ {0, 1}s(ρ) it holds that R
(Of ′ρ ,Ef ′ρ)

ρ,aρ does not (OWF, 1
s(ρ))-break

f ′ρ. The first condition, which holds for all the functions in Fρ, gives that Oρ,fρ (Q, 1
p(ρ))-breaks

f ′ρ.
Now, set f ′ = {f ′ρ}ρ∈N+ and B = {Oρ,f ′ρ}ρ∈N+ . By the fact that F is contained in FOWF,

we have that f ′ ∈ FOWF. By our assumption on (R,G) it holds that G(f ′) ∈ Q, and by what
we have shown, it also holds that B Q-breaks G(f ′). Lastly, (again) by our construction of f ′, it
holds that R[B,f ′] does not (OWF, 1

s)-break G(f ′), which contradicts our assumption on (G,R).

4 A Lower Bound on the Number of Calls for a Fixed-
Parameter Fully Black-Box Construction of UOWHF from OWF

In this section we prove our second main result, namely a lower bound on the number of calls
made by the construction algorithm G in any fully black-box construction (G,R) of UOWHF

from OWF. Our bound is achieved by showing a sequence of efficient fixed-parameter fully
black-box constructions, where each primitive is constructed from the one that precedes it, and
by proving the lower bound on the number of calls a construction makes on the last primitive.
A diagram of the reduction sequence is depicted in Figure 3.

4.1 A Characterization of Universal One-Way Hash Functions

Loosely speaking, a universal one-way hash function is a keyed compressing function for which
the probability that an adversary wins the following game is very small: First the adversary
chooses a preimage v. Then a random key for the UOWHF is chosen. Finally, the adversary
“wins” the game he finds a different preimage v′ that maps to the same value under the chosen
key. Formally:

Definition 19 (UOWHF). A universal one-way hash function h = {hρ}ρ∈N+ is a family of

uniformly efficiently computable keyed functions hρ : {0, 1}κ(ρ) × {0, 1}m(ρ) → {0, 1}m′(ρ) with

15

m′(ρ) < m(ρ) such that for any pair of efficient randomized algorithms (B1, B2) the function
mapping ρ to

Pr
(v,σ)

r←B1(ρ)

k
r←{0,1}κ(ρ)

v′
r←B2(k,v,σ)

[
hρ(k, v) = hρ(k, v

′) ∧ v 6= v′
]

is negligible. The family h is an `-bit compressing UOWHF, where ` = `(ρ), if m(ρ)−m′(ρ) ≥
`(ρ) for all large enough ρ.

The primitive UOWHF = (FUOWHF, RUOWHF) is defined implicitly analogously to
the way OWF was defined for one-way functions In this case, for every security param-
eter, the breaker (B1, B2) can be modeled as one combined circuit that corresponds to
the Cook-Levin encoding of their relevant circuits, with an extra input bit that determines
which one is actually computed. Similarly, for every ` = `(ρ) the primitive `-UOWHF =
〈F`-UOWHF, R`-UOWHF〉 corresponds to `-bit compressing universal one-way hash functions.

4.1.1 Domain extension of a UOWHF.

The definition of a UOWHF only guarantees that hρ is compressing (i.e., it is possible that
`(ρ) = 1). The first reduction we use is a domain extension of a UOWHF, that allows to
construct an `-bit compressing UOWHF from a UOWHF. Shoup [Sho00] shows a fully-black
box construction of a `-bit compressing UOWHF from one that compresses only one bit, which
is the minimal requirement from any UOWHF.

Lemma 20 (UOWHF domain extension). There exists a fixed-parameter fully black-box con-
struction of an `-bit compressing UOWHF h′ρ : {0, 1}log(`)·κ(ρ) × {0, 1}m+` → {0, 1}m from a

one-bit compressing UOWHF hρ : {0, 1}κ(ρ) × {0, 1}m+1 → {0, 1}m. In order to evaluate h′ρ

the construction makes exactly `(ρ) calls to hρ. The security reduction R
hρ,B
ρ makes ` calls

to its hρ oracle, and exactly one call to the breaker Bρ = (B1, B2)ρ oracle. Furthermore, if
Bρ (`-UOWHF, ε)-breaks h′ρ, then the reduction (UOWHF, ε`)-breaks hρ.

We observe that the security definition for UOWHFs involves an interaction, and allows the
adversary to save its state using σ. It will be more convenient for us to work with an equivalent
non-interactive version. The following definition of collision resistance is tightly related to that
of a UOWHF by the lemma that follows it, where we denote by a‖b the concatenation of a and
b.

Definition 21 (RP-CRHF). A random preimage collision resistance hash function is an efficiently
uniformly computable family of functions hρ : {0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ), such
that for every efficient randomized machine B the function mapping ρ to

Pr
v

r←{0,1}m(ρ)

v′
r←B(ρ,v)

[
hρ(v) = hρ(v

′) ∧ v 6= v′
]

is negligible. The family h is an `-bit compressing RP-CRHF, where ` = `(ρ), if additionally it
holds that m(ρ)−m′(ρ) ≥ `(ρ) for all large enough ρ.

The primitives RP-CRHF and log2(ρ)-RP-CRHF are defined analogously.

16

Lemma 22 (UOWHF to RP-CRHF, folklore). Let h = {hρ}ρ∈N+ be a UOWHF. Then the

family h′ρ : {0, 1}κ(ρ)+m(ρ) → {0, 1}κ(ρ)+m′(ρ) given by h′ρ(k‖v)
def
= (k‖hρ(k, v)) is an RP-CRHF.

Proof: The security definition of an RP-CRHF is trivially implied by that of a UOWHF.
Suppose that we have an breaker Bρ that finds a collision for a random preimage of h′ρ(k‖v).
The reduction outputs the algorithms (B1, B2)ρ as follows: B1 is the algorithm that chooses
a uniform random v ∈ {0, 1}m(ρ). Upon receiving a random key k, the reduction B2 returns
Bρ(k‖v). It is immediate that (B1, B2)ρ break the security of h as a UOWHF whenever Bρ
breaks the security of h′ as a RP-CRHF.

In particular, we observe that the proof of the lemma implies the existence of a fixed-
parameter fully black-box construction of RP-CRHF from UOWHF that for every security
parameter makes exactly one call to the universal one-way hash function. Additionally, the
construction is security preserving in the strongest possible sense: If Bρ (RP-CRHF, ε)-breaks
the constructed h′ρ (i.e., returns a collision on a uniform input v′ with probability ε) then it
holds that the reduction (UOWHF, ε)-breaks the underlying hρ. We mention that both the
construction and the security reduction are uniform and efficient, and both make exactly one
query to their oracles.

4.1.2 Pseudo-injective Functions.

Our last reduction establishes that padding the output of a log2(ρ)-RP-CRHF yields a primitive
that is both a one-way function, and behaves like an injective function. A pseudo-injective func-
tion is an efficiently uniformly computable family g = {gρ}ρ∈N+ of length preserving functions

gρ : {0, 1}m(ρ) → {0, 1}m(ρ) such that for a uniformly chosen input v ∈ {0, 1}m(ρ) it is impos-
sible to find another input v′ 6= v such that both map to the same value under gρ. We stress
that pseudo-injective functions exists unconditionally: Any permutation is a pseudo-injective
function. Formally:

Definition 23 (Pseudo-Injectivity). A pseudo-injective function g = {gρ}ρ∈N+ is a uniformly

efficiently computable family of functions gρ : {0, 1}m(ρ) → {0, 1}m(ρ), such that for all uniform
efficient algorithms A the function mapping ρ to

Pr
v

r←{0,1}m(ρ)

v′
r←A(1ρ,v)

[
gρ(v

′) = gρ(v) ∧ v′ 6= v
]

is negligible.

Similarly to before, the primitive PI = 〈FPI, RPI〉 corresponds to a pseudo-injective func-
tion. Next, we consider the primitive OWF∧PI that corresponds to all functions which are both
a one-way function and a pseudo-injective function. Formally, it holds that f ∈ FOWF∧PI if
and only if f ∈ FOWF and f ∈ FPI. For a breaker circuit C, a function fρ ∈ f ∈ FOWF∧PI,
and a number ε it holds that 〈fρ, C, ε〉 ∈ ROWF∧PI if and only if 〈fρ, C, ε〉 ∈ ROWF or
〈fρ, C, ε〉 ∈ RPI.

It turns out that padding any log2(n)-RP-CRHF to a length-preserving function, yields a
function which is both a one-way function and a pseudo-injective function.

Lemma 24 (log2(ρ)-RP-CRHF to OWF∧PI). Let h = {hρ}ρ∈N+ be an RP-CRHF that com-

presses `(ρ)
def
= m(ρ) − m′(ρ) bits, where `(ρ) ≥ log2(ρ). Then the family {h′ρ}ρ∈N+, where

h′ρ(v)
def
= hρ(v)‖0`(ρ), is a one-way function and a pseudo-injective function.

17

Proof: By the construction h′ρ is always length-preserving and so h′ implements a pseudo-
injective and a one-way function. It is also clear that the construction is uniformly efficiently
computable.

As for the security reduction, OWF∧PI-breaking h′ implies either inverting h′ on a uniformly
random input, or finding a collision for one, for infinitely many security parameters ρ. This
implies that for infinitely many security parameters ρ it is possible to break at least one of the
properties.

First observe that any breaker B that breaks the pseudo-injectivity of h′ immediately leads
to one that RP-CRHF-breaks h with the same probability: On input v′ ∈ {0, 1}m return the
output of B(h′(v′)) = B(h(v)‖0`(ρ)).

On the other hand, if B OWF-breaks h′, we have that B inverts h′ for infinitely many ρ’s.
We show that in this case, the algorithm, that on input v ∈ {0, 1}m(ρ) returns B(hρ(v)), is the
required reduction.

By our assumption B inverts h′ on a random input with probability at least 1
p , where p is a

polynomial, for infinitely many security parameters. As h′ρ compresses at least log2(ρ) bits, we

have that for a random v, the probability that h′ρ(v) has only one preimage is at most 2− log2(ρ).

Therefore, with probability at least 1
p(ρ) −

1
ρlog(ρ)

> 1
2p(ρ) (for sufficiently large ρ) we have that B

inverts h′ρ(v) and that h′ρ(v) has at least two preimages, in which case v is still uniform among

h−1
ρ (hρ(v)). Conitioned on this event it holds that with probability at least 1

2 B returns a v′ 6= v
that collides with v. Therefore we conclude that the reduction finds a random collision with
probability at least 1

4·p(ρ) for all sufficiently large ρ.

The composition of the constructions depicted in Lemmas 20, 22 and 24 establishes a
fixed-parameter fully black-box construction of an h′ ∈ FOWF∧PI from any h ∈ FUOWHF
that makes log2(ρ) calls to the underlying UOWHF. The security reduction makes log2(ρ)
calls (to both its oracles) in order to break the security of the underlying UOWHF, and if
B (OWF∧PI, 1

p)-breaks the constructed h for some polynomial p and breaker B, then the reduc-

tion (UOWHF, 1
p′)-breaks h, where p′ is a different polynomial such that p′(ρ) > 4·p(ρ)·log2(ρ).

Thus we obtain:

Corollary 25. Suppose that (G,R) is an s′-weak fixed-parameter fully black-box construction
of UOWHF from OWF that makes at most r′ = r′(ρ) queries to OWF. Then there exists an
s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF that makes r′(ρ) ·
log2(ρ) calls to the underlying one-way function, where s(ρ)

def
= s′(ρ) · log2(ρ).

Proof: The composition of G with the constructions described in Lemmas 20, 22 and 24
implements a fixed-parameter fully black-box construction of an h′ ∈ FOWF∧PI from any
h ∈ FOWF. The composition of the reduction algorithms described in the lemmas with the
s′-non-uniform reduction makes at most s calls to both its oracles. It follows that for every B
that OWF∧PI-breaks the constructed h′, the reduction R[B,h] (OWF, 1

s(ρ))-breaks h.11

Therefore, in order to show that there is no s′-weak fixed-parameter fully black-box construc-
tion of UOWHF from OWF, where the construction makes r′ calls to the one-way functions,
it is sufficient to show that there is no s-weak fixed-parameter fully black-box construction of

OWF∧PI from OWF that makes r calls, where s(ρ)
def
= s′(ρ) · log2(ρ) and r(ρ)

def
= r′(ρ) · log2(ρ).

This is the goal of the next section.

11Note that for a large enough security parameter it still holds that it inverts h with probability 1
s′(ρ) , however,

as each query in the reduction algorithm of the assumed s-weak construction results in up to log2(ρ) queries to
the composed one, we get a total number of at most s queries.

18

OWF UOWHF log2(ρ)-UOWHF log2(ρ)-RP-CRHF OWF∧PI
Lemma 20 Lemma 22 Lemma 24?

/

No s-weak construction making r ∈ o
(

n(ρ)
log(s(ρ))

)
calls to f .

Figure 3: Fully Black-Box Constructions Diagram.

4.2 A Lower Bound on the Number of Calls for an s-Weak Fixed-Parameter
Fully Black-Box Construction of OWF∧PI from OWF

As explained, a lower bound on a construction of OWF∧PI from OWF yields a very good (up
to a log2-factor) bound on the construction of UOWHF. Our proof utilizes the machinery from
Section 3. Let us introduce some notation. For an (n, n)-oracle circuit g(?) : {0, 1}m → {0, 1}m,
a function f : {0, 1}n → {0, 1}n and a value v ∈ {0, 1}m, denote by Xg(f, v) and Yg(f, v)
the sets of queries and answers made to and received from f during the evaluation of g(f)(v),
respectively.

For any potential construction (G,R) denote by r = r(ρ) the number of queries gρ makes
when instantiated for security parameter ρ with a one-way function fρ : {0, 1}ρ → {0, 1}ρ,
that is we set n(ρ)

def
= n′(ρ)

def
= ρ. Additionally, let s = s(ρ) be a super-polynomial security

function smaller than 2
ρ
10 . I.e., for all polynomials p and all large enough ρ it holds that

p(ρ) < s(ρ) < 2
ρ
10 . We prove that if r(ρ) < n(ρ)

2000·log(s(ρ))) holds for all large enough ρ, then

(G,R) is not an s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF.

Theorem 26. For all super-polynomial security functions s = s(ρ) < 2
ρ
10 and r = r(ρ) there

is no s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF such that

g
(?)
ρ : {0, 1}m(ρ) → {0, 1}m(ρ) makes at most r(ρ) calls to the underlying one-way function,

where n(ρ)
def
= n′(ρ)

def
= ρ and g

(?)
ρ

def
= G(1ρ, n, n′), and r(ρ) ≤ n(ρ)

2000·log(s(ρ)) holds for all large
enough ρ.

Proof: Without loss of generality, we assume that the construction g makes exactly r(ρ)
def
=

n(ρ)
2000·log(s(ρ)) different queries. Whenever this is not the case, it is always possible to amend G

so that it behaves exactly as before, but on input (1ρ, n, n′) it outputs an (n, n′)-oracle circuit
with r(ρ) oracle gates, and additionally, all queries are different.

Let s and r be a pair of security functions such that s is super-polynomial, that is, for every
polynomial p and large enough ρ it holds that s(ρ) > p(ρ), and that r(ρ) = n(ρ)

2000·log(s(ρ)) holds
for all sufficiently large ρ.

We now explain how to construct the oracle O = {Oρ}ρ∈N+ and the collection of sets of
functions F = {Fρ}ρ∈N+ . For each security paramter ρ we define the oracle Oρ and the set
Fρ independently of the oracles and function sets chosen for other security parameters. It will
always hold that Fρ ⊂ {0, 1}n → {0, 1}n, and so the constructed F is contained in FOWF.

Therefore, from now on we omit the security parameter in our notation, but formally all our
parameters depend on the security parameter ρ. In particular, g(?) is the construction that the
uniform construction algorithm G outputs for security parameter ρ = n = n′ with a function
fρ : {0, 1}ρ → {0, 1}ρ.

19

Analogously to [HS12], for every security parameter we break either the one-wayness prop-
erty of the constructed function, or its pseudo-injectivity. For the oracle circuit g(?) : {0, 1}m →
{0, 1}m, we check whether when g is evaluated with a random permutation f

r← Pn and a ran-
dom input v

r← {0, 1}m, the output gf (v) is significantly correlated with any subset of the set of
oracle answers returned by f on the calls made to it during the evaluation of gf (v) (recall that
these are denoted by Yg(f, v)). To this end, we bring the procedure STA (for safe to answer),
which returns true if and only if there is no such correlation:

Procedure STA(w,Q) (on w ∈ {0, 1}m and Q ⊂ {0, 1}n of size r)
.

for all B ⊆ Q do

. if Pr
f ′

r←Pn,v′
r←{0,1}m

[
g(f ′)(v′) = w

∣∣∣B ⊆ Yg(f ′, v′)] ≥ 2−m+ n
30

. return false

return true

We set p(g), the probability that for a random permutation f and a random input v, the
output gf (v) is correlated with some subset of the answers Yg(f, v). Define

p(g)
def
= Pr

f
r←Pn,v

r←{0,1}m

[
STA(g(f)(v), Yg(f, v))

]
. (4)

We stress that both the output of STA (for any value y and a set Q), and the value p(g) do not
depend on any specific permutation, but rather on a combinatorial property of the construction
as a whole, which averages over all permutations.

As explained, we set the oracle O and the set F based on the value p(g). In case that

p(g) > 1
2 we set the oracle O def

= BreakOWg
def
= {BreakOWg,f}f∈{0,1}n→{0,1}n , where we use the

oracle BreakOWg from [HS12], which is described next. In [HS12] it is implicitly proved that

there exists a set F ⊂ Pn of size |F| > |Pn|
5 , such that BreakOWg,f (OWF, 1

4)-breaks gf for all

f ∈ F , and that BreakOWg is 2
n
5 -stable for F , in which case condition (2) in Theorem 18 is

satisfied.

Algorithm BreakOWg,f (w) (on input w ∈ {0, 1}m)
.

for all v ∈ {0, 1}m do
. if g(f)(v) = w then
. if STA(w, Yg(f, v)) then
. return v
return ⊥

In the case p(g) ≤ 1
2 we show that when f is chosen uniformly at random from a set of

regular degenerate functions, it is often the case that the construction g(f) is not injective, and
therefore there exists an oracle which breaks the pseudo-injectivity of g(f). The challenge is
to find a breaker oracle that is t-stable. The next lemmas establish that the oracle BreakPI
satisfies the required conditions in this case.

Formally, for a construction circuit g we define the oracle BreakPIg = {BreakPIg,f}f∈{0,1}n→{0,1}n
that for a function f is given by:

20

Algorithm BreakPIg,f (v) (on input v ∈ {0, 1}m)
.

for all v′ ∈ {0, 1}m do
. if g(f)(v) = g(f)(v′) and v′ 6= v then
. if Yg(f, v) = Yg(f, v

′) then
. return v′

return ⊥
Now, we fix i

def
= n

200·r = 10 · log(s). We show that for a 1
6 -fraction of the functions f in Rn,i

it holds that BreakPIg,f breaks the pseudo-injectivity of g(f).

Lemma 27. Let g : {0, 1}m → {0, 1}m be an r-query oracle construction with p(g) ≤ 1
2 . Then

for a 1
6 -fraction of the functions in Rn, n

200·r
it holds that

Pr
v

r←{0,1}m

[
BreakPIg,f (v) outputs v′ s.t. v 6= v′ ∧ g(f)(v) = g(f)(v′)

]
≥ 1

24
. (5)

Proof:
By inspection of the algorithm BreakPI it holds that whenever BreakPIg,f (v) 6= ⊥ it outputs

a value v′ 6= v such that g(f)(v) = g(f)(v′), and so it breaks the pseudo-injectivity of g(f)(·). By
the assumption, it holds that a random evaluation STA(g(f)(v), Yg(f, v)) on a random permu-
tation f returns false with probability (1− p(g)) ≥ 1

2 . Next, as for every (n, n)-oracle circuit

D(?) that does not take an input and has one output bit (called distinguisher) making at most
r queries, it holds that ∣∣∣∣∣ Pr

f
r←Pn

[D(f) = 1]− Pr
f

r←Rn,i
[D(f) = 1]

∣∣∣∣∣ ≤ r2

2i
,

we obtain

Pr
f

r←Rn, n
200·r

,v
r←{0,1}m

[
¬STA(g(f)(v), Yg(f, v))

]
≥ (1− p(g)) ·

(
1− r2

2
n

200·r

)
. (6)

The following counting argument shows that for every f ∈ Rn, n
200·r

there exists a set Wf =

Wf (Im (f)) of size |Wf | ≤ 2m−
n

100 such that

Pr
f

r←Rn, n
200·r

,v
r←{0,1}m

[
g(f)(v) ∈ Wf

]
≥ (1− p(g)) ·

(
1− r2

2
n

200·r

)
>

1

3
, (7)

for sufficiently large n.

Define Wf
def
=
{
g(f)(v) : v ∈ {0, 1}m ∧ ¬STA(gf (v), Yg(f, v))

}
. Equation (7) follows read-

ily from the definition of Wf and (6). As for |Wf |, we have that there are less than
|Im (f) |r = 2

n
200 different possibilities for Yg(f, v) sets. For each of these sets there are

2r subsets, and for each such subset S there are at most 2m−
n
30 values w that satisfy

Pr
f

r←Pn,v
r←{0,1}m

[
gf (v) = w|S ⊆ Yg(f, v)

]
> 2−m+ n

30 . In total, we have that |Wf | ≤ 2m−
n
30 ·

2
n

200 · 2r < 2m−
n

100 . The existence of such a set Wf was observed in [HS12].
Now, By Lemma 32 (with p = 1

3 , α = 1
2 and β = 1

2) it holds that a 1
6 -fraction of the functions

f ∈ Rn, n
200·r

satisfy:

Pr
v

r←{0,1}m

[
g(f)(v) ∈ Wf

]
>

1

6
. (8)

21

Fix a function f ∈ Rn, n
200·r

for which (8) holds. We show that in this case BreakPIg,f returns

a collision with probability at least 1
30 for a randomly chosen v.

Define W ′f
def
=
{
w ∈ Wf : |

(
g(f)

)−1
(w)| > 1

12 · 2
n

100

}
. We claim that

Pr
v

r←{0,1}m

[
g(f)(v) ∈ W ′f

∣∣∣ g(f)(v) ∈ Wf

]
≥ 1

2
. (9)

Equation (8) asserts that there are at least 1
6 · 2

m elements v that are mapped to fewer than

2m−
n

100 images. It follows that there are at most 1
12 · 2

n
100 · 2m−

n
100 = 1

12 · 2
m elements in

(g(f))
−1

(Wf) \ (g(f))
−1

(W ′f), which asserts the claim. Finally, for any w ∈ W ′f , we claim that

Pr
v

r←{0,1}n

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) = w
]
>

1

2
. (10)

Conditioned on g(f)(v) = w, we have that v is still uniform among (g(f))
−1

(w). Now, recall
that BreakPIg,f fails to return a collision only when v is such that Yg(f, v) differs from the sets

Yg(f, v
′), for all v′ ∈ (g(f))

−1
(w)\{v}. Since f is degenerate, there are at most |Im (f) |r = 2

n
200

different Yg(f, v) sets12. Therefore, BreakPIg,f (v) fails for at most 2
n

200 of the elements of

(g(f))
−1

(w), as for at most 2
n

200 −1 of them it can be the case that there is no other v′ for which

Yg(f, v) = Yg(f, v
′). Since w ∈ W ′f we have that |(g(f))

−1
(w)| > 2

n
100 and so BreakPIg,f 6= ⊥

with probability at least 1
2 . The claim follows. Combining our claims we obtain:

Pr
v

r←{0,1}m
[BreakPIg,f (v) 6= ⊥]

≥ Pr
v

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) ∈ W ′f
]

· Pr
v

[
g(f)(v) ∈ W ′f

∣∣∣ g(f)(v) ∈ Wf

]
· Pr
v

[
g(f)(v) ∈ Wf

]
≥ 1

12

∑
w∈W ′f

(
Pr
v

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) = w
]

· Pr
v

[
g(f)(v) = w

∣∣∣ g(f)(v) ∈ W ′f
])

>
1

24
.

The lemma follows.

We conclude from Lemma 27 that if p(g) ≤ 1
2 , there exists a partition P of {0, 1}n to sets

of size 2n−i and an image-set I of size 2i, such that (5) holds for at least a 1
6 -fraction of the

functions f ∈ Rn,i(P, I). Set F ⊂ Rn,i(P, I) to be the set of all functions for which (5) holds.
It follows that |F| ≥ 1

6 · 2
i, as |Rn,i(P, I)| = |Pi|.

We next show that that for the class of functions Rn,i(P, I) the oracle can be implemented
such that it is stable.

Lemma 28. Let i ∈ N+ and I ⊂ {0, 1}n of size 2i and P a partition of {0, 1}n to sets of size
2n−i. Then there exists an implementation of the oracle BreakPIg that is n-stable for Rn,i(P, I).

Proof: As we show next, when we limit the oracle to a fixed partition P and a fixed image
I, it can be implemented such that it makes only few queries to f on every call to BreakPI and
therefore enjoys stable sets.

12 In fact, this shows that we could also require that BreakPI returns a value v′ 6= v such that the vector (now
differentiating two y-answer sets according to the ordering of the answers) of query answers in the computation
of g(f)(v) matches that of g(f)(v′), but this is not needed in order to prove that BreakPI is t-stable.

22

We begin by describing the parsimonious implementation of the algorithm, i.e., an imple-
mentation that makes very few queries to f .

The parsimonious algorithm will have a description of the partition P and the image mapping
I. On input v it simulates BreakPIg as follows: In every iteration the BreakPIg queries only
g(f)(v). The algorithm records action of the f on the inputs of Xg(f, v). That is, it records the
values of h[f] on πP (Xg(f, v)).

It then tries to emulate the value g(f)(v′) while assuming that f is in Rn,i(P, I). Whenever
gf (v′) issues a query x, the algorithm checks whether it is mapped under the partition function
πP to the same value as one of the x queries issued before. I.e., it checks whether πP (x) = πP (x′)
for some x′ ∈ Xg(P, I). In such a case it uses the recorded value of f(x′) and the emulation
continues. If the algorithm gets stuck it decides that Yg(f, v) 6= Yg(f, v

′) and continues to the
next iteration. We first note that the algorithm is well defined for all f ∈ Fn,i(P, I).

Next, we observe that for a function f ∈ Rn,i(P, I) the parsimonious algorithm simulates
BreakPIg perfectly: If for some value v′ the evaluation of g(f)(v′) gets stuck on some query x,
we know that the output would not return the value v′ since in this case the function h[f] is
a permutation and rI is injective it holds that f(x) /∈ Yg(f, v). On the other hand, when the
simulation of an iteration succeeds it follows that for every x it holds that f(x) is computed
correctly (and accordingly g(f)(v) and Yg(f, v

′)). Again, this follows from the decomposition
f = rI ◦ h ◦ πP .

We note that the algorithm is not guranteed to behave the same as BreakPIg for an arbitrary
f ∈ Fn,i(P, I), but we only care about its behavior for a regular f . It is now immediate that
the implementation is r-stable: In a similar manner to the case of the evaluation oracle we set

IOf,v
def
= Xg(f, v) and BOf,q,y

def
= Yg(f, v) as determining and bending sets for BreakPI, respectively.

It is left to check that 2s · di(s, n) < |F|. We compute

di(s, n)

|F|
=

(
2i

b

)2
· (2i − b)!

(1/6) · 2i
=

(
s10

b

)
1

(1/6) · b!
≤
(
e2 · s10

b2

)b
, (11)

where

b =
2i

3 · s2 · n2
=

2
n

200·r

3 · s2 · n2
=

210·log(s)

3 · s2 · n2
> s7, (12)

since s > 3 · n2 for sufficiently large n. Combining (11) with (12) we conclude that
2s·di(s,n)
|F| < 1.

We have shown that the conditions of Theorem 18 hold, and therefore we conclude that
there is no s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF. The
theorem is proved.

4.3 Deriving the Lower Bound

We are now ready to derive our lower bound for constructions of a universal one-way hash
function from a one-way function:

Corollary 29. Let s′ be a security function such that s(n)
def
= s′(n)·log2(n) is a super-polynomial

security function for which s(n) < 2
n
10 holds. Then there is no s-weak fixed-parameter fully

black-box construction of UOWHF from OWF, where the construction makes at most r′(n) =
n

2000·log(s(n))·log2(n)
calls to a one-way function f = {fn : {0, 1}n → {0, 1}n}n∈N+.

23

Proof: We apply Corollary 25 with Theorem 26.

Corollary 30. There is no fixed-parameter fully black-box construction of UOWHF from OWF,
where the construction makes at most r = r(n) calls to a one-way function f = {fn : {0, 1}n →
{0, 1}n}n∈N+, where r ∈ o

(
n

log3(n)

)
.

Proof: Let r ∈ o
(

n
log3(n)

)
. Then there exists a super-constant function α = α(n), such that the

function r′(n) given by r′(n)
def
= r(n) ·α(n) is still in o

(
n

log3(n)

)
. The bound follows immediately

from Corollary 29 applied with s(n)
def
= 2α(n)·log(n).

5 A Tight Lower-Bound for Fully Black-Box Constructions of
UOWHF from OWF.

Corollary 30 establishes a lower bound of Ω(n/ log3(n)) calls for any fully black-box construction
of UOWHF from a OWF. We now explain how to improve the lower-bound by a log(n) factor.

Recall that the choice of log2(ρ) in Lemma 24 was made such that any breaker for OWF∧PI

can be translated to one that breaks the security of the RP-CRHF, i.e., finds a collision for a ran-
dom preimage. We observe that the lemma is still correct if we start with a `(ρ)-RP-CRHF, for
any super-logarithmic function `(ρ) ∈ ω(log(ρ)). That is, a compression by a super-logarithmic
number of bits is sufficient for our proof to go through. In this case (as in the proof of Lemma
24) it still follows that at most a negligible fraction of the inputs have at most one preimage, and
therefore the reduction converts a breaker with noticeable success probability for OWF∧PI is
converted to a breaker with a noticeable success probability for `(ρ)-RP-CRHF. Next, this im-
proves Corollary 25 by a log(ρ) factor, which consequently improves our bound to Ω(n/ log2(n))
calls.

5.1 A Tight Lower-Bound for the Construction of a log(ρ)-UOWHF

Using the analysis of the construction presented in [BM12], we get a construction that makes
O(log(n)/n) queries from a one-way function from this class of functions. That is, when con-
sidering constructions of UOWHF from OWF there is a gap of a log(n) factor.

The construction in [BM12] offers an approach to explain this gap. Namely, it yields a uni-
versal one-way hash function that compresses log(n) bits and not just one bit. Therefore, when
considering the construction of a log(ρ)-UOWHF from OWF and using the analysis presented
in the previous section (Section 5) it follows that we need only ω(1) calls to a log(ρ)-UOWHF

to get a PI∧OWF (as explained before), in which case our bound improves to Ω(n/ log(n))
calls. That is, when considering construction of UOWHFs that compress O(log(n)) bits we
already get a tight lower bound. Recall that even for constructions of log(n)-UOWHF the
lower-bound presented in [GGKT05] is trivial (i.e., instantiating their bound for k = log(n) we
get a lower-bound of one call to the OWF.

5.2 A Tight Lower-Bound of Ω(n/ log(n)) Calls

In this section we present the most general version of our lower-bound. We consider once more
the series of reductions used to derive Corollary 25. We show that it is possible to get rid of
the last log(n) factor used in Lemma 24, which in turn results in a lower-bound of Ω(n/ log(n))
calls.

24

We do not know of a reduction that transforms a breaker with an inverse polynomial success
probability of a OWF∧PI to a breaker with an inverse polynomial success probability for O(1)-
RP-CRHF (i.e., a UOWHF that compresses a constant number of bits). Nevertheless, we can
exploit the fact that both breakers presented in Section 4 perform better than merely breaking
the primitive. That is, in order to derive the lower-bound using Corollary 25 it is sufficient
that the breaker in Theorem 26 breaks (with some inverse-polynomial probability). However,
both BreakPI and BreakOW enjoy a stronger property: They both break the security of the
OWF∧PI with constant probability (both break the candidate construction with probability at
least 1/100) rather than with inverse-polynomial probability.

We observe that in this case the reduction algorithm presented in Lemma 24 gives a breaker
with a constant success probability for `(ρ)-RP-CRHF, where `(ρ) = 10. Following the analysis
in Lemma 24 we have that at most a 2−10-fraction of the images have only one preimage,
and using the union-bound the reduction breaks the `(ρ)-RP-CRHF with probability at least
1/100−1/210 > 1/200. In a similar manner to Section 5 this gives now a version of Corollary 25,
that asserts the existence of an s-weak fixed-parameter fully black-box construction of OWF∧PI

from OWF for breakers that are considered successful only if they break the security property
of the OWF∧PI with constant probability:

Corollary 31. Suppose that (G,R) is an s′-weak fixed-parameter fully black-box construction
of UOWHF from OWF that makes at most r′ = r′(ρ) queries to OWF. Then there exists an
s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF that makes 10 ·r′(ρ)

calls to the underlying one-way function, where s(ρ)
def
= 10 · s′(ρ) and additionally, a potential

breaker for OWF∧PI is successful only if it breaks the security if property of the primitive with
probability at least 1/100.

We stress that the restriction with respect to the constant success probability of the potential
breaker in the corollary does not propagate to the constructions we rule out, and our lower-bound
holds with respect to the ’standard’ (polynomial) security requirements. Applying Corollary 31
with Theorem 26 we derive a lower-bound of Ω(n/ log(n)) calls for a fully black-box construction
of a UOWHF from a OWF in the conditions of Corollaries 29 and 30.

Acknowledgments.

We thank the anonymous reviewers of TCC’13 for their helpful comments.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages
106–115. IEEE Computer Society, 2001.

[BM12] Kfir Barhum and Ueli Maurer. UOWHFs from OWFs: Trading regularity for ef-
ficiency. In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT, volume
7533 of Lecture Notes in Computer Science, pages 234–253. Springer, 2012.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

[HH09] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent
encryption. In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Com-
puter Science, pages 202–219. Springer, 2009.

25

[HHR+10] Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil P. Vadhan, and Hoeteck
Wee. Universal one-way hash functions via inaccessible entropy. In Henri Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
616–637. Springer, 2010.

[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions
in interactive protocols - a tight lower bound on the round complexity of statistically-
hiding commitments. In FOCS, pages 669–679. IEEE Computer Society, 2007.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 92–105. Springer, 2004.

[HS12] Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator
requires an almost linear number of calls. CoRR, abs/1205.4576. Extended Abstract
to appear in FOCS 2012, 2012.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Johnson [Joh89], pages 44–61.

[Joh89] David S. Johnson, editor. Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA. ACM, 1989.

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In FOCS, pages 535–542, 1999.

[MM11] Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective
one-way functions. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in
Computer Science, pages 597–614. Springer, 2011.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In Johnson [Joh89], pages 33–43.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394. ACM, 1990.

[RS10] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products.
SIAM J. Comput., 39(7):3058–3088, 2010.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2004.

[Sho00] Victor Shoup. A composition theorem for universal one-way hash functions. In Bart
Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 445–452. Springer, 2000.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 80–91. IEEE Computer Society, 1982.

26

A Appendix

A.1 A Lemma on Probability Spaces

The following is a well-known lemma on probability spaces:

Lemma 32. Let (X,Y) be jointly distributed random variables taking values from some set
(X ,Y), and let A : X × Y → {0, 1} such that Pr

x
r←X,y r←Y [A(x, y) = 1] ≥ p > 0. Then for all

α, β > 0 satisfying α+ (1− α · p) · β < 1 it holds that

Pr
x

r←X

[
Pr
y

r←Y
[A(x, y) = 1] ≥ β · p

]
≥ α · p . (13)

Proof: Assume otherwise, we have that

Pr
X,Y

[A(X,Y)]

= Pr
X,Y

[
A(X,Y) | Pr

Y
[A(X,Y)] < β · p

]
· Pr
X

[
Pr
Y

[A(X,Y)] < β · p
]

+ Pr
X,Y

[
A(X,Y) | Pr

Y
[A(X,Y)] ≥ β · p

]
· Pr
X

[
Pr
Y

[A(X,Y)] ≥ β · p
]

< (β · p) · (1− α · p) + 1 · (α · p) < p ,

where we write A(X,Y) for the event that A(X,Y) = 1, which contradicts the assumption
on (α, β).

27

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

